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Abstract. Creating impact in real-world settings requires agents which
navigate the full pipeline from data, to predictive models, to decisions.
These components are typically approached separately: a machine learn-
ing model is first trained via a measure of predictive accuracy, and then
its predictions are used as input into an optimization algorithm which
produces a decision. However, the loss function used to train the model
may easily be misaligned with the end goal of the agent, which is to make
the best decisions possible.

We focus on combinatorial optimization problems and introduce a gen-
eral framework for decision-focused learning, where the machine learn-
ing model is directly trained in conjunction with the optimization algo-
rithm to produce high-quality decisions. Technically, our contribution is
a means of integrating common classes of discrete optimization problems
into deep learning or other predictive models, which are typically trained
via gradient descent. The main idea is to use a continuous relaxation of
the discrete problem to propagate gradients through the optimization
procedure. We instantiate this framework for two broad classes of com-
binatorial problems: linear programs and submodular maximization.

We then provide an application of such techniques to a real problem of
societal importance: improving interventions in tuberculosis treatment.
Using data on 17,000 Indian patients provided by the NGO Everwell,
we consider the problem of predicting which patients are likely to miss
doses of medication in the near future and optimizing interventions by
health workers to avert such treatment failures. We find the decision-
focused learning improves the number of successful interventions by ap-
proximately 15% compared to standard machine learning approaches,
demonstrating that aligning the goals of learning and decision making
can yield substantial benefits in a socially critical application. 1
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1 This paper combines material from two sources. First, [48], which presents the tech-
nical approach to decision-focused combinatorial optimization. Second, [28], which
develops the machine learning approach to tuberculosis adherence prediction and ap-
plies the techniques of [48]. The present work combines the two as a complete case
study of integrating learning and optimization for a real-world societal challenge.
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1 Introduction

The goal in many real-world applications of artificial intelligence is to create
a pipeline from data, to predictive models, to decisions. Together, these steps
enable a form of evidence-based decision making which has transformative po-
tential across domains such as healthcare, scientific discovery, transportation,
and more [20, 19]. This pipeline requires two technical components: machine
learning models and optimization algorithms, which must function together as
part of a combined agent. Machine learning models use the data to predict un-
known quantities; optimization algorithms use these predictions to arrive at a
decision which maximizes some objective. Our concern here is combinatorial
optimization, which is ubiquitous in real-world applications of artificial intelli-
gence, ranging from matching applicants to public housing to selecting a subset
of movies to recommend. We focus on common classes of combinatorial prob-
lems which have well-structured continuous relaxations, e.g., linear programs and
submodular maximization. A vast literature has been devoted to combinatorial
optimization [31]. Importantly though, optimization is often insufficient with-
out the broader pipeline because the objective function is unknown and must
predicted via machine learning.

While machine learning has witnessed incredible growth in recent years, the
two pieces of the pipeline are treated entirely separately by typical training ap-
proaches. That is, a system designer will first train a predictive model using some
standard measure of accuracy, e.g., mean squared error for a regression problem.
Then, the model’s predictions are given as input to the optimization algorithm
to produce a decision. Such two-stage approaches are extremely common across
many domains [47, 13, 33, 49]. This process is justified when the predictive model
is perfect, or near-so, since completely accurate predictions also produce the best
decisions. However, in complex learning tasks, all models will make errors and
the training process implicitly trades off where these errors will occur. When
prediction and optimization are separate, this tradeoff is divorced from the goal
of the agent: to make the best decision possible.

We propose a decision-focused learning framework which integrates the ma-
chine learning and optimization components of an agent by training both as
a single end-to-end system. That is, the predictive model is trained using the
quality of the decisions which it induces via the optimization algorithm. Similar
ideas have recently been explored in the context of convex optimization [11], but
to our knowledge ours is the first attempt to train machine learning systems
for performance on combinatorial decision-making problems. Combinatorial set-
tings raise new technical challenges because the optimization problem is discrete.
However, machine learning systems (e.g., deep neural networks) are often trained
via gradient descent.

