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Abstract. Reinforcement learning (RL) is applicable in a wide num-
ber of settings such as robotics and industrial applications. Presently,
continuous-time RL methods fail to produce frameworks that are reli-
able in instances of abrupt systemic failures, actuator faults and random
stoppages. To this end, we propose a new framework that enables an RL
agent to learn controls that are robust against faults and random stop-
pages in worst case scenarios suitable for applications with continuous
state and action spaces. We use a path integral (PI) formulation that
enables efficient and expedient learning, suitable for numerous practical
applications. By constructing a variant of a stochastic game between a
player that controls the dynamics ‘controller’ and a player that termi-
nates the game ‘stopper’, we prove theoretical results that transform the
problem into an approximation problem of a path integral with no open
algorithmic parameters beyond exploration noise.

Keywords: Robust optimal stopping, reinforcement learning, stochastic
differential game.

1 Introduction

Reinforcement learning (RL) seeks to address the problem of how an agent learns
to maximise a cumulative sequence of rewards in unknown environments. It pro-
vides the basis for tackling a large number complex tasks in unknown environ-
ments and has been used to learn to perform a wide variety of complex tasks. In-
creasingly, RL methods are being deployed in a number of environments in which
safe operating standards must be ensured such as healthcare, factory automation,
supply chain management and autonomous helicopter control [32, 22, 18, 21].

However, at present, RL methods do not provide a satisfactory solution that
can cope with random actuator faults or partial systemic failure. Such failures
include randomly occurring faults and random terminal events. System failures
can occur within aviation, automotive vehicles and robotics such as actuator
faults [17, 9] and can severely compromise safe completion of tasks and lead to
catastrophic outcomes. In such circumstances, the controller is required to act
without the full availability of all actuators.

Many tasks of interest such as physical control of actuators involve continu-
ous control. In this paper, we construct a method that enables an RL controller
to determine an optimal sequence of actions that is robust against failures that
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would otherwise lead to adverse outcomes in continuous environments. Our anal-
ysis produces the necessary framework that provides a fault-tolerant (FT) RL
method that is suitable for financial applications, robotics and other settings
involving physical control.

In order to find the optimal FT control policy, it is firstly necessary to deter-
mine a worst-case scenario stopping criterion to which the control policy is able
to respond. The framework we introduce determines at which points stopping
the system induces the worst outcomes and, the corresponding FT control. As
we then show, the problem admits a stochastic differential game (SDG) repre-
sentation between a controller and an adversarial stopper.

Under this interpretation, the outcome is determined by a controller that
affects the state process by exercising a control whilst playing against an adver-
sary that selects the time at which to stop the game. The resulting framework
finds an optimal control that is robust against faults and stoppages at times that
pose adverse risk. We define risk in the worst-case scenario sense — given the
complete set of probability distributions, the agent considers the worst-case in
assessing the expected payoff.

The framework provides a solution to optimal stopping problems (SPs) under
worst-case scenarios. SPs belong to a class of optimal stochastic control (OSC)
problems in which the goal is to determine a criterion for stopping the system
at a time that maximises some state-dependent payoff [30]. SPs are widespread
within economics and industrial applications.

The contributions of the paper are as follows: we, for the first time show that
the FT RL problem in continuous-time admits an SDG representation. This
allows us to use SDG theory to show that the solution to the problem can
be computed by finding a saddle point equilibrium of the corresponding SDG.
Second, by adapting techniques from PI control theory to a game setting, we
show that the problem of finding the optimal value function (VF) is reducible
to constructing a PI estimate which, in turn, can be approximated by forward
sampling of a diffusion process. Thirdly, we prove an equivalence between the
game of control and stopping and optimal stopping problems under worst-case
scenarios. This in turn, allows us to show for the first time that SPs under
worst-case scenarios can be tackled using PI approximation.

The resulting framework yields a learning framework that learns FT control.
The method requires neither the transition dynamics nor the reward function
to be known up-front and involves no free algorithmic parameters other than
exploration noise.

The paper is organised as follows: in Sec. 2 we discuss relevant works within
OSC and RL. In Sec. 3, we give a formal description of the problems and estab-
lish the connection between FT RL and SDGs. and provide a practical example
drawn from robotics. In Sec. 4., we give some necessary mathematical back-
ground in SDG theory and discuss PI control. In Sec. 5, we summarise our main
results; we defer the proofs the main analysis which is performed in Sec. 6. In
Sec. 7, we study SP and show that our method solves SPs in worst-case scenarios.
Lastly in Sec. 8, we provide some concluding remarks.
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2 Related Work

The literature on FT control within RL is limited. In [25] an FT framework
was considered in a discrete setting using approximate dynamic programming
(APD) which suffers from the curse of dimensionality — the rate of convergence
grows exponentially with the state space dimensionality. Additionally, given the
discrete time, state and action setting, the method in [25] is generally unsuitable
for environments that require continuous control such as finance and robotics.

Within OSC, combined control and stopping has been studied in a few cases
such as [6]. Similarly, games of control and stopping have been analysed in
continuous-time in specific contexts e.g. linear diffusions [20], geometric Brown-
ian motion [4] and jump-diffusions [2, 24, 23]. These analyses however, assume
that the model of the transition dynamics and reward are known up-front and
are therefore unsuitable for RL settings.

There is a plethora of work on SPs [30]. [35] uses approximate dynamic pro-
gramming methods to construct an iterative scheme to compute the solution of
an SP. Despite the importance of risk in RL, work on SPs is limited to value
function based iterative methods [25] and are typically restricted to risk-neutral
settings e.g. [35] which do not permit the inclusion of a controller. Introducing
a notion of risk (generated adversarially) adds considerable difficulty as the so-
lution concept is now an SDG saddle point equilibrium, the existence of which
must be established.

