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Abstract. An increasingly important tool for securing computer net-
works is the use of deceptive decoy objects (e.g., fake hosts, accounts, or
files) to detect, confuse, and distract attackers. One of the well-known
challenges in using decoys is that it can be difficult to design effective
decoys that are hard to distinguish from real objects, especially against
sophisticated attackers who may be aware of the use of decoys. A key
issue is that both real and decoy objects may have observable features
that may give the attacker the ability to distinguish one from the other.
However, a defender deploying decoys may be able to modify some fea-
tures of either the real or decoy objects (at some cost) making the decoys
more effective. We present a game-theoretic model of two-sided decep-
tion that models this scenario. We present an empirical analysis of this
model to show strategies for effectively concealing decoys, as well as some
limitations of decoys for cyber security.
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1 Introduction

Both civilian and military computer networks are under increasing threat from
cyber attacks, with the greatest threat posed by Advanced Persistent Threat
(APT) actors. These attackers use sophisticated methods to compromise net-
works and remain inside, establishing greater control and remaining for long
periods of time to gather valuable data and intelligence. These attackers seek to
remain undetected, and estimates from APT attacks show that they are often
present in a network for months before they are detected [5].

Cyber deception methods use deceptive decoy objects like fake hosts (hon-
eypots), network traffic, files, and even user accounts to counter attackers in a
variety of ways [24, 9, 1]. They can create confusion for attackers, make them
more hesitant and less effective in executing further attacks, and can help to
gather information about the behavior and tools of various attackers. They can
also increase the ability of defenders to detect malicious activity and actors in
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the network. This is especially critical in the case of APT attackers, who are
often cautious and skilled at evading detection [26]. Broad and effective use of
honeypots and other deceptive objects is a promising approach for combating
this class of attackers.

However, the effectiveness of honeypots and other deceptive objects depends
crucially on whether these fake objects can be designed to look similar enough
to real objects that they are not easily identified and avoided. This is especially
true for APT threats, which are likely to be aware of the use of such deception
technologies and will actively seek to identify and avoid honeypots and other
deceptive objects in their reconnaissance [26, 29]. A well known problem with
designing effective honeypots is that they often have characteristics that can
be observed by an attacker that will reveal the deception [10]. For example,
the patterns of network traffic to a honeypot, the response times to queries, or
the configuration of services may not be similar to real hosts in the network.
However, with some additional effort the deception can be made more effective
(e.g., by simulating more realistic traffic to and from honeypots).

We introduce a game-theoretic model of the problem of designing effective
decoy objects that can fool even a sophisticated attacker. In our model, real and
fake objects may naturally have different distributions of characteristic features
than an attacker could use to tell them apart. However, the defender can make
some (costly) modifications to either the real or the fake objects to make them
harder to distinguish. This model captures some key aspects of effective cyber
deception that are missing from other game-theoretic models of deception. In
particular, we focus on whether the defender can design convincing decoy objects,
and what the limitations of deception are if some discriminating features of real
and fake objects cannot be easily masked.

We present several analyses of fundamental questions in cyber deception
based on our model. We analyze how to measure the informativeness of the sig-
nals in our model, and then consider how effectively the defender can modify
the features to improve the effectiveness of deception in various settings. We
show how different variations in the costs of modifying the features can have a
significant impact on the effects of deception. We also consider the differences be-
tween modifying only the features of deceptive objects and being able to modify
both real and deceptive objects (two-sided deception). While this is not always
necessary, in some cases it is essential to enable effective deception. We also con-
sider deception against näıve attackers, and how this compares to the case of
sophisticated attackers.

2 Motivating Domain and Related Work

While the model we present can be applied to many different types of deception
and deceptive objects, we will focus on honeypots as a specific case to make our
discussion more concrete and give an example of how this model captures key
features of real world deception problems. Honeypots have had a considerable
impact on cyber defense in the 30 years since they were first introduced [25].
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Over time, honeypots have been used for many different purposes, and have
evolved to be much more sophisticated with greater abilities to mimic real hosts
and to capture useful information about attackers [14, 16, 3]. The sophistication
of honeypots can vary dramatically, from limited low-interaction honeypots to
sophisticated high interaction honeypots [14, 18, 8].

