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Abstract. Markov chains are a powerful tool to represent behaviors
of intelligent agents, particularly when such behaviors are gathered by
observing how agents interact with the environment or with other agents
(e.g., in cyber-security applications). Within these contexts, the extracted
Markov chains may contain a significant amount of noise because agents’
actions may depend on several elements that may not be directly ob-
served or because the agents themselves may try to hide their behavior
(e.g., a malicious software trying to evade an analyzer agent). A recent
work proposes the use of long-term probabilities extracted from Markov
chains to identify known behaviors of intelligent agents. The key idea
is that focusing on the long-term allows to discard noise that may be
present in the model. Such work mainly focuses on domains related to
cyber-security and particularly malware analysis. In this work we aim
to investigate the use of similar techniques in a different application sce-
nario, namely Vickrey auctions. In particular, we focus on the iterated
Vickrey auction setting with the aim of identifying the various strate-
gies employed by one of the bidders, modeling its behaviors with Markov
chains. Independently of the specific strategy, the bidder tries to guess
the real price of an item, hence introducing uncertainty in the bids, and
consequently noise in the computed models. Results show that using the
long-term transition probability is effective in diminishing the impact of
uncertainty due to noise inserted in the behavioral models, converging
to a better classification score compared to the classical 1-step transition
probability.
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1 Introduction

A fundamental approach employed to study complex real systems consists in
abstracting such environments in order to represent the subjects that interact
therein as rational agents. It is hence assumed that such agents collect informa-
tion about the state of the environment and use it to execute suitable actions to
achieve a given objective. Examples of such modeled domains include security,
agriculture, medicine and so forth. A key task that has to be addressed in these
scenarios is represented by modeling the agents’ behaviors observed during the
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execution of the process under analysis. Indeed, the selected formalism affects
the quality of the learning processes attempting to extract useful information
from the models. Moreover, recently it has been highlighted that several sys-
tems where the agents interact are misled by the presence of noise factors. For
instance, an agent can divert from its policy, consequently inducing the intro-
duction of noise into the associated model.

A suitable model that is often employed in case of stochastic agent policies
or to represent process affected by an uncertain evolution is the Markov chain.
There is a significant corpus of works that propose Markov chains to express
the behavioral profile shown by an agent and prove their effectiveness in agent
learning process [14, 11, 15, 5, 4]. However, a crucial operation to identify the core
behaviors embedded in such model consists in the feature extraction. A novel
proposal given by [10] is to focus on the long-term transition probability, namely
the probability that the current state of the agent moves to another whenever the
process represented by the Markov chain reaches a stable constant configuration,
i.e. a fixpoint. This work differs from similar previous proposals since it does not
require any assumption about the agent’s model to hold in order to extract long-
term features: using such method, the long-term probability can be extracted
from any instance of Markov chain. The main practical field of application that
authors take into account is the analysis of Android malware.

The contribution of this paper is to demonstrate that such an approach can
be effectively applied to any kind of analysis context that involve Markov chains
as model to represent the dynamics of an agent. In particular, we focus on an
interesting case of study, that is the identification of strategies played by an
agent in a repeated Vickrey auction. We consider iterated Vickrey auctions as
a benchmark for our purpose since inferring the participants’ policy is typically
not a trivial task if compared to other auction designs due to the less amount of
information gained by observing the agents [6, 1]. Moreover, despite they have
not been widely employed in practical cases, Vickrey auctions represent any-
way a well-studied allocation system that is ideal to validate our conjecture.
Nonetheless, there are some known important examples of application of this
kind of auction in real scenarios, e.g. assignment of oil drilling rights and sell-
ing of advertisement spaces on web sites[13]. In our experiments, this problem
is posed as a classification task: given a set of strategy labels L and a dataset
D of known behavioral models, i.e. a set of Markov chains each labeled with
l ∈ L (the strategy they embed), and a set U of unknown behavioral models,
i.e. unlabeled Markov chains, it is required to assign to every element of U the
label k ∈ L that identify the policy it depicts in a Vickrey auction, given the
classification of D.

2 Background

In this section, we provide the necessary background notions underneath the
method we employed in our experiments.
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2.1 Markov chain

Markov chains represent a tool to formally model the evolution of the state of
an observable environment affected by a random variable that follows a specific
probability distribution. In other words, the state of such system evolves ac-
cording to a specific probability value. Moreover, a key characteristic of Markov
chains is defined as the Markov property: the probability that the current state
s of the system transitions to the next state t depends only by s and not by the
previous states assumed by the process. The following definitions and theorems,
along with their proofs, can be found in [2].

