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Abstract. The Distributed Constraint Optimization Problem (DCOP)
offers a powerful approach for the description and resolution of coop-
erative multi-agent problems. In this model, a group of agents coordi-
nates their actions to optimize a global objective function, taking into
account their local preferences. In the majority of DCOP algorithms,
agents operate on three main graphical representations of the problem:
(a) the constraint graph, (b) the pseudo-tree, or (c) the factor graph.
In this paper, we introduce the Constraint Composite Graph (CCG) for
DCOPs, an alternative graphical representation on which agents can co-
ordinate their assignments to solve the distributed problem suboptimally.
By leveraging this representation, agents are able to reduce the size of
the problem. We propose a novel variant of Max-Sum—a popular DCOP
incomplete algorithm—called CCG-Max-Sum, which is applied to CCGs.
We also demonstrate the efficiency and effectiveness of CCG-Max-Sum
on DCOP benchmarks based on several network topologies.

1 Introduction

In a cooperative multiagent system multiple autonomous agents interact to pur-
sue personal goals and to achieve shared objectives. The Distributed Constraint
Optimization Problem (DCOP) model [21, 7] is an elegant formalism to describe
cooperative multiagent problems that are distributed in nature. It is equivalent
to the weighted constraint satisfaction problem (WCSP) [2] under multiagent
settings. In this model, a collection of agents coordinate a value assignment to
the problem variables with the goal of optimizing a global objective within the
confines of localized communication. DCOPs have been used to solve a variety
of problems in the context of coordination and resource allocation [18, 39, 20, 9],
sensor networks [6], and device coordination in smart homes [29, 8].
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Fig. 1: DCOP constraint graph (a), pseudotree (b), factor graph (c), and a con-
straint (d).

DCOP algorithms are either complete or incomplete. Complete algo-
rithms find an optimal solution to the problem employing one of two broad
modus operandi: distributed search-based techniques [21, 35, 23] or distributed
inference-based techniques [25, 32]. In search-based techniques, agents traverse
the search space by selecting value assignments and communicating them to
other agents. Inference-based techniques rely instead on the notion of agent be-
lief, describing the best cost an agent can achieve for each value assignment to
its variables. These beliefs drive the value-selection process of the agents to find
an optimal solution to the problem.

Since finding an optimal DCOP solution is NP-hard [21], optimally solving
a DCOP requires exponential time or space in the worst case. Thus, there is
growing interest in the development of incomplete algorithms, which trade off
solution quality for better runtimes. Similar to complete algorithms, incomplete
algorithms can be classified as local search-based [19, 36] and inference-based [26,
6]. Some incomplete algorithms have been used in several multiagent applica-
tions. For instance, Max-Sum [6, 31] is an inference-based incomplete algorithm
which has been successfully used to solve sensor networks problems [6], multi-
agent task allocation for rescue teams in disaster areas [28], and smart home
coordination problems [29].

In both complete and incomplete DCOP algorithms, the problem resolution
process is characterized by the graphical representation of the problem. The three
most important problem representations are the constraint graph, the pseudo-
tree, and the factor graph. The first represents a problem as a graph whose nodes
describe the variables and whose edges describe the constraints. The second is a
rearrangement of the constraint graph, where a subset of edges forms a rooted
tree and where two variables in the scope of the same constraint appear in the
same branch of the tree. The third represents the problem as a bipartite graph
where nodes represent both variables and constraints, and edges link the con-
straint nodes to the variables in their scope. In many local search algorithms,
such as MGM [19], DSA [36], or the region-optimal algorithm family [24], agents
operate directly on the constraint graph and perform distributed local searches
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by exchanging information with their neighbors in the constraint graph. In the
main inference-based algorithms, the agents operate either on a pseudo-tree (e.g.,
P-DCOP [26]) or a factor graph (e.g., Max-Sum). In the former, agents exchange
messages following the structure of the pseudo-tree, typically alternating between
a phase in which messages are propagated up from the leaf agents to the root
agent of the pseudo-tree, and one in which information is propagated down. In
the latter case, there are two types of entities, namely, variable nodes (represent-
ing variables) and function nodes (representing constraints). Both these entities
participate in the message exchange process to solve the problem.