Here, we do not focus on the technological advancements of honeypots, but
rather the game-theoretic investigation of honeypot deception. There have been
numerous works that emphasize this game-theoretic approach to cyber deception
as well. Our work builds upon the Honeypot Selection Game (HSG), described
by Ṕıbil et al. [17, 9]. Much like the HSG, we model the game using an extensive
form game. We extend the HSG model with the introduction of features, which
are modifiable tokens in each host that enable more robust deceptions and allow
to model more realistic settings. Several game-theoretic models have been estab-
lished for other cyber defense problems [2, 13, 22, 21], specifically for deception
as well [20, 28], however these consider attribute obfuscation as the means of
deception rather than use of decoy objects.

[27] notably investigates the use of honeypots in the smart grid to mitigate
denial of service attacks through the lens of Bayesian games. [12] also model
honeypots mitigating denial of service attacks in similar fashion, but in the
Internet-of-Things domain. [7] tackle a similar “honeypots for denial of service
attack” problem with Bayesian game modeling in the social networking domain.
These works demonstrate the vast amounts of domains honeypots can aid in.
This work differs in that we do not model a Bayesian incomplete information
game.

A couple of works also consider the notion of two-sided deception, where
the defender not only deploy real -looking honeypots, but also fake-looking real
hosts. Rowe et al. demonstrated mathematically that deploying two-sided decep-
tion offers an improved defense by scaring off attackers [19]. Caroll and Grosu
introduce the signaling deception game where deployed honeypot deception is
bolstered through the use of signals [4]. Our work differs in that we define spe-
cific features (signals) that can be altered and revealed to the attacker. Shi
et al. introduce the mimicry honeypot framework which combines real nodes,
honeypots, and fake-looking honeypots to derive equilibria strategies to bolster
defenses [23]. They validated their work in a simulated network. This notion
of two-sided deception is quickly becoming reality; De Gaspari et al. provided
a prototype proof-of-concept system where production systems also engaged in
active deception [6].

3 Honeypot Feature Selection Game

We now present a formal model of the Honeypot Feature Selection Game (HFSG).
This game models the optimal decisions for a player (the defender) who is try-
ing to disguise the identify of real and fake objects so that the other player
(the attacker) is not able to reliably distinguish between them. Each object in
the game is associated with a vector of observable features (characteristics) that
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provides an informative signal that the attacker can use to more reliably detect
fake objects. The defender is able to make (limited) changes to these observable
features, at a cost. Unlike many models of deception, we consider the possibility
that the defender can make changes to both the real and fake objects; we refer
this as 2-sided deception.

The original feature vector is modelled as a move by nature in a Bayesian
game. Real and fake objects have different probabilities of generative every pos-
sible feature vector. How useful the features are to the attacker depends on
how similar the distributions for generating the feature vectors are; very similar
distributions have little information while very divergent distributions may pre-
cisely reveal which objects are real or fake. The defender is able to observe the
features, and may choose to pay some cost to modify a subset of the features.
The attacker observes this modified set of feature vectors, and makes a choice
about which object to attack. The attacker receives a positive payoff if he selects
a real object, and a negative one if he selects a fake object.

To keep the initial model simple we focus on binary feature vectors to rep-
resent the signals. We will also assume that the defender is able to modify a
maximum of one feature. Both of these can be generalized in a straightforward
way, at the cost of a larger and more complex model.

3.1 Formal definition of Honeypot Feature Selection Game

We now define the Honeypot Feature Selection Game (HFSG) formally by the
tuple G = (k, n, V, C, Pr, Ph, τ, χ,D,A, u).

