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Abstract. Uncertainty is one of the major challenges facing applications of game
theory. In the context of Stackelberg games, various approaches have been pro-
posed to deal with the leader’s incomplete knowledge about the follower’s pay-
offs, typically by gathering information from the leader’s interaction with the
follower. Unfortunately, these approaches rely crucially on the assumption that
the follower will not strategically exploit this information asymmetry, i.e. the
follower behaves truthfully during the interaction with respect to their actual pay-
offs. As we show in this paper, the follower may have strong incentives to deceit-
fully imitating the behavior of a different follower type and, in doing this, benefit
significantly from subverting the leader into choosing a highly suboptimal strat-
egy. This raises a fundamental question: how to design a leader strategy in the
presence of such strategic followers? To answer this question, we put forward a
basic model of Stackelberg games with (imitative) follower deception and show
that the leader is indeed able to reduce the loss due to follower deception with
carefully designed strategies. We then provide a systematic study of the problem
of computing the optimal leader strategy and draw a relatively complete picture
of the complexity landscape; essentially matching positive and negative complex-
ity results are provided for natural variants of the model. Our intractability results
are in sharp contrast to the situation with no deception, where the leader’s optimal
strategy can be computed in polynomial time, and thus illustrate the intrinsic dif-
ficulty of handling follower deception. Through simulations we also demonstrate
empirically the benefit of considering follower deception.

1 Introduction

Recently, there is a growth of interest in Stackelberg games in the AI community. This
trend is driven in part by a number of high-impact real-world applications in security
domains [23]. Beyond that, Stackelberg game models also find many noteworthy ap-
plications in other problems, such as principal-agent contract design [15,24] and exam
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design for large-scale tests [11]. In a Stackelberg game, a leader commits to a mixed
strategy and a follower best-responds after observing the leader’s strategy. The Stackel-
berg equilibrium yields the optimal strategy the leader can commit to in this framework.
As in many other game-theoretic applications, a key real-world challenge facing appli-
cations of Stackelberg games is that the leader may not have full information about
the follower’s payoffs for computing the equilibrium. To address this issue, various
approaches have been proposed: When the leader can estimate the follower’s payoffs
to within certain intervals, leader strategies that are robust against small interval uncer-
tainties are studied [10,9,12]; When the leader knows a distribution about the follower’s
payoffs/types, Bayesian Stackelberg equilibria are computed to maximize the leader’s
average utility [4,16,8]; When the leader can interact with the follower, a line of work
examines how to learn the optimal leader strategy to commit to from the follower’s best
responses from the interaction [10,1,7,20,17].

Despite their differences, the above approaches share a common and crucial step
— obtaining payoff-relevant information about the follower. However, knowing the
leader’s attempt at information gathering, a strategic follower would gain incentives
to intentionally distort the information learned by the leader, in particular by deceit-
fully imitating the behavior of a different follower type — a phenomenon we term as
imitative follower deception. Unfortunately, all aforementioned approaches ignore the
possibility of such strategic behavior of the follower and adopt a simplistic assumption
that any information the algorithm gathers about the follower is truthful.

As we will show in this paper, algorithms designed under the above assumption can
be easily manipulated by the follower and may produce highly suboptimal leader strat-
egy as a result. Consider perhaps the most basic learning setting where the follower has
an uncertain type (i.e., a set of payoffs) θ ∈ Θ; knowing the set Θ of all possible types
but not the actual θ, the leader wants to learn the optimal strategy against this follower.
If the follower is truthful, the optimal strategy that the leader can learn would be the
strong Stackelberg equilibrium against θ. However, when the follower may strategically
deceive by behaving according to another type θ′ (he may indeed have such an incen-
tive, as we will show), the leader can only learn the optimal strategy against the fake
type θ′, which can be highly suboptimal. A fundamental question then is: what is the
optimal strategy that the leader can learn or design, when facing a deceitful follower?

In this paper, we put forward a basic Stackelberg model in an attempt to formal-
ize this question and aim to understand how imitative follower deception affects the
leader’s choice of strategies. We note that, even though there are other types of follower
deception as well, imitative deception is arguably the simplest and most basic deception
approach; we expect it to happen the most often in practice. In our model, the leader
faces a follower with a type that is drawn from a finite set Θ. The follower knows his
true type, but the leader only has a probabilistic belief about it. The leader commits to
a policy, which is a “menu” that specifies the mixed strategy to play for each follower
type. Knowing the leader’s commitment, a follower of true type θ ∈ Θ can imitate
another type θ′ ∈ Θ — behaving consistently according to the payoffs of θ′ — if this
improves his utility. The leader learns the fake type θ′ and plays the strategy specified
by the policy for θ′. The optimal leader policy maximizes the leader’s expected utility,
taking into account the follower’s deception in the loop, which is precisely the optimal
leader strategy that can be learned in the deceptive setting.
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Our Contribution. We provide a systematic study of computational aspects of the
above model. We prove that either with or without incentive compatibility (IC) con-
straints, the optimal leader policy cannot be approximated within a meaningful ratio,
unless P = NP. These results illustrate that deception is the fundamental reason of the
hardness: when there is no deception, the problem can be solved in polynomial time
simply by computing the optimal commitment to each follower type separately. Nev-
ertheless, the leader’s optimal policy can be formulated as an MILP (mixed integer
linear program). Next, we observe that the leader can further improve her utility by ran-
domizing her commitment (to mixed strategies) for each follower type. We call such a
randomized commitment a mixed policy. We prove that it remains NP-hard to approx-
imate the optimal mixed policy, but, interestingly, the problem becomes polynomial-
time computable when IC constraints are posed. Finally, we demonstrate the benefit of
considering follower deception via empirical evaluations.

