
When Players Affect Target Values:
Modeling and Solving Dynamic Partially

Observable Security Games

Xinrun Wang1, Milind Tambe2, Branislav Bošanský3, Bo An1

1 Nanyang Technological University,{xwang033,boan}@ntu.edu.sg
2 University of Southern California, tambe@usc.edu

3 Czech Technical University in Prague, bosansky@agents.fel.cvut.cz

Abstract. Most of the current security models assume that the val-
ues of targets/areas are static or the changes (if any) are scheduled and
known to the defender. Unfortunately, such models are not sufficient
for many domains, where actions of the players modify the values of
the targets. Examples include wildlife scenarios, where the attacker can
increase value of targets by secretly building supporting facilities. To ad-
dress such security game domains with player-affected values, we first
propose DPOS3G, a novel partially observable stochastic Stackelberg
game where target values are determined by the players’ actions; the de-
fender can only partially observe these targets’ values, while the attacker
can fully observe the targets’ values and the defender’s strategy. Second,
we propose RITA (Reduced game Iterative Transfer Algorithm), which
is based on the heuristic search value iteration algorithm for partially ob-
servable stochastic game (PG-HSVI) and introduces three key novelties:
(a) building a reduced game with only key states (derived from parti-
tioning the state space) to reduce the numbers of states and transitions
considered when solving the game; (b) incrementally adding defender’s
actions to further reduce the number of transitions of the game; (c) pro-
viding novel heuristics for lower bound initialization of the algorithm.
Third, we conduct extensive experimental evaluations of the algorithms
and the results show RITA significantly outperforms PG-HSVI on scal-
ability while allowing for trade off in scalability and solution quality.

1 Introduction

The past decade has witnessed the significant success of applying game theo-
retic methodologies to various security domains [22, 23, 3, 8]. Examples include
ARMOR for airport security [20] and PROTECT for coast guard security [21].
Recent works extend these methodologies to protect forest [14], fish [10] and
wildlife [6], where large-scale areas are to be protected by limited resources, e.g.,
Uganda’s Queen Elizabeth Protected Area (QEPA) with 2,520 square kilometers
and only 37 patrol posts [15]. Most works assume that targets are static, i.e.,
both values and positions of targets are determined and known [19, 7]. In this
case, the defender commits to an optimal mixed strategy and pure strategies are
randomly drawn from the mixed strategy when deployed to the real world.

2 X. Wang et al.

However, in many wildlife and forest conservation domains, the adversary can
build support facilities (e.g., set up camps or build roads to facilitate smuggling)
for executing illegal activities to obtain a higher utility, which would change the
values of targets in these domains. The values of targets is defined as the payoffs
of the adversary when successfully executing the illegal activities at the targets,
e.g., setting up a camp would allow poachers to kill more endangered wildlife in
the target zone. However, the defender may not know these changes until the next
visit to the targets. Some works consider the case where the targets’ values are
not known by the defender and learning algorithms are proposed [16, 2]. However,
in these works, the targets’ values are static where the algorithm can learn the
optimal defender’s strategy offline. There are several works which consider the
case that the targets dynamically change their values [26] or positions [5] over
a finite time period, either values. Both changes are deterministic and known
by the players, however, none of them considers the case where the target can
be affected by the players’ actions, therefore the previous methods cannot be
directly applied to our problem.

To address the problem where the targets’ values are affected by players’
actions, we propose a novel partially observable stochastic Stackelberg security
game where the defender can only observe the targets’ values being protected
and the attacker can fully observe the game. We consider the worst-case scenario
where the attacker knows the values of the targets (i.e., the attacker is able to
observe the action of the defender in the previous round) and the defender’s
strategy. To solve the game, we propose RITA (Reduced game Iterative Trans-
fer Algorithm), which is based on HSVI for partially observable stochastic game
proposed in [12]. RITA provides three key novelties: (a) building a reduced game
with only key states (derived from partitioning the state space) to reduce the
numbers of states and transitions considered when solving the game; (b) incre-
mentally adding defender’s actions into the reduced game, instead of considering
all defender’s actions, to further reduce the number of transitions of the game;
(c) providing novel heuristics for lower bound initialization of the algorithm. Fi-
nally, we do extensive experimental evaluations of the algorithms and the results
show that RITA significantly outperforms the PG-HSVI algorithm on scalability
while allowing for trade off in scalability and solution quality.

1.1 Motivation

Our model is quite general and can be easily applied to various security domains,
such as the protection against illegal fishing, logging and poaching activities. To
concretely motivate our model, we now briefly present the problem in the con-
text of wildlife protection where rangers patrol target zones against the illegal
poaching activities. Specifically, previous works based on Stackelberg game as-
sume that rangers sample the pure patrol strategy for each daily patrol from
a precomputed distribution and only simple poaching activities taking one day
to execute (e.g., putting snares) are considered [6]. Following such a strategy in
practice can be exploited by poachers who can change the environment (e.g., set
up a big camp in the target zone) and thus increase the damaging impact of their

When Players Affect Target Values 3

poaching activities. The example in Figure 1 shows that when the targets’ values
are affected by players’ actions, it is necessary for rangers to update strategies.

2 1 2/3 1/3

2 2 2 4 2 4 2 1

t = 1 t = 2 t = 3 t = 4

Fig. 1: An illustrative example where the ranger can only patrol one of the two
zones in a round. The value of each zone is the attacker’s payoff if the attack to
this zone is successful. If the attack is intercepted, the attacker’s payoff is zero.
Suppose that the values of the two zones are 2 (left) and 1 (right), respectively.
Therefore, the ranger’s optimal patrol strategy is 〈2/3, 1/3〉. For simplicity, we
assume the defender knows the zones’ values at t = 0 in this example. On
average, the ranger will patrol the right zone once in three rounds. However,
as the daily patrols are randomly sampled, as shown in the figure where blue
indicates the zone is patrolled, it is possible that the ranger only patrols the
right zone at the forth round. In the first three days, poachers can use two days
to build support facilities (e.g., roads) in the right zone (i.e., prepare for the
poaching by increasing the zone’s value from 1 to 4) and use the third day to
poach animals (i.e., collect the reward 4). Though the ranger patrols the right
zone at the forth round, he can only destroy all facilities built by the poacher
(i.e., reset the zone’s value to 1) and does not intercept the poacher.