– k is the number of host types
– n is the number of features for any given host
– V is the set of importance values assigned for each host
– C is the set of costs associated with modifying each feature
– Pr : {0, 1}n → [0, 1] is probability distribution over feature vectors for real

hosts
– Ph : {0, 1}n → [0, 1] is the probability distribution over feature vectors for

honeypots
– The attacker’s information set is of the form {y1, y2} where y1, y2 ∈ {0, 1}n
– aI : a binary variable that denotes whether the attacker attacks the lexico-

graphically smaller y1, ∀I = {y1, y2}. Thus, when y1 = y2, aI = 1.
– τ : the superset of all attacker information sets (I ∈ τ, I ⊆ 2kn)
– χ : 2kn → f(τ) is a function that specifies a set of possible actions D for the

defender, who can modify the hosts of a network x and present a modified
observation x′ ∈ 2kn to the attacker

– A is set of possible attacker actions ∀x′ ⊆ τ
– u : k × τ × A → R is defined if attacker can identify the real system where

any feature can be modified by χ(x)

An example of a small HFSG with 1 real host, 1 honeypot, and 1 feature
for each host is shown in Figure 1. The feature of a host can be organized in
two possible ways (‘0’ and ‘1’). The probability distributions Pr = [0.5, 0.5] and
Ph = [0.5, 0.5] are randomly generated for each feature combination.
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Fig. 1. The extensive form game tree with one real host, one decoy and 1 feature in
each host. The importance value of real host is 10 where the modification cost of a
feature is 3. The importance value of decoy is 5 where any feature modification cost is
1.

3.2 Nature Player Actions

We assume that both players know the two probability distributions Pr and Ph
that define how the feature vectors are selected by nature for real and honeypot
hosts, respectively. For each network configuration x ∈ X, all features are stored
in a vector Mf . Then, from the number of host types k ∈ N and the total number
of features n ∈ N in each host, we generate all possible network configuration
X ∈ 2kn. The nature player selects a network x ∈ X with probability distribution
Px = Pr × Ph. Both players can compute the value of Px for the network x.
For example, in Figure 1 Px = 0.25 for network “0R1D” is calculated from
Pr(

′0′) = 0.5 and Ph(′1′) = 0.5.

3.3 Defender Actions

For a network configuration x ∈ X, the defender observes the feature vector Mf

and the probability distribution Px for network x. Then he chooses an appro-
priate action d ∈ D. Any action d on network x ∈ X results in a new network
x′ ∈ X which serves an information set I ∈ τ to the attacker. In the example
of Figure 1, the middle action in network “0R0D” leads to a new network “01”,
the attacker observes this network “01” with different configuring probabilities
in the different situation.

3.4 Attacker Actions

The attacker observes the set of feature vectors for each host, but does not di-
rectly know which ones are real and which are honeypots. The attacker does
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have prior beliefs about how likely each type of host is to generate each fea-
ture vector, so he can use this to update his beliefs. Networks belonging to the
same information set I ∈ τ are indistinguishable to the attacker. Consider two
networks networks y = (y1,y2) and y′ = (y1

′,y2
′), where (y1n, . . . , y1n) is an

n-dimensional vector, belonging to same information set I ∈ τ ⇐⇒ ∀t ∈ T :
y1t + y2t = y1′t + y2′t or y1t + y2t = y2′t + y1′t holds, t denotes terminal sate
of game tree. Networks y, y′ ∈ I have similar feature combinations but differ in
the success probabilities in distinguishing the real system and the honeypot. In
Figure 1 the networks “01” and “10” will be observed by an attacker as “01”.

3.5 Utility Functions

The terminal state t ∈ T of an extensive form game tree contains the players’
utilities U(x, I, aIi ). A valid sequence from the root node to a terminal state
defines rewards for both players, and the rewards depends on a network config-
uration x in X, the attacker’s information set I ∈ τ and the attacker’s action
aIi at I. The attacker’s utility is computed based on the sum of importance
value

∑
t∈T V at terminal states - successful identification of a real host gives

a positive reward to the attacker otherwise gives negative reward that is equal
to the importance value of a honeypot. The attacker’s utility at terminal state
t is Ua(x, I, aIi ) = V kt . We assume that V kt is zero-sum component in utility
calculation where only feature modification cost Ct of defender makes the game
general sum. So, the defender’s utility at t is Ud(x, I, a

I
i ) = −V kt − Ckt .