Applications and Related Work. Our model can be applied directly to a number of
applications. For example, in principal-agent contract design (a widely studied Stackel-
berg model in economics [15,24,3]), a principal may present a menu of contracts to an
uncertain agent and ask the agent to choose the one that matches his true type. Naturally,
the principal’s menu must take into account the agent’s misreport of his type. Similar
ideas apply to exam design for large-scale tests, e.g., for MOOCs (massive open online
courses), which have also been modeled as Stackelberg games [11]. In these situations,
the tester may need to use different exams for different types of test takers who usu-
ally come from various education backgrounds and have different learning objectives.
Again, exam designers will also need to take into account exam takers’ misreport about
their type to strategically conceal their strength in the hope of preferred tests.

Deception has been extensively studied in Stackelberg games, particularly its ap-
plication in security domains [2,18,28,27,26,6,21]. However, all these works consider
designing deceptive strategies for the leader (usually, a defender). In these models, it is
the leader who has the informational advantage, whereas in our model the follower has
the greater decision-pertinent knowledge and discloses it strategically. To the best of
our knowledge, there has been very limited work studying follower deception in Stack-
elberg games. The most relevant to ours is perhaps [25], which studies signaling in
Bayesian Stackelberg games (BSGs) and also considered the possibility that a follower
may strategically misreport his type. However, the question they study is completely dif-
ferent from ours — they design signaling schemes for different follower types whereas
we design the leader’s mixed strategy for each follower type. The contrasting com-
plexity between their model (polynomial-time solvable in normal form BSGs) and ours
(NP-hard) also highlights the intrinsic difference. Even more importantly, though, in
our research type reporting takes the conceptual form of a behaviour inducing message.
In other words, we reverse the common information asymmetry (see e.g. [19,26,5])
between the leader and the follower.

2 A Motivating Example

We illustrate how the follower’s deceptive behavior may result in highly suboptimal
leader strategy, and how we can overcome this issue using carefully-designed leader
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strategies. For illustrative purpose, we use a real-world security game example, though
the underlying phenomenon also generalizes to other applications.

A security game is a Stackelberg game played between a defender (the leader) and
an attacker (the follower). Concretely, we consider a security agency who wants to
protect two conservation areas, i.e., areas 1 and 2, from a poacher’s attack. The defender
can only patrol one of these two areas, while the poacher chooses one area to attack. At
different periods of the year, the poacher’s payoffs change due to price fluctuation of
wildlife products on black markets. We capture this uncertainty using two possible types
of poacher payoffs, i.e., typeA andB. Assume that the defender’s payoff is independent
of the poacher’s type. The poacher knows his true type, but the defender only has a
prior belief that each type shows up with probability 0.5 (This can be obtained via, e.g.,
surveying past prices on black markets). The following table shows the payoff matrices
of the defender (row player) and the two poacher types (column player).

1x 2x

1 1 −1
2 −1 0.99

defender

1x 2x

1 −1 1/3

2 3 −1

poacher type A

1x 2x

1 −1 1

2 1 −1

poacher type B

The only difference between these poacher types is their value for successful at-
tacks, which is affected by wildlife product prices at that time period. Standard calcu-
lation shows that if the poacher has type A, the optimal defender strategy is (3/4, 1/4),
i.e., patrolling areas 1 and 2 with probability 3/4 and 1/4, respectively, resulting in
poacher utility 0 at both areas. By the standard assumption, the poacher thus breaks tie
in favor of the defender and attacks area 1,5 yielding defender utility 1/2. Similarly,
the optimal defender strategy is (1/2, 1/2) against a type-B poacher, which induces the
poacher to also attack area 1 and yields defender utility 0.

Ideally, the defender would like to play the optimal patrolling strategy against the
poacher’s true type at any time which, however, is unknown to the defender. Neverthe-
less, if the poacher were to behave truthfully according to his type, the defender can eas-
ily learn the poacher’s type, e.g., by observing their (different) best responses to strategy
(3/5, 2/5). Indeed, previous approaches for learning the optimal leader strategy rely
crucially on the assumption that the follower will truthfully respond (e.g., [10,1,7,20]).
However, in this example, a type-A poacher has strong incentives to be untruthful: by
imitating a type-B poacher and reacting exactly according to the type-B payoff struc-
ture, a type-A poacher is able to induce the defender to play (1/2, 1/2) — the optimal
strategy against a type-B poacher — which results in true utility 1

2 · (−1)+
1
2 · (3) = 1

5 This assumption is without loss of generality. The corresponding solution concept, the strong
Stackelberg equilibrium, remains the most widely adopted solution concept in the literature
of Stackelberg games (see e.g., [14,4,23]). Normally, via infinitesimal strategy variations, the
leader can induce the follower to play any best response action to the leader’s benefit. For
example, the defender can play ( 3

4
− ε, 1

4
+ ε) with ε → 0, so that the poacher will strictly

prefer to attack area 1 while the change to the defender’s utility can be arbitrarily small. Our
empirical evaluation in Section 6 will further confirm the robustness of our solutions against
the tie-breaking issue.
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for the type-A poacher. This strictly improves upon his previous utility 0 of reacting
truthfully. Simple calculation shows that a type-B poacher does not benefit from decep-
tion and will behave truthfully. As a result, the defender will not be able to distinguish
type A from B under the poacher’s strategic deception.

