
Bayesian Differential Privacy for Machine Learning

Aleksei Triastcyn and Boi Faltings
Artificial Intelligence Lab

EPFL
Lausanne, Switzerland

{aleksei.triastcyn, boi.faltings}@epfl.ch

Abstract

We propose Bayesian differential privacy, a relaxation of dif-
ferential privacy that provides sharper privacy guarantees for
similarly distributed data, especially in difficult scenarios,
such as deep learning. We derive a general privacy account-
ing method for iterative learning algorithms under Bayesian
differential privacy and show that it is a generalisation of the
well-known moments accountant. Our experiments show sig-
nificant improvements in privacy guarantees for typical cases
in deep learning datasets, such as MNIST and CIFAR-10, in
some cases bringing the privacy budget ε from 8 down to 0.5.

1 Introduction
Machine learning (ML) and data analytics present countless
opportunities for companies, governments and individuals to
benefit from the accumulated data. At the same time, their
ability to capture fine levels of detail potentially compro-
mises privacy of data providers. Recent research [18, 39, 23]
suggests that even in a black-box setting it is possible to ar-
gue about the presence of individual records in the training
set or recover certain features of these records.

To tackle this problem a number of solutions has been
proposed. They vary in how privacy is achieved and to what
extent data is protected. In this work, we consider a notion
that is viewed by many researchers as the gold standard—
differential privacy (DP) [17]. Initially, DP algorithms fo-
cused on sanitising simple statistics, such as mean, median,
etc., using a technique known as output perturbation. In
recent years, the field made a lot of progress towards the
goal of privacy-preserving machine learning, through works
on objective perturbation [12], stochastic gradient descent
with DP updates [40], to more complex and practical tech-
niques [1, 35, 36, 30]. For a more detailed overview of re-
lated work, we refer the reader to Appendix A.

Despite significant advances, differentially private ma-
chine learning still suffers from two major problems: (a)
utility loss due to excessive amounts of noise added during
training and (b) difficulty in interpreting the privacy param-
eters ε and δ. In many cases where the first problem appears
to be solved, it is actually being hidden by the second. To
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illustrate it, we design a motivational example in Section 2
that shows how a seemingly strong privacy guarantee allows
for the attacker accuracy to be as high as 99%. Even consid-
ering that this guarantee is very pessimistic and holds against
a very powerful adversary with any auxiliary information, it
can hardly be viewed as a reassurance to a user. Moreover, it
provides only the worst-case bound, leaving users to wonder
how far is the worst-case from a typical case.

In this paper, we focus on practicality of a privacy guar-
antee and propose a relaxation of differential privacy that
provides more meaningful guarantees for typical scenarios
on top of the global differential privacy guarantee. We name
it Bayesian differential privacy (BDP).

The key to our relaxation is our definition of typical sce-
narios. At the core of it lies the observation that machine
learning models are designed and tuned for a particular data
distribution (for example, an MRI dataset is very unlikely
to contain a picture of a car). Moreover, such prior distri-
bution of data is often already available to the attacker. We
consider a scenario typical when all sensitive data is drawn
from the same distribution. While the traditional differential
privacy treats all data as equally likely and hides differences
by large amounts of noise, Bayesian differential privacy cal-
ibrates noise to the data distribution. Thus, for any two ad-
jacent datasets drawn from the same distribution, and given
the same privacy mechanism with the same amount of noise,
BDP provides tighter expected guarantees.

The idea of using the data randomness in the context of
DP is not new by itself [13, 6, 21, 5, 25], and our work
could be viewed as a special case of some of these defini-
tions. Nonetheless, to the best of our knowledge, the prior
work does not provide efficient and tight privacy accounting
in real-world scenarios.

As the data distribution is usually unknown, BDP esti-
mates the necessary statistics from data as shown in the fol-
lowing sections. Furthermore, since typical scenarios are de-
termined by data, the participants of the dataset are covered
by the BDP guarantee with high probability.

To accompany the notion of Bayesian differential privacy
(Section 3.1), we provide its theoretical analysis and the pri-
vacy accounting framework (Section 3.2). The latter consid-
ers the privacy loss random variable and employs principled



tools from probability theory to find concentration bounds
on it. It provides a clean derivation of privacy accounting
in general (Sections 3.2 and 3.3), as well as in the special
case of subsampled Gaussian noise mechanism. Moreover,
we show that it is a generalisation of the well-known mo-
ments accountant (MA) [1] (Section 3.4).

Since our privacy accounting relies on data distribution
samples, a natural concern would be that the data not present
in the dataset are not taken into account, and thus, are not
protected. However, this is not the case, because our finite
sample estimator is specifically designed to address this is-
sue (see Section 3.3).

Our contributions in this paper are the following:

• we propose a relaxation of DP, called Bayesian differen-
tial privacy, that allows to provide more practical privacy
guarantees in a wide range of scenarios;

• we derive a clean, principled method for privacy account-
ing in learning that generalises the moments accountant;

• we experimentally demonstrate advantages of our method
(Section 4), including the state-of-the-art privacy bounds
in deep learning applications (Section 4.2).

2 Motivation
Before we proceed, we find it important to motivate the re-
search on alternative definitions of privacy. The primary rea-
son for this is that the complexity of the concept of differen-
tial privacy often leads to misunderstanding or overestima-
tion of the guarantees it provides.

Consider the state-of-the-art differentially private ma-
chine learning models [1, 36]. In order to come close to the
non-private accuracy (say within 10% of it), all of the re-
ported models stretch their privacy budget to ε > 2 (for a
reasonably low δ), while in many cases it goes up to ε > 5.
In real-world applications, it can even be larger than 101.
These numbers seem small, and thus, may often be over-
looked. But let us present an alternative interpretation.

What we are interested in is the change in the posterior
distribution of the attacker after they see the private model
compared to prior [33, 10]. Let us consider the stronger, pure
DP for simplicity and assume the following specific exam-
ple. The datasets D,D′ consist of income values for resi-
dents of a small town. There is one individual x′ whose in-
come is orders of magnitude higher than the rest, and whose
residency in the town is what the attacker wishes to infer.
The attacker observes the mean income w sanitised by a dif-
ferentially private mechanism with ε = ε0. It is easy to see,
that if the individual is not present in the dataset, the prob-
ability of w being above a certain threshold is extremely
small. On the contrary, if x′ is present, this probability is
higher (say it is equal to r). The attacker takes a Bayesian
approach, computes the likelihood of the observed value un-
der each of the two assumptions and the corresponding pos-
teriors given a flat prior. The attacker then concludes that the
individual is present in the dataset and is a resident.