Definition 1 (Markov chain). Let P be a k × k matrix with elements {Pij :
i, j = 1, ..., k}. A random process (X0, X1, ...) with finite space S = {s1, ..., sk}
is a Markov chain with transition matrix P if for all n, all i, j ∈ {1, ..., k} and
all i0, ..., in−1 ∈ {1, ..., k} we have

P(Xn+1 = j|X0 = i0, ..., Xn−1 = in−1, Xn = i) =

P(Xn+1 = j|Xn = i) = Pij

(1)

Equation 1 in the above definition formally expresses the Markov property.
Although such hypothesis is rarely encountered in real world domains, it is often
assumed to hold as an acceptable approximation of the dynamics characterizing
the studied process. Any instance of Markov chain is well specified as a tuple
M = (S, P, µ), where µ represents the initial probability distribution defined over
the state space S. However, we identify a Markov chain using only its transition
matrix P and its relative graph representation.

Theorem 1 (Stationary Distribution). Given a Markov chain P , the vector
π such that πP = π is the stationary distribution of P .

The stationary distribution π is the main mathematical result that gives in-
formation about the transition probabilities between states whenever the chain
execution reaches a stable configuration, that is the probability distribution
representing the state of the Markov chain that remains constant from a cer-
tain point onward. Hence, it is representative of the long-term execution of the
Markov chain, since π will be the probability distribution assumed after n tran-
sitions made by the chain, where n→∞. However, for general Markov chain it is
not guaranteed the existence of a stationary distribution and neither its unique-
ness. Moreover, even if a Markov chain admits such hypothesis, it is necessary to
check whether the initial probability distribution of the model converges to the
associated stationary distribution. There are some special cases of Markov chain
that guarantee the existence of a single stationary distribution that is reached
by any initial probability distribution assigned.

Definition 2 (Irreducible Markov Chain). A set of states is irreducible if
it is possible to go from each state to any other in an arbitrary (finite) number
of steps. A Markov chain is irreducible if it consists of a single irreducible set.
For any finite, irreducible Markov chain, π is unique.
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Definition 3 (Absorbing Markov Chain). Given a Markov chain P , a state
si is absorbing if Pii = 1, otherwise it is transient. A Markov chain is absorbing
if at least one of its states is absorbing and if from every transient state an
absorbing one will be eventually reached.

If the Markov chain we consider is absorbing, it is possible to divide the com-
ponents of its state space into transient and absorbing. Such partition can also
be reflected in the transition matrix, through its transformation in a canonical
form. Such representation entails a block decomposition of the states useful to
identify the elements of the chain that will be handled by the procedure that
extract the embedded long-term features.

Definition 4 (Canonical form of an absorbing Markov chain). If an
absorbing Markov chain P has n transient states and r absorbing states, its
transition matrix can be rewritten as

P =

[
Q R
∅ I

]
where Q is an n × n matrix of the transition probability between the transient
states, R is a n×r non-null matrix of the transition probability from the transient
to the absorbing states, ∅ is a r×n null matrix, and I is a r× r identity matrix.

Lemma 1. For any absorbing Markov chain in canonical form we have that
Qk → 0 as k →∞.

Lemma 1 states that increasing the number of transitions done on the Markov
chain leads to the nullification of theQ term of the transition probabilities related
to transient states, since the amount of probability weight will gradually flow
into the absorbing states. Such lemma is useful to derive Theorems 2 and 3.

Theorem 2 (Fundamental Matrix of an absorbing Markov Chain). The
fundamental matrix N of an absorbing Markov chain P in canonical form is
defined as

N = I +Q1 + ...+Qk =

∞∑
k=0

Qk = (I −Q)−1

where each entry Nij represents the mean of the total number of times that the
chain is in a given transient state sj if starting from the transient state si. The
inverse of (I −Q) is guaranteed to exist for every absorbing Markov chain.

Theorem 3 (Transient states probability).

H = (N − I)N−1dg

Each entry Hij represents the probability of reaching transient state sj start-
ing from transient state si before the process is completely absorbed. Ndg is the
diagonal of N .
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It is worth to point out that the transient states probabilities (Theorem 3) has
a different meaning than the stationary distribution (Theorem 1). The method
we test in this paper involves both notions in distinct phases. In particular, we
rely on the latter to transform each input Markov chain of a given model into
an absorbing Markov chain.