Our results generalise existing analyses to strategic settings with both a con-
troller and an adversarial stopper which tackles risk within SPs.1

3 Problem Formulation

We now describe the problem with which we are concerned, namely FT RL. We
will later prove an equivalence between the FT problem and an SP and construct
a method to generate solutions for both problems.

3.1 Fault-Tolerant Reinforcement Learning

The FT control problem we are concerned with requires learning a criterion for
stopping a system (sub)process at the worst possible time — that is, the point
(state and time) at which terminating some system process incurs the greatest
cost to the controller. Applying this stopping rule to the system subsequently
induces a response by the controller that is robust against systemic faults in
worst-case scenarios. Tackling this problem necessitates a formalism that com-
bines both an SP which seeks to determine an optimal time to arrest at some
worst possible state with single control RL.

In this problem the controller uses a control variate u ∈ U to modify the
system dynamics. At time s ∈ [0, T ] and when the system is at state Xs, the
1 SPs have been extended to games where the action of each player 1s restricted to

one of two actions; to stop the game or continue. [8].
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controller incurs a cost f(s,Xs, u), where u is the magnitude of the controller’s
influence on the system. At any given point τS ≤ T the system may stop and
the problem terminates where τS ∼ f([0, T ]) is a measurable, random exit time
and f is some distribution on [0, T ]. At this point, the controller incurs a cost
K(XτS ) and the system terminates.

The objective function J is given by the following:

JτS [x] = E
[∫ τS

0

f(s,Xs, u)ds+ e−γ(τS∧T )K(XτS )

]
, (1)

where τS ∼ f([0, T ]), x ∈ S is the initial point of the system, S⊂ Rd is the state
space. The parameter u ∈ U is the control contained within some admissible
control set U ⊆ Rd×1 and the set T ⊆ [0, T ] consists of all F−measurable
stopping times. The functions f : [0, T ] × S → R and K : [0, T ] × S → R
represent the running cost or cost-to-go and the terminal cost functions (resp.)
and γ ∈ R>0 is the discount factor.

The FT control problem which we tackle is one in which the controller acts
with concern for stopping at states which incur high costs or potentially catas-
trophic outcomes. Such examples are often encountered in practical scenarios,
for example aviation faults at specific times, actuator failures of medical failures
and life support machines in addition to assisting device failures.

To this end, we develop a framework which produces fault-tolerant control
that can cope with abrupt system or (sub)process stoppages and failures at the
worst possible time. To produce such control it is firstly necessary to determine
a stopping rule for the worst possible stopping times; applying this stopping rule
to the system subsequently induces a response by the controller that is robust
against systemic faults in worst-case scenarios. Tackling this problem necessitates
a formalism that combines both an SP which seeks to determine an optimal time
to arrest at some worst possible state with single control RL.

The task involves finding both a worst-case stopping time τ̂ and an optimal
(FT) control û. We are therefore concerned with problems of the following kind:

Find (τ̂ , û) ∈ T× U and J τ̂ ,û[s] s.th.

sup
u∈U

(
inf
τ∈T

Jτ,u[x]

)
= J τ̂ ,û[x], (2)

where the objective function J is given by:

Jτ,u[x] = E

[∫ τ∧T

0

f(s,Xs, u)ds+ e−γ(τ∧T )K(Xτ∧T )

]
, (3)

where a ∧ b := min{a, b}.
The transition dynamics are described by a diffusion process on X; without

the inclusion of the controller’s influence, the system dynamics are given by:

dXs = µ(s,Xs)ds+ σ(s,Xs)dBs + h(s,Xs)dPs, (4)



Fault-Tolerant Reinforcement Learning in Continuous Time 5

where P ∈ Rm×1 is Poisson distributed and h : [0, T ] × S → Rd×m is the
Poisson process coefficient or jump amplitude. B(s, x) : [0, T ] × Rd → Rm is
an m−dimensional standard Brownian motion. Both P and B are independent
and are supported by the filtered probability space and F is the filtration of
(Ω,P,F = (Fs)s∈[0,T ]). The functions µ : [0, T ] × S → R and σ : [0, T ] ×
S→ Rd×m are the drift coefficient and the diffusion coefficient which describe
the central tendency and volatility of the system respectively. We assume that
σ, µ are Lipschitz continuous and satisfy a polynomial growth condition (see
appendix).

Note the process (4) has the following discrete analogue:

Xn+1 = Xn + µ(sn, Xn)δs+ σ(sn, Xn)(Bsn+1
−Bsn)h(sn, Xn)(Psn+1

− Psn),

When the controller acts on the state process, the process (4) evolves according
to the expression:

dXs = µ̂(s,Xs, u)ds+ σ(s,Xs)dBs + h(s,Xs)dP (s,Xs), (5)

where µ̂ : [0, T ]× S× U→ Rp is the controlled drift coefficient.
The construction (2) can be thought of as being an SDG between a controller

that is delegated the task of executing the control û ∈ U to maximise J against
a stopper that seeks to find a time τ̂ ≤ T to stop the process at the worst
possible time (i.e. that which minimises J). With this interpretation, the pair
(τ̂ , û) constitutes an equilibrium in which each player responds optimally to their
opponents’ control, hence the induced control û ∈ U is FT.

Note that the problem (2) is degenerate — if the set U is restricted to a
singleton, then the problem collapses to a (risk-neutral) SP. Conversely if the
set T is a singleton then the problem reduces to a risk-neutral MDP.

In this paper, we prove theoretical results that demonstrate how to solve
problems of this kind. We specialise to the linear quadratic case in which the
running cost for each player i takes the form:

f(s, x, u) ≡ f(s, x) +
1

2
uTRu, (6)

where R is an invertible symmetric matrix which is the control weight. The drift
coefficient µ̂ is now:

µ̂(s, x, u) ≡ µ(s, x) +G(s, x)Tu. (7)

where G : [0, T ]× S→ R → Rp×d.
Linear quadratic models have been shown to have high performance in tasks

throughout robotics and engineering [1] and have been successfully within RL
settings to tackle physical control [34, 33].