1https://www.wired.com/story/apple-differential-privacy-
shortcomings/

By the above expression, r can only be eε0 times larger
than the corresponding probability without x′. However, if
the re−ε0 is small enough, then the probability P (A) of
the attacker’s guess being correct is as high as r

r+re−ε0
or,

equivalently,

P (A) =
1

1 + e−ε
. (1)

To put it in perspective, for a DP algorithm with ε = 2,
the upper bound on the accuracy of this attack is as high
as 88%. For ε = 5, it is 99.33%. For ε = 10, 99.995%.
Remember that we used an uninformative flat prior, and for a
more informed attacker these numbers could be even larger.

Such a guarantee is hardly better than no guarantee at
all, because in a more realistic scenario, even without any
privacy protection, this high accuracy is not likely to be
achieved by the attacker. Considering the generality of the
DP formulation, it is not surprising, and to obtain more
meaningful guarantees one needs more stringent assump-
tions. On the other hand, it is beneficial to maintain a looser
general guarantee in case assumptions do not hold.

In the next section, we present a relaxation of DP that uses
the same privacy mechanism and augments the general DP
guarantee with a tighter guarantee for the expected case. In
the view of our example: while it is hard to hide the presence
of a wealthy individual, the privacy guarantee for the rest of
the town residents is likely to be significantly stronger.

3 Bayesian Differential Privacy
In this section, we define Bayesian differential privacy
(BDP). We then derive a practical privacy loss accounting
method, and discuss its relation to the moments accountant.

3.1 Definition
Let us define Bayesian differential privacy (Definition 1) and
weak Bayesian differential privacy (Definition 2). The first
definition provides a better intuition, connection to concen-
tration inequalities, and is being used for privacy accounting.
Unfortunately, it may not be closed under post-processing,
and therefore, the actual guarantee provided by BDP is
stated in Definition 2 and mimics the (ε, δ)-differential pri-
vacy [16]. It is similar to how the moments accountant
bounds tails of the privacy loss random variable and con-
verts it to the (ε, δ)-DP guarantee in [1].

Definition 1 (Bayesian Differential Privacy). A randomised
functionA : D → R with domainD, rangeR, and outcome
w = A(·), satisfies (εµ, δµ)-Bayesian differential privacy
if for any two adjacent datasets D,D′ ∈ D, differing in a
single data point x′ ∼ µ(x), the following holds:

Pr[LA(w,D,D′) ≥ εµ] ≤ δµ, (2)

where probability is taken over the randomness of the out-
come w and the additional example x′.

Here, LA(w,D,D′) is the privacy loss defined as

LA(w,D,D′) = log
p(w|D)

p(w|D′)
, (3)



where p(w|D), p(w|D′) are private outcome distributions
for corresponding datasets. For brevity, we often omit pa-
rameters and denote the privacy loss simply by L.

We use the subscript µ to underline the main difference
between the classic DP and Bayesian DP: in the classic def-
inition the probability is taken only over the randomness of
the outcome (w), while the BDP definition contains two ran-
dom variables (w and x′). Therefore, the privacy parameters
ε and δ depend on the data distribution µ(x).

The addition of another random variable yields the change
in the meaning of δµ compared to the δ of DP. In Bayesian
differential privacy, it also accounts for the privacy mecha-
nism failures in the tails of data distributions in addition to
the tails of outcome distributions.
Definition 2 (Weak Bayesian Differential Privacy). A ran-
domised function A : D → R with domain D and range
R satisfies (εµ, δµ)-weak Bayesian differential privacy if for
any two adjacent datasets D,D′ ∈ D, differing in a single
data point x′ ∼ µ(x), and for any set of outcomes S the
following holds:

Pr [A(D) ∈ S] ≤ eεµ Pr [A(D′) ∈ S] + δµ. (4)

Proposition 1. (εµ, δµ)-Bayesian differential privacy im-
plies (εµ, δµ)-weak Bayesian differential privacy.

Bayesian DP mirrors some basic properties of the classic
DP, such as composition, resilience to post-processing and
group privacy. We state and proof these properties, as well
as the above proposition, in Appendix B.
Remark. While Definition 1 does not specify the distribu-
tion of any point in the dataset other than the additional ex-
ample x′, it is natural to assume that all examples in the
dataset are drawn from the same distribution µ(x). This
holds in many real-world applications, including applica-
tions evaluated in this paper, and it allows using dataset sam-
ples instead of requiring knowing the true distribution.
Remark. We also assume that all data points are exchange-
able [3], i.e. any permutation of data points has the same
joint probability. It enables tighter accounting for iterative
applications of the privacy mechanism (see Section 3.2), and
is naturally satisfied in the considered scenarios.

3.2 Privacy Accounting
In the context of learning, it is important to be able to
keep track of the privacy loss over iterative applications of
the privacy mechanism. And since the bounds provided by
the basic composition theorem are loose, we derive the ad-
vanced composition theorem and develop a general account-
ing method for Bayesian differential privacy, the Bayesian
accountant, that provides a tight bound on privacy loss and
is straightforward to implement. We draw inspiration from
the moments accountant.

Observe that Eq. 2 is a typical concentration bound in-
equality, which are well studied in probability theory. One
of the most common examples of such bounds is Markov’s
inequality. In its extended form, it states the following:

Pr[|L| ≥ εµ] ≤ E[ϕ(|L|)]
ϕ(εµ)

, (5)

where ϕ(·) is a monotonically increasing non-negative func-
tion. It is immediately evident that it provides a relation be-
tween εµ and δµ (i.e. δµ = E[ϕ(|L|)]/ϕ(εµ)), and in order
to determine them we need to choose ϕ and compute the
expectation E[ϕ(|L(w,D,D′)|)]. Note that L(w,D,D′) =
−L(w,D′, D), and since the inequality has to hold for any
pair of D,D′, we can use L instead of |L|.