3 Enforcing Absorbency

As previously mentioned, we aim to compute the long-term transition proba-
bility referred as the probability of going from each state to every other, given
an infinite amount of time. In practice, this translates in executing the process
described by a Markov chain until a stable configuration is reached (a fixpoint),
i.e., until the probability values of moving between states would not change any-
more from that point onward. This allows to analyze connections between states
discarding what is not important that may lie in between. Looking at Figure 1,
if the policy to learn from a teacher agent consists in S1 → S3 → S5, all other
actions, i.e., S2, S4, S6, S7, are noise not related to the behavior the learner
agent should learn, making the task more prone to errors. We use the long-term
transition probability instead of the stationary distribution, as the latter is not
guaranteed to be meaningful in the behavioral models we are given to analyze.
Looking at the Markov chain in Figure 1, the stationary distribution (computed
using Theorem 1) is π = [0, 0, 0, 0.37, 0.37, 0.26, 0, 0], where πi corresponds to the
probability of being state Si. Notice that π is non-zero only for the set of states
forming an irreducible Markov chain (S3, S4, S5). Hence, we lose the information
that all the states where πi = 0 can be reached, even though never visited again
thereafter. The long-term transition probability instead would tell us that, con-
sidering state S0 for example, the probability values of reaching the other states
are L0i = [0, 0.6, 0.6, 0.6, 0.6, 0.6, 0.4, 0.4]. Such information for every couple of
states is fundamental for the approach. A problem of the explained operation is
that, for example, a Depth First Search (DFS) is not efficient since the presence
of cycles might require many steps to reach convergence, moreover, the identifi-
cation of the fixpoint is not trivial, and as many DFS as the number of states (in
the worst case) are required. For this reason, we aim to exploit standard prop-
erties of Markov chains, namely the transient states probability (Theorem 3),
to efficiently compute the long-term transition probability. Nevertheless, generic
Markov chains may not hold the absorbency property (Definition 3), which is
fundamental to compute the transient states probability. Thus, we exhibit a
procedure, proposed in [10], that can transform any generic Markov chain M
(Figure 1) into an absorbing Markov chain M ′ (Figure 2) from which to derive
the long-term transition probability for M .

The core part of the transformation for a generic Markov chain M requires
to identify all terminal Strongly Connected Components (SCCs) [12], defined as
a SCC T that has no outgoing edges, i.e., once the process enters it can not leave
the states of T . The peculiar property that makes terminal SCCs important for
the procedure is that in the long-term, as the number of steps increases (toward
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Fig. 1. Markov chain with states in bold (S3, S4, S5) forming a terminal SCC

Fig. 2. Absorbing transformation applied to the Markov chain of Figure 1. State S3 is
the result of the merge for the terminal SCC (S3, S4, S5)

infinity), the probability of going from each state to every other increases as well,
approaching 1. Indeed, since a SCC is an irreducible Markov chain (Definition 2)
that can never be left by the process, the more time is given, the more probable
is that any state will be reached. Hence, we can merge every terminal SCC into
a its corresponding single state sm without loosing information on the long-
term transitions between the states involved since it can be reconstructed by
exploiting the knowledge on the long-term behavior for terminal SCCs. Then,
the last step to obtain an absorbing Markov chain is to connect with an edge at
probability value 1 each state sm to a newly created absorbing state sa, obtaining
a new absorbing Markov chain M ′. In this way, Definition 3 is respected since
every state s of M is now transient in M ′ (possibly merged into a state sm) and
will eventually reach the absorbing state sa. In fact, either there exist a path
s  sm → sa or a direct edge s = sm → sa. This is true since following any
outgoing edge from a state s, a terminal SCC will eventually be reached (and so
its sm merged state) and every sm is directly connected to the absorbing state
sa. Figure 2 shows an application example of the procedure to the Markov chain
in Figure 1. The resulting transition matrix M ′ in canonical form is visible in
Equation 2. Indices for states S6 and S7 are 4 and 5 respectively in M ′ as a
consequence of merging the terminal SCC. Block matrices Q, R, ∅ and I are the
top-left, top-right, bottom-left, and bottom-right blocks of M ′ respectively, as
of Definition 4.
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M ′ =



0 0.6 0 0 0.4 0 0
0 0 1 0 0 0 0
0 0.25 0 0.75 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 1


(2)

Finally, the long-term transition probability between every couple of states
(si, sj) for a generic Markov chain M can be computed with Definition 5.