To elucidate the idea, we give an example of the FT problem. As the following
illustrates, the framework applies to actuator failure in RL applications. The
example is adapted from the discrete setting in [25].
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3.2 Example: Control with abrupt actuator failure
Consider an agent e.g. a robot that uses an actuator to perform actions. Given
full operability of its actuator, the agent exercises a control u ∈ U that modifies
the dynamics of a diffusive process Xu (we emphasise the control on X with
the superscript). In many systems, there exists some risk of actuator failure at
which point the agent thereafter can affect the state transitions without the use
of its actuator. Subsequently, the agent’s control is reduced to influencing the
system in only a subset of the system state components. Considering the case
of full actuator failure. Denoting by u0 a control variate that does not act on
the system, the agent’s subsequent payoff (after failure) is determined by the
uncontrolled dynamics of the system Xu0 in which case, its expected return as
of that point is given by the VF, Ṽ .

In order to perform robustly against actuator failure, it is therefore necessary
to consider a set of stopping times T⊆ [0, T ] after which, the robot can no longer
select actions that require functionality of its actuators. In particular, in order
to construct a robust policy against catastrophic outcomes, it is necessary to
consider actuator failure in worst-case scenarios.

The problem involves finding a pair (τ̂ , û) ∈ T× U which consists of a
stopping time and control policy s.th.

sup
u∈U

(
inf
τ∈T

E
[∫ τ∧∞

t

e−γsf(Xu
s , u)ds+ e−γ(τ∧∞)Ṽ (Xu

τ∧∞)

])
,

where Ṽ (Xu
τ ) := E

[∫ τS∧∞
t

e−γsf(Xu0
s , u0)ds+ e−γ(τ∧∞)K (Xu0

τS∧∞)
]
.

In order to generate the control û, the adversary is included which simulates
actuator failure at the time which inflicts the greatest cost to the controller.
The resulting control û is a best-response against actuator failures at the worst-
possible times.

In order to extract the pair (τ̂ , û) we formulate the problem as an SDG and
seek to compute the equilibrium controls of the game. To do so, we appeal to the
theoretical machinery within SDG theory — to this end, we first introduce some
necessary SDG concepts that shall underpin our analysis. Having formulated the
problem as a game, we will then appeal to a formulation of OSC, namely path
integral control in order to construct a simulation-based method that enables us
to compute the value function of the game.

4 Background
In this section we give some mathematical background which underpins the main
analysis in Sec. 5.

4.1 Stochastic Differential Game Theory
SGDs are strategic settings in which two or more players continuously alter the
dynamics of a stochastic system by strategically selected magnitudes. The task
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of each player is to alter the system dynamics so as to maximise their individual
state-dependant payoff [3].

A description of a two-player SDG is as follows: consider two players, player
1 and player 2. Each player influences the diffusion process (4) using a set of
admissible controls u ∈ U (resp., v ∈ V) where U (resp., V) is an admissible
control set for player 1 (resp., player 2). Each player’s control modifies the drift
coefficient (which is now augmented to include the controls of two players) so
that the controlled process of the SDG is given by:

dXs = µ̂(s,Xs, u, v)ds+ σ(s,Xs)dBs + h(s,Xs)dPs,

where µ̂ : [0, T ]×S× U× V→ R is the controlled drift function and σ,B, h, P
are as described in Sec. 3.1.

Each player i ∈ {1, 2} has a cost function Ji : [0, T ]×S× U× V→ R which
it seeks to minimise:

Ju,v
i [x] = E

[∫ T

0

fi(s,Xs, u, v)ds+ e−γTKi(XT )

]
,

where fi : [0, T ]×Rp × U× V→ R is the running cost, Ki : [0, T ]×Rp → R, is
the terminal cost and γ ∈ R>0 is the game discount factor.

We are interested in zero-sum games which are games in which following
condition J1 = −J2 holds.

We are interested in constructing an equilibrium concept for zero-sum games.
The value of the game exists if we can commute the sup and inf operators so
that we have that sup

u∈U

inf
τ∈T

Jτ,u[·] = inf
τ∈T

sup
u∈U

Jτ,u[·]. We denote the value by Ĵ

and denote by (k̂, û) ∈ T× U the pair that satisfies J k̂,û ≡ Ĵ . The value,
should it exist, is the minimum payoff each player can guarantee itself under
the equilibrium strategy. Should the value Ĵ exist, it constitutes a saddle point
equilibrium of the game in which neither player can improve their payoff by
playing some other control — an analogous concept to a Nash equilibrium for
the case of two-player zero-sum games.

Definition 1. The pair (τ̂ , û) ∈ T× U is a saddle point equilibrium iff ∀x ∈
[0, T ]× S:

J τ̂ ,û[x] = sup
u∈U

J τ̂ ,u[x] = inf
τ∈T

Jτ,û[x]. (8)

We now introduce a central concept within game theory:
A saddle point equilibrium is a strategic configuration in which each player

executes it best-response (BR) strategy where a BR strategy is defined by:

Definition 2. The set of BR strategies for player 1 against the stopping time
τ ∈ T (BR strategies for player 1I against the control u ∈ U) is defined by
û ∈ argsup

u′∈U

E[Jτ,u′
[·]] (resp., τ̂ ∈ arginf

τ ′∈T

E[Jτ ′,u[·]]).
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It can be shown that the above transition dynamics admit the Markov prop-
erty [28]. For SDGs with Markovian transition dynamics, path dependent strate-
gies can be disposed of without destroying the existence of an equilibrium of
the game. Consequently, without loss of generality, we restrict ourselves to the
class of Markov controls, that is controls that depend only on the current state
and round. It is well-known that for stochastic games, an equilibrium exists
in Markov strategies even when the opponent can draw from non-Markovian
strategies [15].