The issue raised above is due to the fact that the defender focuses solely on opti-
mizing her utility without considering the poacher’s strategic behavior. We now show
how the defender can overcome this issue by taking into account the poacher’s decep-
tion. It happens that in this example the optimal policy for the defender is to still play
(3/4, 1/4) for type A and (1/2, 1/2) for type B, but induce a type-B poacher to break
tie “against” the defender by attacking area 2.6 This slightly decreases the defender’s
utility against a type-B poacher (from 0 to −0.005), but it erases the incentive of de-
ception of a type-A poacher. This is because if the type-A poacher attacks area 2 under
defender strategy (1/2, 1/2) now, his expected utility becomes −1 which is worse than
his utility 0 under truthful behavior.

Remarks. (i) This example illustrates an intriguing phenomenon: when there is
follower deception, it may be undesirable to always induce tie breaking in favor of the
leader, since other tie breaking strategies may enforce more desirable follower behav-
iors. If the defender adopts this nuanced strategy, the poacher will have no incentive to
deceive. Thus, from the perspective of machine learning, what we are designing can be
viewed as the best strategy the leader can learn in the presence of follower deception.

(ii) One might wonder why the defender does not ignore the poacher’s deception
by simply playing a single strategy against all types of poachers, which is precisely
the problem of optimal commitment in Bayesian Stackelberg games. This is because
our more sophisticated approach can achieve better defender utility. In this example,
the defender would play (1/2, 1/2) in the Bayesian Stackelberg equilibrium, obtaining
utility 0. However, the strategy we designed above yields defender utility 1

4 −
1

400 . A
more formal result regarding the utility improvement will be presented in Proposition 1.

C D
C −1, −1 −3, 0

D 0, −3 −2, −2

1
(iii) Perhaps counter-intuitively, follower deception is

not always bad for the leader. Consider, e.g., a Stackelberg
game version of the prisoner’s dilemma shown on the right,
where the row player is the leader and the column player the
follower. If the follower deceives the leader into believing
that he has utility 1, instead of −1, for the action profile (C,C) (annotated in red), the
leader would feel reassured to commit to C, resulting in utility −1 for both players.

3 The Model

3.1 Stackelberg Game Basics

A Stackelberg game (SG) is played between a leader and a follower. A normal-form SG
is given by two matrices uL, uF ∈ Rm×n, which are the payoff matrices of the leader
(row player) and follower (column player), respectively. We use uL(i, j) to denote a
generic entry of uL, and use [m] = {1, ...,m} to denote the set of the leader’s pure
strategies (also called actions). A leader mixed strategy is a probabilistic distribution

6 This tie breaking can be induced by playing ( 1
2
+ ε, 1

2
− ε) for an arbitrarily small ε.
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over [m], denoted by a vector x ∈ ∆m =
{
p ≥ 0 :

∑
i∈[m] pi = 1

}
. With slight abuse

of notation, we denote by uL(x, j) the expected utility
∑
i∈[m] xi ·uL(i, j). Notation for

the follower is the same by changing labels. We will sometimes write a pure strategy i
in positions where a mixed strategy is expected, when we mean the pure strategy in its
mixed strategy form, i.e., a basis vector ei.

In a Stackelberg game, the leader moves first by committing to a mixed strategy x,
and the follower then best responds to x. W.l.o.g., it is assumed that the follower’s best
response is a pure strategy with ties, if any, broken in favor of the leader; such responses
can be induced via an infinitesimal deviation from x [22]. Under this assumption, the
leader mixed strategy that maximizes her expected utility leads to a strong Stackelberg
equilibrium (SSE), which is the standard solution concept of Stackelberg games. For-
mally, denote by BR(x) := argmaxj∈[n] u

F(x, j) the set of follower best responses to
the leader strategy x; the pair of strategies x∗ and j∗ forms an SSE iff

〈x∗, j∗〉 ∈ argmaxx∈∆m,j∈BR(x) u
L(x, j).

3.2 Stackelberg Game with Imitative Follower Deception

We now describe a basic model that captures (imitative) follower deception; the reader
may refer back to our motivating example as an instantiation of this model. We consider
a leader who faces a follower with an uncertain type, which falls in a discrete set Θ.
Each type θ ∈ Θ corresponds to a different follower payoff matrix uF

θ ∈ Rm×n. For
ease of presentation, we will assume that the leader’s payoff does not depend on θ,
though we remark that all our results easily generalize to the case with type-dependent
leader payoffs. To model the leader’s prior knowledge regarding the follower’s type, we
adopt the classic Bayesian perspective and assume that the leader has a prior distribution
π, i.e., each type θ appears with probability πθ. Note that π,Θ and the payoff matrices
are common knowledge.