We use the Chernoff bound that can be obtained by choos-
ing ϕ(L) = eλL. It is widely known because of its tightness,
and although not explicitly stated, it is also used by Abadi et
al. [1]. The inequality in this case transforms to

Pr[L ≥ εµ] ≤ E[eλL]

eλεµ
. (6)

This inequality requires the knowledge of the moment
generating function of L or some bound on it. The choice
of the parameter λ can be arbitrary, because the bound holds
for any value of it, but it determines how tight the bound is.
By simple manipulations we obtain

E[eλL] = E
[
e
λ log

p(w|D)

p(w|D′)

]
= E

[(
p(w|D)

p(w|D′)

)λ]
. (7)

If the expectation is taken only over the outcome ran-
domness, this expression is the function of Rényi diver-
gence between p(w|D) and p(w|D′), and following this
path yields re-derivation of Rényi differential privacy [33].
However, by also taking the expectation over additional ex-
amples x′ ∼ µ(x), we can further tighten this bound.

By the law of total expectation,

E

[(
p(w|D)

p(w|D′)

)λ]
= Ex

[
Ew

[(
p(w|D)

p(w|D′)

)λ∣∣∣∣∣x′
]]

, (8)

where the inner expectation is again the function of Rényi
divergence, and the outer expectation is over µ(x).

Combining Eq. 7 and 8 and plugging it in Eq. 6, we get

Pr[L ≥ εµ] ≤ Ex
[
eλDλ+1[p(w|D)‖p(w|D′)]−λεµ

]
. (9)

This expression determines how to compute εµ for a fixed
δµ (or vice versa) for one invocation of the privacy mech-
anism. However, to accommodate the iterative nature of
learning, we need to deal with the composition of multiple
applications of the mechanism. We already determined that
our privacy notion is naively composable, but in order to
achieve better bounds we need a tighter composition theo-
rem. Note also that due to computing expectation over data
in Eq. 8 and Eq. 9, we assume exchangeability [3] to obtain
results in practice. This assumption is weaker than indepen-
dence and is natural in many applications.
Theorem 1 (Advanced Composition). Let a learning algo-
rithm run for T iterations. Denote by w(1) . . . w(T ) a se-
quence of private learning outcomes at iterations 1, . . . , T ,
and L(1:T ) the corresponding total privacy loss. Then,

E
[
eλL

(1:T )
]

=

T∏
t=1

Ex
[
eλDλ+1(pt‖qt)

]
,

where pt = p(w(t)|w(t−1), D), qt = p(w(t)|w(t−1), D′).



Proof. See Appendix C.

We denote the logarithm of the quantity inside the product
in Theorem 1 as ct(λ) and call it the privacy cost of the
iteration t:

ct(λ) = logEx
[
eλDλ+1(pt‖qt)

]
(10)

The privacy cost of the whole learning process is then a
sum of the costs of each iteration. We can now relate ε and
δ parameters of BDP through the privacy cost.

Theorem 2. Let the algorithm produce a sequence of pri-
vate learning outcomes w(1) . . . w(T ) using a known proba-
bility distribution p(w(t)|w(t−1), D). Then, for a fixed εµ:

log δµ ≤
T∑
t=1

ct(λ)− λεµ.

Corollary 1. Under the conditions above, for a fixed δµ:

εµ ≤
1

λ

T∑
t=1

ct(λ)− 1

λ
log δµ.

Theorems 1, 2 and Corollary 1 immediately provide us
with an efficient privacy accounting algorithm. During train-
ing, we compute the privacy cost ct(λ) for each iteration t,
accumulate it, and then use to compute εµ, δµ pair. This pro-
cess is ideologically close to that of the moment accountant,
but accumulates a different quantity (note the change from
the privacy loss random variable to Rényi divergence). We
further explore this connection in Section 3.4.

The link to Rényi divergence is a great advantage for ap-
plicability of this framework: as long as the outcome distri-
bution p(w|D) has a known analytic expression for Rényi
divergence [20, 42], it can be used within a privacy mecha-
nism, and our accountant can track its privacy loss.

For the popular subsampled Gaussian mechanism [1], we
can demonstrate the following.

Theorem 3. Given the Gaussian noise mechanism with the
noise parameter σ and subsampling probability q, the pri-
vacy cost for λ ∈ N at iteration t can be expressed as

ct(λ) = max{cLt (λ), cRt (λ)},

where

cLt (λ) = logEx
[
Ek∼B(λ+1,q)

[
e
k2−k
2σ2
‖gt−g′t‖

2

]]
,

cRt (λ) = logEx
[
Ek∼B(λ,q)

[
e
k2+k

2σ2
‖gt−g′t‖

2

]]
,

and B(λ, q) is the binomial distribution with λ experiments
and the probability of success q.

Proof. See Appendix E.

3.3 Privacy Cost Estimator
Computing ct(λ) precisely requires access to the data dis-
tribution µ(x), which is unrealistic. Therefore, we need an
estimator for E[eλDλ+1(pt‖qt)].

Typically, having access to the distribution samples, one
would use the law of large numbers and approximate the ex-
pectation with the sample mean. This estimator is unbiased
and converges with the growing number of samples. How-
ever, these are not the properties we are looking for. The
most important property of the estimator in our context is
that it does not underestimate E[eλDλ+1(pt‖qt)], because the
bound (Eq. 6) would not hold for this estimate otherwise.

We employ the Bayesian view of the parameter estima-
tion problem [34] and design an estimator with this single
property: given a fixed probability γ, it returns the value that
overestimates the true expectation with probability 1−γ. We
then incorporate the estimator uncertainty γ in δµ.

Binary Case Let us demonstrate the process of construct-
ing the expectation estimator with the aforementioned prop-
erty on a simple binary example. This technique is based
on [34] and it translates directly to other classes of distri-
butions with minor adjustments. We also address a natural
concern about taking into account the data not present in the
dataset by providing a specific example.

Let the data {x1, x2, . . . , xN}, such that xi ∈ {0, 1}, have
a common mean and a common variance. As this informa-
tion is insufficient to solve our problem, let us also assume
that the data comes from the maximum entropy distribution.
This assumption adds the minimum amount of information
to the problem and makes our estimate pessimistic.

For the binary data with the common mean ρ, the maxi-
mum entropy distribution is the Bernoulli distribution:

f(xi|ρ) = ρxi(1− ρ)1−xi , (11)

where ρ is also the probability of success (xi = 1). Then,
for the entire dataset:

f(x1, . . . , xN |ρ) = ρN1(1− ρ)N0 , (12)

where N1 is the number of ones, and N0 is the number of
zeros in the dataset.

We impose the flat prior on ρ, assuming all values in [0, 1]
are equally likely, and use Bayes’ theorem to determine the
distribution of ρ given the data:

f(ρ|x1, . . . , xN ) =
Γ(N0 +N1 + 2)

Γ(N0 + 1)Γ(N1 + 1)
ρN1(1− ρ)N0 ,

(13)

where the normalisation constant in front is obtained by set-
ting the integral over ρ equal to 1.