The literature on SDGs is primarily concerned with two player settings in
which both players exercise their controls to jointly modify the diffusive process
[10, 12]. In order to tackle problem (2), we depart from this model and consider
a game in which player 2 is entitled to choose a time to stop the process i.e. the
player 2 control set is T ⊆ [0, T ] which consists of (F−measurable) stopping
times. Thus, player 1 can manipulate the system dynamics with its control and,
at any point, player 2 can decide to stop the process.

Formulating the problem as a game enables us to construct a characterisa-
tion of the optimal controls, in particular, when an equilibrium is achieved, the
controls being exercised by each player will be best-response controls. However,
the issue of how to compute the value function and hence, extract the optimal
controls remains.

In order to compute the value of the game, we appeal to a formulation of
OSC theory that uses a path integral to produce an estimate of the VF. We
proceed to give a brief overview of path integral control theory.

4.2 Path Integral Control Theory

In continuous-time, the problem of finding the optimal VF in OSC problems
can be reduced to solving a partial differential equation (PDE) known as the
Hamilton-Jacobi-Bellman (HJB) equation. In general, the HJB equation is a
non-linear second order PDE.

Path integral control (PIC) is a formulation of OSC in which the evolution of
the VF is described as a functional integral over all intermediate paths satisfying
some given boundary conditions [19]. Under a coupling assumption between con-
trol costs and the variance, the PIC framework enables the VF of RL problems
with quadratic control costs and linear control to be computed by forward sam-
pling of the uncontrolled diffusion process. Since estimates of the optimal control
policies are now reduced to approximating a PI, computing the VF involves only
the path costs of the state trajectory.2 This has led to significant gains in com-
puting optimal controls in continuous-time applications of RL [34, 33]. In PIC,
the following coupling relation between the control cost and the diffusion coeffi-
cient is assumed: G(s, x)TR−1G(s, x) = λσTσ1p, where 1p is the p−dimensional

2 Also, the convergence rate of PI approximation is independent of the computational
explosion with the state space dimensionality [31] as encountered in other methods
for solving HJB equations e.g. finite difference methods [26].
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identity matrix, G is the control matrix in (7) and λ ∈ R>0. The coupling as-
sumption implies that the control cost decreases as the system variance increases
which enables the linearisation of the HJB equation. This allows for estimation of
the VF by approximation of a PI (see next section). The assumption is however
frequently violated in numerous settings in finance, economics and RL [7, 13]
rendering PIC unsuitable for these problems.

Using the theory of backward stochastic differential equations (BSDEs), we
demonstrate how the PI approximation techniques can be used without imposing
the coupling assumption. This enables application in a broad range of settings
within robotics economics for which the coupling assumption does not hold.

The classical Feynman-Kac lemma enables linear parabolic PDEs to be solved
numerically by Monte Carlo simulations of the stochastic process [12]. Recent
developments using backward stochastic differential equations (BSDEs) have
led to the development of versions of the Feynman-Kac lemma that apply to
semilinear second order PDEs — PDEs in which the PDE may have nonlinear of
all terms up to and including the first order derivative. This nonlinear Feynman-
Kac formula yields a nonlinear Monte Carlo method via the BSDE to solve the
semilinear HJB equation in a numerical fashion. Full details of this approach
can be found in [29, 31].

5 Summary of Main Results
We now summarise the main results of the paper the proofs of which we defer
to the next section.

We define the adversary’s continuation region D as:

D := {X(s) ∈ S;ψ(X(S)) > K(X(S))}. (9)

The main result of the paper is to characterise the set of BR controls and con-
struct an RL method for computing the VF. In particular, we prove the following:

The FT optimal control û ∈ U is given by:

û = −1

2
R−1[G(s, x)]T∇xψ(s, x), (10)

and the adversary’s optimal stopping time τ̂ ∈ T is:

τ̂ = inf{s > 0|X(s) /∈ D; s ∈ [0, T ]}, (11)

where

ψ(x) =

∫
P
(
Xτ̂

∣∣∣x) ·(∫ τ̂

0

f(Xs)ds+K(Xτ̂ )

)
dx, (12)

with s ∈ [t, T−t) and for any x(s+t) ≡ Xs+t ∈ Rp and where P is the probability
transition matrix.

We prove that the pair (τ̂ , û) ∈ T× U consists of BR strategies and consti-
tutes a saddle point equilibrium. We lastly show that the stopping time τ̂ is a
solution to the SP described in Sec. 6.1. The results allow the VF to be computed
by forward sampling of (4).
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6 Main Analysis

We now develop the main theory of the paper and prove the results of Sec. 5. In
particular, we provide a full characterisation of the game and show that the VF
can be approximated by estimating a PI. This allows for an RL method with no
open parameters other than exploration noise. We then characterise the optimal
stopping time for the stopper and the FT optimal control.

We denote by C([a, b],F) the set of continuous functions from R to a field F
over the interval [a, b] ⊆ R. The temporal derivative is denoted by ∂s and the
first, second and nth spatial derivative (resp.): ∇xi

,∇2
xi,xj

,∇n
x1,...xn

. We denote
by C1,2([0, T ], Ω) = {h ∈ C(Ω) : ∂th,∇xi,xj

h ∈ C([0, T ], Ω)} and by S(p) is the
set of invertible symmetric p× p matrices for a field F ⊆ Rp.