Therefore, we assume that rangers would update their strategies based on the
observations and the history of their actions in this work. Additionally, poachers
can execute sophisticated poaching activities, such as building roads to transport
poached animals, using support facilities to capture animals. These activities
may last for weeks or months and bring much higher payoff to poachers than
than the case without these facilities. To address this issue, we consider the at-
tacks with “preparing steps” in this work, which would increase the values of the
areas. The value of an area is the reward for poachers if they successfully attack
after preparations. By building support facilities, poachers can obtain a higher
reward, i.e., poaching more endangered animals. From the pessimistic perspec-
tive, we assume that poachers know the values of all areas and rangers’ mixed
strategies. Note that we assume the poacher does not know the rangers’ pure
strategies, i.e., patrol paths, which means rangers and poachers move simultane-
ously at each round. This is quite reasonable because each round is modeled as a
single-shot game. The game is assumed to be zero-sum, where Stackelberg equi-
librium, which is the standard solution of previous Stackelberg security game, is
equivalent to Nash/minimax equilibrium.

2 Related work

The first line of related works is security games which considers dynamical
changes of targets. The work [26] considers the protection of large public event

4 X. Wang et al.

where the targets’ values are changed along with the time, which can be fully
observed or predicted by the defender. The work [5] considers that targets’ po-
sitions move along with predefined routes and cannot be changed by any of
the players. None of previous works consider the case where the targets can be
changed by players’ actions, either values or positions, so that the techniques
cannot be directly applied to our problem.

The second line of related works is security game where the targets’ values
are static but not known by the defender [16, 17, 2]. They assumed that the
defender can sample/query a strategy and observe the attacker’s response over
many times and learn the optimal defender’s strategy to commit. However, in
our problem, the targets’ values are dynamically influenced by players’ actions
and the defender cannot observe the attacker’s actions, therefore the learning
algorithms cannot be applied.

The third line of related works is the partially observable stochastic games
(POSG) where one player (the attacker) has perfect information about the course
of the game. There are only few works that provide algorithms for solving such
games. Examples that provide domain-specific algorithms for different games
include patrolling problems [1, 25], or search games [24, 4] that cannot be di-
rectly used, as our game model cannot be formulated as a patrolling game or a
pursuit-evasion game. To the best of our knowledge, there is only one domain-
independent algorithm that can be used for solving games that correspond to
our model, HSVI algorithm for one-sided partially observable stochastic games
(denoted PG-HSVI) [12, 11]. We adopt this algorithm and provide significant
changes to improve the scalability to solve large games.

3 Model

A defender-sided partially observable stochastic Stackelberg security game (DPOS3G)
G is a game between a defender who wants to protect a set of targets [N] using
limited K resources against an attacker over infinite rounds. The game can be
represented by a tuple G = 〈S,AD,AA,OD, T,R, γ〉. S is the set of states of the
game and each state s = 〈d,v〉 ∈ S is a tuple where d is the defender’s action
in the previous round and vi ∈ v denotes the value of target i for the attacker,
i.e., the payoff obtained by the attacker if being successfully attacked. We note
that both d and the values of targets protected by this action are known by the
defender. We say that s = 〈d,v〉 is a reachable state of d, i.e., the state which
can be reached at the current round when the defender takes the action d in the
previous round. All reachable states of d comprise the reachable state set Sd.
We assume that each of the targets is associated with an initial value v0i and
a cap value v̂i known by both players, which are the minimum and maximum
values of the target, respectively.

The game is given by an initial action taken by the defender d0 and the
initial state of the game is drawn from a probability distribution over states
b0 ∈ ∆(Sd0), which is also termed as the initial belief, where Sd0 is the reach-
able state set d0 and ∆(·) denotes the distribution space over a set. Note that
from defender’s perspective, the game essentially proceeds from a belief over a

When Players Affect Target Values 5

reachable state set to a belief over another reachable state set, governed by her

own action and the attacker’s response. AD =
{
d|

∑
i∈[N] di ≤ K, di ∈ {0, 1}

}
is the set of actions of the defender where di = 1 implies target i is protected
and di = 0 otherwise.

The set AA includes three kinds of actions can be taken by the attacker which
are i) preparing action a(i,+), preparing the attack at target i, which increases
the value of target yielding vi = f(vi, a(i,+)) where f(·) upper bounded by v̂i,
ii) collecting action a(i, ◦), collecting the payoff vi at target i and iii) waiting
action ∅, doing nothing at the current round. Note that the attacker can only
obtain payoffs through collecting actions, while preparing actions can increase
the potential payoffs obtained in the future. Once the function f(·) is determined,
the target can only take a finite number of values, which is denoted by Mi for
simplicity and Mi = |Mi| is the number of all possible values that target i can
take. With a slight abuse of notation, we use a to denote the attacker’s action.

We assume that the defender’s partial observation o ∈ OD includes the values
of targets she protects, i.e., given the states s = 〈d,v〉 and the actions of both
players 〈d′, a〉, the defender’s observation o is

oi =


f(vi, a(i,+)), if d′i = 1&& a = a(i,+);
vi, if d′i = 1 && a 6= a(i,+);
none, otherwise.

(1)

where f(vi, a(i,+)) implies that the defender will observe the target’s value after
the successful execution of the preparing action and none implies the defender
cannot know any information of the target. On the other hand, we assume the
attacker knows all targets’ values and the defender’s action at the previous round,
i.e., the attacker can observe the state exactly.