Now, we can use the above distribution of ρ to design an
estimator ρ̂, such that it overestimates ρ with high probabil-
ity, i.e. Pr [ρ ≤ ρ̂] ≥ 1−γ. Namely, ρ̂ = F−1(1−γ), where
F−1 is the inverse of the CDF:

F−1(1− γ) = inf{z ∈ R :

∫ z

−∞
f(t|x1, . . . , xN )dt ≥ 1− γ}.

We refer to γ as the estimator failure probability, and to 1−γ
as the estimator confidence.



To demonstrate the resilience of this estimator to unseen
data, consider the following simple example. Let the true ex-
pectation be 0.01, and let the data consist of 100 zeros, and
no ones. A typical ”frequentist” mean estimator would con-
fidently output 0. However, our estimator would never out-
put 0, unless the confidence is set to 0. When the confidence
is set to 1 (γ = 0), the output is 1, which is the most pes-
simistic estimate. Finally, the output ρ̂ = ρ = 0.01 will be
assigned the failure probability γ = 0.99101 ≈ 0.36, which
is the probability of not drawing a single 1 in 101 draws.

In a real-world system, the confidence would be set to a
much higher level (in our experiments, we use γ = 10−15),
and the probability of 1 would be significantly overesti-
mated. Thus, unseen data do not present a problem for this
estimator, because it exaggerates the probability of data that
increase the estimated expectation.

Continuous Case For applications evaluated in this paper,
we are primarily concerned with continuous case. Thus, let
us define the followingm-sample estimator of ct(λ) for con-
tinuous distributions with existing mean and variance:

ĉt(λ) = log

[
M(t) +

F−1(1− γ,m− 1)√
m− 1

S(t)

]
, (14)

where M(t) and S(t) are the sample mean and the sample

standard deviation of eλD̂
(t)
λ+1 , F−1(1− γ,m− 1) is the in-

verse of the Student’s t-distribution CDF at 1−γ withm−1
degrees of freedom, and

D̂
(t)
λ+1 = max {Dλ+1(p̂t‖q̂t), Dλ+1(q̂t‖p̂t)} ,

p̂t = p(w(t) | w(t−1), B(t)),

q̂t = p(w(t) | w(t−1), B(t) \ {xi}).

Since in many cases learning is performed on mini-batches,
we can similarly compute Rényi divergence on batchesB(t).
Theorem 4. Estimator ĉt(λ) overestimates ct(λ) with prob-
ability 1− γ. That is,

Pr [ĉt(λ) < ct(λ)] ≤ γ.

Proof. The proof is similar to the above binary example. See
more details in Appendix D.

Remark. By adapting the maximum entropy probability
distribution an equivalent estimator can be derived for other
classes of distributions (e.g. discrete).

To avoid introducing new parameters in the privacy defini-
tion, we can incorporate the probability γ of underestimating
the true expectation in δµ. We can re-write:

Pr[LA(w(t), D,D′) ≥ εµ]

= Pr
[
LA(w(t), D,D′) ≥ εµ, ĉt(λ) ≥ ct(λ)

]
+ Pr

[
LA(w(t), D,D′) ≥ εµ, ĉt(λ) < ct(λ)

]
.

When ĉt(λ) ≥ ct(λ), using the Chernoff inequality, the
first summand is bounded by β = exp(

∑T
t=1 ĉt(λ)− λεµ).

Whenever ĉt(λ) < ct(λ),

Pr[LA(w(t), D,D′) ≥ εµ, ĉt(λ) < ct(λ)]

≤ Pr[ĉt(λ) < ct(λ)]

≤ γ.

Therefore, the true δµ is bounded by β + γ, and despite
the incomplete data, we can claim that the mechanism is
(εµ, δµ)-Bayesian differentially private, where δµ = β + γ.

Remark. This step further changes the interpretation of δµ
in Bayesian differential privacy compared to the classic δ of
DP. Apart from the probability of the privacy loss exceeding
εµ, e.g. in the tails of its distribution, it also incorporates our
uncertainty about the true data distribution (in other words,
the probability of underestimating the true expectation be-
cause of not observing enough data samples). It can be intu-
itively understood as accounting for unobserved (but feasi-
ble) data in δµ, rather than in εµ.

3.4 Discussion
Relation to Moments Accountant and RDP As men-
tioned in Section 3.2, removing the distribution requirement
on D,D′ and further simplifying Eq. 9, we can recover the
relation between Rényi differential privacy and (ε, δ)-DP.

At the same time, our accounting technique closely re-
sembles the moments accountant. In fact, we can show that
the moments accountant is a special case of Theorem 3. Ig-
noring the data distribution information and substituting ex-
pectation by maxD,D′ yields the substitution of ‖gt − g′t‖
for C in Theorem 3, where C is the sensitivity (or clipping
threshold), which turns out to be the exact moments accoun-
tant bound. In addition, there are some extra benefits, such
as avoiding numerical integration when using λ ∈ N due
to connection to Binomial distribution, which improves nu-
merical stability and computational efficiency.

Sensitivity One may notice that throughout the paper
we did not mention an important concept of differential
privacy—sensitivity. Indeed, bounded sensitivity is not as
essential for Bayesian differential privacy, because extreme
individual contributions are mitigated by their low probabil-
ity. However, in practice it is still advantageous to restrict
sensitivity in order to have a better control of the accumu-
lated privacy loss and avoid unwanted spikes. Moreover,
bounding sensitivity ensures that the privacy mechanism is
also differentially private and provides guarantees for data
for which the additional assumptions do not hold.

Privacy of ĉt(λ) Due to computing ĉt(λ) from data our
privacy guarantee ε becomes data-dependent and may theo-
retically leak sensitive information by itself. There are mul-
tiple ways to approach this problem.

One way would be to observe that the privacy leakage is
tied to the error of the estimator: an adversary who has ac-
cess to the prior data distribution would be able to compute
the true ct(λ) with arbitrary precision, and thus, the only
leaking information about the actual data is the error be-
tween ĉt(λ) and ct(λ). On the other hand, it may be possible
to express the distribution of the sample mean and variance
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Figure 1: Evolution of ε and εµ over multiple steps of the Gaussian noise mechanism with σ = C for DP (with clipping) and
BDP (without clipping). Sub-captions indicate the noise variance relative to the gradient norms distribution.

of the privacy loss through the true mean and bound the den-
sity ratios for two neighbouring datasets.