We begin introducing the Dynkin operator of the controlled process (5), act-
ing on some function ϕ ∈ C1,2([0, T ]× S) and ∀x ∈ [0, T ]× S by:

Luϕ(x) =

k∑
i=1

∇xi
ϕ(x)T µ̂i(s, x, u) +

1

2

p∑
i,j=1

(σσT )ij∇2
xi,xj

ϕ(x) +Djumpϕ(x),

where Djump is defined by: Djumpϕ(s, x) :=
∑p

j=1 γj [ϕ(s, x+ hj(s, x))− ϕ(s, x)],

and where ρj : R → Rm+1 is the jump-rate vector of P .
We begin with the following lemma that describes the Dynkin operator under

the optimal player 1 control:

Lemma 1. The following holds ∀x ∈ [0, T ]× S:

sup
u∈U

Luϕ(x) = Aϕ(x) (13)

where Lu is the Dynkin operator (c.f. (13)) and the operator A is given by:
A := µ(s, x)∇xϕ(x)+

∑d
i,j=1(σσ

T )ij∇2
xxϕ(x)+∇xϕ(x)G(s, x)R

−1G(s, x)∇xϕ(x)+
Djumpϕ(x).

The following theorem fully characterises the VF:

Theorem 1. Let ψ ∈ C1,2([t, τS ];Rp) satisfy:

sup
u∈U

[
∂ψ

∂s
(x) + Aψ(x) + f(s, x, u)

]{
= 0, ∀x ∈ D,
≤ 0, ∀x /∈ D,

(14)

then ψ is the VF of the game, that is ∀x ∈ [0, T ]× S we have ψ[x] = J τ̂ ,û[x].

The proof relies on an application of Itō’s lemma for jump diffusions [28],
the mean value theorem and constructing a sequence of continuation regions in
which stopping is suboptimal for the stopper. The result is a minor modification
of Theorem 2.1 in [2] in which the result is derived for diffusions with jumps
generated by compensated Poisson random measures.

Theorem 1 states that the solution to (14) enables us to recover the VF to
the game. Crucially, this reduces the problem to finding a solution to (14). Even
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though this represents some progress, obtaining a solution to (14) is generally
inaccessible through analytic methods.

The following is a direct consequence of the Theorem:

Corollary 1. The pair (τ̂ , û) ∈ T× U consists of BR strategies and constitutes
a saddle point equilibrium in Markov strategies.

We now state a key result:

Proposition 1. For all x ∈ [t, τS ]× S, the VF ψ satisfies:

min

{
−∂ψ
∂s

(x)− (Aψ(x) + f(x)) , ψ(x)−K(x)

}
= 0, (15)

Prop. 1 exhibits the fact that the problem satisfies an obstacle problem. The
intuition behind (1) is that whilst the game is in play, player 1 executes its
BR strategy and the VF satisfies the HJB equation. However, the expected
cumulative future costs for player 2 can never exceed K(x) since the rational
choice for player 1 is to stop the game as soon as parity of its future costs occur.

Proof of Prop. 1. We shall refer to (15) as the Hamilton-Jacobi-Bellman-Isaacs
condition or HJBI condition for short.

We initiate the proof by considering a suboptimal stopping time for player 2,
τ̃ ∈ T, hence:

V (·) = sup
u∈U

inf
τ∈T

Jτ,u[·] ≤ sup
u∈U

J τ̃ ,u

We can equivalently write this as:

V (x) ≤ sup
u∈U

E

[∫ τ̃

0

f(s,Xs, u)ds+ e−γ(τ̃∧T )K(Xτ̃∧T )

]
,

Using the definition of the VF and subtracting V (x) from both sides, we find::

0 ≤ sup
u∈U

E

[∫ dt∧τ̃

0

f(s,Xs, u)ds+ e−γ(τ̃∧T )V (t+ dt,Xdt)− V (x)

]
,

After taking the limit as dt→ 0 we find:

0 ≤ sup
u∈U

E
[
f(s,Xs, u)ds+ e−γ(τ̃∧T )dV (x)

]
, (16)

By Itō’s lemma for jump-diffusion processes [28], the total variation, dϕ is:

dϕ(x) =

k∑
i=1

∇xi
ϕ(x)T (µ̂i(s, x, u)ds+ σi(s, x)dBs) +

1

2

p∑
i,j=1

(σσT )ij∇2
xi,xj

ϕ(x)

+Djumpϕ(x) +
∂ϕ

∂s
(x). (17)
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Further, by the standard properties of Brownian motion (and since V ∈ C1,2([0, T ],Rp):

E

[
k∑

i=1

∇xiV (x)Tσi(s, x)dBs

]
= 0 (18)

Therefore, inserting (17) into (16) and using (18) we find:

−∂V
∂s

(x)−
(
sup
u∈U

LuV (x) + f(x)

)
≥ 0, (19)

Using Lemma 1, we can equivalently express (19) as:

−∂V
∂s

(x)− (AV (x) + f(x)) ≥ 0 (20)

It remains only to consider the case when an immediate termination is optimal
for the stopper. In this case, the following expression holds:

V (x) = K(x) (21)

Hence, combining (21) with (20), yields the following:

min

{
−∂V
∂s

(x)− (AV (x) + f(x)) , V (x)−K(x)

}
= 0,

which is the required result.

The issue of how to compute the solution to (14) remains. Moreover, the
analysis has thus far proceeded as if the reward function and transition model
are known up-front. We now show how an RL method can be used to overcome
these problems by way of estimating a PI.

The PDE in (14) belongs to a class of PDEs known as semilinear parabolic
PDEs. After further deduction, we can extract the BR controls for each player
(this in proven in Theorem 2) . For the case involving a controller and no stopper,
in order to linearise the operator A, current PI methods impose the coupling
assumption. As we now demonstrate, since the VF is a solution to a semilinear
parabolic PDE, we can construct a PI representation of the VF without imposing
the coupling assumption.