The transition between states is determined by both players’ actions. We
assume that i) if target i is protected by the defender, the value of the target is
initialized to v0i whatever the action taken by the attacker on this target, i.e., the
defender will destroy all attacker’s preparations at that target when protecting
it, ii) the preparing action at target i can increase the target’s value from vi
to f(vi, a(i,+)) if not being intercepted by the defender and iii) the collecting
action at target i will not influence the target’s value. Formally, the successive
state of the state s = 〈d,v〉 with actions 〈d′, a〉 taken by players is s′ = 〈d′,v′〉
specified by

v′i =


v0i , if d′i = 1;
f(vi, a(i,+)), if d′i = 0 && a = a(i,+);
vi, otherwise.

(2)

For simplicity, we denote the transition by Ts,d′,a(o, s′) where Ts,d′,a(o, s′) = 1 if
o and s′ satisfy Eq.(1) and Eq.(2), respectively, and Ts,d′,a(o, s′) = 0 otherwise.

We use R(s,d′, a) to denote the defender’s reward at state s with actions
〈d′, a〉 taken by players, which is defined as

R(s,d′, a) =


c, if a = a(i,+/◦) && d′i = 1;
0, if a = a(i,+) or a = ∅ && d′i = 0 ;
−vi, if a = a(i, ◦) && d′i = 0.

(3)

6 X. Wang et al.

where c > 0 is the attacker’s penalty when intercepted by the defender, which
is the increment of the defender’s utility. The attacker’s reward is −R(s,d′, a),
i.e.,the game is a zero-sum game and we assume that players’ rewards are dis-
counted over time with the discount factor γ < 1.

We assume perfect recall, hence both players remember their respective his-
tory. A history of the defender is formed by actions he played and observations
he received, i.e., (d′,o)t and a history of the attacker is (s,d′, a,o)t. Therefore,
the spaces of the histories of players are (AD,OD)t and (S,AD,AA,O)t for the
defender and the attacker, respectively. The strategies σD, σA of players map
each of their histories to a distribution over actions. For any given pair of strate-
gies 〈σD, σA〉 ∈ Σ = 〈ΣD, ΣA〉, we use uD(σD, σA) to denote the expected utility
of the defender when players follow the strategies 〈σD, σA〉, respectively, i.e.,

uD(σD, σA) =
∑∞

t=1
γtE[R(s,d′,a)] (4)

A best response of player θ ∈ {D,A} to the opponent’s strategy σ−θ is the
strategy σBRθ ∈ BR(σ−θ) where uθ(σ

BR
θ , σ−θ) ≥ uθ(σ

′
θ, σ−θ) for any other σ′θ ∈

Σθ. We use the Stackelberg equilibrium as our solution concept. A strategy
profile σ = 〈σD, σA〉 forms a Stackelberg equilibrium if i) σA ∈ BR(σD) and ii)
UD(σD, σA) ≥ UD(σ′D, σ

′
A) where σ′A ∈ BR(σ′D). With the zero-sum assumption,

the Stackelberg equilibrium can be computed by the minimax formulation

maxσD∈ΣD minσA∈ΣA uD(σD, σA) (5)

4 Applying PG-HSVI to DPOS3G

The PG-HSVI algorithm [12] approximates the optimal value function of the infi-
nite horizon DPOS3G by considering value-functions of the game with restricted
horizons. The value function of a defender’s strategy σD is VσD

: ∆(S) → R
which means given d0 and b0, the function returns the expected utility of the
defender when following the strategy σD and the optimal value function of the
game is V ∗(b0) = supσD

VσD
(b0). Each iteration of PG-HSVI assumes players

play their Stackelberg equilibrium strategies with subsequent utilities (defined
below) given by the value function of previous iterations.

Value backup. PG-HSVI performs a Value Backup operation, which is de-
noted by H, at the belief b to improve the approximation of the value function,
which corresponds to solve a stage game, i.e., game with one round, denoted as
[HV](b) where V is the approximated value function obtained by previous itera-
tions. The defender’s and the attacker’s strategies for a stage game are denoted
as πD ∈ ∆(AD) and πA : S → ∆(AA), respectively. Note that the attacker’s
strategy specifies his strategy at each state in S because we assume that the
attacker can observe the state explicitly. The utilities of [HV](b) depends on the
immediate reward R and the discounted value of the subsequent game, repre-
sented by V . The immediate reward of the defender is

RimmπD,πA
=
∑

s∈S

∑
d∈AD

∑
a∈AA

b(s)πD(d)πA(s, a)R(s,d, a) (6)

When Players Affect Target Values 7

As the defender knows her action d and the observation o, she can derive the
belief of the subsequent game by

bd,oπA
(s′) =

1

Pr(o|d, πA)

∑
s∈S

∑
a∈AA

Ts,d,a(o, s′)b(s)πA(a) (7)

And the subsequent reward of the game is the defender’s expected utility over
all action-observation pairs 〈d,o〉 for a game starting with a belief bd,oπA

, i.e.,

RsuqπD,πA
(V) =

∑
d∈AD

∑
o∈O

πD(d)Pr(o|d, πA)V (bd,oπA
(s′)) (8)

And the Stackelberg equilibrium of [HV](b) can be computed by

minπA maxπD

(
RimmπD,πA

+ γRsuqπD,πA
(V)
)

(9)

Algorithm 1: PG-HSVI

1 Input: G = 〈S,AD,AA,OD, T,R, γ〉, initial action d0, initial belief b0 and
desired precision ε

2 Output: approximated value function V̂

3 Initialize V̂ = {V , V };
4 while V (b0)− V (b0) > ε do
5 Explore(b0, ε, 0);

6 procedure Explore(b, ε, t)
7 πA ← optimal strategy of the attacker in [HV](b);

8 πD ← optimal strategy of the defender in [HV](b);