3.6 Defender’s Linear Program

We can solve this extensive form game with imperfect information using a linear
program. For solving this game in sequence form [11], we create a path from
the root node to the terminal node that is a valid sequence and consists a list
of actions for all player. Then we compute defender’s behavioral strategies on
all valid sequences using a formulated LP as follows, where Ud and Ua are the
utilities of the defender and the attacker. To solve the program, we construct a
matrix X[0 : 2kn] of all possible network configurations and then the defender
chooses a network x ∈ X to modify. In network x, any action djx of defender
leads to an information set I ∈ τ for the attacker. Different defender’s actions
in different networks can lead to the same information set I ∈ τ . Then, in a
particular information set I ∈ τ , the attacker take an action aIi to maximize his
expected utility.

max
∑
xεX

∑
j∈D

Ud(x, j, a
I(x,j)) dxjPx (1)

s.t.
∑

(x,j)∈I

Ua(x, j, aI)dxjPx ≥
∑

(x,j)∈I

Ua(x, j, a) dxjPx ∀a ∈ A ∀I ∈ τ (2)
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dxj ≥ 0 ∀x ∈ X ∀j ∈ D (3)

∑
j∈D

dxj = 1 ∀x ∈ X (4)

The program’s objective is to maximize the defender’s expected utility where
the attacker also plays his best response. In the above program, the only unknown
variables are the defender’s actions dxj (more precisely the strategies of a defender

in a network x ∈ X) and the attacker’s actions aI . The inequality in Equation
2 ensures that the attacker plays his best response in this game. Also Equation
3 defines that the defender strategies in a network x is a standard probability
distribution. Finally Equation 4 makes sure that all network configurations by
nature are 1.

4 Empirical Study of HFSG

The HFSG game model allows us to study the strategic aspects of cyber decep-
tion against a sophisticated adversary who may be able to detect the deception
using additional observations and analysis. In particular, we can evaluate the ef-
fectiveness of cyber deception under several different realistic assumptions about
the costs and benefits of deception, as well as the abilities of the players. We
identify cases where deception is highly beneficial, as well as some cases where
deception has limited or no value. We also show that in some cases, using two-
sided deception is critical to the effectiveness of deception methods.

4.1 Measuring the Similarity of Features

One of the key components of our model is that real and fake hosts generate
observable features according to different probability distributions. The similar-
ity of these distributions has a large effect on the strategies in the game, and
the outcome of the game. Intuitively, if out-of-the-box honeypot solutions look
indistinguishable from existing nodes on the network the deception will be ef-
fective without any additional intervention by the defender. However, when the
distributions of features are very dissimilar the defender should pay higher costs
to modify the features to disguise the honeypots. In some cases this may not be
possible, and the attacker will always be able to distinguish the real and fake
hosts.

Measuring the similarity of the feature distributions is a somewhat subtle
issue, since the defender can make changes to a limited number of features.
Standard approaches such as Manhattan distance or Euclidean distance do not
provide a good way to compare the similarity due to these constraints. We use a
measure based on the Earth Mover’s Distance (EMD) [15], which can be seen as
the minimum distance required to shift one pile of earth (probability distribu-
tion) to look like another. This measure can be constrained by the legal moves,
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so probability is only shifted between configurations that are reachable by the
defender’s ability to change features.

In the experiments, we allow the defender to modify only a single feature in
the network. We model the distance from moving the probability of one config-
uration (e.g., turning [0, 0] into [0, 1]) to another by flipping of a single bit at
a time with a unit cost of 1. This can be seen visually in Figure 2 where we
calculate the EMD of moving the honeypot’s initial distribution into that of the
real node’s initial distribution.

Fig. 2. Earth Mover’s Distance process. a) Displays the initial feature configuration
probability distributions Pr and Ph and where to move slices of the distribution from
Ph and b) Shows the updated Ph after the conversion, resulting in a final EMD of 0.5.

In our experiments we will often show the impact of varying levels of similar-
ity in the feature distributions. We generated 100 different initial distributions
for the features using uniform random sampling. We then calculated the similari-
ties using the constrained EMD, which resulted in the distribution of similarities
shown in Figure 3. When our experiments vary the similarity, we present the re-
sults by aggregating over the similarity intervals of 0.1 and average the results
in each interval.