We assume that the leader can commit to a policy — a “menu” that specifies a
mixed strategy xθ to be played against follower type θ. In addition, we assume a fol-
lower best response jθ ∈ BRθ(xθ) is also specified in the policy, where BRθ(x) =
argmaxj u

F
θ(x, j) denotes the best response set of a type-θ follower against leader

strategy x; hence, in the case of a tie, the follower will be induced to play this specific
response. Note that, as in the motivating example, jθ is not necessarily the one that max-
imizes the leader’s utility with this particular type (unlike in the standard Stackelberg
game model); rather, the leader may prefer to induce the follower to a carefully chosen
action that discourages follower deception and improves the leader’s overall utility.

After observing the leader’s policy, a follower of type θ deceptively reports a type θ̂
to the leader, and the leader then plays the mixed strategy xθ̂ as specified by her policy.
The follower then “best-responds” with j θ̂ as if his type is θ̂. Naturally, the follower will
report the θ̂ that maximizes her true expected utility, i.e., θ̂ = argmaxθ′∈Θ u

F
θ(x

θ′ , jθ
′
),

resulting in the leader to obtain utility uL(xθ̂, jθ̂). The reporting step in our model is
straightforward in various applications (see Section 1), whereas in some other appli-
cations, reporting abstracts the process that the leader learns the follower’s type by
interacting with the follower (as in the motivating example).
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1. The leader commits to a policy σ = {oθ}θ∈Θ that prescribes, for each reported
follower type θ ∈ Θ, an outcome oθ = 〈xθ, jθ〉 such that jθ ∈ BRθ(x) :=
argmaxj u

F
θ(x, j).

2. After observing the leader policy σ, a follower of type θ, who appears with prob-
ability πθ, reports a best type θ̂(σ) = argmaxθ′∈Θ u

F
θ(x

θ′ , jθ
′
); same as the stan-

dard SSE assumption, we assume the follower breaks ties by reporting a type in
favor of the leader. This results in expected leader utility:

UL(σ) :=
∑
θ∈Θ πθ · uL(xθ̂(σ), jθ̂(σ)).

The computational task we examine in this paper is to compute the σ that maximizes
UL. For convenience, we will sometimes write uF

θ(o) = uF
θ(x, j) and uL(o) = uL(x, j)

for an outcome o = 〈x, j〉.
Incentive Compatibility (IC). One can impose in addition the IC constraints on σ

so that reporting truthfully is a (weakly) dominant strategy for every follower type, i.e.,
uF
θ(x

θ, jθ) ≥ uF
θ(x

β , jβ) for any β ∈ Θ. We will consider model variants both with
and without IC constraints. The following result is due to the fact that playing the same
mixed strategy against all follower types is trivially IC, and it offers the same leader
utility as the BSE does.

Proposition 1 There always exists an IC policy, and the optimal IC policy achieves at
least as much leader utility as that achieved in the Bayesian Stackelberg equilibrium.

4 Computing the Optimal Policy

In this section, we study the complexity and algorithms for computing the optimal
leader policy. We will refer to the problem of computing the optimal policy OPT and,
when IC constraints are imposed, OPT-IC.

4.1 Hardness of Approximation

We show in Theorems 2 and 3 that it is NP-hard even just to approximate the optimal
policy to within a meaningful ratio, with or without IC constraints, and even when
the follower has only a small number of actions. These inapproximability results are
essentially tight by Theorem 4. In contrast, an efficient algorithm can indeed be found
for a small number of follower types, which we will show in Theorem 5 after we present
an algorithm for the general case. All our approximations are multiplicative. We shift
the leader’s payoffs to be non-negative in order to analyze multiplicative ratios.

Theorem 2 For any constant ε > 0, OPT does not admit any polynomial-time 1
(|Θ|−1)1−ε -

approximation algorithm unless P = NP, even when the follower has only three actions.

Proof. We show a reduction from the MAX-INDEPENDENT-SET problem, which asks
for the size of the maximum independent set in a graph G = (V,E). A set of nodes
V ′ ⊆ V is an independent set of G if no edge in E connects any pair of nodes in V ′;
an independent set is maximum if there exists no other independent set with a larger
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size. It is known that no polynomial-time 1
|V |1−ε -approximation algorithm exists for

MAX-INDEPENDENT-SET, unless P = NP [29].
We construct a Stackelberg game with |V |+1 follower types Θ = {θ∗}∪{θv : v ∈

V }, where each θv corresponds to node v. Let πθ∗ = 0 and πθ = 1
|Θ|−1 for all other θ.

The leader has 2|V | + 1 actions {av : v ∈V } ∪ {bv : v ∈V } ∪ {a0}; and the follower
has three actions {1x, 2x, 3x}. The payoffs are given below, whereN (v) denotes the set
of neighbouring nodes of v, and all the empty entries are 0.

1x 2x 3x

a0 0.5 1 1

av 0.5 0.5

bv 1 1

av′ : v
′∈N (v) 1 1

otherwise 0.5 1

follower type θv

1x 2x 3x

any i 1

follower type θ∗

1x 2x 3x

any i 1

leader

The following are a few observations about the game:

– For follower type θ∗, j = 1x strictly dominates all the other actions. A follower can
only be induced to play j = 1x when θ∗ is reported, and the leader gets utility 1.

– For each θv , when they are reported, j = 1x cannot be induced by any leader
strategy because it is strictly dominated by j = 2x. As a result, the leader gets 0
once θv is reported.

– Given the above, the leader’s overall utility is proportional to the number of fol-
lower types θv that are motivated to report θ∗.