We now state the Feynman-Kac lemma (a proof for jump-diffusion processes
can be found in [34]):

Lemma 2. [Generalised Feynman-Kac Lemma for Jump-Diffusion Processes] Sup-
pose that ψ ∈ C1,2([0, T ];Rp) and a, η ∈ C([0, T ];Rp), given the LP PDE:

∂sψ(s, y) + Ĥψ(s, y) = η(s, y), (22)

where Ĥ is the Hamiltonian operator: Ĥ[ψ] := αa(s, x)ψ(x) + Lψ(x) and L is
the Dynkin operator of (5) and (s, y) ∈ [0, T ]× S, α ∈ R. The VF is ψ then:

ψ(x) = E

[
ψ(XT )exp

(
α

∫ T

0

a(r, xr)dr

)
+

∫ T

0

η(x)exp

(
−
∫ T

0

a(r, xr)dr

)
ds

]
,
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where the expectation is taken w.r.t the probability measure P such that the
forward diffusion process obeys (4).

Applying the generalised Feynman-Kac lemma yields:

ψ(x) = E

[
K (Xτ̂ |x) +

∫ τ̂

0

f(s,Xs, u0)ds

]
. (23)

where τ̂ = inf{s > 0|X(s) : ψ(X(S)) ≤ K(X(S))}.
Expression (23) can be equivalently written as:

ψ(x) =

∫
P
(
Xτ̂

∣∣∣x) ·(∫ τ̂

0

f(s,Xτ̂ ,u0
)ds+K(Xτ̂ )

)
dx, (24)

with s ∈ [t, T − t) and for any x(s+ t) ≡ Xs+t ∈ Rp, the probability transition
matrix P is given by:

P (s+ t, x(s+ t)|t, x(t))

= (1− ρ(t)δt) ·
[

1√
2πσδt

exp
{
−((x(s+ t)− x(t)− µ(x, t)δt)2/2σ)

}]
+ ρ(t)δt

[
1√

2πσδt
exp

{
−1

2σ
((x(s+ t)− x(t)− (f(x, t) + h(x, t))δt)2)

}]
. (25)

This underscores the following result; we defer the proof to the appendix:

Theorem 2. The optimal FT control û ∈ U is given by:

û = −1

2
R−1[G(s, x)]T∇xψ(s, x), (26)

and the adversary’s optimal stopping time τ̂ ∈ T is:

τ̂ = inf{s > 0;X(s) /∈ D|s ∈ [0, T ]}, (27)

whereD is the adversary’s continuation region (c.f. (9)) and ψ is given in (24).

The probabilistic interpretation of (24) yields a Monte-carlo method for es-
timating the VF by empirical means: ψ(x) ≈ ψN (x) := 1

N

∑N
i=1 h(x +W i

T−t)

where h(x) :=
∫ τ

0
f(s, x, u0)ds+G(xτ ).

To implement the control in a number of settings, it is necessary to formulate
the control in discrete-time. To this end, we deduce the following result:

Lemma 3. The optimal control policy, û ∈ U has a discrete-time representation
given by:

û(sj , x) = −limds→0R
−1G(sj , x)

T

∫
α(si, x)(∇xS(sj , x) + S(sj , x)∇xZ(sj , x))dτi,
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where

α(si, x) :=
1

D(τi)
exp(Z(si, x)), S(x) := χ(T,Xt,x0,û

T ) +

N−1∑
j=1

f(si, x)ds,

Z(x) := −1

2

N−1∑
j=1

∥(xsj+1
− xsj )/ds− µ(sj , x)∥2σ, D(si) := (2πds)

1
2 (N−i)l.

We now describe an SP in which the goal is to find an optimal stopping
criterion under worst-case scenarios.

6.1 Optimal Stopping in Worst-Case Scenarios

SPs involve finding an optimal stopping criterion in a dynamic system given
some state dependent reward. SPs are ubiquitous in economics, finance and sta-
tistical hypotheses testing. In many instances with concern for safety or financial
security, it is necessary to consider SPs under worst-case scenarios.

We tackle an important variant of the problem in which the agent seeks
to find the optimal stopping criterion under worst-case conditions. To describe
worst case scenarios, we perform a change of measure.

The problem involves an agent that seeks to finding an optimal stopping time
τ̂ under the adverse non-linear expectation EP [·] := −|ρ|−1 inf

Q∈Ma

logEQ[·] s.th.

τ̂ ∈ arg sup
τ∈T

EP [Yτ ] = arg sup
τ∈T

(
−|ρ|−1 inf

Q∈Ma

logEQ [Yτ ]

)
(28)

where Ma is a family of measures equivalent3 to P, the reference measure under
(30), ρ ∈ R>0 and Yτ = exp

{
−|ρ|

(∫ τ∧T

t
f(s, us, xs)ds+ e−γ(τ∧T )K(Xτ∧T )

)}
.

Note that the risk sensitive minimisation (28) generalises the risk neutral
minimisation since by a version of the Laplace-Varadhan lemma [11] we obtain:

lim
ρ→0

EP [Yτ ] = inf
Q∈Ma

EQ
[
Ȳτ
]

(29)

where Ȳτ :=
∫ τ∧T

t
f(s,Xs, us)ds+ e−γ(τ∧T )K(Xτ∧T ).