Our first contribution is a general framework for training machine learning
models via their performance on combinatorial problems. The starting point is
to relax the combinatorial problem to a continuous one. Then, we analytically
differentiate the optimal solution to the continuous problem as a function of the
model’s predictions. This allows us to train using a continuous proxy for the
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discrete problem. At test time, we round the continuous solution to a discrete
point.

Our second contribution is to instantiate this framework for two broad classes
of combinatorial problems: linear programs and submodular maximization prob-
lems. Linear programming encapsulates a number of classical problems such
as shortest path, maximum flow, and bipartite matching. Submodular maxi-
mization, which reflects the intuitive phenomena of diminishing returns, is also
ubiquitous; applications range from social networks [25] to recommendation sys-
tems [45]. In each case, we resolve a set of technical challenges to produce well-
structured relaxations which can be efficiently differentiated through.

Our third contribution is to present a case study of how such techniques can
be applied towards a real societal challenge. We focus on improving adherence
to tuberculosis treatment by leveraging digital adherence data and decision-
focused learning. The World Health Organization (WHO) reports that the lung
disease tuberculosis (TB) is one of the top ten causes of death worldwide [35],
yet in most cases it is a curable and preventable disease. The prevalence of TB
is caused in part by non-adherence to medication, which results in greater risk
of death, reinfection and contraction of multidrug-resistant TB [42]. To combat
non-adherence, the WHO standard protocol is Directly Observed Treatment,
short-course (DOTS), in which a health worker directly observes and confirms
that a patient is consuming the required medication multiple times in a week.
However, requiring patients to travel to the DOTS clinic causes financial burden,
and potentially social stigma due to public fear of the disease. Such barriers
cause patients to default from treatment, making TB eradication difficult. Thus,
digital adherence technologies (DATs), which give patients flexible means to
prove adherence, have gained popularity globally [41].

DATs allow patients to be ”observed” consuming their medication electron-
ically, e.g. via two-way text messaging, video capture, electronic pillboxes, or
toll-free phone calls. Health workers can then view real-time patient adherence
on a dashboard. In addition to improving patient flexibility and privacy, the
dashboard enables health workers to triage patients and focus their limited re-
sources on the highest risk patients. Preliminary studies suggest that DATs can
improve adherence in multiple disease settings [17, ?,?], prompting its use and
evaluation for managing TB adherence [15, 32, ?]. The WHO has even published
a guide for the proper implementation of the technology in TB care [36].

We study how the wealth of longitudinal data produced by DATs can be used
to help health workers better triage TB patients and deliver interventions to
boost overall adherence of their patient cohort. The data we analyze comes from
a partnership with the nonprofit 99DOTS [1] and the healthcare technology
company Everwell [12] who have implemented a DAT by which patients prove
adherence through daily toll-free calls. 99DOTS operates in India where there
were an estimated 2.7 million cases of TB in 2017 [35]; they shared data from
one major city in Maharashtra (referred to as ”The City.”) Patients enrolled in
99DOTS in The City currently receive interventions according to the following
general guidelines. If they have not taken their medication by the afternoon,
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they (and their health worker) receive a text message reminder. If the patient
still does not take their medication by some time later, the worker will call the
patient directly. Finally, if a patient simply does not respond to these previous
interventions after some number of days, they may be personally visited by a
health worker. Note that many of these patients live in low-resource communities
where each health worker manages tens to hundreds of patients; far more than
they can possibly visit in a day. Thus, models that can identify patients at risk
of missing doses and prioritize interventions by health workers are of paramount
importance.

We first propose the following prediction task: given adherence data up to a
certain time period for patients not currently considered for intervention, predict
risk of non-adherence in the next week and develop machine learning models. We
then study a particular intervention task which requires workers to balance travel
costs while predicting which patients will benefit most from interventions. In this
setting, decision-focused learning improves by about 15% over standard machine
learning approaches, demonstrating the value of tailoring the learned model to
fit the decision problem at hand. With our proposed models, 99DOTS can now
leverage several years of collected adherence data to better inform patient care
and prioritize limited intervention resources.