9 〈d,o〉 ∈ arg max
{
πD(d) · Pr(o|d, πA) · excess(bd,oπA

, t+ 1)
}

;

10 if excess (bd,oπA
, t+ 1) > 0 then

11 Explore (bd,oπA
, ε, t+ 1);

12 Γ ← Γ ∪ LΓ (b);
13 Υ ← Υ ∪ UΥ (b);

Point-based update. Given limited space, we only provide a quick overview
of PG-HSVI; RITA will use it a subroutine in building a strategy. PG-HSVI
performs point-based updates by sampling the belief space to approximate the
value function V ∗. The lower bound of the value function V is represented by a
set of α-vectors Γ and the corresponding upper bound is represented as a lower
envelope of a set of points Υ . The algorithm is depicted in Algorithm 1. The
lower bound of the value function V (and Γ) is initialized by the value of the
uniform strategy of the defender and the upper bound V (and Υ) is initialized by
solving a perfect information counterpart of the game. In every iteration, some
belief point are sampled by the forward search heuristic (Line 9 in Algorithm 1)
which selects the action-observation pair 〈d,o〉 such that maximizing πD(d) ·
Pr(o|d, πA) · excess(bd,oπA

, t + 1) where πD is the defender’s strategy computed

by [HV](b) (Line 8 in Algorithm 1). The excess is defined as

excess(b, t) =
(
V (b)− V (b)

)
− ρ(t) (10)

8 X. Wang et al.

where ρ(t) = εγ−t−
∑t
i=1R · γ−i and R is selected to ensure the termination of

the exploration. The forward exploration will terminate if the criteria is satisfied
(Line 10 in Algorithm 1). After the termination of the forward exploration, PG-
HSVI performs updates of V and V by adding an α-vector LΓ (b) into Γ and a
point UΥ (b) into Υ , respectively. For more details, please refer to [12].

5 RITA: Algorithm to Improve Scalability

PG-HSVI can be used for solving DPOS3G, however, the scalability of PG-HSVI
is limited in this case due to an exponential number of states and transitions.
Table 1 shows the number of states and transitions for the number of targets
and resources. For example, when N = 8, K = 2 and Mi = 3,∀i ∈ [N], the game
has 20,412 states and more than 9,700,000 transitions. PG-HSVI algorithm is
not able to handle such large-scale games due to memory requirements.

num. of states num. of transitions

(N,K) CKN ·MN−K (2N + 1) · (CKN)2 ·MN−K

Table 1: Numbers of sates and transitions of DPOS3G. For simplicity, all targets
have the same number of possible values, i.e., Mi = M,∀i.

Algorithm 2: RITA

1 Input: G, d0, b0, ε, the minimum incremental gap η

2 Output: approximated value function V̂
3 G′ =buildReducedGame(G, d0);

4 Initialize actions Ad
D ⊆ AD for each Sd (Algorithm 3);

5 V = −∞, Γ = ∅;
6 while true do

7 G′′ =buildIncrementalGame(G′, {Ad
D}, Γ) (Algorithm 4);

8 V̂ ← PG-HSVI(G′′,d0,b0, ε);
9 if V (b0)− V < η then break ;

10 else
11 V = V (b0);
12 α-VectorTransfer(Γ,G′′);
13 for d ∈ AD do

14 d←actionToAdd(G′′), Ad
D = Ad

D ∪ {d};

To this end, we propose RITA, displayed in Algorithm 2, which builds a
Reduced game by considering key states and the associated transitions to re-
duce the game size, Iteratively adding the defender’s actions into consideration
and Transferring the α-vectors in the game solved in the previous iteration to
the next iteration to improve the initialization of the lower bound. As discussed
below, PG-HSVI is adopted as a subroutine of RITA. The general procedure of
RITA is as follows. RITA first builds a reduced game which includes all states in
Sd0 and only key states in Sd,d 6= d0 (Line 3 of Algorithm 2 and more details
are in Section 5.1). Next, instead of considering all defender’s actions, RITA

When Players Affect Target Values 9

first solves the game with an initial subset of defender’s actions (Line 4 of Algo-
rithm 2) and incrementally adds the defender’s actions (Line 14 of Algorithm 2)
to build the incremental game (Line 7 of Algorithm 2 and more details are in
Section 5.2). RITA is terminated when the increment of the defender’s utility
of one iteration is less than some threshold (Line 9 of Algorithm 2). RITA is
guaranteed to give a lower bound of the optimal defender’s utility of the original
game, providing an efficient way to evaluate the solution quality.

5.1 Building the reduced game

In this section, we propose a flexible reduction scheme to reduce the number
of states and transitions in DPOS3G, which is named as the reduced game
G′ (Line 3 in Algorithm 2). The motivation of this scheme is that the states
in Sd,d 6= d0 are of less importance, i.e., bring less utility to the defender,
compared with the states in Sd0 due to the discount factor γ. Therefore, RITA
keeps all states in the Sd0 and only a limited number of key states in Sd,d 6= d0.
Then, RITA rebuilds the transitions in the reduced game.

Selecting key states. To ensure that there always is a state for a transition
to transit to, RITA has to keep the worst states in Sd,d 6= d0 in the reduced
game. The worst state in Sd is defined as s# = 〈d,v〉 ∈ Sd,d 6= d0 such that
vi = v0i if di = 1 and vi = v̂i otherwise, i.e., the unprotected targets of d are with
the highest values. By including the worst state (together with the definition of
transitions), it is guaranteed that we obtain a lower bound to the true value of
the game. To improve the bound, more states can be added to the reduced game
without other requirements. We denote the reachable state set in G′ as S ′d.