4.2 Deception with Symmetric Costs

Our first experiment investigates the impact of varying the similarity of the
feature distributions. We also vary the values of real and fake hosts. As the
similarity of the distributions Pr and Ph decreases, we would expect a decrease in
overall expected defender utility. We can see this decrease in Figures 4a and 4b as
we vary the similarity measured using EMD. In Figures 4a and 4b, we compare
the utility differences between an optimal defender that can only modify the
features of the honeypot (one-sided deception), an optimal defender that can
modify features of both the honeypot and real host (two-sided deception), and
a baseline defender that cannot make any modifications against a fully rational
best response attacker.
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Fig. 3. Frequency distribution of similarity ranges used in the experiments.

Fig. 4. Comparison of defender utility when the real host’s importance value a) dou-
bles that of the honeypot and b) equals that of the honeypot. Here we see one-sided
deception provides a comparable defense despite a high initial dissimilarity.

In Figure 4a, the honeypot has the same importance value as the real host,
while in Figure 4b, the honeypot value is half of the real host. The first ob-
servation is that in both cases the value of deception is high relative to the
baseline with no deception, and this value grows dramatically as the feature
distributions become more informative (higher EMD). In general, the defender
does worse in cases where the hosts have different values. Two-sided deception
does have a small advantage in cases with highly informative features, but the
effect is small. Here, the costs of modifying the features are symmetric, so there
is little advantage in being able to modify the feature on either the honeypot or
the real host, since the defender can choose between these options without any
penalty.

To further investigate the issue of one-sided and two-sided deception, we fix
the honeypot features modification costs and increased real host modification
costs as reflected in Table 1. Here, we compare how increasing the real host’s
feature modification negatively affects the defender’s expected utility. As the cost
for modifying the real hosts increases relative to the cost of modifying honeypots,
the defender must make more changes on honeypots in order to maximize his
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Figure RIV
RMC HpMC

HpIV
F 1 F 2 F 1 F 2

4a 1.0 0.25 0.1 0.1 0.25 0.5

4b 1.0 0.25 0.1 0.2 0.1 1.0

5 (Both (A)) 1.0 0.25 0.1 0.1 0.2 0.5

5 (Both (B)) 1.0 0.5 0.2 0.1 0.2 0.5

5 (Both (C)) 1.0 1.0 0.5 0.1 0.2 0.5

6 (Exp-1) 1.0 0.1 ∞ 0.1 ∞ 1.0

6 (Exp-2) 1.0 0.1 ∞ ∞ 0.1 1.0

7 (Exp-1) 1.0 0.2 0.2 0.2 0.2 1.0

7 (Exp-2) 1.0 0.15 0.25 0.25 0.15 1.0

7 (Exp-3) 1.0 0.1 0.3 0.3 0.1 1.0

7 (Exp-4) 1.0 0.05 0.35 0.35 0.05 1.0

7 (Exp-5) 1.0 0.0 0.4 0.4 0.0 1.0

9 1.0 0.25 0.1 0.2 0.1 1.0

Table 1. Parameters used in HFSG experiments. RIV denotes real system’s impor-
tance value, RMC denotes real system’s feature modification cost, HpIV denotes im-
portance value of honeypot and HpMC denotes feature modification cost of honeypot.
All numbers are normalized to 1

utility. Altering the real system in this case is not feasible and does not provide
a good return on investment.

Traditionally network administrators avoid altering features in their real
hosts on the network and simply employ one-sided deception, attempting to
alter the honeypot to look like a real host. In the case where modifying a real
host to look less believable might be be too costly or even impossible, one-sided
deception is an obvious choice as demonstrated in Figure 5. However, when these
real feature modifications are not too costly, we see that two-sided provides a
noticeable increase in defenses when the feature distributions are increasingly
dissimilar.

4.3 Deception with Asymmetric Costs

While the results so far have suggested that one-sided deception may be nearly as
effective as two-sided deception, they have all focused on settings where the costs
of modifying features are symmetric for real and fake hosts. We now investigate
what happens when the costs of modifying different features are asymmetric. We
start with the extreme case where some features may not be possible to modify
at all.