2 Previous work

2.1 Machine learning and optimization

There is a growing body of research at the interface of machine learning and dis-
crete optimization [46, 4, 27, 26]. However, previous work largely focuses on either
using discrete optimization to find an accuracy-maximizing predictive model or
using machine learning to speed up optimization algorithms. Here, we pursue
a deeper synthesis; to our knowledge, this work is the first to train predictive
models using combinatorial optimization performance with the goal of improving
decision making.

The closest work to ours in motivation is [11], who study task-based convex
optimization. Their aim is to optimize a convex function which depends on a
learned parameter. As in their work, we use the idea of differentiating through the
KKT conditions. However, their focus is entirely on continuous problems. Our
discrete setting raises new technical challenges, highlighted below. Elmachtoub
and Grigas elmachtoub2017smart also propose a means of integrating prediction
and optimization; however, their method applies strictly to linear optimization
and focuses on linear predictive models while our framework applies to nonlinear
problems with more general models (e.g., neural networks). Finally, some work
has noted that two-stage methods lead to poor optimization performance in
specific domains [5, 14].

Our work is also related to recent research in structured prediction [3, 44, 34,
9]. which aims to make a prediction lying in a discrete set. This is fundamen-
tally different than our setting since their goal is to predict an external quantity,
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not to optimize and find the best decision possible. However, structured predic-
tion sometimes integrates a discrete optimization problem as a module within a
larger neural network. The closest such work technically to ours is [43], who de-
sign a differentiable algorithm for submodular maximization in order to predict
choices made by users. Their approach is to introduce noise into the standard
greedy algorithm, making the probability of outputting a given set differentiable.
There are two key differences between our approaches. First, their approach does
not apply to the decision-focused setting because it maximizes the likelihood of
a fixed set but cannot optimize for finding the best set. Second, exactly com-
puting gradients for their algorithm requires marginalizing over the k! possible
permutations of the items, forcing a heuristic approximation to the gradient.
Our approach allows closed-form differentiation.

Some deep learning architectures differentiate through gradient descent steps,
related to our approach in the submodular setting. Typically, previous approaches
explicitly unroll T iterations of gradient descent in the computational graph [10].
However, this approach is usually employed for unconstrained problems where
each iteration is a simple gradient step. By contrast, our combinatorial problems
are constrained, requiring a projection step to enforce feasibility. Unrolling the
projection step may be difficult, and would incur a large computational cost. We
instead exploit the fact that gradient ascent converges to a local optimum and
analytically differentiate via the KKT conditions.

2.2 Adherence tracking and prediction

Outcomes and adherence research are well studied in the medical literature for
a variety of diseases [24]. Traditionally, studies have attempted to identify de-
mographic or behavioral factors correlated with non-adherence so that health
workers can focus interventions on patients who are likely to fail. Tuberculosis
in particular, given its lethality and prevalence in third world countries, has been
studied throughout the world including in Ethiopia [40], Estonia [30], and India
[39]. Typically these studies gather demographic and medical statistics on a co-
hort of patients, observe the cohort’s adherence and outcomes throughout the
trial, then retrospectively apply survival [40, ?] or logistic regression [39] analysis
to determine covariates predictive of failure. Newer work has improved classifi-
cation accuracy via machine learning techniques such as Decision Trees, Neural
Networks, Support Vector Machines and more [23, ?,?,?]. However, the conclu-
sions connecting predictors to risk are largely the same as in previous medical
literature. While such studies have improved patient screening at the time of
diagnosis, they offer little knowledge about how risk changes during treatment.
In this work, we show how a patient’s real-time adherence data can be used to
track and predict risk changes throughout the course of their treatment. Pre-
vious studies likely did not address this question because accurately measuring
patient adherence has historically been difficult.

However, in recent years, new technologies have made measuring daily ad-
herence feasible in the context of many diseases such as HIV or stroke. One such
common device is an electronic pill bottle cap that records the date/time when
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the cap is removed. While some previous work has used electronic cap data to
determine predictors of non-adherence [38, 37, 8], almost no research has used
the daily measurements made possible by the electronic cap to study changes in
adherence over time. One study used data from a smart pillbox to retrospectively
categorize patient adherence [29], but our focus is on prospective identification
of patients at risk of missing doses before failures occur. As such devices enter
mainstream use, machine learning techniques like the ones that we propose will
play an important role in the treatment of a wide spectrum of diseases.