Rebuilding the transitions. Reducing the number of states in G′ can
invalidate transitions of the original game G that lead to these states. Therefore,
we need to replace these transitions by defining new transition function. To this
end, we introduce a norm to measure the distance from s to s′:

d(s, s′) =

{∑
i∈[N] v

′
i − vi, if v′i ≥ vi, ∀i ∈ [N],

+∞, otherwise.
(11)

This norm ensures that if all targets’ values in s′ are higher than the values
in s, the distance is finite and otherwise the distance is positive infinity. Note
that this norm is asymmetric, i.e., the distance from s to s′ is not equal to the
distance from s′ to s. For the rebuilding of the transitions, suppose that s ∈ S ′d
is the current state and 〈d′, a〉 are the actions of both player. If d′ = d0, then the
successive state s′ in the reduced game is the same as the state in the original
game, i.e., Ts,d′,a(o, s′) = 1. On the other hand, if d 6= d0, the successive state
will be s′ ∈ arg mins∈S′

d′{d(s′′, s)} where s′′ ∈ Sd′ is the successive state in the
original game. The basic idea of rebuilding the transitions is that we will use the
state in s ∈ S ′d′ which is closest to the successive state in the original game as
the successive state in the reduced game. Note that as we always keep the worst
states in S ′d,d 6= d0, there always exists a states with a finite distance from s′′.

For s ∈ S ′d,d ∈ AD, when players take 〈d′, a〉, the reward for the defender in
the reduced game is the same as the reward in the original game, i.e., R(s,d′, a).

10 X. Wang et al.

After specifying the states, transitions and rewards in the reduced game, RITA
applies PG-HSVI to solve the reduced game. Proposition 1 proves that RITA
can give a lower bound of the original by solving the reduced game. The number
of states and transitions of the reduced game is shown in Table 2. Particularly,
the number of states and transitions in the most conservative reduced game with
N = 8, K = 2 and M = 3 is 756 and 347,004, respectively.

num. of states num. of transitions

(N,K,Q) Q · (CKN − 1) +MN−K (2N + 1)CKN · [Q · (CKN − 1) +MN−K]

Table 2: Numbers of sates and transitions of reduced games of DPOS3G where
Q is the number of states in Sd,d 6= d0.

Proposition 1 The lower bound obtained by solving the reduced game is also a
lower bound of the original game.

Proof. It can be observed from Eq.(11) that when players take 〈d′, a〉 at s ∈ S ′d
in the reduced game G′, the successive state s′ in the reduced game is never
better than the successive state s′′ in the original game, i.e., v′i ≥ v′′i ,∀i ∈ [N].
Additionally, the rewards in the reduced game are equal to the rewards in the
original game. Thus, the optimal defender’s utility in the reduced game is never
better than the optimal defender’s utility in the original game. Therefore, the
lower bound of solving reduced games is a lower bound of the original game.

In essence, by building the reduced game, the states in the reachable state
set Sd,d 6= d0 are abstracted into one or more partitions where each partition is
represented by a key state and all transitions to states in partitions will transit
to the key states. We emphasize that this reduction scheme is quite flexible
which allows the trade-off between scalability and solution quality by building
different sizes of the reduced games. For the application of our model to the real
world, RITA can obtain the defender’s strategy for the first round by solving
the reduced game. Then, RITA will update the belief according to the outcome
of the first round and resolve the game for the second round.

5.2 Incrementally adding defender’s actions

Although the reduced game can significantly reduce the number of states and
transitions, the reduced game is still very large. A wildly adopted remedy is strat-
egy generation [18, 9, 13], which starts solving a smaller game and incrementally
adds actions into consideration. Therefore, instead of considering all defender’s
actions, RITA selects a subset of the actions initially (Line 4 in Algorithm 2)
and incrementally find the defender’s actions (Line 14 in Algorithm 2) to add
into the incremental game (Line 7 in Algorithm 2). The reduced game where
only a subset of defender’s actions for each reachable state set is considered is
named as incremental game.

For the defender’s action d and its reachable state set Sd, RITA generates the
defender’s initial subset of the action using Algorithm 3. As for each reachable
state set Sd, if a target is not protected by d, i.e., di = 0, the target can take
Mi values. Therefore the importance values of targets ṽ are computed by

ṽi =

{
v0i , if di = 1;∑
v∈Mi

eβvv/
∑
v∈Mi

eβv, if di = 0.
(12)

When Players Affect Target Values 11

Algorithm 3: Defender Initial Action selection

1 Input: the defender previous action d, the targets’ possible values
Mi, ∀i ∈ [N], the number of initial actions Num

2 Output: Ad
D

3 for i ∈ [N] do
4 if di = 1 then ṽi = v0i ;

5 else ṽi =
∑
v∈Mi

eβvv/
∑
v∈Mi

eβv ;

6 r = mini{ṽi}/maxi{ṽi};
7 for 1 : Num do
8 d = arg maxd∈AD\Ad

D
{
∑
i di · ṽi};

9 Ad
D = Ad

D ∪ {d};
10 vi = vi(1− di + r · di),∀i ∈ [N];

where β is the parameter such that if β → 0, the importance value is the average
of the target’s values if β → +∞, the importance value is the maximum value
of the target’s values (Lines 3-5 in Algorithm 3).

Then, RITA selects the defender’s initial actions for each reachable state set
to ensure that i) every target can be protected (i.e., for every target there exists
at least one action that protects this target) and ii) there are more actions to
protect important targets. To implement this idea, as displayed in Lines 7-10
in Algorithm 3, RITA iteratively selects the action which protect the targets
with the highest importance values. After each selection of the action, the tar-
gets being protected will multiply a factor r to decrease the importance values
(Line 10 in Algorithm 3), which ensures that no target is covered by more than
one action until all targets are covered by some action. The factor r is the ratio
of the smallest values and the largest importance values of targets (Line 6 in
Algorithm 3). After generating Ad

D for each Sd, RITA generates the game by
only keeping the transitions from each state by actions in Ad

D.
For each iteration, RITA selects the actions to be added into Ad

D (Line 14 in
Algorithm 2). Therefore, for each reachable state set, RITA adds the defender’s
action which is the best-response to the attacker’s strategy computed in Line 7
in Algorithm 1. Note that if a reachable state set is never visited by PG-HSVI
during the forward explorations, RITA will not add the new action into the
action set. After adding the action into the set Ad

D for each Sd, RITA includes
transitions associated with these actions into the incremental game (Lines 3-5
in Algorithm 4). RITA terminates when the increment of the lower bound of
the defender’s utility is less than η (Line 9 in Algorithm 2). Proposition 2 states
that solving incremental games give a lower bound of the reduced game.