Definition 5 (Long-term transition probability). Given a Markov chain
M , the long-term transition probability value Lij of going from state si ∈ M to
state sj ∈ M can be computed from the transient states probability H (Theo-
rems 2 and 3) as follows

Lij(H) =



1 if si and sj are in the same terminal SCC in M

0 if si is in a terminal SCC T in M and sj /∈ T
Him if si is not in a terminal SCC in M and sj was

merged into a state sm in M ′

Hij otherwise

The first case is a direct application of the behavior in the long-term for couple
of states contained within the same terminal SCC. The second case is trivial:
states within a terminal SCC can only reach other states of the same SCC. The
third case is a consequence of merging terminal SCCs into a single node sm.

4 Feature Extraction

The approach proposed in [10] is a classification technique, hence a feature ex-
traction process is required. The aim is to recognize given behaviors, and for this
reason a “blueprint” model D is required in order to know which are the states
and transitions to focus on for the feature extraction process. More specifically,
the long-term transition probability values computed for an unknown model x
are projected over D to obtain a feature vector. Thus, the blueprint D can be
regarded as the “shape” for the selection of the features and needs only to specify
states and transition edges (no probability values on the edges).

The application of the complete feature extraction procedure to the model
x of Figure 1 with the blueprint D of Figure 3 is reported below. The first step
is to enforce the absorbency property, obtaining a result visible in Figure 2 and
corresponding to Equation 2. Then, by applying Theorems 2 and 3 to the block
matrix Q (top-left block of Equation 2) we obtain the transient states probability
matrix H of Equation 3.
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Fig. 3. Example of blueprint D

H =


0 0.6 0.6 0.6 0.4 0.4
0 0.25 1 1 0 0
0 0.25 0.25 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

 (3)

Finally, the projection of H over the blueprint D making use of Definition 5
results in matrix L of Equation 4. Recall that state S5 was merged into S3
as effect of the absorbing transformation, hence Li5 = Li3 for every state si,
whether states S4 and S6 are not contained inD (indices 4 and 5 then correspond
to states S5 and S7 respectively in L). Matrix L will then be flattened into the
final feature vector.

L =


0 0.6 0.6 0.6 0.6 0.4
0 0.25 1 1 1 0
0 0.25 0.25 1 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (4)

The exploitation of standard techniques for absorbing Markov chains enable
to efficiently extract the long-term transition probability instead of, for example,
performing multiple DFSs till a convergence point.

5 Case of study: Vickrey auctions

The intent of our paper is to show that the procedure explained in Sections 3
and 4 can be effectively used to extract the approximated long-term behaviors
in any kind of Markov chain model, even on instances that do not represent
malicious behavioral profiles. Indeed, the method aim is to give insights about
the core behavioral characteristics of a model depicting an agent policy. Such
model transformation and the subsequent feature extraction are particularly
suitable when we are interested in filtering out from the input model the noise
contained therein.
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The empirical analysis we performed focuses on iterated Vickrey auction
setting1. In such scenario, we have a set of bidders, each submitting at each
auction stage a bid without knowing the bid value decided by the other agents.
Once the auctioneer collects all the players’ bids, the agent that made the highest
bid wins the item offered in that round and pays a price equivalent to the second
best bid [8]. This mechanism is repeated for all the elements offered in the same
auction. In our iterated version of Vickrey auction, we assume that we are given
the initial state of a second-price sealed-bid auction A that is repeated for a fixed
number of times n. Moreover, we provide to shuffle the order of auctioned goods
between each iteration of the repeated Vickrey auction. This measure has been
chosen to prove the robustness of the classifier trained with long-term probability
features. Indeed, if we assume that the items’ order is fixed and remain constant
through each auction iteration, the models would encode bid patterns easily
deductible by any training algorithm; however, if the sequence of offered objects
is randomly permuted every time, the identification of such strategic patterns is
not trivial. The budgets associated to each player are reset at the start of every
iteration. Figures 4 and 5 depict an overview scheme of the experiments we set
up. Before explaining how we practically conducted the experiments, it is worth
to highlight that, in spite of the presence of the known existence of strategies
that constitute equilibria for given players’ preferences, we point the attention
on the identification of known policies observing the actions performed by an
agent under analysis. Hence, we ignore any consideration concerning players’
reward in the empirical analysis since it is out of the scope of the technique we
test.