3 Problem description

We start out by introducing our general technical approach to integrating learn-
ing an optimization; application to the tuberculosis domain will be consid-
ered in Section 5. We study combinatorial optimization problems of the form
maxx∈X f(x, θ), where X is a discrete set enumerating the feasible decisions.
Without loss of generality, X ⊆ {0, 1}n and the decision variable x is a binary
vector. The objective f depends on a parameter θ ∈ Θ. If θ were known exactly,
a wide range of existing techniques could be used to solve the problem. In this
paper, we consider the challenging (but prevalent) case where θ is unknown and
must be inferred from data. For instance, in bipartite matching, x represents
whether each pair of nodes were matched and θ contains the reward for match-
ing each pair. In many applications, these affinities are learned from historical
data.

Specifically, the decision maker observes a feature vector y ∈ Y which is
correlated with θ. This introduces a learning problem which must be solved
prior to optimization. As in classical supervised learning, we formally model y
and θ as drawn from a joint distribution P . Our algorithm will observe training
instances (y1, θ1)...(yN , θN ) drawn iid from P . At test time, we are give a feature
vector y corresponding to an unobserved θ. Our algorithm will use y to predict
a parameter value θ̂. Then, we will solve the optimization problem maxx f(x, θ̂)
to obtain a decision x∗. Our utility is the objective value that x∗ obtains with
respect to the true but unknown parameter θ, f(x∗, θ).

Let m : Y → Θ denote a model mapping observed features to parame-
ters. Our goal is to (using the training data) find a model m which maxi-
mizes expected performance on the underlying optimization task. Define x∗(θ) =
arg maxx∈X f(x, θ) to be the optimal x for a given θ. The end goal of the data-
decisions pipeline is to maximize

E
y,θ∼P

[f(x∗(m(y)), θ)] (1)

The classical approach to this problem is a two-stage method which first
learns a model using a task-agnostic loss function (e.g., mean squared error) and
then uses the learned model to solve the optimization problem. The model class
will have its own parameterization, which we denote by m(y, ω). For instance, the
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model class could consist of deep neural networks where ω denotes the weights.
The two-stage approach first solves the problem minω Ey,θ∼P [L(θ,m(y, ω))],
where L is a loss function. Such a loss function measures the overall “accu-
racy” of the model’s predictions but does not specifically consider how m will
fare when used for decision making. The question we address is whether it is
possible to do better by specifically training the model to perform well on the
decision problem.

4 General framework

Our goal is to integrate combinatorial optimization into the loop of gradient-
based training. That is, we aim to directly train the predictive model m by
running gradient steps on the objective in Equation 1, which integrates both
prediction and optimization. The immediate difficulty is the dependence on
x∗(m(y, ω)). This term is problematic for two reasons. First, it is a discrete
quantity since x∗ is a decision from a binary set. This immediately renders the
output nondifferentiable with respect to the model parameters ω. Second, even
if x∗ were continuous, it is still defined as the solution to an optimization prob-
lem, so calculating a gradient requires us to differentiate through the argmax
operation.

We resolve both difficulties by considering a continuous relaxation of the
combinatorial decision problem. We show that for a broad class of combinatorial
problems, there are appropriate continuous relaxations such that we can analyt-
ically obtain derivatives of the continuous optimizer with respect to the model
parameters. This allows us to train any differentiable predictive model via gra-
dient descent on a continuous surrogate to Equation 1. At test time, we solve
the true discrete problem by rounding the continuous point.

More specifically, we relax the discrete constraint x ∈ X to the continuous one
x ∈ conv(X ) where conv denotes the convex hull. Let x(θ) = arg maxx∈conv(X ) f(x, θ)
denote the optimal solution to the continuous problem. To train our predictive
model, we would like to compute gradients of the whole-pipeline objective given
by Equation 1, replacing the discrete quantity x∗ with the continuous x. We
can obtain a stochastic gradient estimate by sampling a single (y, θ) from the
training data. On this sample, the chain rule gives

df(x(θ̂), θ)

dω
=
df(x(θ̂), θ)

dx(θ̂)

dx(θ̂)

dθ̂

dθ̂

dω

The first term is just the gradient of the objective with respect to the decision
variable x, and the last term is the gradient of the model’s predictions with
respect to its own internal parameterization.

