
pyDCOP: a DCOP library for Dynamic IoT Systems

P. Rust1,2, G. Picard2, and F. Ramparany1

1 Orange Labs, France
{pierre.rust,fano.ramparany}@orange.com

2 MINES Saint-Etienne, Laboratoire Hubert Curien UMR CNRS 5516, France
picard@emse.fr

Abstract. This demonstration illustrates the newly developedPython-based frame-
work, pyDCOP, which implements several state-of-the-art distributed constraint
reasoning solution methods, provides utilities to deploy them over distributed
infrastructures and also equip the system with resilience capabilities. The idea
behind pyDCOP is to distribute agents over an Internet-of-Things infrastruc-
ture (e.g. Rapsberry Pis) to install collective decisions, as to implement Am-
bient Intelligence or Smart Home scenarios. Scenarios are modeled in a ded-
icated format, translated in a distributed constraint optimization or satisfaction
problem, then pushed to the devices which coordinate using chosen protocols
as to self-configure in a decentralized manner. Besides configuring the system
in an optimal manner, it also provides a resilience framework, which equips
the system with adaptation capabilities against unpredictable device removals.
This mechanism is based on decision replication and a lightweight DCOP-based
reparation mechanism. A video presenting this demonstration is available at
https://www.emse.fr/~picard/demoPyDCOP.mp4.

1 pyDCOP in a Glance

pyDCOP is a new open source3 library designed to foster the study and research on Dis-
tributed Constraints Optimization Problems (DCOP). DCOPs are a classical approach
to model distributed coordination problems in multi-agent systems and have been used
in many scenarios like sensors networks [4], resources allocation [17], transportation
[7], smart grid [3] and smart home [5,13]. A DCOP is formally represented as a tuple
〈A,X ,D,C,µ〉, where:A={a1,...,a|A|} is a set of agents; X ={x1,...,xn} are variables
owned by the agents; D={Dx1

,...,Dxn
} is a set of finite domains, such that variable xi

takes values inDxi ={v1,...,vk}; C={c1,...,cm} is a set of soft constraints, where each
ci defines a cost ∈R∪{∞} for each combination of assignments to a subset of variables
(a constraint is initially known only to the agents involved); µ : X →A is a function
mapping variables to their associated agent. A solution to the DCOP is an assignment
to all variables that minimizes the overall sum of costs

∑
ici.

pyDCOP’s architecture is based on this formal representation; pyDCOP manages a
set of software agent objects, which coordinate cooperatively, using DCOP algorithms,
to assign values to the variables they are responsible for. This joint assignment should
minimize the sum of the constraints defined by the problem. The problem is given is

3 https://github.com/Orange-OpenSource/pyDcop

https://www.emse.fr/~picard/demoPyDCOP.mp4
https://github.com/Orange-OpenSource/pyDcop

2 Rust et al.

a problem-specific format (like for smart-lightning system in [13]) or directly given in
a well-specified text-based format (using YAML4), as an optimization problem defin-
ing the variables and constraints. pyDCOP has been initially developed to study the
use of DCOPs for implementing coordination among connected objects [13] and to
distribute DCOP computations over an IoT infrastructure [14]. The resulting code has
been re-designed and packaged to create pyDCOP. Special care has been given to docu-
mentation5, notably on deploying on several machines, modeling problems as DCOPs,
dynamic DCOPs, or implementing DCOP algorithms6.

1.1 Studying DCOP Algorithms

pyDCOP provides implementation for many classical DCOP algorithms, including DSA
[19], A-DSA [6], MGM, MGM2 [10], DPOP[12], ADOPT [11], and MaxSum [4], but
it also allows the rapid development of new algorithms. When studying an existing algo-
rithm or developing a new one, pyDCOP provides all the needed infrastructure: thanks
to the numerous base classes and ’plumbing’ utilities one can simply focus on its algo-
rithm design. The modular architecture of pyDCOP, which decouples communication,
agent managements, and algorithmic utilities to ensure that developed algorithms will
be able to run in the several runtime environments and settings supported by pyDCOP.
When running an algorithm, various metrics can be produced and used to benchmark
algorithms or the effect of metaparameters in a specific problem topology. These metrics
notably include runtime, number of cycles, number and size of messages, and cost and
quality of the solution.

1.2 Runtime Environment

When working on a problem, pyDCOP runs as many agents than specified by the prob-
lem, and assigns a subset of the variables to each of them. The computations implemented
the selected algorithm is then deployed on these agents. The only centralized element
in the system is called the orchestrator and has a purely technical role. The orchestrator
never takes part in the distributed coordination or decision making process. Its only
responsibilities are boostraping the system and monitoring it. When bootstrapping the
system, the orchestrator instanciate agents, assign variables to them (according to the
problem model) and deploy the corresponding algorithm computations. At runtime, it
simply monitors the system in order to produce the metrics.