Proposition 2 The lower bound obtained by solving the incremental game is
also a lower bound of the reduced game.

Proof. The incremental game has the same states with the reduced game but
only consider a subset of the defender’s actions in each reachable state set.

12 X. Wang et al.

Therefore, the optimal defender’s strategy obtained by solving the incremental
game can also be implemented in the reduced game, i.e., we can obtain a lower
bound by solving the reduced game which is at least as good as the lower bound
obtained by solving the incremental game.

Algorithm 4: Build incremental game

1 Input: the reduced game G′, {Ad
D}, the α-vector set Γ

2 Output: the incremental game G′′

3 for Ts,d′,a(o, s′) ∈ G′ do
4 if d′ ∈ Ad

D then
5 G′′ = G′′ ∪ {Ts,d′,a(o, s′)};

6 for LΓ (b) ∈ Γ do
7 G′′ = G′′ ∪ {LΓ (b)};

5.3 Transferring α-vectors

The convergence of PG-HSVI depends on the initialization of both lower and
upper bounds. As RITA always adds actions into consideration during the iter-
ations, the α-vectors computed in the j-th iteration can provide a better initial-
ization of the lower bound for the incremental game in the (j + 1)-th iteration.
The correctness of this transferring is proved in Proposition 3. Specifically, after
solving an incremental game G′′, RITA extracts the α-vectors into Γ . The trans-
ferring of α-vectors is displayed in Lines 6-7 in Algorithm 4. It is noteworthy
that one cannot easily transfer the representation of upper bounds between in-
cremental games because the upper bound from j-th iteration is not guaranteed
to be an upper bound for the game in the (j + 1)-th iteration.

Proposition 3 The α-vectors transferred to the incremental game provides a
lower bound of the incremental game.

Proof. As we always add the defender’s actions into the reachable state set
in the incremental game, the forward explorations implemented in the smaller
incremental games can also be implemented in the larger one. Therefore, the
transferred α-vectors provide a lower bound of the incremental game.

5.4 Early terminating the forward explorations

To further speed up the algorithm and reduce the space used by the algorithm,
RITA adopts early termination of the forward explorations. This is motivated
by the fact that as RITA only chooses a subset of the defender’s actions at
the incremental game, the lower bounds would be worse than the case which
considers all defender actions. It may take even more iterations to satisfy the
termination criteria V (b0)−V (b0) > ε, where most of the iterations only update
the upper bound and the lower bound dose not change much. Therefore, RITA
will terminate the forward exploration when the number of t is larger than T̂ .
We show that this technique reduces the process memory of RITA in Section 6.

When Players Affect Target Values 13

6 Experimental Evaluation

We now present experimental evaluations of RITA and demonstrate usefulness of
key aspects of our novel algorithm. The experiments are performed on randomly
generated instances of DPOS3G. The initial value v0i of each target is randomly
sampled and re-scaled to the range of [c, c + 3], where c is the penalty to the
attacker, which is 2 for all experiments in this section. The range would influence
the defender’s utility, as well as the convergence time and the space needed due
to the forward explorations. The cap value of each target is v̂i = (v0i)3 and the
function f(·) is (v0i)k where k is the number of preparation actions worked on
this target, i.e.,Mi = {v0i , (v0i)2, v̂i}. We choose the number of initial actions of
the defender in each reachable state set as N/K+1 where N and K are numbers
of targets and resources, respectively. The minimal increment of an iteration of
RITA is η = 2. All computations are performed on a 64-bit PC with 8.0G RAM
and a 2.3 GHz CPU and all data points are averaged over 30 instances.

We build the two variants of the reduced game to demonstrate the trade-off
between scalability and solution quality: i) the most conservative game (Reduced#)
and ii) the reduced game (Reduced##) which both keeps the worst state and
the second worst state in S ′d,d 6= d0. The second worst state is defined as
s## = 〈d,v〉 ∈ Sd,d 6= d0 such that vi = v′i if di = 1 and vi = v̂i otherwise,
where f(v′i, a(i,+)) = v̂i, i.e., the unprotected target by d is with the second
highest value of the target. The six variants of algorithms are tested are 1) PG-
HSVI for original game (PG-HSVI), 2) PG-HSVI for the reduced game with both
the worst and the second worst states in S ′d,d 6= d0 (PG-HSVI+Reduced##),
3) PG-HSVI for the reduced game with the worst states in S ′d,d 6= d0 (PG-
HSVI+Reduced#), 4) iteratively solving the incremental games for the original
game (Iterative+Original), 5) iteratively solving the incremental games for the
reduced game with both the worst and the second worst states in S ′d,d 6= d0

(RITA##) and 6) iteratively solving the incremental games for the reduced game
with the worst states in S ′d,d 6= d0 (RITA#). The six variants illustrate the in-
fluence of different techniques, i.e., building reduced games and incrementally
adding defender’s actions, on the scalability and the solution quality.

6.1 Scalability

We first investigate the scalability of PG-HSVI and the two variants of RITA.
The results about the runtime and the maximum process memory are displayed
in Figure 2 with different values of γ. The results show that RITA can be sig-
nificantly faster than PG-HSVI, especially when the number of states are large.
Specifically, with a cap of 1800s, RITA can solve the game with more than 20000
states and PG-HSVI can only solve the game with less than 2000 states. It can
be observed that when γ is larger, both PG-HSVI and RITA need more time
and space to solve the game because it may take more forward explorations to
meet the termination criteria. Additionally, RITA## takes more runtime and
process memory than RITA# because RITA## has more states and transitions.