The uncontrolled system dynamics are given by:

dXs = µ(s,Xs)ds+ σdB(s,Xs), (30)

where the drift µ is as described previously and σ ∈ R.
The problem describes an agent that seeks to find an optimal stopping time

τ ∈ T under a worst-case scenario. We now illustrate the SP within an example
in a financial setting which is adapted from the discrete example in [25].
3 The measure P is said to be equivalent (denoted by Q ≪ P) to Q if whenever the

measure is 0 on Q it is also 0 on P.
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6.2 Example: Optimal investing in financial markets

An investor (I) seeks to exit the market (sell all market holdings) at an optimal
stopping time τ ∈ T. It is assumed that the market acts in such a way to
minimise risk-free profit opportunities for the investor.4 When I exits the market,
I receives a return of λτXτ where Xt ≡ X(t, ω) ∈ [0,∞[×Ω is a Markov process
that determines the asset price at time t and λ ∈]0, 1] is I’s discount factor.
Classically, the exit time is computed as the solution to the following problem:

sup
τ∈T

EP
[
e−γτXτ

]
. (31)

In (31), the expectation is taken w.r.t. a risk-neutral measure P and hence,
neglects the adversarial effect of the market. To accommodate market effects on
investment opportunities, the objective is modified to the following:

sup
τ∈T

(
−|ρ| inf

Q
logEQ

[
exp{−|ρ|e−γτXτ}

])
; ρ ∈ R>0. (32)

In this problem, the agent finds an optimal time to exit a financial market under
an adversarial market scenario.

6.3 Solving the SP

Having characterised the optimal controller (and adversary) behaviour for the
game of control and stopping, we return to the SP under worst-case scenarios
and show that the solution can be recovered by solving the game.

The following theorem shows that the solution to the SP is given by the
stopping time û of the SDG (2):

Theorem 3. Let τ̂ ∈ T be the equilibrium pair in Theorem 2, then τ̂ ∈ T is a
solution to the worst-case SP.

The theorem is proven by establishing an equivalence of the two problems. In
particular, the proof of the theorem works by demonstrating that the objective
function of the game of control and stopping corresponds to the objective of the
SP and secondly, showing an equivalence between the (optimal) VF for the game
of control and stopping and the (optimal) VF for the SP.

7 Conclusion

We constructed a novel method for generating fault-tolerant control policies.
The framework produces policies that are robust against random system faults
that can lead to catastrophic outcomes. We showed that the method tackles
optimal stopping under worst case scenarios. The continuous (in action and
state spaces and, time) yields a solution suitable for numerous problems within
finance, robotics and physical control. For both problems, we showed that the
each solution can be approximated by forward sampling of a diffusion process.
4 This is the no arbitrage principle [5].
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Supplementary Material
Assumptions
The results of the paper are built under the following additional assumptions:

The functions µ,K, µ̂, σ̂, h are deterministic, measurable and Lipschitz con-
tinuous that satisfy a polynomial growth condition. These conditions ensure the
existence of (5) [16].

In particular, for R ∈ {µ,K, µ̂, σ̂, h}, we assume there exist real-valued con-
stants cR > 0 s.th. ∀s ∈ [t, τS ],∀x, y ∈ Rp we have:

|R(s, x)−R(s, y)| ≤ cR |x− y| .

We assume the functions µ,K, µ̂, σ̂, h satisfy a polynomial growth condition, that
is for R ∈ {µ,K, µ̂, σ̂, h}, we assume that there exist real-valued constants dR > 0
s.th. ∀(s, x) ∈ [t, τS ]× Rp we have:

|R(s, x)| ≤ dR (|1 + |x|ρ)

Poisson Stochastic Calculus
As in [34], we state some important results of Poisson stochastic calculus which
we use (a detailed treatment of the following results can be found in [14]):

E[dPi(s)] = ρids, (33)
Var[dPi(s)] = ρids, (34)

where ρi(s) > 0 is the ith jump rate or jump density and ρids is the mean
count of the ith Poisson process in the time interval (t, t+ ds]. We also have the
following results:

Cov[dPi(sj)dPi(sk)] = Var[dPi(sj)]δk,j = ρi(sj)dsδk,j , (35)
where δk,j is the kroneck-delta function. Moreover, let r and m be continuous
parameters then we have:

Cov[dPi(r)dPi(m)] = ρi(mj)dmδ(m− r)dr. (36)
For the Poisson differential vector dP , we have Var[dP ] = diag(ρ1, . . . , ρm) and
for non-independent Poisson increments we have Var[dP ] = σpdt. As in [34], we
note also that since both the processes Pi and dPi are Poisson distributed, we
can clearly write the following expressions:

Prob(Pi(s) = k) = exp(−νi)(νki )/k!, (37)
and similarly,

Prob(dPi(s) = k) = exp(−ρi)(ρids)k/k!, (38)
By the zero-one-law, for the calculation of the probability in (38), for the jumps
in (38) we can write the following:

Prob(dPi(s) = k) = (1− ρi(s)ds)δk,0 + ρi(s)dsδk,1 (39)
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Proof of results

Proof of Lemma 1. Remark 1. Note that Theorem 1 implies that on D:

inf
u∈U

[
∂sϕ(s,Xs) +Lûϕ(s,Xs) + f(s,Xs, û)

]
= 0, ∀X ∈ Rp (40)

Applying Itō’s lemma to ϕ(x), inserting the expression for the running cost
function f c.f. (2) and (6) and, by Theorem 1, we readily compute that:

0 = inf
u∈U

f(s,Xs, u) + ∂sϕ(s,Xs) + ⟨∇xϕ(s,Xs), µ̂(s,Xs, u)⟩

+
1

2
tr(∇2

xxϕ(s,Xs)σ(s,Xs)[σ(s,Xs)]
T ) +Djumpϕ(s,Xs)

= f(s,Xt,x,û
s ) +

1

2
ûTRuû+ ∂sϕ(s,Xs) + (∇xϕ(s,Xs))

T (µ(s,Xs)

+G(s,Xs)û+
1

2
tr(∇2

xxϕ(s,Xs) · σ(s,Xs)[σ(s,Xs)]
T ) +Djumpϕ(s,Xs)),

(41)

from which we readily compute that the optimal control û ∈ U for player 1 is
given by:

û(s, x) = −R−1
u [G(s, x)]T∇xϕ(s, x), (42)

Reinserting (42) back into (41) we arrive at the following:

−∂ϕ
∂s

(x)− (Aϕ(x) + f(x)) = 0, (43)

where A is given by:

Aϕ(x)

:= µ(s, x)∇xϕ(x) +

d∑
i,j=1

(σσT )ij∇xxϕ(x) +∇xϕ(x)G(s, x)R
−1G(s, x)∇xϕ(x)

+Djumpϕ(x)

(44)

Proof of Theorem 2. The proof of the theorem follows immediately from (42)
and the definition of the continuation region D. Indeed, whenever the process
X exits D it is optimal for player 2 to terminate the game — the remainder of
the theorem then follows from applying the definition of D.

