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Abstract

This paper introduces the first provably accurate algorithms
for differentially private, top-down decision tree learning in
the distributed setting (Balcan et al. 2012). We propose DP-
TopDown, a general privacy-preserving decision tree learning
algorithm, and present two distributed implementations. Our
first method NoisyCounts naturally extends the single ma-
chine algorithm by using the Laplace mechanism. Our second
method LocalRNM significantly reduces communication and
added noise by performing local optimization at each data
holder. We provide the first utility guarantees for differentially
private top-down decision tree learning in both the single ma-
chine and distributed settings. These guarantees show that the
error of the privately-learned decision tree quickly goes to zero
provided that the dataset is sufficiently large. Our extensive
experiments on real datasets illustrate the trade-offs of privacy,
accuracy and generalization when learning private decision
trees in the distributed setting.

1 Introduction

New technologies for edge computing and the Internet of
Things (IoT) are driving computing toward the dispersed set-
ting (Satyanarayanan 2017). A distributed learning algorithm
has access to data with more quantity and diversity than learn-
ing from one data holder. Today, data entities comprise of
mobile phones, schools, hospitals, companies, countries, and
more. As an illustrative example, consider training a model
for early detection of a new strand of malaria, which has been
tested in multiple hospitals across the country. Most hospitals
alone would not have enough data to train an accurate model.
Even if a hospital could locally train a model, the model
would be biased toward and only accurate for that specific
city. As such, it would perform poorly as a nationwide diag-
nostic tool. However, while benefits of distributed learning
are evident, privacy concerns can often deter cooperation.
Differential privacy (Dwork et al. 2006) is a strong guaran-
tee of individual privacy with an additional benefit of encour-
aging generalization (Oneto, Ridella, and Anguita 2017). Dif-
ferentially private mechanisms formally quantify the amount
of leaked information and can greatly incentivize distributed
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learning with sensitive data. Another attractive feature of
differential privacy is its robustness to post-processing; once
the model is learned through a differentially private mech-
anism, any arbitrary applications of the model as well as
post-processing to the model can be performed without wor-
rying about additional privacy leaks.

In this work, we investigate learning decision trees while
preserving privacy in the distributed setting (Balcan et al.
2012). Decision trees are often used for their efficiency and
interpretability. The learned structure of decision trees is
much more interpretable than other machine learning models
like deep neural networks. Motivated by the fact that con-
structing optimal decision trees is NP-complete (Laurent and
Rivest 1976), greedy top-down learning algorithms are used
in practice (i.e. ID3, C4.5 and CART (Mitchell 1997)). Top-
down algorithms can be viewed as boosting algorithms that
quickly drive their error to zero under the Weak Learning
Assumption (Kearns and Mansour 1999).

In the distributed setting, any communicated information
between data holders must be made differentially private,
which limits the quantity and quality of information that can
be published to learn the decision tree. Intermediate com-
putations often cost privacy, which violates the information
minimization principle of differential privacy (Dwork and
Roth 2014). Despite these constraints, we are able to prove
theoretical guarantees that the error of the privately-learned
tree quickly goes to zero with high probability provided that
we have sufficient data under the Weak Learning Assumption.

We present DP-TopDown, a family of differentially pri-
vate decision tree learning algorithms based off the TopDown
algorithm (Kearns and Mansour 1999). The DP-TopDown
procedure uses a differentially private subroutine, called
PrivateSplit, to approximate the optimal split chosen by
TopDown. Designing a private and distributed mechanism
that satisfies the utility requirements of PrivateSplit is the
main challenge of running DP-TopDown. In our first ap-
proach NoisyCounts, each entity publishes noised counts that
are aggregated to find the best splitting functions. Our sec-
ond approach LocalRNM is a heuristic that performs local
optimization at each entity to greatly reduce the amount of
communication and noise compared to NoisyCounts.

Finally, we perform a comprehensive evaluation of our dif-



ferent implementations of DP-TopDown on real and relevant

datasets. We provide plots that illustrate the privacy-accuracy

trade-off for our algorithms and empirically show that Lo-
calRNM performs better than NoisyCounts on most datasets.

Motivated by our theoretical results, we also show that both

the training and testing accuracy of the decision tree increases

with more training data. In one dataset, we observe that our
private algorithms can actually improve the performance of
decision trees, which is similar in spirit to adding a bit of
noise in non-convex optimization problems to escape local
optimums (Zhang, Liang, and Charikar 2017).
Our contributions are summarized as follows:

1. We propose DP-TopDown, a differentially private, top-
down learning algorithm for decision trees, and present
two implementations for the distributed setting.

2. We prove boosting-based utility guarantees for DP-
TopDown. These are the first utility guarantees for dif-
ferentially private top-down learning of decision trees in
both single machine and distributed settings.

3. We extensively evaluate DP-TopDown on real datasets.
The code and instructions to reproduce our experimental
results will be made available.

1.1 Related Works

Previous works have explored private top-down learning of
decision trees for specific algorithms. (Blum et al. 2005)
introduced and used the SuLQ framework to implement
ID3. (Friedman and Schuster 2010; Mohammed et al. 2011)
demonstrated the effectiveness of using the exponential mech-
anism for private ID3 and C4.5. Our approach generalizes
previous works and provide the first utility guarantees and
sample complexity bounds for private, top-down decision
tree learning, even in the distributed setting.

Apart from top-down decision tree learning (i.e. ID3 and
CART), previous worked have also considered random de-
cision trees, where the construction of the decision tree is
entirely random and can be done even before it sees any data
(Jagannathan, Pillaipakkamnatt, and Wright 2009). (Bojarski
et al. 2014) studied techniques which averaged over collec-
tions of random decision trees (a.k.a. Random Forests) and
gave guarantees for empirical and generalization errors. In
practice, random forests are powerful models that sometimes
out-perform vanilla top-down learned decision trees. How-
ever, top-down learning of decision trees performs well in
many cases and in general leads to more interpretable trees
than randomly constructed decision trees.