14 X. Wang et al.

1 0 1 1 0 2 1 0 3 1 0 4 1 0 51 0 1

1 0 2

1 0 3

1 0 4

1 0 5

1 0 6

Ru
nti

me
 (m

s)

N u m b e r o f s t a t e s

 P G - H S V I
 R I T A # #

 R I T A #

(a) Runtime (γ = 0.60).

1 0 1 1 0 2 1 0 3 1 0 4 1 0 51 0 0

1 0 1

1 0 2

1 0 3

1 0 4

Pro
ce

ss
Me

mo
ry

(M
B)

N u m b e r o f s t a t e s

 P G - H S V I
 R I T A # #

 R I T A #

(b) Memory (γ = 0.60).

1 0 1 1 0 2 1 0 3 1 0 4 1 0 51 0 1

1 0 2

1 0 3

1 0 4

1 0 5

1 0 6

Ru
nti

me
 (m

s)

N u m b e r o f s t a t e s

 P G - H S V I
 R I T A # #

 R I T A #

(c) Runtime (γ = 0.75).

1 0 1 1 0 2 1 0 3 1 0 4 1 0 51 0 0

1 0 1

1 0 2

1 0 3

1 0 4

Pro
ce

ss
Me

mo
ry

(M
B)

N u m b e r o f s t a t e s

 P G - H S V I
 R I T A # #

 R I T A #

(d) Memory (γ = 0.75).

Fig. 2: The comparison of runtime and the space for PG-HSVI and RITA. Both
axes are plotted in log scale.

We then investigate the efficiency of the two main components of RITA, the
reduced game and the iterative method. The results are shown in Figure 3 with
γ = 0.6 for all six variants. The results indicate that building reduced game is
more efficient to speed up the algorithm than the iterative method, as well as
to reduce the process memory. Because by building reduced games, we ignore
most transitions even before solving the game rather than by solving a smaller
game and then incrementally increasing the size. We then investigate the two

1 0 1 1 0 2 1 0 3 1 0 4 1 0 51 0 1

1 0 2

1 0 3

1 0 4

1 0 5

1 0 6

Ru
nti

me
 (m

s)

N u m b e r o f s t a t e s

 P G - H S V I
 P G - H S V I + R e d u c e d # #

 P G - H S V I + R e d u c e d #

 I t e r a t i v e + O r i g i n a l
 R I T A # #

 R I T A #

(a) Runtime.

1 0 1 1 0 2 1 0 3 1 0 4 1 0 51 0 0

1 0 1

1 0 2

1 0 3

1 0 4

Pro
ce

ss
Me

mo
ry

(M
B)

N u m b e r o f s t a t e s

 P G - H S V I
 P G - H S V I + R e d u c e d # #

 P G - H S V I + R e d u c e d #

 I t e r a t i v e + O r i g i n a l
 R I T A # #

 R I T A #

(b) Process memory.

Fig. 3: The comparison of runtime and space for different variants with γ = 0.6.
Both axes are plotted in log scale.

techniques used in RITA, i) transferring α-vectors and ii) early termination. The
results are displayed in Table 3 where both methods can reduce the runtime of
the algorithms and the early termination can also reduce the process memory
by avoiding unnecessary forward explorations.

When Players Affect Target Values 15

|S| = 20, 412, γ = 0.75 runtime memory

Without trans., without early term. 1783.59s 9.9G

Without trans, with early term. 1062.64s 5.6G

With trans., with early term. 829.56s 5.6G

Table 3: The comparisons of the runtime and the process memory for RITA#

with |S| = 20, 412 and γ = 0.75.

6.2 Solution quality

We then investigate the solution quality of the different methods. We use the
initial low bound of PG-HSVI, which is the defender’s utility for the uniform
strategy as the baseline and compare the lower bounds returned by PG-HSVI,
RITA## and RITA#. Note that PG-HSVI computes the optimal defender’s util-
ity. The results are displayed in Figure 4 with γ = 0.6 and 0.75, respectively.
The results illustrate RITA’s ability to trade-off between solution quality and
scalability. With dramatically improving the scalability, both variants of RITA
lose the solution quality compared with PG-HSVI. However, we show that with
increasing the runtime and the process memory, RITA## achieves a better solu-
tion quality than RITA#; RITA provides the flexibility to maintain more states
in the reduced game if the solution quality is more important. The advantage
of RITA## over RITA# is increased when the number of states in the game
increases and the value of γ increases. Note that even RITA# is still far better
than the defender’s utility of the uniform strategy. Another observation is that
when γ is small, RITA can give a better approximation to the optimal defender’s
utility because that the states in Sd,d 6= d0 are of less importance.

- 1 0 0

- 8 0

- 6 0

- 4 0

- 2 0

0
9 5 4 2 7 0 1 2 1 5

 N u m b e r o f s t a t e s (γ= 0 . 6 0)

Lo
we

r b
ou

nd

 P G - H S V I
 R I T A # #

 R I T A #

 I n i t i a l

(a) γ = 0.60.

- 1 0 0

- 8 0

- 6 0

- 4 0

- 2 0

0
9 5 4 2 7 0 1 2 1 5

 N u m b e r o f s t a t e s (γ= 0 . 7 5)

Lo
we

r b
ou

nd

 P G - H S V I
 R I T A # #

 R I T A #

 I n i t i a l

(b) γ = 0.75.

Fig. 4: Solution quality where y-axis is the lower bounds of the defender’s utility
obtained by different algorithms.