Proof of Lemma 3. Since the stochastic part of the process is Gaussian dis-
tributed with variance σsj the transition probability is given by the following
expression:

Prob(Xsj+1
|Xsj ) =

1

((2π)l · |σsj |)
1
2

exp

(
−1

2
∥Xsj+1

−Xsj − µ(sj , Xsj )ds∥2σ−1
sj

)
,
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where ∥ · ∥2 is the Mahalanobis norm defined by ∥v∥2M := vTMv for some v ∈
GL(p,R) and M ∈ Sp. After performing some standard steps (see [33, 36]), we
can rewrite the PI (31) in our case as:

ψ(x) = limds→0

∫
1

ΠN−1
j=1 (2π)l · |σsj |)

1
2

N−1∑
j=1

f(sj , Xsj +K(Xt,x0,û
τ )


· exp

−1

2

N−1∑
j=1

∥∥Xsj+1 −Xsj − µ(sj , Xsj )dt
∥∥2
σ−1
sj

 dsj

= limds→0

∫
1

D(τ)
S(sj , Xsj )exp

(
Z(sj , Xsj )

)
dsi, (45)

where Z, S and D are defined by:

Z(x) := −1

2

N−1∑
j=1

∥∥Xsj+1 −Xsj − µ(sj , Xsj )ds
∥∥2
σ−1
sj

,

S(x) =

N−1∑
j=1

f(sj , Xsj ) +K(Xt,x0,û
τ )

and

D(τ) := ΠN−1
j=1 ((2π)l · |σsj |)

1
2 . (46)

Inserting (45) into (42), the expression for the optimal control û, we find that:

û(sj , x) =− limds→0R
−1G(sj , x)

T∇x

(∫
1

D(si)
S(si, x)exp(Z(si, x))

)
. (47)

If we now suppose that the integrand of (47) is continuously differentiable in
Xsj , then we can readily compute that:

û(sj , x) = −limds→0R
−1G(sj , x)

T · ∇x

(∫
1

D(τ)
S(si, x)exp(Z(si, x))dsi

)
= −R−1limds→0G(sj , x)

T

·
(

1

D(τ)
exp(Z(si, x))(∇xS(si, x) + S(si, x)∇xZ(si, x))dsi

)
which is the required result.

Proof of Theorem 3. To prove an equivalence of the two problems, we must
prove two facts: i) the objective function of the game of control and stopping
corresponds to the objective of the SP where the adversary chooses the measure
Q. ii) an equivalence between the (optimal) VF for the game of control and
stopping and the (optimal) VF for the SP.
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Our first task is to construct an equivalent measure Q which is selected by
the adversary. Using Girsanov’s theorem (see [27]), for the passive dynamics in
(30), we have the following relation for Q:

dQ
dP

= e−ξ(u) (48)

where the quantity in (48) is the Radon-Nikodym derivative and ξ(u) is:

ξ(u) =
1

2
σ

∫ τ

0

uTs usds+
√
σ

∫ τ

0

uT dBs (49)

where u ∈ U is as in Sec.3.1 and P is the reference measure for the passive
dynamics in (4). With the transformation (48) the (controlled) dynamics is:

dXs = µ(s,Xs)ds+ σdBs, (50)

We now show that the performance function for the SP reproduces the objective
function of the game of control stopping (c.f. (3) and (6)), indeed:

log {EQ [exp (Yτ )]} = log

{
EP

[
exp (Yτ )

dQ
dP

]}
≥ EP

[
log

(
exp (Yτ )

dQ
dP

)]
= EP

[
log (exp (Yτ )) + log

(
dQ
dP

)]
= EP [Yτ + ξ(u)] = EP

[
Yτ − 1

2
σ

∫ τ

0

uTs usds

]
, (51)

where we have used that E
[
uTσi(s, x)dBs

]
= 0 by the standard properties of

Brownian motion. At optimum, when u = û we have equality in (51).
This proves the equivalence between the two objectives (now R ≡ σ1d). It

remains to prove that the VF of the game is equivalent for the VF of the SP:

sup
τ∈T

(
inf

Q∈Ma

EQ [Yτ ]

)
= inf

u∈U

(
sup
τ∈T

E [Y u
τ ]

)
. (52)

The result follows directly from the existence of a value of the game of control
and stopping and the Girsanov theorem. To see this we note by Theorem 1:

inf
τ∈T

(
sup
u∈U

E
[
Ȳ u
τ

])
= sup

u∈U

(
inf
τ∈T

E
[
Ȳ u
τ

])
, (53)

where E is taken under the controlled diffusion (5). Lastly, by Girsanov’s theorem
(c.f. (48)), we have that sup

u∈U

E
[
Ȳ u
τ

]
= sup

Q
EQ
[
Ȳτ
]
; setting Ȳ(·) ≡ −Y(·) then

reveals the equivalence, hence

arg inf
τ∈T

(
sup
u∈U

E [Y u
τ ]

)
= arg inf

τ∈T

(
E
[
Y û
τ

])
= τ̂ , (54)

which yields the required result.
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