Another possible solution could be based on computing
the estimator from noisy data, ensuring the same level of
privacy as the trained model. One can also prove that it does
not result in underestimation of the real privacy cost. How-
ever, based on our preliminary experiments, this approach
requires more investigation of its practicality because the ob-
tained bounds are looser.

Finally, one should consider the fact that the information
from many high-dimensional vectors gets first compressed
down to their pairwise distances, which are not as informa-
tive in high-dimensional spaces (i.e. the curse of dimension-
ality), and then down to one number. We believe that at this
rate of compression very little knowledge can be gained by
an attacker in practice. In Section 4.2, we examine pairwise
gradient distances of the points within the training set and
outside, and do not find any evidence of privacy leakage.
However, obtaining strict theoretical bounds, potentially in
one of the ways discussed above, is more desirable and is an
important future research direction.

4 Evaluation
This experimental section comprises two parts. First, we ex-
amine how well Bayesian DP composes over multiple steps.
We use the Bayesian accountant and compare to the state-of-
the-art DP results obtained by the moments accountant [1].
Second, we consider the context of machine learning. In par-
ticular, we use the differentially private stochastic gradient
descent (DP-SGD), a well known privacy-preserving learn-
ing technique broadly used in combination with the mo-
ments accountant, to train neural networks on classic image
classification tasks MNIST [28] and CIFAR10 [27]. We then
compare the accuracy and privacy guarantees obtained under
BDP and under DP. We also perform experiments with vari-
ational inference on Abalone [45] and Adult [26] datasets.

As stated above, DP and BDP can use the same privacy
mechanism and be accounted in parallel to ensure the DP
guarantees hold if BDP assumptions fail. Thus, all compar-
isons in this section should be viewed in the following way:
the reported BDP guarantee would apply to typical data (i.e.
data drawn from the same distribution as the dataset); the
reported DP guarantee would apply to all other data; their
difference is the advantage for typical data we gain by us-

Table 1: Estimated privacy bounds ε, εµ for δ = δµ = 10−5

for MNIST, CIFAR10, Abalone and Adult datasets.

Accuracy ε εµ P (A)
Dataset Baseline Private DP BDP DP BDP

MNIST 99% 96% 2.18 0.62 89.8% 65.0%
CIFAR10 86% 73% 8.0 0.51 99.9% 62.5%
Abalone 77% 76% 7.6 0.5 99.9% 62.3%
Adult 81% 81% 0.5 0.16 62.3% 54.0%

ing Bayesian DP. In some experiments we use smaller noise
variance for BDP in order to speed up training, meaning that
the reported BDP guarantees will further improve if noise
variance is increased to DP levels. Finally, it is worth reiter-
ating that the interpretation of δµ of BDP is different from δ
of DP, as discussed in Sections 3.1 and 3.3.

4.1 Composition
First, we study the growth rate of the privacy loss over a
number of mechanism invocations. This experiment is car-
ried out using synthetic gradients drawn from the Weibull
distribution with the shape parameter < 1 to imitate a more
difficult case of heavy-tailed gradient distributions. We do
not clip gradients for BDP in order to show the raw effect of
the signal-to-noise ratio on the privacy loss behaviour.

In Figure 1, we plot ε and εµ as a function of steps for dif-
ferent levels of noise. Naturally, as the noise standard devi-
ation gets closer to the expected gradients norm, the growth
rate of the privacy loss decreases dramatically. Even when
the noise is at the 0.25-quantile, the Bayesian accountant
matches the moments accountant. It is worth noting, that DP
behaves the same in all these experiments because the gradi-
ents get clipped at the noise levelC. Introducing clipping for
BDP yields the behaviour of Figure 1d, as we demonstrate
in the next section on real data.

4.2 Learning
We now consider the application to privacy-preserving deep
learning. Our setting closely mimics that of [1] to enable a
direct comparison with the moments accountant and DP. We
use a version of DP-SGD [1] that has been extensively ap-
plied to build differentially private machine learning mod-
els. The idea of DP-SGD is to clip the gradient norm to
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Figure 2: Pairwise gradient distances for MNIST.

some constant C (ensuring bounded sensitivity) and then
add Gaussian noise with variance C2σ2 at every iteration
of SGD. For Abalone and Adult datasets, we use variational
inference and a setting similar to [24]. See more setting de-
tails in Appendix F.

Using the information about gradient distribution allows
the BDP models to reach the same accuracy at εµ much
lower than ε. On MNIST, we manage to reduce it from 2.18
to 0.62. For CIFAR10, from 8.0 to 0.51. See details in Ta-
ble 1. Alternatively, Bayesian differential privacy allows to
add less noise to achieve εµ comparable to ε. Because of
this, the models reach the same test accuracy much faster.
For example, our model reaches 96% accuracy within 20
epochs for MNIST, while DP model requires hundreds of
epochs to avoid ε blowing up. These results also confirm
our assumption that the actual disagreement between gradi-
ent directions is much smaller than their norms, and there-
fore, requires less noise to hide. To make our results more
transparent, we include in Table 1 the potential attack suc-
cess probability P (A) computed using Eq. 1. In this inter-
pretation, the benefits of using Bayesian differential privacy
become even more apparent.

An important aspect of BDP, discussed in Section 3.4, is
the potential privacy leakage of the privacy cost estimator.
Since at the moment we do not have a rigorous bound on the
amount of information it leaks, we conduct the following ex-
periment. After training the model (to ensure it contains as
much information about data as possible), we compute the
gradient pairwise distances over train and test sets. We then
plot the histograms of these distances to inspect any diver-
gence that would distinguish the data that was used in train-
ing. Note that this is more information than what is available
to an adversary, who only observes εµ.

As it turns out, these distributions are nearly identical (see
Figures 2 and 3), and we do not observe any correlation with
the fact of the presence of data in the training set. For exam-
ple, the sample mean of the test set can be both somewhat
higher or lower than that of the train set. We also run the
t-test for equality of means and Levene’s test for equality
of variances, obtaining p-values well over the 0.05 thresh-
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Figure 3: Pairwise gradient distances for CIFAR10.

old, suggesting that the difference of the means and the vari-
ances of these distributions is not statistically significant and
the equality hypothesis cannot be rejected.