Now for any independent set V ′ of size k in G, we can construct the following
leader policy σ: oθ∗ = 〈a0, 1x〉, oθv = 〈av, 2x〉 if v ∈ V ′, and oθv = 〈bv, 2x〉 if v /∈ V ′.
In this policy, all types θv with v ∈ V ′ find reporting θ∗ optimal, while all the others
are better-off reporting truthfully. As a result, the leader receives overall utility k

|Θ|−1 .
Conversely, we claim that for any leader policy σ, nodes v’s corresponding to types

θv’s that are incentivized to report θ∗ must form an independent set. To see this, suppose
for a contradiction that θv and θv′ are both incentivized to report θ∗ while (v, v′) ∈ E.
By our observations above, both θv and θv′ will be induced to play 1x and obtain utility
0.5 each. Thus, we need the following in order for θv and θv′ to have no incentive to
report a different type.

(i) xθv′av′ = 0, since otherwise θv would be better-off reporting θv′ and obtain utility
strictly greater than 0.5.

(ii) xθv′bv′ = 0 and xθv′av′′ = 0 for all v′′ ∈ N (v′), since otherwise θv′ would be better-off
reporting truthfully and obtain utility strictly greater than 0.5.

It follows that, now xθv′ can only (and must) pick the last row of the payoff matrix
with nonzero probability, so 3x becomes the only best response of a type-θv′ player
against xθv′ . Thus, we have oθv′ = 〈xθv′ , 3x〉, in which case, however, θv′ is able to
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obtain utility 1 by reporting truthfully, which contradicts the assumption that θv′ is
incentivized to report θ∗.

Therefore, the number of follower types that are motivated to report θ∗ by the opti-
mal policy is exactly to the size of the maximum independent set (and proportional to
the overall leader utility). Any 1

(|Θ|−1)1−ε -approximation algorithm would also provide

a 1
|V |1−ε -approximation to the MAX-INDEPENDENT-SET problem, which exists unless

P = NP. This completes the proof.

Next, we show that the same inapproximability result with OPT-IC. Our reduction
will still be from MAX-INDEPENDENT-SET but the underlying idea and the instance
constructed are both different: the previous reduction uses the follower types that vio-
late IC as an indicator of the independent set, but this approach is infeasible when IC
constraints are imposed.

Theorem 3 For any constant ε > 0, OPT-IC does not admit a polynomial-time 1
|Θ|1−ε -

approximation algorithm unless P = NP, even when the follower has only three actions.

Proof. We show a reduction from the MAX-INDEPENDENT-SET problem. Given an
instance of MAX-INDEPENDENT-SET specified by a graph G = (V,E), we construct a
game with |V | follower types Θ = {θv : v ∈ V }; each θv corresponds to a node v and
appears with probability 1

|Θ| . The leader has 2|V | actions {av : v ∈ V }∪{bv : v ∈ V };
and the follower has three actions {1x, 2x, 3x}. The payoffs are given below, where
N (v) denotes the set of neighbouring nodes of v, and all the empty entries are 0.

1x 2x 3x

av

bv 1 1

av′ : v
′ ∈ N (v) 0.5 1

otherwise 1

follower type θv

1x 2x 3x

any i 1

leader

Now for any independent set V ′ of size k, consider a leader policy σ with: oθv =
〈av, 1x〉 if v ∈ V ′, and oθv = 〈bv, 2x〉 if v /∈ V ′. In this policy, all types find truthful
report to be optimal. Hence, the policy is IC and offers the leader overall utility k

|Θ| .
Conversely, for any IC policy σ, we claim that the corresponding nodes of types

that are motivated to respond with j = 1x always form an independent set. Suppose for
the sake of a contradiction that θv but θv′ both respond with j = 1x and (v, v′) ∈ E.
Observe that, when θv is reported, j = 1x can be induced only by leader strategy av
because it is strictly dominated by j = 3x in all other cases. Thus, oθv = 〈av, 1x〉,
in which case, however, θv′ would be motivated to report θv , which contradicts the
assumption that σ is IC.

Therefore, for the optimal IC policy, the number of follower types that respond with
j = 1x (which is proportional to the leader’s overall utility) is equal to the size of
the maximum independent set in G. Any 1

|Θ|1−ε -approximation algorithm would also

provide a 1
|V |1−ε -approximation to the MAX-INDEPENDENT-SET problem.
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We show that the above inapproximability bounds in Theorems 2 and 3 are essen-
tially tight by exhibiting an efficient algorithm with matching approximation guarantee.

Theorem 4 OPT and OPT-IC admit a polynomial-time 1
|Θ| -approximation algorithm.

Proof. We show an approximation algorithm for OPT. The algorithm for OPT-IC fol-
lows a similar procedure.

We enumerate all (true) follower types θ ∈ |Θ| and compute a policy — call it σθ
— that maximizes only the leader’s utility obtained on this specific follower type θ. We
show below that (i) such a policy can be computed in polynomial time, and (ii) the best
such policy achieves at least 1

|Θ| of the leader utility of the optimal policy.