The agents solving the problem can run on the same machine and even in the same
process, using in-memory communication, which is convenient during development but
also allows large-scale system made of several hundreds of agents. They can also run on
different computers, communicating over the network, for prototyping real distributed
systems. pyDCOP is multi-platform and can run on Windows, Mac and Linux. Scripts
are also provided to ease the deployment of agents on many computer, typically virtual
machines or single-board computers like Raspberry Pis.

4 http://yaml.org
5 https://pydcop.readthedocs.io
6 https://pydcop.readthedocs.io/en/latest/tutorials.html

http://yaml.org
https://pydcop.readthedocs.io
https://pydcop.readthedocs.io/en/latest/tutorials.html

pyDCOPs 3

1.3 pyDCOP for IoT

In addition to state-of-the-art DCOP algorithms, pyDCOP also includes novel ap-
proaches to apply the DCOP framework to dynamic systems like the IoT. The dis-
tribution of DCOP computations (corresponding to variable and potentially constraints
in the original problem) is an issue that received little attention so far but is paramount
when working on real-world problems [14,15]. pyDCOP provides several distribution
approaches, both centralized and distributed [2]. In IoT systesm, the devices are typically
very constrained (both CPU and memory wise), and the network is generally also con-
sidered to be a costly and limited resource. As a consequence, pyDCOP’s distribution
mechanisms take these elements into account and produce distributions that optimize
for network communication while ensuring the agents capacities are respected.

Resiliency is also a key issue when building a MAS. In dynamic environments the
problem may evolve at runtime and agents could join and leave the system unexpectedly
at any time. In order to ensure resiliency, pyDCOP can migrate the computations needed
to solve the DCOP from on agent to another. pyDCOP also implements a distributed
replication mechanism inspired by distributed databases, which makes sure that the
definition of the problem is not lost when some agents leave the system. Based on these
two mechanisms, in case of an agent failure, remaining agents can self-repair the system
by migrating orphaned computations to the remaining agents. This self-repair function
is also modeled as a DCOP, where agent cooperatively agree on the best place to host
the repaired computation required to solve the initial problem [14,15].

2 Demonstration Scenario

Our demonstration use pyDCOP to illustrate a distributed decision making process in
an IoT system. Our scenario is based on a classical distributed weighted graph coloring
problem, to which many real problems can be mapped. Each variable in the system
maps to a vertex in the graph and can take one color as a value. Edges of the graph
maps to binary constraints, assigning a cost for each combination of colors taken by its
associated variables/vertices. The goal is to find a assignment of colors that minimize
the sum of these costs.

Several graph structures can be used when generating instances of this problem. To
model an IoT infrastructure, we use the Barabasi-Albert method [1], which produces
graphs that follow a power-law, known to adequately model this kind of systems [18]
Each agent in the system is responsible for a subset of the variables and use a DCOP
algorithm to coordinate assignment of color to its variables.

The demonstrator (see Figure 1) is made of a 3×3 grid of small single-board com-
puters (Raspberry Pis), each fitted with a small touch-screen. Each of these computers
runs one pyDCOP agent and display a graphical interface presenting the current state of
this agent. A central screen (an internet browser on a TV or computer screen) gives an
overall view of the system and the current runtime metrics. During the demonstration,
we dynamically remove random agents from the system. Remaining agents coordinate
autonomously the repair process, which can be observed on their graphical interface. The
self-repair it-self is also totally decentralized and is based on a distributed replication
protocol followed by a host-selection mechanism modeled using a DCOP [14,15].

4 Rust et al.

Fig. 1. A 3×3 Raspberry Pi grid to showcase pyDCOP

3 Related Works

Several other libraries currently exist for the study of DCOP: AgentZero, Frodo2 and
DisChoco. AgentZero is a Java-based library developed at the Ben-Gurion University
which supports a large set of functionalities for the study of distributed constraints
reasoning algorithms [9]. Unfortunately documentation is scarce and the source code
repository7 has not been updated for 3 years. Frodo2 is actively developed8 by the
Artificial Intelligence Laboratory (LIA) of École Polytechnique Fédérale de Lausanne
(EPFL) and is commonly used for evaluating DCOP algorithms [8]. While being very
well engineered and providing numerous DCOP algorithmic implementations, it does
not provide the required features to study and prototype DCOP in a dynamic system like
IoT. DisChoco is also Java-based and supports real distributed settings [16]. However,
the project9 seems to be discontinued and has not been updated since 2014.

Given this situation, we believe a new DCOP library is needed, which specifically
takes into account IoT and dynamic systems requirements, in order to foster research in
this promising and active domain. pyDCOP has been developed and open-sourced for
this purpose.