7 Conclusion

In this work, we propose a novel defender-sided partially observable Stochastic
Stackelberg security game (DPOS3G) where the targets’ values are affected by
players’ actions and the defender can only partially observe the game. To solve
the game, we propose RITA which is based on PG-HSVI and with three key
novelties: (a) building reduced games with key states; (b) incrementally adding
defender’s actions; (c) providing novel heuristics for lower bound initialization.
Finally, we do extensive experimental evaluation of the algorithms and the results
shows that RITA significantly outperform the baseline PG-HSVI algorithm on
scalability and while allowing for trade off in scalability and solution quality.

16 X. Wang et al.

8 Acknowledgement

This research was supported by the Czech Science Foundation (no. 19-24384Y).

References

1. Basilico, N., Gatti, N., Amigoni, F.: Leader-follower strategies for robotic patrolling
in environments with arbitrary topologies. In: AAMAS. pp. 57–64 (2009)

2. Blum, A., Haghtalab, N., Procaccia, A.D.: Learning optimal commitment to over-
come insecurity. In: NIPS. pp. 1826–1834 (2014)

3. Bucarey, V., Casorrán, C., Figueroa, Ó., Rosas, K., Navarrete, H., Ordóñez, F.:
Building real stackelberg security games for border patrols. In: GameSec. pp. 193–
212 (2017)

4. Chung, T.H., Hollinger, G.A., Isler, V.: Search and pursuit-evasion in mobile
robotics. Autonomous Robots 31(4), 299–316 (2011)

5. Fang, F., Jiang, A.X., Tambe, M.: Protecting moving targets with multiple mobile
resources. JAIR 48, 583–634 (2013)

6. Fang, F., Nguyen, T.H., Pickles, R., Lam, W.Y., Clements, G.R., An, B., Singh,
A., Tambe, M., Lemieux, A., et al.: Deploying PAWS: Field optimization of the
protection assistant for wildlife security. In: AAAI. pp. 3966–3973 (2016)

7. Gan, J., An, B., Vorobeychik, Y., Gauch, B.: Security games on a plane. In: AAAI.
pp. 530–536 (2017)

8. Gan, J., Elkind, E., Wooldridge, M.: Stackelberg security games with multiple
uncoordinated defenders. In: AAMAS. pp. 703–711 (2018)

9. Halvorson, E., Conitzer, V., Parr, R.: Multi-step multi-sensor hider-seeker games.
In: IJCAI. pp. 159–166 (2009)

10. Haskell, W.B., Kar, D., Fang, F., Tambe, M., Cheung, S., Denicola, E.: Robust
protection of fisheries with compass. In: AAAI. pp. 2978–2983 (2014)

11. Horák, K., Bošanskỳ, B.: A point-based approximate algorithm for one-sided par-
tially observable pursuit-evasion games. In: GameSec. pp. 435–454 (2016)

12. Horák, K., Bosanskỳ, B., Pechoucek, M.: Heuristic search value iteration for one-
sided partially observable stochastic games. In: AAAI. pp. 558–564 (2017)

13. Jain, M., Korzhyk, D., Vaněk, O., Conitzer, V., Pěchouček, M., Tambe, M.: A
double oracle algorithm for zero-sum security games on graphs. In: AAMAS. pp.
327–334 (2011)

14. Johnson, M.P., Fang, F., Tambe, M.: Patrol strategies to maximize pristine forest
area. In: AAAI. pp. 295–301 (2012)

15. Kar, D., Ford, B., Gholami, S., Fang, F., Plumptre, A., Tambe, M., Driciru, M.,
Wanyama, F., Rwetsiba, A., Nsubaga, M., et al.: Cloudy with a chance of poaching:
Adversary behavior modeling and forecasting with real-world poaching data. In:
AAMAS. pp. 159–167 (2017)

16. Letchford, J., Conitzer, V., Munagala, K.: Learning and approximating the optimal
strategy to commit to. In: International Symposium on Algorithmic Game Theory.
pp. 250–262 (2009)

17. Marecki, J., Tesauro, G., Segal, R.: Playing repeated stackelberg games with un-
known opponents. In: AAMAS. pp. 821–828 (2012)

18. McMahan, H.B., Gordon, G.J., Blum, A.: Planning in the presence of cost functions
controlled by an adversary. In: ICML. pp. 536–543 (2003)

When Players Affect Target Values 17

19. Paruchuri, P., Pearce, J.P., Marecki, J., Tambe, M., Ordonez, F., Kraus, S.: Playing
games for security: An efficient exact algorithm for solving bayesian stackelberg
games. In: AAMAS. pp. 895–902 (2008)

20. Pita, J., Jain, M., Ordónez, F., Portway, C., Tambe, M., Western, C., Paruchuri,
P., Kraus, S.: Using game theory for los angeles airport security. AI Magazine
30(1), 43 (2009)

21. Shieh, E., An, B., Yang, R., Tambe, M., Baldwin, C., DiRenzo, J., Maule, B.,
Meyer, G.: PROTECT: A deployed game theoretic system to protect the ports of
the united states. In: AAMAS. pp. 13–20 (2012)

22. Tambe, M.: Security and Game Theory: Algorithms, Deployed Systems, Lessons
Learned. Cambridge University Press (2011)

23. Varakantham, P., Lau, H.C., Yuan, Z.: Scalable randomized patrolling for securing
rapid transit networks. In: IAAI. pp. 1563–1568 (2013)

24. Vidal, R., Shakernia, O., Kim, H.J., Shim, D.H., Sastry, S.: Probabilistic pursuit-
evasion games: theory, implementation, and experimental evaluation. IEEE Trans-
actions on Robotics and Automation 18(5), 662–669 (2002)

25. Vorobeychik, Y., An, B., Tambe, M., Singh, S.P.: Computing solutions in infinite-
horizon discounted adversarial patrolling games. In: ICAPS. pp. 314–322 (2014)

26. Yin, Y., An, B., Jain, M.: Game-theoretic resource allocation for protecting large
public events. In: AAAI. pp. 826–834 (2014)