(i) Polynomial-time computability. To compute σθ, the idea is to enumerate all pos-
sible reporting strategies β ∈ Θ of type θ and, for each β, compute the best policy under
the constraint that it is indeed optimal for a type-θ follower to report β. An observation
that helps simplifying the computation is that we only need to guarantee reporting β to
be (weakly) preferred by the follower to reporting θ, so it suffices to consider the two
associated outcomes in the leader’s policy, i.e., oθ = 〈xθ, jθ〉 and oβ = 〈xβ , jβ〉. This
is due to the fact that a policy that plays xθ on all other reported types β′ /∈ {θ, β} will
trivially make type θ — and hence type β if it is preferred to θ — a better reporting
strategy for the follower than all β′ /∈ {θ, β} (same as the argument for proving Propo-
sition 1). Now, the problem reduces to solving the following liner program for each pair
of possible values of jθ and jβ , which is in [n]2, so the tractability follows immediately:

maxxθ,xβ∈∆m uL(xβ , jβ) (1)

s.t. uF
θ(x

θ, jθ) ≥ uF
θ(x

θ, j) ∀ j ∈ [n] (1a)

uF
β(x

β , jβ) ≥ uF
β(x

β , j) ∀ j ∈ [n] (1b)

uF
θ(x

β , jβ) ≥ uF
θ(x

θ, jθ) (1c)

Namely, we maximize the leader’s utility obtained on a type-θ follower under the con-
dition that the follower is to report β. Here, the first two constraints guarantee that
jθ ∈ BRθ(x) and jβ ∈ BRβ(x) as required by the definition of leader policy; and the
third constraint requires that reporting β is indeed a better choice for a type-θ follower
than reporting θ.

(ii) Utility guarantee. It remains to show that the best σθ computed above offers
the desired utility. Let µL

θ be the best solution to Program (1) over all jθ, jβ ∈ [n];
and let θ∗ = argmaxθ∈Θ πθ · µL

θ. Now consider an arbitrary feasible policy ς with
〈yθ, kθ〉 being the outcome it specifies for each reported type θ. As defined previously,
we let θ̂(ς) denote a type-θ follower’s best reporting strategy against policy ς . It holds
that µL

θ ≥ uL(yθ̂(ς), kθ̂(ς)) because xθ = yθ and xβ = yθ̂(ς) are feasible under Con-
straints (1a)–(??) when jθ and jβ are set to kθ and kθ̂(ς), respectively. It follows that,
for any feasible σ,

UL(σθ∗) ≥ πθ∗ · µL
θ∗ ≥ 1

|Θ|
∑
θ πθ · µL

θ ≥ 1
|Θ|
∑
θ πθ · uL(xθ̂(ς), jθ̂(ς)) = 1

|Θ| · U
L(ς).

Since the choice of ς is arbitrary, σθ∗ serves as an 1
|Θ| -approximation of the optimal

policy. The proof is completed.
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4.2 An MILP Formulation and Tractability for SmallΘ

Given the hardness result, efficient algorithms for computing the optimal policy would
seem unlikely. We show an algorithm based on an MILP (mixed integer linear program)
as a practical approach to tackle the problem. Besides its practical significance, the
MILP formulation also forms the basis of a polynomial-time algorithm for OPT and
OPT-IC, which we show in Theorem 5.

First, when IC constraints are not imposed, the following program (not linear yet)
computes the optimal leader policy, where µL

θ, xθ, yθβ , and pθj are variables.

max
∑
θ πθ · µL

θ (2)

s.t. µL
θ ≤

∑
j p

β
j ·uL(xβ , j) + (1− yθβ)·M ∀θ, β ∈ Θ (2a)

pθj ·
[
uF
θ(x

θ, j)− uF
θ(x

θ, k)
]
≥ 0 ∀ θ ∈ Θ, j, k ∈ [n] (2b)∑

j p
β
j ·uF

θ(x
β , j)−

∑
j p

γ
j ·uF

θ(x
γ , j) ≥ −(1− yθβ)·M ∀ θ, β, γ ∈ Θ (2c)∑

i x
θ
i =

∑
j p

θ
j =

∑
β y

θ
β = 1 ∀ θ ∈ Θ (2d)

xθ ∈ [0, 1]m, yθβ ∈ {0, 1}, pθj ∈ {0, 1} ∀ θ, β ∈ Θ, j ∈ [n] (2e)

Here, the leader policy is represented by variables xθ and pθj , where xθ is the leader
mixed strategy prescribed for report θ, and pθj captures the induced follower action.
Through Constraint (2b), it is guaranteed that pθj = 1 if j is a best response of type
θ to xθ and pθj = 0, otherwise. Similarly, yθβ captures the optimal reporting strategy
of type θ, i.e., yθβ = 1 only if reporting β is optimal for θ, and this is guaranteed via
Constraint (2c), in which M is a sufficiently large constant. Finally, each µL

θ captures
the utility the leader obtains from true type θ via Constraint (2a).

This program is not yet an MILP because of the quadratic terms pθj ·xθ. To linearize
it, we replace these terms with a set of new variables x̃θji, subject to 0 ≤ x̃θji ≤ xθi (for
all θ, j, i) and

∑
j x̃

θ
ji = pθj (for all θ, i). This guarantees x̃θji = pθj · xθi given that pθj is

restricted to be in {0, 1}.
In the situation with IC constraints, we simply force yθθ = 1 for all θ ∈ Θ in the

above MILP. The “windfall” of the MILP formulation is a polynomial-time algorithm
for small |Θ| shown below.

Theorem 5 When |Θ| is fixed, both OPT and OPT-IC can be solved in polynomial time.