In our experiments, we have a set of 10 participant agents to each auction
iteration and a passive analyzer2. We first select only one player X among the
bidders whose behaviors will be tracked by the analyzer in order to construct
its model. The analyzer does not account for the actions done by other players.
However, while X adopts a different policy in each iterated Vickrey auction, we
suppose that the remaining agents follows the same strategy, i.e. try to commit
each time a bid that is closest as possible to the real value of the current good3.
A given initial budget b = 120 is associated to every player and we suppose that
the analyzer does not know the amount of b, i.e., it is not observable. For this
reason, we cannot include such information in the agent behavioral model. Thus,
the states of such Markov chain models are labeled with the bids made across
the auctions stages (except for the root starting node, always labeled as Init),
whereas edges are labeled representing object identifiers which drive the bidders
to the next auction round. Figure 6 provides an example of the model we adopt.

We design 6 types of bidding strategies for the target X: i) always fair, ii)
always aggressive, iii) always prudent, iv) mixed, v) interval, vi) type-based.
Strategy i) indicates to make a bid for the current item corresponding to its

1 Also known as second-price sealed-bid auction
2 We refer to an agent that does not interact during the auction, i.e. it is limited to

observe the bids submitted by each player across every round
3 Later in this section we call this informally described strategy as “fair”



10 Murari et al.

Bidder 1

Bidder 2

Bidder X

...

i-th auctioned
item

Evaluate i-th item 

Evaluate i-th item 

Evaluate i-th item 

Apply bidder 1 strategy

Apply bidder 2 strategy

Apply bidder X strategy

Bidi1

Bidi2

BidiX

Collect bids

Set of players

W = Winner

J = 2nd highest
bid

Winning bidder W pays
J for i-th item

Operations affected by
uncertainty

Fig. 4. Description of how it is conducted a single second-price sealed-bid auction
round. Repeating the procedure for each element in sale, we obtain the (not iterated)
Vickrey auction. Bidder X is observed by the analyzer

Budget of
bidders

List of
auctioned items

Run a complete
auction

Shuffle list order

Reset budgets

Fig. 5. Overview of the iterated Vickrey auction we designed: once the first Vickrey
auction (see figure 4), that is initialized with a fixed budget for players and a given order
of the auctioned objects, terminates, the execution proceeds with the next iteration by
resetting budgets and randomly changing the items order. Notice that the block Run
a complete auction implements the process in figure 4
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Init 24 39 44

30

Item1: 1 Item2: 0.25

Item2: 0.75

Item3: 0.5

Item3: 0.5

Item3: 0.33 Item3: 0.33

Item3: 0.33

Item4: 0.2

Item4: 0.8

Item4: 1

Item4: 1 Item4: 0.4

Item4: 0.6

Fig. 6. A simple example model representing the bidding policy of an agent

real evaluation, whereas ii) and iii) respectively play presenting in each stage a
bid whose value is always greater and lower than the actual value of the good.
To implement such behaviors, ii) and iii) bids are determined by adding and
subtracting to v, the real evaluation made for current object, a random value
α resulting from a uniform distribution4. However, in real auction contexts, it
is extremely infrequent for the players to know the exact objective value that
auctioned items have: they usually guess with an estimation the objective value
related to a good. As a consequence, the bids of the players deviate from the
real evaluation due to the uncertainty affecting the players information about the
auctioned elements. In order to implement such feature in our Vickrey auction
simulations, we provide to add a random bias to the bids resulting from policies
i), ii) and iii) that is computed through a gaussian distribution (0, σ). Such
operation entails the encoding of a degree of noise into the policy bids of players
adopting such strategies, which is reflected also in the behavioral models. After a
preliminary study, we decided to set σ = 16 because such value allows to achieve
an acceptable tradeoff between making the noise appreciable and preventing
the agents to produce unrealistic bids. Moreover, the σ value is reasonable in
relation to our empirical set of goods, since we fixed their actual prices in the
range [25, 80].

Strategies iv), v) and vi) represent more complex variations that rely on the
rationale of the previous. In each auction stage, iv) selects to employ a fair, ag-
gressive or prudent bidding behavior using an arbitrary probability distribution
defined over these three policies. Specifically, we tested the strategy iv) with
the following probability distribution vectors, each referring to the tuple of be-
haviors (fair, prudent, aggressive): iv.i) (0.2, 0.6, 0.2); iv.ii) (0.1, 0.2, 0.7); iv.iii)
(0.33, 0.33, 0.34). The last mixed case is constructed in order to study whether
the agent’s behavioral model in case of uniform probability distribution can be
distinguished from the other mixed instances.