Previous works have used boosting to design improved
differentially private algorithms for answering batches of
queries (Dwork, Rothblum, and Vadhan 2010). Our work is
different and is about designing differentially private boosting
algorithms, in particular top-down decision tree learning.

2 Preliminaries

We study learning problems where the goal is to map input
examples from a space X to a finite output space Y. We
suppose that there is an unknown distribution P defined over
X, together with an unknown target function f : X — Y.
Given a sample S of i.i.d. pairs (x, f(x)) drawn from the
distribution P, our goal is to learn an approximation to f.

We focus on the canonical problem of top-down decision
tree learning. Each internal node is labeled by a splitting
function h : X — {0,1} that “splits” the data according
to h(z), and the leaves of the tree are labeled by a class
in Y. These splitting functions route each example x € X
to exactly one leaf of the tree. That is, if the root of the
tree has splitting function h, a point z is routed to the left
subtree if h(x) = 0 and to the right subtree if h(z) = 1.
The prediction made by a decision tree 7" for an input x is
the label of the leaf that z is routed to. We let H C {0, 1}*
denote the class of splitting functions that may be placed at
each internal node, and denote the error of a decision tree 1T’
by e(T) = Pr(T'(x) # f(x)), where z is sampled from P.

2.1 Top-down Decision Tree Learning

In this section we describe the high level structure of (non-
private) top-down decision tree learning algorithms. Top-
down learning algorithms construct decision trees by repeat-
edly “splitting” a leaf node in the tree built so far. On each
iteration, the algorithm greedily finds the leaf and splitting
function that maximally reduces an upper bound on the error
of the tree. The upper bound (see Equation (1)) on error is
induced by a splitting criterion G : [0,1] — [0,1] that is
concave, symmetric about 1, and that satisfies G(3) = 1,
G(0) = G(1) = 0. The selected leaf is replaced by an inter-
nal node labeled with the chosen splitting function, which
partitions the data at the node into two new children leaves.
Once the tree is built, the leaves of the tree are labeled by the
label of the most common class that reaches the leaf. Many
effective and widely-used decision tree learning programs
are instances of the TopDown algorithm. For example, C4.5
uses entropy for splitting criterion while CART uses Gini.

The splitting criterion GG provides an upper bound on the
error of a decision tree T. The error £(7T") can be written
as e(T) = > scrcaves(r) W(€) min{g(€),1 — q(£)} where
w(f) = Prplx reaches leaf ¢] is the fraction of data that
reaches ¢ and ¢(¢) = Prp[f(z) = 1|z reaches leaf /] is the
fraction of that data with label 1. For all z € [0, 1], the split-
ting criterion satisfies G(z) > min{z, 1 — z}, and therefore
the following potential function is an upper bound on the
error €(7") of a decision tree 7"

GT)= Y

Leleaves(T)

w(t)G(q(0))- (1

With this, we can formally describe one iteration of top-
down decision tree learning. For each leaf ¢ € leaves(T),
let Sy C S denote the subset of data that reaches leaf /.
For each splitting function h € H, let T'({, h) denote the
tree obtained from 7' by replacing ¢ by an internal node
that splits Sy into two children leaves ¢, ¢1, where any data
satisfying h(z) = i goes to ¢;. At each round, TopDown
chooses the split-leaf pair (h*,¢*) that maximizes the de-
crease in the potential: G(T) — G(T(¢,h)) = w(£)J (¢, h)
where J (¢, h) = G(q(£)) — lf;f”G(Q(fO)) - %G(Q(fl))-

Kearns and Mansour showed that (non-private) top-down
decision tree learning can be viewed as a form of boosting
(Kearns and Mansour 1999). Whenever the class of splitting
functions H used to label internal nodes satisfies the Weak




Learning Assumption (i.e., they can predict the target f better
than random guessing for any distribution on X'), then top-
down learning algorithms amplify these slight advantages and
quickly drives the training error of the tree to zero. Formally,
the Weak Learning Assumption is as follows:

Definition 1. A function class H C {0, 1} ~-satisfies the
Weak Learning Assumption for a target function f : X —
{0, 1} if for any distribution P over X, there exists h € H
such that Pr,p(h(z) # f(z)) < 3 —~. Commonly, v is
refered to as the advantage.

We restate the result of (Kearns and Mansour 1999) when G
is entropy: G(q) = —qlog(g) — (1 — ¢) log(1 — g).

Theorem 2. Let G(q) be entropy. Under the Weak Learning
Assumption, for any € € (0, 1], TopDown suffices to make

(1/£)000s(1/e)/¥) splits to achieve training error < e.

2.2 Differential Privacy

Differential privacy is the de facto standard notion of privacy
that enjoys composition theorems (Dwork et al. 2006). The
formal notion is as follows. We say two datasets S and S’ are
neighboring if they differ on at most one point. A randomized
algorithm A is a-differentially private if for any neighboring
datasets S, .S” and outcomes O C Range(.A), we have

Pr(A(S) € 0) < e® Pr(A(S') € O)

where the probability space is over the coin flips of A.

Our decision tree algorithms will make use of two stan-
dard differentially private components. First, the Laplace
mechanism (LM) can be used to privately evaluate a func-
tion f mapping datasets to real numbers, while preserving
a-differential privacy. Given a dataset .S, the Laplace mecha-
nism with privacy parameter « outputs f(.5) + Z, where Z
is drawn from the Laplace distribution with scale parameter
Ay /o and Ay is the sensitivity of f:

Ay = nax £

= I
S,S’ neighboring datasets

S) = f(S)-

Next, we will sometimes use the Report Noisy Max
(RNM) mechanism to privately find the best scoring function
from a collection of k scoring functions fi, ..., fi mapping
datasets to real numbers. Given a dataset S, RNM with pri-
vacy parameter o computes fz = fi(S) + Z;, where Z; is
drawn from the Laplace distribution with scale parameter
max;=1,..,2Ay, /. Then it outputs i* = argmax; fi to-
gether with the estimate ft Importantly, RNM does not
publish the estimated scores ﬁ for i # ¢*, allowing it to add
less noise than applying £ LMs. The RNM mechanism with
privacy parameter « preserves a-differential privacy.