References

1. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439),
509–512 (1999)

2. Bürger, M., Notarstefano, G., Bullo, F., Allgöwer, F.: A distributed simplex algorithm for
degenerate linear programs and multi-agent assignments. Automatica 48(9), 2298–2304 (sep
2012)

3. Cerquides, J., Rodríguez-Aguilar, J.A., Picard, G.: Designing a marketplace for the trading
and distribution of energy in the smart grid. p. 9

7 https://github.com/bennylut/agent-zero
8 https://frodo-ai.tech/
9 https://sourceforge.net/projects/dischoco/

https://github.com/bennylut/agent-zero
https://frodo-ai.tech/
https://sourceforge.net/projects/dischoco/

pyDCOPs 5

4. Farinelli, A., Rogers, A., Petcu, A., Jennings, N.R.: Decentralised coordination of low-
power embedded devices using the max-sum algorithm. In: International Conference on
Autonomous Agents and Multiagent Systems (AAMAS’08). pp. 639–646 (2008)

5. Fioretto, F., Pontelli, W.Y.E.: A multiagent system approach to scheduling devices in smart
homes. In: Proceedings of the International Workshop on Artificial Intelligence for Smart
Grids and Smart Buildings. p. 7

6. Fitzpatrick, S., Meertens, L.: Distributed coordination through anarchic optimization. In:
Lesser, V., Ortiz, C.L., Tambe, M. (eds.) Distributed Sensor Networks, vol. 9, pp. 257–295.
Springer US

7. Junges, R., L.C. Bazzan, A.: Evaluating the performance of DCOP algorithms in a real world,
dynamic problem. In: Proceedings of the 7th International Joint Conference on Autonomous
Agents and Multiagent Systems - Volume 2. pp. 599–606

8. Léauté, T., Ottens, B., Szymanek, R.: FRODO 2.0: An open-source framework for
distributed constraint optimization. In: Proceedings of the IJCAI’09 Distributed Constraint
Reasoning Workshop (DCR’09). pp. 160–164. Pasadena, California, USA (July 13 2009),
https://frodo-ai.tech

9. Lutati, B., Gontmakher, I., Lando, M., Netzer, A., Meisels, A., Grubshtein, A.: AgentZero:
A framework for simulating and evaluating multi-agent algorithms. In: Agent-Oriented
Software Engineering: Reflections on Architectures, Methodologies, Languages, and
Frameworks, vol. 9783642544, pp. 309–327 (2014)

10. Maheswaran, R., Pearce, J., Tambe, M.: Distributed algorithms for dcop: A graphical-
game-based approach. In: Proceedings of the 17th International Conference on Parallel and
Distributed Computing Systems (PDCS), San Francisco, CA. pp. 432–439 (2004)

11. Modi, P., Shen, W., Tambe, M., Yokoo, M.: ADOPT: Asynchronous distributed constraint
optimization with quality guarantees. Artificial Intelligence Journal (2005)

12. Petcu, A., Faltings, B.: A scalable method for multiagent constraint optimization. IJCAI
International Joint Conference on Artificial Intelligence pp. 266–271 (2005)

13. Rust, P., Picard, G., Ramparany, F.: Using message-passing DCOP algorithms to solve
energy-efficient smart environment configuration problems. In: IJCAI International Joint
Conference on Artificial Intelligence. vol. 2016-Janua (2016)

14. Rust, P., Picard, G., Ramparany, F.: Self-organized and resilient distribution of decisions
over dynamic multi-agent systems. In: 9th International Workshop on Optimisation in
Multi-Agent Systems (OPTMAS@AAMAS 2018) (2018)

15. Rust, P., Picard, G., Ramparany, F.: Installing resilience in distributed constraint optimization
operated by physical multi-agent systems. In: Autonomous Agents and Multiagent Systems
(AAMAS). International Foundation for Autonomous Agents andMultiagent Systems (2019)

16. Wahbi, M., Ezzahir, R., Bessiere, C., Bouyakhf, E.H.: Dischoco 2: A platform for
distributed constraint reasoning. In: Proceedings of the IJCAI’11 workshop on Dis-
tributed Constraint Reasoning. pp. 112–121. DCR’11, Barcelona, Catalonia, Spain (2011),
http://dischoco.sourceforge.net/

17. Xie, J., Howitt, I., Raja, A.: Cognitive radio resource management using multi-agent
systems. In: Proceedings of the 2007 4th IEEE Consumer Communications and Networking
Conference. pp. 1123–1127. IEEE Computer Society

18. Yao, B., Liu, X., Zhang,W.J., Chen, X.E., Zhang, X.M., Yao, M., Zhao, Z.X.: Applying graph
theory to the internet of things. Proceedings - 2013 IEEE International Conference on High
Performance Computing and Communications, HPCC 2013 and 2013 IEEE International
Conference on Embedded and Ubiquitous Computing, EUC 2013 pp. 2354–2361 (2014)

19. Zhang, W., Wang, G., Xing, Z., Wittenburg, L.: Distributed stochastic search and distributed
breakout: Properties, comparison and applications to constraint optimization problems in
sensor networks. Artificial Intelligence 161(1-2), 55–87 (2005)

https://frodo-ai.tech
http://dischoco.sourceforge.net/

	pyDCOP: a DCOP library for Dynamic IoT Systems