5 Conclusion
We introduce the notion of (εµ, δµ)-Bayesian differential
privacy, a relaxation of (ε, δ)-differential privacy for sensi-
tive data that are drawn from an arbitrary (and unknown)
distribution µ(x). This relaxation is reasonable in many ma-
chine learning scenarios where models and algorithms are
designed for and trained on specific data distributions (e.g.
emails, face images, ECGs, etc.). For example, it may be
unjustified to try hiding an absence of music records in a
training set for ECG analysis, because the probability of it
appearing is actually much smaller than δ.

We state and proof the advanced composition theorem for
Bayesian differential privacy that allows for efficient and
tight privacy accounting. Since the data distribution is un-
known, we design an estimator that overestimates the pri-
vacy loss with high, controllable probability. Moreover, as
the data sample is finite, we employ the Bayesian parameter
estimation approach with the flat prior and the maximum en-
tropy principle to avoid underestimating probabilities of un-
seen examples. As a result, our interpretation of δµ is slightly
different: not only is it the probability of the privacy loss ex-
ceeding εµ in the tails of its distribution, but it also is the
probability of underestimating the privacy loss based on a
finite sample of data.

Our evaluation confirms that Bayesian differential privacy
is highly beneficial in machine learning context where the
additional assumptions on data distribution are naturally sat-
isfied. First, it requires less noise to reach the same privacy
guarantees. Second, as a result, models train faster and can
reach higher accuracy. Third, it may be used along with
DP to achieve significantly lower ε values for most cases
while still maintaining the general DP guarantees. In our
deep learning experiments with convolutional neural net-
works and variational inference experiments, εµ always re-
mained well below 1, translating to much more meaningful
bounds on the potential attacker success probability.
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A Related Work
As machine learning applications become more and more
common, various vulnerabilities and attacks on ML mod-
els get discovered, based on both passive (for example,
model inversion [18] and membership inference [39]) and
active adversaries (e.g. [23]), raising the need for develop-
ing matching defences.

Differential privacy [17, 15] is one of the strongest pri-
vacy standards that can be employed to protect ML mod-
els from these and other attacks. Since pure ε-DP is hard
to achieve in many realistic learning settings, a notion of
approximate (ε, δ)-DP is used across-the-board in machine
learning. It is often achieved as a result of applying the Gaus-
sian noise mechanism [16]. Several alternative notions and
relaxations of DP have also been proposed, such as compu-
tational DP [32], mutual-information privacy [31, 44], dif-
ferent versions of concentrated DP (CDP [14], zCDP [8],
tCDP [9]), and Rényi DP (RDP) [33]. Some other relax-
ations [2, 37, 11, 43, 41] tip the balance even further in
favour of applicability at the cost of weaker guarantees, con-
sidering the average-case instead of the worst-case or limit-
ing the guarantee to a given dataset. Unlike these relaxations,
our notion is not limited to a particular dataset, but rather
a particular distribution of data (e.g. emails, MRI images,
etc.), which is a much weaker assumption.

For a long time, approximate DP remained unachievable
in more popular deep learning scenarios. Some earlier at-
tempts [38] led to prohibitively high bounds on ε [1, 35]
that were later shown to be ineffective against attacks [23].
A major step in the direction of bringing privacy loss val-
ues down to more practical magnitudes was done by Abadi
et al. [1] with the introduction of the moments accountant,
currently a state-of-the-art method for keeping track of the
privacy loss during training. Followed by improvements in
differentially private training techniques [35, 36], it allowed
to achieve single-digit DP guarantees (ε < 10) for classic
supervised learning benchmarks, such as MNIST, SVHN,
and CIFAR.

In general, an important aspect of a privacy notion is com-
posability, accountability, and interpretability. Apart from
sharp bounds, the moments accountant is attractive because
it operates within the classic notion of (ε, δ)-DP. Some of the
alternative notions of DP, such as [33, 9], also provide tight
composition theorems, along with some other advantages,
but to the best of our knowledge, they are not broadly used
in practice compared to traditional DP (although there are
some examples [19]). One of the possible reasons for that
is interpretability: parameters of (α, ε)-RDP or (µ, τ)-CDP



are hard to interpret. While it may be difficult to quantify
the actual guarantee provided by specific values of ε, δ of
the traditional DP, it is still advantageous that they have a
clearer probabilistic interpretation.

Our privacy notion can be related to some of the past work
on DP relaxations. In Section 3.4, we discuss its connec-
tion to RDP [33] and the moments accountant [1]. Similarly,
there is a link to concentrated DP definitions.

A number of previous relaxations considered a similar
idea of limiting the scope of protected data or using the data
generating distribution, either through imposing a set of data
evolution scenarios [25], policies [22], distributions [7, 6],
or families of distributions [5, 4]. Some of these definitions
(e.g. [7]) may require more noise, because they are stronger
than DP in the sense that datasets can differ in more than
one data point. This is not the case with our definition: like
DP, it considers adjacent datasets differing in a single data
point. The major problem of such definitions, however, is
that in real-world scenarios it is not feasible to exactly define
distributions or families of distributions that generate data.
And even if this problem is solved by restricting the query
functions to enable the usage of the central limit theorem
(e.g. [6, 13]), these guarantees would only hold asymptoti-
cally and may require prohibitively large batch sizes. While
Bayesian DP can be seen as a special case of some of the
above definitions, the crucial difference with the prior work
is that our additional assumptions allow the Bayesian ac-
counting (Sections 3.2, 3.3) to provide guarantees w.h.p.
with finite number of samples from data distributions, and
hence, allow a broad range of real-world applications.

Finally, there are other approaches that use the data dis-
tribution information in one way or another, and coinciden-
tally share the same [46] or similar [29] names. Yet, simi-
larly to the methods discussed above, their assumptions (e.g.
the bound on the minimum probability of a datapoint) and
implementation requirements (e.g. potentially constructing
correlation matrices for millions of data samples) make
practical applications difficult. Perhaps the most similar to
our approach is the random differential privacy [21], how-
ever, the authors only propose a basic composition theorem,
which is not tight enough, and computing the probabilities
over all dataset examples would not be practical in many re-
alistic machine learning scenarios.

B Proof of Propositions
This appendix contains the basic properties of Bayesian dif-
ferential privacy and related proofs. Let us begin with re-
stating and proving Proposition 1.

Proposition 1. (εµ, δµ)-Bayesian differential privacy im-
plies (εµ, δµ)-weak Bayesian differential privacy.