Our decision tree learning algorithms will apply LM and
RNM many times, with varying privacy parameters. Standard
composition theorems, presented in Appendix A.1, guarantee
that the overall algorithm are still a-differentially private
(Dwork et al. 2006; McSherry 2009).

2.3 Distributed setting with privacy constraints

In this work, we consider the distributed learning setting with
privacy constraints (Balcan et al. 2012). We suppose there

are k entities (i.e. data holders) and each entity i € [k] must
preserve a-differential privacy for their subset of the data S°.
In general, we make no assumptions on how S? partitions
S in terms of size and distribution. An example of the dis-
tributed setting is hospitals with private patient data. Patients
entrust their sensitive information to be used within their lo-
cal hospital, but the response to any queries from outside the
hospital must preserve privacy on behalf of the patients. Note
that this notion is not local differential privacy (Warner 1965;
Cormode et al. 2018), where the patients would locally per-
turb their data before giving them to the hospital.

We remark here that a distributed learning algorithm can
also use cryptographic privacy protocols such as multi-party
computation to preserve privacy while learning (Evans et
al. 2018). Assuming reasonable computational limitations
of the adversary, cryptographic privacy leaks zero bits of
information during the training process. On the other hand,
differential privacy is an information theoretic guarantee that
bounds the amount of leaked information and is robust to
post-processing. In this work, we focus on differential pri-
vacy protocols (Balcan et al. 2012) since they tend to be
more communication efficient and feasible in practice than
cryptographic techniques.

3 Differentially Private TopDown

In this section, we propose a private, top-down decision tree
learning algorithm called DP-TopDown that is based off the
TopDown algorithm (Kearns and Mansour 1999). The key
step of DP-TopDown that depend on the sensitive dataset S
is choosing the optimal split for a given leaf ¢. Since there
are many ways to do this, we encapsulate this with a function
called PrivateSplit that satisfies the following privacy and
utility requirements, which are sufficient to prove privacy and
utility guarantees for DP-TopDown:

1. PrivateSplit(¢, o, §) outputs a pair (h, J) where h € H
and J € R, while preserving a-differential privacy;

2. V¢ > 0,3IN := N((,a,9) so that if |[Sy| > N, then
J(£,h) > maxy, J(¢,h) — C and |J (¢, h) — J| < ¢ with
probability > 1—4. In words, this means that PrivateSplit
finds nearly optimal splits w.h.p.

Pseudocode for DP-TopDown is given in Algorithm 1. It
takes as input the dataset .S, the privacy parameter c, the max
number M of nodes (excluding leaves) in the tree, the desired
error ¢ € (0, 1] and failure probability § € (0, 1]. We use a
budget function B(d) to assign a fraction « to data queries at
depth d in the tree. Since nodes at depth d partition the data
at that layer, they together preserve B(d)-differential privacy
by parallel composition (Theorem 9). These parameters are
used in Theorem 3.

Privacy guarantee: The privacy analysis follows from the
composition theorems. We use half of the total privacy budget
for labeling the leaves at line 14 using the Laplace mecha-
nism, which preserves 5 -differential privacy by parallel com-
position (Theorem 9) since the leaves partition .S. The rest of
DP-TopDown preserves 5 -differential privacy for an appro-
priate budget function B that satisfies D jepms  B(d) < 1.

One privacy budgeting approach is to uniformly split the
budget across all possible depths with B(d) = 4. This gives



Algorithm 1 DP-TopDown
1: Input: dataset .S, max size M, error €, privacy «, failure
probability §
2: Init T to single leaf ¢ and () to max-priority queue
3: (h, J) + PrivateSplit(£, $8(1), 55757))
4: Q.push(J, (h,£)) [add (h, ) to Q with priority .J]
5. fort=1,2,...., M do

6: (£*, h*) < Q.pop() [get max element in ()]

7: T < T(¢*, h*) with children leaves £, {1

8: for i =0,1do

9: ay + §B(depth(¢;)) [budget for leaf]

10: w; ||S|| + Lap(‘s| ) [LM with budget %]
11: (hi, J;) + PrivateSplit(¢;, 3 ,W)

12: if w; > M then A A

13: Q push(wi . Ji, (gi, hz))

14: Label leaves by majority label [RNM with budget 5]
15: return T’

us the tightest sample complexity bounds for Theorem 3.

Another approach is to set B(d) = 2—1(1 This exponentially
decaying budgeting is motivated by the intuition that early
splits in the tree are more important than later splits. Empiri-
cally, we found that this strategy gives higher accuracy than
the uniform budgeting approach.

Utility guarantee: Intuitively for any fixed «, the noise
from preserving a-differential privacy becomes negligible
with high probability as the size of the dataset grows to
infinity. The following theorem formalizes this intuition for
DP-TopDown by providing general utility guarantees and
sample complexity bounds, which are applicable in both
the single machine and distributed settings. Under the Weak
Learning Assumption, the error of the privately-learned tree
quickly goes to zero provided that the dataset is large enough.
The required dataset size can be bounded in terms of the
properties of the budgeting strategy B and of PrivateSplit.
Theorem 3. Let G(q) be entropy. Let M, c, €, be inputs to
DP-TopDown, as defined in Algorithm 1. Under the Weak
Learning Assumption with advantage v, DP-TopDown suf-
fices to make (1/5)0(1°g(1/5)/’72) splits to achieve training
error < ¢ with probability > 1 — § provided the dataset S
has size at least

~ M 2M ~ 72 ab ]
> - - - )., — —
|S] > max (O (’y%ab) = N(O(M), 1 ,O(N)>)7

where b = miny<q<n B(d) and N (¢, o, d) is the data re-
quirement of PrivateSplit.

Proof Sketch. Let T; denote the decision tree constructed
by DP-TopDown so far at the beginning of the ¢ iteration.
The boosting analysis of (Kearns and Mansour 1999) has
two key steps. First, they argue that during the " iteration,
there must be a leaf ¢ of the tree T; whose weight is at least
e(Ty)/t. Next, they leverage the weak-learning assumption
to guarantee that the optimal split for that leaf significantly
reduces the potential G;. This guarantees that after a small
number of iterations, the error cannot be large.