Proof. Following the MILP, when |Θ| is fixed, the feasible space of the binary variables
y and p has size poly(m,n), i.e., we have 〈y,p〉 ∈ {0, 1}|Θ| × {0, 1}n·|Θ|. We can
enumerate every element in this space and solve an MILP with y and p fixed to the
corresponding values, which is now a linear program with no integer variable.

5 Generalization to Mixed Policy

The leader policy we have considered so far consists of one outcome 〈xθ, jθ〉 for each θ.
In this section, we expand the space of leader policies, and allow the leader to randomize



12 J. Gan et al.

over the outcomes for each follower type. In other words, the leader’s policy will now
be a distribution of outcomes for each follower type. We call a distribution of outcomes
a mixture, and call a generalized leader policy consisting of mixtures a mixed policy, as
opposed to policies in the previous sections, which we will henceforth call pure policies.

Now the game proceeds as follows. The leader first commits to a mixed policy.
Then the follower observes the mixed policy and reports a type θ. Finally, the leader
will sample an outcome 〈xθ, jθ〉 from the mixture, play xθ, and induce the follower to
respond with jθ.

Obviously, the leader utility of an optimal mixed policy is at least that of a pure
one for all pure policies are also special mixed policies. However, a natural question is
why further randomization over the outcomes will benefit the leader since the leader is
already playing a mixed strategy in every outcome, and randomizing mixed strategies
typically will not bring any extra power for a player. Interestingly, it turns out that this
extra randomization will be beneficial for the leader when there is follower deception.
The reason is that such randomization can help us tame the incentive constraints for the
follower’s type reporting, while the randomization in mixed strategies is responsible
for inducing desired follower action responses. The following example gives a more
concrete illustration.

Example: Strict Improvement of Mixed Policies. We consider again a security
game example with two targets 1 and 2. The defender can patrol one of these targets
and the attacker chooses one of them to attack. The attacker has three types θ∗, θA and
θB which appear with equal probability 1/3. The payoffs are given below.

1x 2x

1 1 −1
2 −1 1

defender

1x 2x

−1 1

1 −1

attacker type θ∗

1x 2x

0 0

1 −2

attacker type θA

1x 2x

−2 1

0 0

attacker type θB

Note that the two targets are of equal importance to the defender and attacker type
θ∗ (the game against type θ∗ is zero-sum). Therefore, θ∗ will always attack the less
patrolled target, and for an outcome 〈x, j〉 corresponding to type θ∗, it always holds
that xj ≤ 1/2. Suppose w.l.o.g. that j = 1x. Then type θA is able to obtain at least 1/2
by misreporting θ∗, in which case: if θA does misreport his type, the defender obtains at
most 0 on θA; if θA reports his true type, the defender’s policy needs to offer him utility
at least 1/2 to incentivize this truthful report, so target 2 needs to be patrolled with
probability at least 1/2 and, again, the defender obtains at most 0. The same argument
applies to type θB if we suppose j = 2x. As a result, any pure policy obtains utility
more than 0 only on (at most) one of types θA and θB , in which case the defender’s
overall utility is at most 1/3.

Now we consider a mixed policy as follows:

– For reported attacker type θ∗, choose outcomes 〈(1/2, 1/2), 1x〉 and 〈(1/2, 1/2), 2x〉,
each with probability 1/2;

– For reported attacker type θA, choose 〈(1, 0), 1x〉 with probability 1; and for θB ,
choose 〈(0, 1), 2x〉 with probability 1.
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As such, types θA and θB can only obtain −1/2 in expectation if they misreport θ∗.
This incentivizes both θA and θB to report truthfully, yielding expected defender utility
2/3 — an improvement of at least 1/3 compared to the optimal pure policy.

Mixtures with Support Size n Suffice. To compute the optimal mixed policy, one
challenge is that the mixture for a follower type θ may be supported on a set of infinite
size (as the space of feasible 〈xθ, jθ〉’s is infinite). Thus, it is not even clear whether the
optimal mixed policy can be represented in polynomial size. Fortunately, the following
result implies that it suffices to consider mixtures supported on at most n outcomes;
each outcome induces the follower to choose a distinct action in [n].

Proposition 6 For any feasible mixture prescribed for reported type θ, there is a feasi-
ble mixture with support size ñ ≤ n that yields the same utility for the leader and any
follower who reports θ.

Proof (sketch). The proof follows a standard revelation-principle-type argument. Given
any mixture, we can merge all outcomes that induce the same follower response into
one outcome; this will not change either the leader’s or the follower’s expected utility.

Following this result, we can represent the mixture for each type θ as a vector
(pθ1, . . . , p

θ
n) ∈ ∆n together with n mixed strategies xθ1, . . . ,x

θ
n; the mixture samples

each outcome 〈xθj , j〉 with probability pθj ≥ 0. Note that this representation allows out-
comes involved to be invalid because it is possible that some follower action j cannot
be induced by any leader strategy, i.e., j /∈ BRθ(x) for all x ∈ ∆m. Thus, a mixture is
valid only if j ∈ BRθ(xθj ) for all j such that pθj > 0.