Proof. Let us define a set of outcomes for which the pri-
vacy loss variable exceeds the ε threshold: F (x′) = {w :
LA(w,D,D′) > ε}, and its compliment F c(x′).

Observe that L ≤ ε implies Pr[A(D) ∈ S ∩ Fc(x′)] ≤
eε Pr[A(D′) ∈ S ∩ Fc(x′)], and therefore, Pr[A(D) ∈
S ∩ Fc(x′) | x′] ≤ eε Pr[A(D′) ∈ S ∩ Fc(x′) | x′], be-
cause A(D) does not depend on x′, and A(D′) is already

conditioned on x′ through D′. Thus,

Pr[A(D) ∈ S] =

∫
Pr[A(D) ∈ S, x′] dx′ (15)

=

∫
Pr[A(D) ∈ S ∩ Fc(x′), x′] (16)

+ Pr[A(D) ∈ S ∩ F(x′), x′] dx′

(17)

=

∫
Pr[A(D) ∈ S ∩ Fc(x′)|x′]µ(x′)

(18)

+ Pr[A(D) ∈ S ∩ F(x′), x′] dx′

(19)

≤
∫
eε Pr[A(D′) ∈ S ∩ Fc(x′)|x′]µ(x′)

(20)

+ Pr[A(D) ∈ S ∩ F(x′), x′] dx′

(21)

≤
∫
eε Pr[A(D′) ∈ S, x′] (22)

+ Pr[A(D) ∈ S ∩ F(x′), x′] dx′

(23)

≤ eε Pr[A(D′) ∈ S] + δµ, (24)

where in the first line we used marginalisation and the last
inequality is due to the fact that∫

Pr[A(D) ∈ S ∩ F(x′), x′] dx′ (25)

≤
∫

Pr[A(D) ∈ F(x′), x′] dx′ (26)

=

∫
µ(x′) Pr[A(D) ∈ F(x′) | x′] dx′ (27)

=

∫
µ(x′)

∫
w∈F(x′)

pA(w|D,x′) dw dx′ (28)

= Ex′ [Ew [1{L > ε}]] (29)
≤ δµ (30)

Proposition 2 (Post-processing). Let A : D → R be a
(εµ, δµ)-Bayesian differentially private algorithm. Then for
any arbitrary randomised data-independent mapping f :
R → R′, f(A(D)) is (εµ, δµ)-weak Bayesian differentially
private.

Proof. By Proposition 1, (εµ, δµ)-BDP implies

Pr [A(D) ∈ S] ≤ eεµ Pr [A(D′) ∈ S] + δµ, (31)

for any set of outcomes S ⊂ R.
For a data-independent function f(·):

Pr [f(A(D)) ∈ T ] = Pr [A(D) ∈ S] (32)

≤ eεµ Pr [A(D′) ∈ S] + δµ, (33)

= eεµ Pr [f(A(D′)) ∈ T ] + δµ (34)

where S = f−1[T ], i.e. S is the preimage of T under f .



Proposition 3 (Basic composition). Let Ai : D → Ri,
∀i = 1..k, be a sequence of (εµ, δµ)-Bayesian differen-
tially private algorithms. Then their combination, defined as
A1:k : D → R1 × . . .×Rk, is (kεµ, kδµ)-Bayesian differ-
entially private.

Proof. Let us denote L = log p(w1,...,wk|D)
p(w1,...,wk|D′) .

Also, let Li = log p(wi|D,wi−1,...,w1)
p(wi|D′,wi−1,...,w1)

. Then,

Pr [L ≥ kεµ] = Pr

[
k∑
i=1

Li ≥ kεµ

]
(35)

≤
k∑
i=1

Pr[Li ≥ εµ] (36)

≤
k∑
i=1

δµ (37)

≤ kδµ (38)

Proposition 4 (Group privacy). Let A : D → R be a
(εµ, δµ)-Bayesian differentially private algorithm. Then for
all pairs of datasets D,D′ ∈ D, differing in k data points
x1, . . . , xk s.t. xi ∼ µ(x) for i = 1..k, A(D) is (kεµ, kδµ)-
Bayesian differentially private.

Proof. Let us define a sequence of datasets Di, i = 1..k,
s.t. D = D0, D′ = Dk, and Di and Di−1 differ in a single
example. Then,

p(w|D)

p(w|D′)
=
p(w|D0)p(w|D1) . . . p(w|Dk−1)

p(w|D1)p(w|D2) . . . p(w|Dk)
(39)

Denote Li = log p(w|Di−1)
p(w|Di) for i = 1..k.

Finally, applying the definition of (εµ, δµ)-Bayesian dif-
ferential privacy,

Pr [L ≥ kεµ] = Pr

[
k∑
i=1

Li ≥ kεµ

]
(40)

≤
k∑
i=1

Pr[Li ≥ εµ] (41)

≤ kδµ (42)

C Proof of Theorem 1
Let us restate the theorem:
Theorem 1 (Advanced Composition). Let a learning algo-
rithm run for T iterations. Denote by w(1) . . . w(T ) a se-
quence of private learning outcomes at iterations 1, . . . , T ,
and L(1:T ) the corresponding total privacy loss. Then,

E
[
eλL

(1:T )
]

=

T∏
t=1

Ex
[
eλDλ+1(pt‖qt)

]
,

where pt = p(w(t)|w(t−1), D), qt = p(w(t)|w(t−1), D′).

Proof. The proof closely follows [1].
First, we can write

L(1:T ) = log
p(w(1) . . . w(T ) | D)

p(w(1) . . . w(T ) | D′)
(43)

= log

T∏
t=1

p(w(t) | w(t−1) . . . p(w(1), D)

p(w(t) | w(t−1) . . . p(w(1), D′)
(44)

= log

T∏
t=1

p(w(t) | w(t−1), D)

p(w(t) | w(t−1), D′)
(45)

=

T∑
t=1

L(t) (46)

Then,

E
[
eλL

(1:T )
]

= E
[
eλ
∑T
t=1 L

(t)
]

(47)

= E

[
e
λ
∑T
t=1 log

p(w(t) | w(t−1),D)

p(w(t) | w(t−1),D′)

]
(48)

= E

[
T∏
t=1

e
λ log

p(w(t) | w(t−1),D)

p(w(t) | w(t−1),D′)

]
(49)

=

T∏
t=1

E

[
e
λ log

p(w(t) | w(t−1),D)

p(w(t) | w(t−1),D′)

]
(50)

=

T∏
t=1

E
[
eλDλ+1(pt‖qt)

]
, (51)

where for (50), we additionally assume samples withinD (as
well as D′) are exchangeable, because of taking expectation
over data. This assumption is natural in the applications we
consider: the order of data points should not matter and the
joint probability of any permutation of points should be the
same. Finally, (51) is by Eq. 8.