There are two main challenges in extending this analysis
to the DP-TopDown algorithm. First, since DP-TopDown
only splits leaves whose estimated weight is large, there is
some risk that it will not consider splitting the leaf used in
the analysis of Kearns and Mansour. Second, even if that
leaf is considered, the PrivateSplit algorithm will only pro-
duce nearly optimal splits for that leaf when there is enough
data reaching that leaf (recall that PrivateSplit returns an
C-optimal split with probability at least 1 — 4, provided that
there are at least N (¢, a, §) data points in the leaf).

The term O(,y mb) in our dataset size requirements is
chosen to ensure that the error in the estimated weight of

every leaf during the run of DP-TopDown is bounded by %=
with high probability. This guarantees that the leaf used in
the analysis of Kearns and Mansour will be considered by
DP-TopDown with high probability. Moreover, every leaf
applying PrivateSplit has non-trivial weight. This term also
ensures the total error from labeling leaves is less than 5.

A consequence of the above argument is that DP-TopDown
only runs the PrivateSplit algorithm on leaves with weight at

least (7). In other words, they contain at least (5. |€) data

points. The term 22 N (O(“Y 1), %2 O(L)) in our dataset
size requirement is “chosen to guarantee the number of data
points in any leaf that we run PrivateSplit is large enough to
guarantee that it returns a (-optimal split where ( is at most
half the reduction in G(T") guaranteed by the split constructed
in the Kearns and Mansour analysis. This ensures that our
algorithm reduces the potential G(T') by at least half of the
guarantee of the non-private algorithm, which is sufficient to

prove our utility guarantee. O

We note that our proof technique generalizes to other split-
ting criteria analyzed by (Kearns and Mansour 1999), such as
the Gini Index G(q) = 4¢(1 — q) and G(q) = v/2¢(1 — q).
We also note that the only assumption on H in Theorem 3 is
the Weak Learning Assumption. In particular, there are no
assumptions on the size of H. In the rest of the paper, we
present implementations of PrivateSplit that iterate through
H, which is why our corollaries depend on | H| being finite.

SingleMachine algorithm: RNM. In the single machine set-
ting and when the class of splitting functions H is finite, we
can simply use RNM to select an approximately optimal split
from H. In particular, if we define f;(Sy) = J(¢, h;) for
h; € H and use RNM to choose the optimal split, we satisfy
the utility requirement of PrivateSplit as follows.

Lemma 4. Single machine RNM satisfies the PrivateSplit
requirements with N (C, o, §) = O(a%)

Proof Sketch. In Lemma 11 in the Appendix, we show that
the sensitivity of the function f;(S,;) = J(¢, h;) is bounded
by O(1/|Se]). Let fi = fi(S) + Z; where Z; is drawn
from the Laplace distribution with scale parameter O(a/|Sq|)
to each estimate fi. With probability at least 1 — J, we
have |Z;| = O(ﬁ log ‘%II) simultaneously for all <. When
[Se| > Q(a%) the error in all estimates made by the RNM
mechanism are bounded by {/2, which proves the claim. [



Corollary 5. Under uniform budgetmg, using RNM as

PrivateSplit requires |S| > 0(62“/ a)for Theorem 3.

We remark that another possible private implementation is to
use the exponential mechanism, which recovers the algorithm
in (Friedman and Schuster 2010; Mohammed et al. 2011).
Distributed setting with privacy constraint. Weight esti-
mation in line 10 can be done distributedly by having each
entity estimate the number of data points at a particular leaf
with LM. Leaf labeling can be done distributedly by first esti-
mating the number of data points at a particular leaf for each
label using LM and then finding the label that maximizes
the aggregated counts. The sample complexity of Theorem
3 accrues a k factor in the first term, as formally quanti-
fied in Corollary 16 of the Appendix. Therefore in the dis-
tributed setting, we can run DP-TopDown given a distributed
PrivateSplit(¢, a, §). We now present two methods.

Distributed algorithm 1: NoisyCounts. For each splitting
function h; € H, each entity j € [k] uses LM to publish
noisy estimated counts é;=a, n,—p Of the number of datapoints
at leaf ¢, with label a and splitting value b. Then, the coordi-
nator can use the aggregated noisy counts to compute each
J (¢, h;) and locate the maximum. The following lemma fol-
lows from the utility guarantees of LM.

Lemma 6. NoisyCounts satisfies the PrivateSplit require-
ments with N ((, o, §) = O(%Izl)

Proof Sketch. The proof has two main steps. First, we bound
the total error in the noisy counts collected by the coordinator,
and second we argue that when the counts are sufficiently
accurate, then the chosen splitting function is nearly opti-
mal. The collection of counts associated with any splitting
function h; € H form a histogram query, and they can all
be approximated while satisfying o dlfferennal privacy us-
ing the Laplace mechanism by adding Lap( - ) noise to each
count. We approximate one histogram query for each h; € H,
so we set o/ = % so that the total privacy cost is a. Next,

using tail bounds for Laplace random variables, we know
that with high probability, the maximum error in any of the

counts constructed by a single entity is bounded by 5(%)
Therefore, the each accumulated count obtained by the co-

ordinator has at most 6(M) error accumulated from the
k entities. Finally, we show that when | S| > O( lel) the

¢
counts are accurate enough guarantee a (-optimal split. [

Corollary 7. Under uniform budgetmg, using NoisyCounts
ke le‘ ) for Theorem 3.

as PrivateSplit requires |\S| > O(

Compared to single machine, the bound on N for Noisy-
Counts increased by a factor of k| H|. This is the consequence
of having each entity publish all the counts so that .J (¢, h;)
can be approximated for every h; € H whereas we only
needed the maximum. Therefore, each of the k entities calls
LM with |H| factor more noise. Note that unlike weight
estimation and leaf labeling, which easily extended to the
distributed setting while accruing only a k factor, the natural
method of NoisyCounts accrues also a | H| factor since there

are | H| splitting functions to try, which is not ideal since | H |
can be a lot larger than £ in practice.