Similarly, strategy v) decides between fair, aggressive or prudent bids bas-
ing on budget thresholds as defined in Equation 5, where parameters p, q ∈ R+

4 In particular, α ranges in interval [0.05 · v, 0.1 · v] in our experiments
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and each function strat1, strat2, strat3 is chosen among fair, aggressive and pru-
dent strategies. In the empirical analysis, we fixed the following concrete cases
for strategy v)5: v.i) aggressive, fair, prudent with p = 80 and q = 40; v.ii)
fair, aggressive, fair with p = 90 and q = 30; v.iii) prudent, aggressive, prudent
with p = 70 and q = 50.

bidi =


strat1(i, b) if b ≥ p
strat2(i, b) if q ≤ b < p

strat3(i, b) otherwise

(5)

Finally, strategy vi) induces the player to formulate bids that are driven by
its interest. Specifically, the player has a preference ranking over the object types
presented during the auction: whether it is auctioned a good with high preference
level the agent uses the aggressive strategy, whilst if such item has medium
preference value the agent uses the fair strategy, otherwise the bidder chooses
the prudent policy. It is worth to say that we suppose the information about the
type of every item as available to the bidders since we deal with rational agents.
We designed two opposite type-based strategies in our experiments, defining 4
different kinds of auctioned objects. Hence, we obtained vi.i) with preference
vector (t1, t2, t3, t4) and vi.ii) having reverse ordering (t4, t3, t2, t1).

Each described strategy has been played 20 times in a repeated Vickrey auc-
tion of varying lengths6, resulting in 220 behavioral models related to the target
agent. We remind that the aim of the experiment is to identify the strategies such
models embed over the set of the known given 11 strategy, forming the possible
labels for the classification. Thus, the classification task is based on a Linear
Support Vector Machine (SVM) we trained performing a k-fold cross validation
with k = 5. Furthermore, the obtained classifier is assessed computing standard
learning score measures, i.e. precision, recall and F1-score. As done in [10], each
Markov chain belonging to a model is processed with the algorithm transform-
ing it into an absorbing one and the long-term probability feature vector is then
extracted. Once the transforming procedure terminates for every Markov chain
of the model, the resulting feature vectors are concatenated to retrieve a single
vector accounting for the model. The blueprint D has been created selecting
random representatives from each strategy and merging their graphs together.
Moreover, in order to highlight the advantages gained using the long-term prob-
abilities as features to train a classifier, we provide to compare the performance
achieved by an SVM classifier built through long-term probability features with
another SVM trained with the short-term probability features, i.e., employing
the 1-step transition likelihoods contained in the transition matrix of original
Markov chain models7. This last proposal for feature extraction has been taken

5 For the sake of brevity, the policy functions mentioned in the following are ordered
so that i-th strategy specifies strati

6 The length parameter ranges from 50 to 600, with an increment equals to 50 in each
subsequent experiment w.r.t. the previous

7 Models obtained from the analysis and not subjected to the absorbing transformation
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from [9]. In Table 1 we report the results achieved by the procedure (with an
iterated second-price sealed-bid auction of length = 600) using long-term prob-
ability features, whereas in Table 2 we show learning scores for the short-term
probabilities extracted from the native transition matrix.

Table 1. Strategy identification in repeated Vickrey auction - Long-term features

Strategy Precision Recall F1-score

i) Always Fair 1.00 0.92 0.96
ii) Always Aggressive 1.00 1.00 1.00
iii) Always Prudent 1.00 0.75 0.86
iv.i) Mixed(0.2,0.6,0.2) 0.75 1.00 0.86
iv.ii) Mixed(0.1,0.2,0.7) 0.86 1.00 0.92
iv.iii) Mixed(0.33,0.33,0.34) 1.00 0.50 0.67
v.i) Intervalp=80,q=40 1.00 1.00 1.00
v.ii) Intervalp=90,q=30 0.92 1.00 0.96
v.iii) Intervalp=70,q=50 0.80 1.00 0.89
vi.i) TypeBased(t1, t2, t3, t4) 1.00 1.00 1.00
vi.ii) TypeBased(t4, t3, t2, t1) 1.00 1.00 1.00