The key is computing the middle term, which measures how the optimal de-
cision changes with respect to the prediction θ̂. For continuous problems, the
optimal continuous decision x must satisfy the KKT conditions (which are suffi-
cient for convex problems). The KKT conditions define a system of linear equa-
tions based on the gradients of the objective and constraints around the optimal
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point. Is is known that by applying the implicit function theorem, we can dif-
ferentiate the solution to this linear system [16, 11]. In more detail, recall that
our continuous problem is over conv(X ), the convex hull of the discrete feasible
solutions. This set is a polytope, which can be represented via linear equalities as
the set {x : Ax ≤ b} for some matrix A and vector b. Let (x, λ) be pair of primal
and dual variables which satisfy the KKT conditions. Then differentiating the
conditions yields that

[
∇2
xf(x, θ) AT

diag(λ)A diag(Ax− b)

] [
dx
dθ
dλ
dθ

]
=

[
d∇xf(x,θ)

dθ
0

]
(2)

By solving this system of linear equations, we can obtain the desired term dx
dθ .

However, the above approach is a general framework; our main technical contri-
bution is to instantiate it for specific classes of combinatorial problems. Specif-
ically, we need (1) an appropriate continuous relaxation, along with a means
of solving the continuous optimization problem and (2) efficient access to the
terms in Equation 2 which are needed for the backward pass (i.e., gradient com-
putation). We provide both ingredients for two broad classes of problems: linear
programming and submodular maximization. In each setting, the high-level chal-
lenge is to ensure that the continuous relaxation is differentiable, a feature not
satisfied by naive alternatives. We also show how to efficiently compute terms
needed for the backward pass, especially for the more intricate submodular case.

4.1 Linear programming

The first setting that we consider is combinatorial problems which can be ex-
pressed as a linear program with equality and inequality constraints in the form

max θTx s.t. Ax = b, Gx ≤ h (3)

Example problems include shortest path, maximum flow, bipartite matching,
and a range of other domains. For instance, in a shortest path problem θ contains
the cost for traversing each edge, and we are interested in problems where the
true costs are unknown and must be predicted. Since the LP can be regarded as a
continuous problem (it just happens that the optimal solutions in these example
domains are integral), we could attempt to apply Equation 2 and differentiate the
solution. This approach runs into an immediate difficulty: the optimal solution
to an LP may not be differentiable (or even continuous) with respect to θ. This
is because the optimal solution may “jump” to a different vertex. Formally, the
left-hand side matrix in Equation 2 becomes singular since ∇2

xf(x, θ) is always
zero. We resolve this challenge by instead solving the regularized problem

max θTx− γ||x||22 s.t. Ax = b, Gx ≤ h (4)
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which introduces a penalty proportional to the squared norm of the decision
vector. This transforms the LP into a strongly concave quadratic program (QP).
The Hessian is given by ∇2

xf(x, θ) = −2γI (where I is the identity matrix),
which renders the solution differentiable under mild conditions (see supplement
for proof):

Theorem 1. Let x(θ) denote the optimal solution of Problem 4. Provided that
the problem is feasible and all rows of A are linearly independent, x(θ) is differ-
entiable with respect to θ almost everywhere. If A has linearly dependent rows,
removing these rows yields an equivalent problem which is differentiable almost
everywhere. Wherever x(θ) is differentiable, it satisfies the conditions in Equa-
tion 2.

Moreover, we can control the loss that regularization can cause on the origi-
nal, linear problem:

Theorem 2. Define D = maxx,y∈conv(X ) ||x−y||2 as the squared diameter of the

feasible set and OPT to be the optimal value for Problem 3. We have θ>x(θ) ≥
OPT − γD.