Distributed algorithm 2: LocalRNM. To reduce commu-
nication and to increase the privacy budget for each data
query, we propose the following heuristic improvement over
NoisyCounts. With budget 5, each entity i uses RNM to

compute the locally-best splitting function fz* for their own
data S} at leaf £. Then, with budget 5, the coordinator runs
the N01syC0unts procedure to find the best sphttmg function

over the set of locally-best splitting functions H= { hi Yielk]
rather than the entire H. In LocalRNM, the noise of each
data query scales with the number of entities k instead of the
number of splitting functions |H|. Since the amount of noise
injected is in general much less in LocalRNM, this heuristic
have the possibility of achieving higher accuracy than Noisy-
Counts. However, locally-best splitting functions, especially
from entities with small datasets, can have poor performance
across the union of data, which is why LocalRNM does not
satisfy the utility requirements of PrivateSplit. Nevertheless,
LocalRNM performs noticeably better than NoisyCounts on
four out of seven of our chosen datasets. This suggests that
at least one of the locally-best splitting functions tend to be
good enough in practice.

4 Experimental evaluation

We evaluated DP-TopDown on seven datasets, described be-
low, that exhibit a wide spectrum of use cases where pri-
vacy could be of concern in the distributed setting. We pre-
processed categorical features with one-hot encoding. The
splitting class for each dataset comprised of evenly spaced
thresholds for each feature, with just one threshold at 0.5 for
the one-hot encoded features.

Adult: US Census Data to predict if one’s income exceeds
$50K (Dua and Graff 2017). It has 32,561 entries in total.
Bank: Predict subscription behavior based on client info
from marketing campaigns (Moro, Cortez, and Rita 2014). It
has 45,211 entries in total.

KDDCup 1999: Classify network connections as malicious
or normal (Cup 1999). It has 494,021 entries in total.
MNIST: Greyscale 28 x 28 images of handwritten digits
(LeCun 1998). The training set consists of 60,000 images,
and the test set consists of 10,000 images.

Creditcard: Client payment information to predict default
outcome (Yeh and Lien 2009). It has 30,000 entries in total.
Avazu CTR: Based on anonymized mobile ad informa-
tion, predict whether the ad is clicked (Avazu 2015). It has
1,100,000 entries in total.

Skin: Classify RGB pixels as skin or non-skin (Bhatt and
Dhall 2010). It has 245,057 entries in total.

With the exception of MNIST, which had 60,000 training
images and 10,000 test images, each dataset was split into
fixed training and testing sets with size ratio 9 : 1. Adult,
Bank, Creditcard and KDDCup all used 10 evenly spaced
thresholds for each continuous feature, giving splitting class
sizes of 159, 115, 210, 427 respectively. Skin used 32 evenly
spaced thresholds, giving a splitting class of size 96. MNIST
and CTR had splitting class sizes of 147 and 263 respectively,
and we defer their descriptions to Appendix A.7.
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Figure 1: Test accuracy for privacy parameters o € {2¢|i = —3,—2, ..., 9} on SingleMachine, NoisyCounts and LocalRNM.
Baseline runs without noise are shown as solid lines in same color as corresponding dotted lines, representing noised runs.

Our experiments used the entropy splitting criterion, the
decay budgeting strategy, M = 512, and € = 0.1. Data was
divided amongst four entities uniformly randomly. When J<
0.01, we did not push the leaf into @), since this suggested
that it was mostly homogeneous or the entropy estimate was
too noisy. Our results are averaged over 100 independent
runs. Shaded error bars denote one standard deviation in the
mean, which is tiny in most plots.

Figure 1 shows the trade-off between privacy and test-
ing accuracy (i.e. privacy curves) for the three private DP-
TopDown algorithms presented in this paper. The (dotted)
accuracy of the private algorithms increases as a function
of the privacy parameter o and eventually converges to the
(solid) non-private baseline with no noise. As expected, single
machine RNM performs the best. In the distributed setting,
LocalRNM, while lacking utility guarantees, performs con-
sistently better than NoisyCounts on Adult, Bank, Creditcard
and Skin. Both trends agree with our intuition that injecting
noise should result in worse performance.

For CTR, the test accuracy is noticeably higher for the
private algorithms than their non-private counterparts for v
values. This counter-intuitive result shows the benefit of in-
jecting noise into models that are prone to overfitting, such as
decision trees. We found that the non-private decision trees
had higher error due to some unlucky greedy choices, which
were avoided by adding small amounts of noise through our
private mechanisms. This is similar in spirit to adding noise
in non-convex optimization problems to escape local optima
(Zhang, Liang, and Charikar 2017). Of course, when « is
too small, the decision tree inevitably has low accuracy since
the noise is so large that the learning algorithm cannot cor-
rectly label the leaves. This observation suggests that when
designing private greedy algorithms, there is trade-off not
just between privacy and accuracy, but also generalization.

Figure 2 shows the effects of training dataset size on the

testing accuracy privacy curves. The curve shapes are regular
and larger training sizes consistently result in better test ac-
curacy. We also observe that smaller dataset sizes generally
lead to higher variance in the error bars, which is expected
since the injected noise has greater relative affect to the data
queries. For the privacy curves of small datasets, the ben-
efit of injecting noise for generalization is now very clear.
For example, NoisyCount’s Bank plot shows that (dotted)
private curves of 0.01 and 0.05 consistently outperform the
(solid) non-private baselines trained on the same subset of
data. These results confirm the intuition we gain from Theo-
rem 3 and its corollaries, that DP-TopDown enjoys the same
utility guarantees as TopDown when trained on large datasets.

We present more interesting results in Appendix A.8. Fig-
ure 4 shows that training on larger datasets also leads to
higher training accuracy, which is counter-intuitive since
smaller datasets are easier to overfit. Figure 3 plots the depths
and sizes of the learned trees of Figure 1.