Overall scores 0.94 0.92 0.92

Table 2. Strategy identification in repeated Vickrey auction - Short-term features

Strategy Precision Recall F1-score

i) Always Fair 1.00 1.00 1.00
ii) Always Aggressive 1.00 1.00 1.00
iii) Always Prudent 0.86 1.00 0.92
iv.i) Mixed(0.2,0.6,0.2) 0.50 1.00 0.67
iv.ii) Mixed(0.1,0.2,0.7) 0.00 0.00 0.00
iv.iii) Mixed(0.33,0.33,0.34) 1.00 0.42 0.59
v.i) Intervalp=80,q=40 1.00 1.00 1.00
v.ii) Intervalp=90,q=30 1.00 1.00 1.00
v.iii) Intervalp=70,q=50 1.00 0.83 0.91
vi.i) TypeBased(t1, t2, t3, t4) 1.00 1.00 1.00
vi.ii) TypeBased(t4, t3, t2, t1) 1.00 1.00 1.00

Overall scores 0.85 0.84 0.83

From Table 1, it is apparent that the procedure built is particularly suitable
to accomplish our main goal. The first evident remark concerns the vi) family
of policies: vi.i) and vi.ii) are perfectly identified. Our conjecture to explain this
outcome is that such couple of policies recalls a player’s private evaluation: the
choice regarding the bid value is heavily affected by the given preference vec-
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Fig. 7. Learning rate: precision, recall and F1-score mapped against the number of
auction iterations performed

tor, rather than the real price of the considered object. For example, it is not
unusual for an agent implementing vi.ii) to overvalue t4 items and underbid for
t1 elements. This implicit trend provides a behavioral pattern that is fairly de-
tectable by the obtained classifier. Another important observation regards the
set of mixed and interval strategies: the overall results show that the use of long-
term features allows to construct a classifier resilient to the noise components
present in models. Indeed, they represent very sensitive policies to study, whose
associated models can become misleading if affected by noisy information. De-
spite the considerable amount of uncertainty embedded in the inspected player’s
bids, hence in the states of the Markov chains, due to the approximation per-
formed on the evaluation of goods, the classifier is able to mainly recognize such
strategies correctly using the training data. However, it is visible that the SVM
still makes some mistakes when it deals with these policies.

The comparison between the two feature selection approaches show a limi-
tation related to the short-term probability as feature: the scores are extremely
low for mixed strategies. Indeed, the classifier is unable to actually distinguish
them basing on the probability distribution that characterizes them. Such short-
coming burdens significantly on the overall learning values. However, it can be
seen that with the other strategies, where the noise affects less the recognition,
we obtain measures comparable to long-term ones.

Figure 7 shows the learning rates achieved in our experiments performed
with Linear SVM classifier, i.e. how the classification scores (y-axis) change by
increasing the number of auction iterations performed per strategy (x-axis). The
depicted curves peaks at around 450 auction repetitions and stabilize hereafter
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for the SVM trained with long-term features. Furthermore, the chart points out
that a classifier using the long-term probabilities of Markov chains learns faster
than the one employing the short ones. Such evidence confirms our conjecture:
whenever we build a Markov chain model affected by noise, long-term features
allow to lessen the impact of that such factor exercises in the training phase.

6 Conclusions and Future Works

With this work, we address the problem of identifying known behaviors of intel-
ligent agents within an uncertain system. In particular, we choose a classification
approach to solve such issue that is based on the method shown in [10] which
builds behavioral models as Markov chains of the analyzed agent and process
them in order to retrieve long-term transition probability as feature. Our aim
is to demonstrate the general applicability of this analysis to different domains.
We evaluate the methodology in the case of iterated Vickrey auctions. Results
suggest that such analysis can be extended to any identification problem that
involves an analyzer and a target agent, where the former models behaviors of
the latter through Markov chains.

There are many research directions that can be considered to improve the
achievements of this work. First of all, it would be interesting to test the tech-
nique in other kinds of auction, e.g., dutch, english and first-price sealed-bid
auction, or to apply it to other fields. Nevertheless, another direction is repre-
sented by the application of long-term features to unveil correlations between
models of different bidders, in order to check whether there are players that ex-
ploit a vulnerability to hack the auction mechanisms, e.g., collusion, cartels [7,
3]. Furthermore, it would be useful to study whether there are formalisms other
than Markov chains that allows to retrieve long-term stable model properties
and to compare the performance with our proposal.
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