Together, these results give us a differentiable surrogate which still enjoys
an approximation guarantee relative to the integral problem. Computing the
backward pass via Equation 2 is now straightforward since all the relevant terms

are easily available. Since ∇xθ>x = θ, we have d∇xf(x,θ)
dθ = I. All other terms

are easily computed from the optimal primal-dual pair (x, λ) which is output by
standard QP solvers. We can also leverage a recent QP solver [2] which maintains
a factorization of the KKT matrix for a faster backward pass. At test time, we
simply set γ = 0 to produce an integral decision.

4.2 Submodular maximization

We consider problems where the underlying objective to maximize a set function
f : 2V → R, where V is a ground set of items. A set function is submodular if
for any A ⊆ B and any v ∈ V \ B, f(A ∪ {v}) − f(A) ≥ f(B ∪ {v}) − f(B).
We will restrict our consideration to submodular functions which are monotone
(f(A ∪ {v})− f(A) ≥ 0 ∀A, v) and normalized f(∅) = 0. This class of functions
contains many combinatorial problems which have been considered in machine
learning and artificial intelligence (e.g., influence maximization, facility location,
diverse subset selection, etc.). We focus on the cardinality-constrained optimiza-
tion problem max|S|≤k f(S), though our framework easily accommodates more
general matroid constraints.

Continuous relaxation: We employ the canonical continuous relaxation
for submodular set functions, which associates each set function f with its mul-
tilinear extension F [7]. We can view a set function as defined on the domain
{0, 1}|V |, where each element is an indicator vector which the items contained
in the set. The extension F is a continuous function defined on the hypercube
[0, 1]|V |. We interpret a given fraction vector x ∈ [0, 1]|V | as giving the marginal
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probability that each item is included in the set. F (x) is the expected value
of f(S) when each item i is included in S independently with probability xi.
In other words, F (x) =

∑
S⊆V f(S)

∏
i∈S xi

∏
i 6∈S 1 − xi. While this definition

sums over exponentially many terms, arbitrarily close approximations can be ob-
tained via random sampling. Further, closed forms are available for many cases
of interest [21]. Importantly, well-known rounding algorithms [7] can convert a
fractional point x to a set S satisfying E[f(S)] ≥ F (x); i.e., the rounding is
lossless.

As a proxy for the discrete problem max|S|≤k f(S), we can instead solve

maxx∈conv(X ) F (x), where X = {x ∈ {0, 1}|V | :
∑
i xi ≤ k}. Unfortunately,

F is not in general concave. Nevertheless, many first-order algorithms still ob-
tain a constant factor approximation. For instance, a variant of the Frank-Wolfe
algorithm solves the continuous maximization problem with the optimal approx-
imation ratio of (1− 1/e) [7, 6].

However, non-concavity complicates the problem of differentiating through
the continuous optimization problem. Any polynomial-time algorithm can only
be guaranteed to output a local optimum, which need not be unique (compared
to strongly convex problems, where there is a single global optimum). Conse-
quently, the algorithm used to select x(θ) might return a different local optimum
under an infinitesimal change to θ. For instance, the Frank-Wolfe algorithm (the
most common algorithm for continuous submodular maximization) solves a lin-
ear optimization problem at each step. Since (as noted above), the solution to
a linear problem may be discontinuous in θ, this could render the output of the
optimization problem nondifferentiable.

We resolve this difficulty through a careful choice of optimization algorithm
for the forward pass. Specifically, we use apply projected stochastic gradient
ascent (SGA), which has recently been shown to obtain a 1

2 -approximation for
continuous submodular maximization [18]. Although SGA is only guaranteed to
find a local optimum, each iteration applies purely differentiable computations
(a gradient step and projection onto the set conv(X )), and so the final output
after T iterations will be differentiable as well. Provided that T is sufficiently
large, this output will converge to a local optimum, which must satisfy the KKT
conditions. Hence, we can apply our general approach to the local optimum
returned by SGA. The following theorem shows that the local optima of the
multilinear extension are differentiable:

Theorem 3. Suppose that x∗ is a local maximum of the multilinear extension,
i.e,., ∇xF (x∗, θ) = 0 and ∇2

xF (x∗, θ) � 0. Then, there exists a neighborhood I
around x∗ such that the maximizer of F (·, θ) within I ∩conv(X ) is differentiable

almost everywhere as a function of θ, with dx(θ)
dθ satisfying the conditions in

Equation 2.