5 Conclusion

In this paper, we unify the theory and practice of differentially
private top-down decision tree learning in the distributed
setting. We provide the first utility guarantees for such al-
gorithms as well as a comprehensive experimental analysis
on seven relevant datasets. Our design of DP-TopDown re-
duces the problem of private top-down learning to the key
challenge of approximating optimal splits with PrivateSplit.
Using Theorem 3, it is easy to derive utility guarantees for
other implementations of PrivateSplit. With the code that
will be made available, this is a great starting point for ap-
plying scalable and provably accurate differentially private
decision trees in the distributed setting.
Acknowledgements: This work was supported in part by
NSF grants CCF-1535967, 11S-1618714, CCF-1910321, SES-
1919453, and an Amazon Research Award.
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A Appendix

A.1 Composition theorems for differential
privacy

Theorem 8 (Sequential Composition). Let Ay, ..., Ay be
k mechanisms such that A; satisfies o;-differential privacy.
Then the mechanism A(S) = (41(S), ..., Ar(S)) satisfies
(3=, ai)-differential privacy. This holds even if A; is chosen
based on the outputs of A1(S), ..., A;—1(S).

Theorem 9 (Parallel Composition). Let D1,..., Dy be a
partition of the input domain and suppose Ai, ..., Ay, are
mechanisms such that A; satisfies «;-differential privacy.
Then the mechanism A(S) = (A1(SNDy),..., Ax(SNDy))

satisfies (max; a; )-differential privacy.

A.2 Sensitivity of entropy

In this section, we analyze the sensitivity of entropy. We will
use the following standard result.

Lemma 10. For any z,y € (0,1), if |[x — y| < 1, then

|zlg(z) —ylg(y)| < —[z — y[lg(|z — yl).

We now deduce the global sensitivity of .J, used in our
implementation of PrivateSplit with RNM. In the proof below,
we use the notation J(S, h) where S is a dataset, which is
more general than J (¢, h) (equivalently J (S, h)) for leaf /.

Lemma 11. Suppose G(q) = —qlg(q) — (1 — q)1g(1 — q),
the entropy function. When applied to a dataset of size m,
then for any h € H, the sensitivity of J'(S) = J(S,h) is
AJ < 2(31g(m) + 1).

Proof. For a dataset S of size m and splitting func-
tion h, denote 7y—; p—; = Hgﬂeslf@ Lh@)=i}l =
Z;e{o 1} Ty=i,h=j and 31m1]arly for rh_J Since the numer—
ator is a count that changes by at most 1 for neighboring
datasets S and S’, we have that |r, — 7| < L (here, *
denotes wildcard). Consider an arbitrary h € H and fix h.
Then,

\J(Sa h) = J(S", )]

Z Ty=a lg(ry= a>_ alg(r/y:a)]
ac{0,1}

+ [rn=o0 Z Ty=a,h=018(Ty=a,n=0)
a€{0,1}

~ Th—o Z T/y:a,h:OIg(’r;:l,h:O)]
ac{0,1}

+ [rh=1 Z Ty—a,h=118(ry=1,n=1)
ac{0,1}

77’;1,:1 Z T;:a,h:l lg(rgllza,hzl)”
a€{0,1}

2 1 2
< —1 2(— + —1
< 2 lg(m) +2(— + 2 lg(m)
by triangle inequality, the above lemma, and —zlog(x) is

increasing when x € (0,e~!) (assuming - - < e ). O

A.3 RNM implements single machine
PrivateSplit

We first recall the utility guarantee for Laplace mechanism

(Dwork and Roth 2014).

Lemma 12. IfY ~ Lap(b) then Pr(|Y| > In(}) -b) = 0

In general, if Y1,Ys, ..., Y}, are i.i.d. samples from Lap(b),

then Pr(max; |Y;| > In(%) - b) < 6.

We first restate the RNM algorithm for (h,.J) =
PrivateSplit(¢, o, 0). For every ¢ = 1,2,...,|H]|, define
fi(Se) = J(¢, h;). By Lemma 11, Af; < 1Olg(Tm). Thus,
RNM samples X; ~ Lap(%g”)), calculates f; = f;(S¢)+
X; and computes i* = arg max;c[ x| fi while preserving
a-differential privacy. Now we show that this procedure finds
nearly optimal splits w.h.p.

Lemma 13. Let b > 0. If v > 2blog(b), then © > blog(x)
(Shalev-Shwartz and Ben-David 2014).

Theorem 14. The single machine RNM-based procedure
described above satisfies: ¥ > 0,dN = 6(0%) so that
if |Se| > N, then with probability at least 1 — 6, we have
J(£,h) > maxy, J(£,h) — C and | J(£,h) — J| < C.

Proof. We show that a stronger claim holds with high proba-
bility. By Lemma 12, | X;| = | fi — fi| < g,Vz € [|H]] holds
with probability 1—§ whenever In( II(';II )M < % for large
enough m. By Lemma 13, it suffices to have m > 2blog(b)

where b = ln(‘H‘) . aC

We now show that |f; — f1| < % Vi is sufficient. This

is equivalent to |J(£, h;) — J (€, h;)| <

(k) = J) < § < ¢
Let j* = argmax;c[q]

% Vi. In particular,

J(€,hi). Then, fi- = f;- =,
which is equivalent to J (£, ) > maxy, J(¢, h) — ¢. This is
because f;+ — fir < (fj- = fj+) + (fy- = fir) < §+(fir =
fir) < ¢ _

Therefore N (¢, a, ) = O(a%) O
A.4 NoisyCounts implements distributed

PrivateSplit

In NoisyCounts, each entity j estimates counts
é;:a,hi:w Cy=a,Ch;—p for every splitting function h;
using the LM with 3a‘ privacy budget for each type of count.
Since counts have sensitivity of 1, the noise added for LM is

sampled from Lap(‘5>' LH] ). By Theorem 8, this entire operation
preserves a- dlfferentlal privacy.

The coordinator aggregates the counts by summing over
the entities Cy—a,n,=b = D_jc(x) €)=a,n,—p- Then, the aggre-
gated noisy counts are used to compute each J (¢, h;) and
locate the maximum.

Theorem 15. The NoisyCounts procedure described above
satisfies: ¥¢ > 0, AN = 6(%2”) so that if |Sg| > N
then with probability at least 1 — §, we have J({, ﬁ) >
maxy, J(¢,h) — ¢ and |J(¢,h) — J| < C.