D Proof of Theorem 4
Let us restate the theorem:

Theorem 4. Estimator ĉt(λ) overestimates ct(λ) with prob-
ability 1− γ. That is,

Pr [ĉt(λ) < ct(λ)] ≤ γ.

Proof. First of all, we can drop the logarithm from our con-
sideration because of its monotonicity.

Now, assuming that samples eλD̂
(t)
λ+1 have a com-

mon mean and a common variance, and applying the
maximum entropy principle in combination with an un-
informative (flat) prior, one can show that the quan-

tity
M(t)−E

[
e
λD̂

(t)
λ+1

]
S(t)

√
m− 1 follows the Student’s t-

distribution with m− 1 degrees of freedom [34].
Finally, we use the inverse of the Student’s t CDF to find

the value that this random variable would only exceed with
probability γ. The result follows by simple arithmetical op-
erations.



E Proof of Theorem 3
Let us restate the theorem:

Theorem 3. Given the Gaussian noise mechanism with the
noise parameter σ and subsampling probability q, the pri-
vacy cost for λ ∈ N at iteration t can be expressed as

ct(λ) = max{cLt (λ), cRt (λ)},

where

cLt (λ) = logEx
[
Ek∼B(λ+1,q)

[
e
k2−k
2σ2
‖gt−g′t‖

2

]]
,

cRt (λ) = logEx
[
Ek∼B(λ,q)

[
e
k2+k

2σ2
‖gt−g′t‖

2

]]
,

and B(λ, q) is the binomial distribution with λ experiments
and the probability of success q.

Proof. Without loss of generality, assume D′ = D ∪ {x′}.
For brevity, let dt = ‖gt − g′t‖.

Let us first consider Dλ+1(p(w|D′)‖p(w|D)):

E

[(
p(w|D′)
p(w|D)

)λ+1
]

= E

[(
(1− q)N (0, σ2) + qN (dt, σ

2)

N (0, σ2)

)λ+1
]

(52)

= E

[(
(1− q) + q

N (dt, σ
2)

N (0, σ2)

)λ+1
]

(53)

= E

[(
(1− q) + qe

(w−dt)2−w2

2σ2

)λ+1
]

(54)

= E

[(
(1− q) + qe

2dw−d2t
2σ2

)λ+1
]

(55)

= E

[
λ+1∑
k=0

(
λ+ 1

k

)
qk(1− q)λ+1−ke

2dtkw−kd2t
2σ2

]
(56)

=

λ+1∑
k=0

(
λ+ 1

k

)
qk(1− q)λ+1−kE

[
e

2dtkw−kd2t
2σ2

]
(57)

=

λ+1∑
k=0

(
λ+ 1

k

)
qk(1− q)λ+1−ke

k2−k
2σ2

d2t (58)

= Ek∼B(λ+1,q)

[
e
k2−k
2σ2
‖gt−g′t‖

2

]
, (59)

Here, in (56) we used the binomial expansion, in (57) the
fact that the factors in front of the exponent do not depend
on w, and in (58) the property Ew

[
exp(2aw/(2σ2))

]
=

exp(a2/(2σ2)) for w ∼ N (0, σ2). Plugging the above in
Eq. 10, we get the expression for cLt (λ).

ComputingDλ+1(p(w|D)‖p(w|D′)) is a little more chal-
lenging. Let us first change to Dλ(p(w|D)‖p(w|D′)), so
that the expectation is taken over N (0, σ2). Then, we can
bound it observing that f(x) = 1

x is convex for x > 0 and

using the definition of convexity, and apply the same steps
as above:

E

[(
p(w|D)

p(w|D′)

)λ]

= E

[(
N (0, σ2)

(1− q)N (0, σ2) + qN (dt, σ2)

)λ]
(60)

≤ E

[(
(1− q) + qe

d2t−2dw

2σ2

)λ]
(61)

= Ek∼B(λ,q)

[
e
k2+k

2σ2
‖gt−g′t‖

2

]
(62)

In practice, we haven’t found any instance of
Dλ+1(p(w|D′)‖p(w|D)) < Dλ+1(p(w|D)‖p(w|D′))
when the latter was computed using numerical integration,
although it may happen when using this theoretical upper
bound.

F Experimental setting
We train a classifier represented by a neural network (un-
like [1], without PCA) on MNIST [28] and on CIFAR10 [27]
using DP-SGD. The first dataset contains 60,000 training
examples and 10,000 testing images. We use large batch
sizes of 1024, clip gradient norms to C = 1, and σ = 0.1.
The second dataset consists of 50,000 training images and
10,000 testing images of objects split in 10 classes. For this
dataset, we use the batch size of 512, C = 1, and σ = 0.7.
We fix δ = δµ = 10−5 in all experiments. In case of CI-
FAR10, in order for our results to be comparable to [1],
we pre-train convolutional layers of the model on a differ-
ent dataset and retrain a fully-connected layer in a privacy-
preserving way.

Privacy accounting with DP-SGD works in the following
way. The non-private learning outcome at each iteration t is
the gradient gt of the loss function w.r.t. the model parame-
ters, the outcome distribution is the Gaussian N (gt, σ

2C2).
Before adding noise, the norm of the gradients is clipped
to C. For the moments accountant, the privacy loss is cal-
culated using this C and σ. For the Bayesian accountant,
either pairs of examples xi, xj or pairs of batches are sam-
pled from the dataset at each iteration, and used to com-
pute ĉt(λ). Although clipping gradients is no longer nec-
essary with the Bayesian accountant, it is highly beneficial
for incurring lower privacy loss at each iteration and obtain-
ing tighter composition. Moreover, it ensures the classic DP
bounds on top of BDP bounds.

We also run evaluation on two binary classification tasks
taken from UCI database: Abalone [45] (predicting the age
of abalone from physical measurements) and Adult [26]
(predicting income based on a person’s attributes). In this
setting, we compare differentially private variational infer-
ence (DPVI-MA [24]) to the variational inference with BDP.
The datasets have 4,177 and 48,842 examples with 8 and 14
attributes accordingly. We use the same pre-processing and
models as [24].