We remark that Theorem 3 requires a local maximum, while gradient ascent
may in theory find saddle points. However, recent work shows that random
perturbations ensure that gradient ascent quickly escapes saddle points and finds
an approximate local optimum [22].
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Efficient backward pass: We now show how the terms needed to compute
gradients via Equation 2 can be efficiently obtained. In particular, we need access

to the optimal dual variable λ as well as the term d∇xF (x,θ)
dθ . These were easy

to obtain in the LP setting but the submodular setting requires some additional
analysis. Nevertheless, we show that both can be obtained efficiently.

Optimal dual variables: SGA only produces the optimal primal variable
x, not the corresponding dual variable λ which is required to solve Equation 2 in
the backward pass. We show that for cardinality-constrained problems, we can
obtain the optimal dual variables analytically given a primal solution x. Let λLi
be the dual variable associated with the constraint xi ≥ 0, λUi with xi ≤ 1 and
λS with

∑
i xi ≤ k. By differentiating the Lagrangian, any optimum satisfies

∇xif(x)− λLi + λUi + λSi = 0 ∀i

where complementary slackness requires that λLi = 0 if xi > 0 and λUi = 0
if xi < 1. Further, it is easy to see that for all i with 0 < xi < 1, ∇xif(x) must
be equal. Otherwise, x could not be (locally) optimal since we could increase
the objective by finding a pair i, j with ∇xi

f(x) > ∇xj
f(x), increasing xi, and

decreasing xj . Let ∇∗ denote the shared gradient value for fractional entries. We
can solve the above equation and express the optimal dual variables as

λS = −∇∗, λLi = λS −∇xi
f, λUi = ∇xi

f − λS

where the expressions for λLi and λUi apply only when xi = 0 and xi = 1
respectively (otherwise, complementary slackness requires these variables be set
to 0).

Computing d
dθ∇xF(x, θ): We show that this term can be obtained in closed

form for the case of probabilistic coverage functions, which includes many cases
of practical interest (e.g. budget allocation, sensor placement, facility location,
etc.). However, our framework can be applied to arbitrary submodular functions;
we focus here on coverage functions just because they are particularly common
in applications. A coverage function takes the following form. There a set of
items U , and each j ∈ U has a weight wj . The algorithm can choose from a
ground set V of actions. Each action ai covers each item j independently with
probability θij . We consider the case where the probabilities θ are be unknown
and must be predicted from data. For such problems, the multilinear extension
has a closed form

F (x, θ) =
∑
j∈U

wj

(
1−

∏
i∈V

1− xijθij

)

and we can obtain the expression
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d

dθkj
∇xiF (x, θ) =

{
−θijxk

∏
` 6=i,k 1− x`θ`j if k 6= i∏

k 6=i 1− xkθkj otherwise.

5 Application: TB treatment

As discussed earlier, tuberculosis (TB) is a critical societal challenge. While many
countries (including India) provide treatment free of charge, there are still many
barriers to completing the full six-month antibiotic course required for first-line
treatment. Treatment failures increase the risk of the continued presence of latent
TB, as well as the development of drug-resistant strains. Accordingly, continued
and proactive intervention by health workers is a critical part of the treatment
process since the health worker can to act early to resolve potential adherence
issues. However, TB workers are often severely resource-limited; e.g., a worker in
India may be responsible for tens or hundreds of patients. Ideally, workers would
make house visits to each at-risk patient, but this case load requires workers to
prioritize which patients are at greatest risk.

We focus on a specific optimization problem that models the allocation of
health workers to intervene with patients who are at risk in the near future.
This prospective intervention is enabled by our real-time risk predictions and
serves as an example of how our system can enable proactive, targeted action
by providers. However, we emphasize that our system can be easily modified
to capture other intervention problems. Such flexibility is one benefit to our
technical approach, which allows the ML model to automatically adapt to the
problem specified by a domain expert.