Proof. The idea is that the estimated counts are accurate
w.h.p. Then, applying analysis similar to the sensitivity of
J, we know that inputting these accurately estimated counts
produces accurate estimates of J.

Any estimated count ¢,—g p,—y i8 the true count cy—q p,—p
noised by X1 + X2 + ...+ X}, where each X; ~ Lap(S‘HI)
3k‘H|, we have | X;| < In (Blel)B“f', ap-
plying union bound yields that wp. > 1 — 7, we have
|Cy=a,hi=b — Cy=a,h;=b| < In (%)% for every split-
ting function h;. This is also true for c¢,—, and cj,—p. In
the notation of the proof for Lemma 11, we have |r, —

ri| < ln(3kl;H‘ ) 357‘LH‘ the same analysis leads to |.J (¢, h;) —

10 ln(3k|H‘)3k|H‘ In
BOIH(%)Ig( )le‘ assuming 1n(3k(‘5H|)3ﬁlgl € (0,1).

Since w.p. 1 —

mo <
ma (ln(—SklsH‘Bk\H\) =
mao ’ ’e

Thus, with probability at least 1 — 8, |.J(¢, h;) — J (£, h;)| <

$.,Vi when m > 2blog(b) with b = 601n (3k‘H‘)k|H| This

is sufficient, as shown in the proof of Theorem 14.
Therefore, N (¢, a, §) = 6(%’2{') O

A.5 Proof of Main Theorem

Theorem 3 is our main boosting-based utility guarantee. We
first define some notation and recount key arguments used to
prove boosting-based utility guarantees for TopDown (Kearns
and Mansour 1999).

Define e; = ¢(T};) and G; = G(T}) where T; is the deci-
sion tree at the #" iteration for DP-TopDown. Let ¢ € [M] be
arbitrary but fixed step in the algorithm. After ¢ splits, there
exists leaf ¢ such that w(¢) min(q(€), 1 — q(¢)) > <, since
the tree T} has ¢ leaves. By using the weak learning assump-
tion, Kearns and Mansour (Kearns and Mansour 1999) show
that splitting the leaf ¢ with the optimal splitting function
(i.e., the split h € H that maximizes J(¢, h)) reduces G

o . _ VG
significantly: G411 < Gy TTog2/Go)"

recurrence is given by Gy < e” 7V log(t)/¢ for constant ¢, SO
it suffices to make (1,/£)000s(1/2)/7*) splits.

Now we proceed with the proof of our main Theorem 3.
Then, we deduce the distributed version in 16.

A solution to this

Theorem 3. Let G(q) be entropy. Let M, «, €, 0 be inputs to
DP-TopDown, as defined in Algorithm 1. Under the Weak
Learning Assumption with advantage v, DP-TopDown suf-
fices to make (1/)°0°e(1/)/Y*) splits to achieve training
error < e with probability > 1 — § provided the dataset S
has size at least

M\ 2M . [~~% ab &
> P o(—). —.0(—
|S|_max<0(’y%ab), € N( (M)7 4’ (M)>>7

where b = min;<q<n B(d) and N(C, o, ) is the data re-
quirement of PrivateSplit.

Proof. Let ¢ € (0, 557) be a target accuracy for the guaran-
tees of PrivateSplit. We will set a value for ¢ later in the
proof. Recall that oy = § B(depth(¢)) is the privacy budget
for /. We now case on each event:

e There are at most 2M + 1 calls to PrivateSplit. By
the properties of PrivateSpht each call has low error
when |Sg| >N %5 2M+1)) with probability at least

1-— m that is J(¢,h) > maxy, J(¢,h) — ¢ and

|J(£,h) — J| < C. Thus, all the calls have low error w.p.
atleast 1 — g
e There are also 2/ weight estimates on line 10 and we
want all of them to have error ( w.p. at least 1 — Z So we
want the welght estimate has low error |w(¢) — ( ) <<¢
w.p. 1 — g%;. By Lemma 12, we need | S| > In(33% )Ciz'
e There are also at most M + 1 leaves. We want to bound
the total error of leaf labehng by £ w.p.atleast 1 — 7, so
bound each leaf’s error by 4(M+1) w.p. atleast 1 — 4(M+1).
Thus, even if we mistakenly picked a label other than the
most common label, the label we did pick gives error at
most away from the most common label. RNM
4(M+1) 8(M+1)
5

2(M€+1)
with budget § requires |S| > In(==—
By union bound all of the above happens with probablhty
at least 1 — 4, so assume this high probability event for the
rest of the proof. Note that since ( < 55; and ay < a,
the sample complexity of weight estimates is asymptotically
lower bounded by the sample complexity of leaf labeling.

Now we show that our algorithm chooses leaves
with enough data to satisfy the sample complexity of
PrivateSplit. We know after ¢ splits, there exists a leaf ét
s.t. w(ét)min( (€:),1 —q(£;)) > t. Since min(q(¢;), 1

q(¢y)) < =, wehave w(f;) > 2? > 25 . Restricting ¢ < 557,
then w(ﬁt) 2 w(ly) —¢ > 57150 Ly is pushed onto (), which
implies that DP-TopDown will consider splitting this leaf.
Furthermore, any leaf / in @ satisfies w({) > 3537 since
¢ < 55 In other words, there is at least one leaf in the
queue () with weight large relative to ¢, and no leaves that
have very small weight. Therefore, to satisfy the sufficient
conditions for PrivateSplit to achieve low error when run on
a leaf £, we require that [S¢| > N((, %, m), which is
guaranteed to be satisfied for any leaf in the queue () when
|S‘ 2 21”N(Ca 2 7%) since |S€| 2 ﬁ|s‘