5.1 Computing the Optimal Mixed Policy

Proposition 6 implies that there exists an optimal mixed policy of polynomial size. Nev-
ertheless, Theorem 7 below shows that the problem of computing the optimal mixed
policy (referred to as OPTX) remains to be inapproximable in the case without IC con-
straints. The hardness of inapproximability is essentially tight following a similar argu-
ment as in Theorem 4; we state the result in Theorem 8 but omit the proof. Surprisingly,
after we impose IC constraints, the problem (OPTX-IC) becomes tractable.

Theorem 7 For any constant ε > 0, OPTX does not admit any polynomial-time 1
(|Θ|−1)1−ε -

approximate algorithm unless P = NP, even when the follower has only three actions.

Proof (sketch). The inapproximability can be shown from a reduction from the same
MAX-INDEPENDENT-SET problem as in the proof of Theorem 2.

Theorem 8 OPTX admits a polynomial-time 1
|Θ| -approximation algorithm.

We note that an MILP formulation for OPTX can be devised, by modifying Pro-
gram (2) as follows. First, replace every xθ by xθj , wherever they are associated with
pθj . Then relax every pθj to be in [0, 1]. The program can be linearized using the same
technique applied to Program (1), and similarly this provides a polynomial-time algo-
rithm for OPTX when the number of follower types is fixed (Theorem 9; proof omitted).
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If we further impose IC constraints, the optimal mixed policy can be computed in
polynomial time via a linear program. This is because the IC constraints further remove
the integer variables yθθ′ ’s in the MILP described above (Theorem 10; proof omitted).

Theorem 9 When |Θ| is fixed, OPTX can be solved in polynomial time.

Theorem 10 OPTX-IC can be computed in polynomial time.

6 Empirical Evaluation

We evaluate our framework with games generated randomly using the well-known co-
variance game model [13]. We generate the players’ payoffs uniformly at random from
the range [0, 1], and then adjust the follower’s payoffs by blending them with the neg-
ative value of the leader’s payoffs; the degree of blending is controlled by a parameter
α ∈ [0, 1], i.e., uF

θ ← (1−α) ·uF
θ −α ·uL. As such, the game is zero-sum when α = 1;

and, when α = 0, payoffs of the leader and the follower are completely uncorrelated.
We also generate the probabilities πθ’s uniformly at random.

We compare the leader’s utility obtained by different policies/approaches proposed
in this paper and other existing work, including: (1) Optimal pure policy (labeled Opt),
with and without IC; (2) Optimal mixed policy (OptX), with and without IC; (3) Bayesian
Stackelberg Equilibrium (BSE); (4) Optimal leader strategy when the follower truthfully
reports his type (Truthful), and (5) the same strategy but when the follower strategically
reports his type (Deceitful).

Figure 1 depicts our results. The first two figures, (a) and (b), show leader utility
with varying α, from which we see that all our proposed polices (lines in blue) improve
the leader’s utility significantly upon BSE. Our policies achieve leader utility that is
very close to the truthful utility, even when IC constraints are imposed. When IC is not
required, the optimal policies perform even better in almost all experiments. Surpris-
ingly, even when the leader naı̈vely trusts a deceitful follower, the utility obtained may
sometimes be higher than the truthful utility. However, this is in line with our observa-
tion in Section 3, that follower deception is not always bad for the leader.

The utility differences are the most significant when α is around 0.5. Intuitively,
this is because when α approaches 1 the diminishing uncertainty over follower types
reduces the effect of follower deception. But when α is close to 0, payoffs of the leader
and the follower are less correlated and their objectives less conflicted; hence, when the
follower leverages deception to increase his utility, there is a lower chance that this will
decrease the leader’s utility.

We further investigate the effects of varying number of actions and number of fol-
lower types. From Figure 1 (c) we see that utility differences (excluding BSE) quickly
diminish when the number of actions increase. Similar to the situation when α is close
to 0, the level of randomness of the payoffs increases as the action space grows, which
dissolves the negative effect of follower deception. In contrast, as shown in Figure 1 (d)
and (e), the effect of follower deception appear to increase with the number of follower
types as leader utility in the deceitful setting drops. Utility offered by the optimal mixed
IC policy, however, decreases much slower. Hence, the optimal mixed IC policy offers
a scalable practical solution when there is a large number of follower types. At a high
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(c) α = 0.5, |Θ| = 5 (n = m)
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Fig. 1: Leader utility obtained with different approaches, varying with α as in (a) and (b), with
m and n as in (c), and with |Θ| as in (d) and (e). All y-axes represent leader utility as a ratio to
the utility obtained in the truthful situation. The missing data points are instances that cannot be
solved within one hour because of the scalability issue. All data points are averages of 50 runs.

level, these results suggest that uncertainty over follower’s payoff information is a major
amplifier of the negative effect of follower deception.

7 Conclusion

In this paper, we point out potential occurrences of (imitative) follower deception in
Stackelberg games and the risk when they are ignored. We then propose a framework
to design leader policies against such deception and provide a systematic study of the
computational aspects of this framework. Our results shows that handling follower de-
ception is hard in general, even when the searching of optimal policy is expanded into
the less complicated space of mixed policies.

There are a number of potential directions for future work. Perhaps the first ones to
investigate are several extended settings: e.g., when there is no prior knowledge about
the distribution of follower types, or when follower types fall into a continuous space
instead of a finite one as in our model. It would also be interesting to position this work
in a specific application area, such as security games where follower deception might
be more common, yet more harmful, because of the adversarial nature of the followers.
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