Our optimization problem models a health worker who plans a series of in-
terventions over the course of a week. The health worker is responsible for a
population of patients across different locations, and may visit one location each
day. We use location identifiers at the level of the TB Unit since this is the most
granular identifier which is shared by the majority of patients in our dataset.
Visiting a location allows the health worker to intervene with any of the patients
at that location. The optimization problem is to select a set of locations to visit
which maximizes the number of patients who receive an intervention on or be-
fore the first day they would have missed a dose. We refer to this quantity as
the number of successful interventions; details about why this is an appropriate
objective can be found in [28]. Roughly, it captures the extent to which health
workers are able to intervene before problems arise.

We now show how this optimization problem can be formalized as a linear
program. We have a set of locations i = 1...L and patients j = 1...N where
patient j has location `j . Over days of the week t = 1...7, the objective coefficient
cjt is 1 if an intervention on day t with patient j is successful and 0 otherwise. Our
decision variable is xit, and takes the value 1 if the health worker visit location
i on day t and 0 otherwise. With this notation, the final LP is as follows:
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max
x

7∑
t=1

L∑
i=1

xit

 ∑
j:`j=i

cjt


s.t.

L∑
i=1

xit ≤ 1, t = 1...7

7∑
t=1

xit ≤ 1, i = 1...L

where the second constraint prevents the objective from double-counting mul-
tiple visit to a location. We remark that the feasible region of the LP can be
shown to be equivalent to a bipartite matching polytope, implying that the op-
timal solution is always integral.

The machine learning task is to predict the values of the cjt, which are
unknown at the start of the week. Two sources of data are available for each
patient. First, the patient’s adherence data over the previous work (as provided
by the 99Dots system). Second, a set of demographic features such as weight-
band, age-band, gender and treatment center ID. We develop a combined neural
network architecture which uses an LSTM to process the adherence time series
from the previous week, and combines the hidden state of the LSTM with the
demographic features through a set of fully connected layers. We refer to the
final model as DeepNet; see [28] for details.

We compare three models. First, a baseline model which approximates the
strategy that health workers use to prioritize patients in the status quo (essen-
tially, intervening with those who have recently missed more than some number
of doses). Specifically, we threshold the number of doses patient j missed in
the last week, setting cjt = 0 for all t if this value falls below the threshold
τ and cjt = 1 otherwise. We used τ = 1 since it performed best. Second, we
trained our DeepNet system (DN) directly on the true cjt as a binary prediction
task using cross-entropy loss. Third, we trained DeepNet to predict cjt using
decision-focused learning. We refer to this model as DN-Decision.

We created instances of the decision problem by randomly partitioning pa-
tients into groups of 100, modeling a health worker under severe resource con-
straints (as they would benefit most from such a system). We included all pa-
tients, including those with no missed doses in the last week, since the overall
resource allocation problem over locations must still account for them.

Figure 1 shows results for this task. In the top row, we see that DN and
DN-Decision both outperform lw-Misses, as expected. DN-Decision improves
the number of successful interventions by approximately 15% compared to DN,
demonstrating the value of tailoring the learned model to a given planning prob-
lem. DN-Decision actually has worse AUC than either DN or lw-Misses, indicat-
ing that typical measures of machine learning accuracy are not a perfect proxy for
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utility in decision making. To investigate what specifically distinguishes the pre-
dictions made by DN-Decision, the bottom row of Figure 1 shows scatter plots
of the predicted utility at each location according to DN and DN-Decision ver-
sus the true values. Visually, DN-Decision appears better able to distinguish the
high-utility outliers which are most important to making good decisions. Quanti-
tatively, DN-Decision’s predictions have worse correlation with the ground truth
overall (0.463, versus 0.519 for DN), but better correlation on locations where
the true utility is strictly more than 1 (0.504 versus 0.409). Hence, decision-
focused training incentivizes the model to focus on making accurate predictions
specifically for locations that are likely to be good candidates for an interven-
tion. This demonstrates the benefit of our flexible machine learning modeling
approach, which can use custom-defined loss functions to automatically adapt
to particular decision problems.
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Fig. 1. Results for decision focused learning problem. Top row: successful interventions
and AUC for each method. Bottom row: visualizations of model predictions.
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