Next, we argue that every iteration of DP-TopDown re-
duces the potential G(T') by at least half of the non-private
algorithm. This is due to a combination of the weak learning
assumption, together with the fact that for every leaf £ € @
we are guaranteed that PrivateSplit returned a (-optimal
split for that leaf. Let J* = maxy, J(¢, h) and (h, .J) be the
output of PrivateSplit run on leaf ¢, then

w(6)J* —@(6)]]
w(O)]J* = J| + Jfw( )|

(6) — (e
< |J* = T R) | + [T, h) — J| + [w(l) —(0)]
<3¢

where we used that w(¢), J are bounded by 1. Note that
the above is true for any estimated J from PrivateSplit;
in particular it’s true for the leafs in ). Therefore, after ¢
splits, the leaf [* we pop from @ has wJ nearly as good
as the optimal split for leaf ¢. Hence, applying the Kearns



and Mansour weak-learning analysis, we are guaranteed
2
that Gy < Gy — W%G) + 6¢. Choose ¢ such that

e,
6C Wg(?/s) Then we have Gt+1 < Gt WQ;G)
Then, the solution to the recurrence inequality dlffers only

by a constant. Thus, to achieve error at most £ 5> it suf-
fices to make (2/¢)0(108(2/2)/7*) gplits, which s1mp11ﬁes to

(1 /e)Ollog(1/e)/ 7*). As we bounded the leaf labeling error by
5 the total error of DP-TopDown is at most ¢ as desired.
For the above claim to hold, the size of the dataset needs

to be at least

SM., 2 2M )

|S|>maX{ln( 3 )C&z . (C7 5 m)}

where the maximum is taken over all leaves ¢ that are encoun-
tered by DP-TopDown (i.e., the leaves of any tree T;). The
terms in the above maximum only depend on the leaves ¢
through the privacy budget o, assigned to each leaf. Since the
learned decision tree has depth at most M, we are guaranteed
that oy = §B(depth () > Oéb, where b = minj <g<n B(d).
Substituting this into the above bound on |.S| completes the
proof.

Corollary 16. Suppose the distributed setting. Given a dis-
tributed implementation of PrivateSplit, DP-TopDown has
the guarantees of Theorem 3 with sample complexity

(kM \ 2M _ [~~% ab &
> == 15 22 02y,
|S| > max <O (’y%ab) ' N (O( i ), 1 ,O(M)>>

Proof. We are only concerned with formally quantifying the

effects of weight estimation and leaf labeling.

e Weight estimation can be done distributedly by having
each entity publish an estimate of the number of data points
at a particular leaf with LM. The budget remains the same
as single machine from parallel composition of the entities.

e [ eaf labeling can be done distributedly by having each
entity publish an estimate of the number of data points for
each label, with LM. Since we are no longer using RNM,
the noise parameter increases by factor of 2 (since there
are two possible labels).

In both cases, instead of bounding the magnitude of one

Laplace distributed random variable, we bound the sum of &

independent Laplace distributed random variables to be less

than some error bound ¢ with failure probability §. We can do
so by bounding each error ¢ with failure probability #» which

Lemma 12 provides the sample complexity for. We see in

both cases, we accrue a k factor inside and outside the In term.

In particular, weight estimation requires |S| > In(354) 2

and leaf labeling requires |.S| > 1n(4kw§+1) ) 8’“(25”1) Thus,

to account for the distributed setting in Theorem 3, the first
term in max accrues an extra k factor, becoming O(

52 z-:ab)'

We note that the same style of analysis also applies for the
splitting criterion G(q) = 4q(1 — ¢) or G(q) = 2/q(1 — q)
as in (Kearns and Mansour 1999).

A.6 Future work

In our current work, we give half the budget for internal
nodes, specifically weight estimation and PrivateSplit, and
the other half for labeling leaves. In general, spending half
the budget for labeling leaves can be too excessive, especially
if the budget is large enough that the noise is much less than
0.5 w.h.p. In any case, having noise < 0.5 will guarantee se-
lecting the correct label. Therefore, exploring how to balance
the budget between splits and labeling leaves is an interesting
direction for future work.

We also think it’s possible to extend our algorithm for
private weak learners; in particular, PrivateSplit only needs
to privately return a splitting function that beats random
guessing for the leaf w.h.p. We leave the details for future
work.

A.7 Splitting classes for MNIST and Avazu CTR

In this section we describe the splitting class we used for
MNIST and Avazu CTR.

MNIST: The splitting class for MNIST consists of three
thresholds on the average pixel intensity of the 49 4 x 4
blocks of each 28 x 28 image. For example, the smallest
threshold on the “first” block for a flattened MNIST image
x would return 1 if (z[0] + z[1] + z[28] + z[29])/4 < 42.5
and O otherwise.

Avazu CTR: The splitting class for Avazu CTR were
chosen without a fixed number of thresholds for each feature
since the range for each feature fluctuates more than that of
the other datasets. The splitting class consists of 7 thresholds
on C'1, 100 thresholds on C'14, 4 thresholds on C'15 and C'16,
40 thresholds on C'17, 10 thresholds on C'19 and C21, and
15 thresholds on C20.

A.8 More experimental results

Figure 3 shows the training accuracy privacy curves as well
as plots of the depths and sizes of the learned decision trees
in Figure 1. In general, the depth and size of the tree de-
creases as the privacy budget decreases. This suggests that
DP-TopDown is inclined to terminate earlier if it determines
that it is no longer productive to make the deeper splits. We
also observe an interesting phenomenon that NoisyCounts
consistently learns the deepest trees, while LocalRNM con-
sistently learns the shallowest trees.

Figure 4 shows the effects of training dataset size on the
training accuracy privacy curves. It is essentially the train-
ing accuracy analog of Figure 2. In these plots, we see the
same trend that greater training size leads to better training
accuracy, which is what we observed for testing accuracy in
Figure 2. This is especially interesting for training accuracy
since smaller datasets are easy to overfit and thus have higher
training accuracies, which we indeed observe in the baselines.
However, the training privacy curves show that the training
accuracy for private decision trees trained on smaller datasets
remain lower than that of private decision trees trained on
larger datasets. Therefore, the plots in Figure 4 suggest that
the effect of dataset size on the performance of private al-
gorithms is strong enough to even overcome the effect of
overfitting on small datasets.
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Figure 4: Training accuracy under same setup as Figure 2.