In our examples with two features, we can set the unmodifiable features for
the real and honeypot hosts to be the same or to be opposite. In Figure 6, we
show the results of the game when we set the modification costs of some features
to infinity. If the same feature for the real host and honeypot are unmodifiable,
then there is little the defender can do to deceive an intelligent attacker when
they are highly dissimilar. However, when the features that cannot be modified
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Fig. 5. Comparison of defender utility when the cost of modifying the real host features
is different than modifying the honeypot features.

Fig. 6. Comparison of defender utility when some features cannot be modified.

are different for the real and honeypot hosts, we see a very different situation. In
this case the defender benefits greatly from being able to use two-sided deception,
since he can avoid the constraints by modifying either the real or fake hosts as
needed.

In our next experiment, we investigate less extreme differences in the costs
of modifying features. We set the costs so that they are increasingly different for
real and honeypot hosts, so modifying one feature is cheap for one but expen-
sive for the other, but not impossible. We show the results of using either one
or two-sided deception for varying levels of initial feature distribution similarity
in Figure 7. The specific costs are given in Table 1. We see that there is very
little difference when the initial distributions are similar; this is intuitive since
the attacker has little information and deception is not very valuable in these
cases. However, we see a large difference when the initial distributions are infor-
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Fig. 7. Impact of modification cost over various initial similarity parameters.

mative. As the difference in the feature modification costs increases, the value of
two-sided deception increases, indicating that this asymmetry is crucial to un-
derstanding when two-sided deception is necessary to employ effective deception
tactics.

We also expect that the number of features available to the players will
have a significant impact on the value of deception. While the current optimal
solution algorithm does not scale well, we can evaluate the differences between
small numbers of features, holding all else equal. Figure 8 presents the results of
the modeling HFSG with variable number of features.We found that when the
number of features is increased two-sided deception becomes more effective than
one-sided deception. The defender in this case has more opportunity to alter the
network by changing the features and make it the more confusing network to the
attacker. However, the defender payoff decreases with more features due to the
constraint on how many features he can modify and the total cost of modifying
these features.

4.4 Deception with Näıve Attackers

The previous empirical results all assumed a cautiously rational attacker who
actively avoided attacking honeypots. This is a common practice, because fully
rational actors present the highest threat. In cybersecurity, these fully rational
attackers might be an experienced hacker or APT. However, these are not the
only threats faced in cybersecurity and we cannot assume that these attacking
agents are always cautious and stealthy.
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Fig. 8. Comparison of defender utility when increasing the number of features.

Fig. 9. Comparison of defender utility of a näıve attacker versus a fully rational at-
tacker. Here, the näıve attacker does not consider the defender’s utility or strategy at
all.
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We now consider a more näıve attacker that does not consider the defender’s
deception. He observes the hosts on the network and assumes no modifications
were made. Based on all observations for a particular network he calculates his
best response, but does predict the defender’s optimal strategy. The results of
the experiment are shown in Figure 9 and the costs given in Table 1.

The best case is when the defender can perform two-sided deception against
a näıve attacker and the worst case is when the defender performs no deceptive
actions against a fully rational attacker. These two cases form an upper- and
lower-bound as seen in Figure 9. Two-sided deception is more effective in this
case when the feature distributions are similar, while the opposite was true for a
rational attacker. Overall, deception strategies are much more effective against
näıve attackers.

5 Conclusions

Deception is increasingly becoming a crucial tool for both attackers and defend-
ers in cybersecurity domains, but formal models do not give much guidance on
how effective deception can be, and how much effort should be given to disguise
deceptive objects such as honeypots. We present a formal game-theoretic model
of this problem, capturing the key problem of disguising deceptive objects among
real objects when external characteristics may be observed by an attacker.

Our model of HFSG allows us to investigate many aspects of how a defender
should make efforts to conceal honeypots. We show that deception can be a
highly effective tactic. However, informative signals can limit the effectiveness
of deceptive objects. When the costs of modifying these signals are asymmetric,
two-sided deception can dramatically improve the effectiveness of the honeypots.
In addition, we show that the presence of naive attackers can make the use of
deception even more effective.
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