All these representations allow agents to exploit the graphical structure of
the problem. However, they hide the numerical structure of the problem’s con-
straints. Thus, in this paper, we introduce the Constraint Composite Graph
(CCG) for DCOPs, a lifted graphical representation that provides a framework
for exploiting simultaneously the graphical structure of the agent-coordination
process as well as the numerical structure of the constraints involving the vari-
ables controlled by the agents. CCGs have been recently introduced in the con-
text of Weighted Constraint Satisfaction Problems (WCSPs) [15–17], and shown
to be highly effective in solving a wide range of problems [34, 33]. We contribute
to the development of inference-based DCOP algorithms by investigating the
CCG representation for DCOPs and developing a variant of Max-Sum which
can be used directly on CCGs.

Contributions: This paper makes the following contributions: (1) We adapt
the recently introduced CCG representation for Weighted Constraint Satisfac-
tion Problems (WCSPs) to DCOPs. (2) We present a novel framework for solving
DCOPs sub-optimally whose agent interactions are driven by the structure of
the CCG representation. (3) By leveraging this representation, agents are able
to exploit techniques that are effective, in general, in reducing the size of the
original problem. (4) We analyze the behavior of the proposed framework on fed-
erated social networks problems (introduced in Section 5) and random Boolean
problems on different graph topologies and show its efficiency and effectiveness
on several important classes of graphs, including grid networks and scale-free
networks, which are used to model many applications in distributed settings.

To the best of our knowledge, this work describes the first proposal of a
distributed message-passing algorithm based on the CCG representation. We
refer to our algorithm as a “lifted” message passing algorithm since it works on
the CCG representation of a DCOP.

2 Background

We now review the distributed constraint optimization framework, the graphical
models commonly adopted to represent a DCOP, and the CCG model.

2.1 Distributed Constraint Optimization

A Distributed Constraint Optimization Problem (DCOP) is a tuple P =
〈X,D,F,A, α〉, where: X = {x1, . . . , xn} is a set of variables; D =
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{Dx1
, . . . , Dxn

} is a set of finite domains for the variables in X; F={f1, . . . , fe} is
a set of constraints (also called cost functions), where f :

∏
x∈xf Dx → R+∪{∞}

and xf ⊆X is the set of the variables (also called the scope) of f ; A={a1, . . . , ap}
is a set of agents; and α : X → A is a function that maps each variable to one
agent. Figure 1(d) shows an example constraint. It specifies the costs of all com-
binations of values for the variables x1, x2 in its scope. For a variable x∈X, we
use fx to denote the set of constraints that involve x in their scopes.

A partial assignment σX is an assignment of values to a set of variables
X ⊆ X that is consistent with their domains; i.e., it is a partial function θ :
X → ∪ni=1Dxi

such that, for each xj ∈ X, if θ(xj) is defined (i.e., xj ∈ X),
then θ(xj) ∈ Dxj

. For a set of variables V = {xi1 , . . . , xih} ⊆ X, πV (σX) =
〈θ(xi1), . . . , θ(xih)〉 is the projection of σX to the variables in V , where i1 < . . . <
ih. When V = {xi} is a singleton, we write πxi

(σX) to denote the projection
of σX to xi. The cost F(σX) =

∑
f∈F:xf⊆X f(πxf (σX)) of an assignment σX is

the sum of the evaluation of the constraints involving all the variables in X. A
solution is a partial assignment σX (written σ for shorthand) for all the variables
of the problem, i.e., with X=X, whose cost is finite (i.e., F(σ) 6=∞).

The goal is to find an optimal solution σ∗=argminσ F(σ). In this paper, we
restrict our attention to Boolean DCOPs (i.e., DCOPs where all domains are
{0, 1}). Despite our focus on Boolean DCOPs, the concepts introduced in the
next sections are generalizable as discussed in Section 6.

Given a DCOP P , its constraint graph is GP = (X, EC), where an undi-
rected edge {x, y} ∈ EC exists if and only if there exists an f ∈ F such that
{x, y} ⊆ xf . The constraint graph provides a standard representation of a DCOP
instance. It highlights the locality of interactions among agents and therefore is
commonly adopted by DCOP resolution algorithms. Figure 1(a) shows an exam-
ple constraint graph of a DCOP with three agents a1, a2, and a3, each control-
ling one variable with domain {0,1}. There are three constraints: f1 with scope
xf1 = {x1, x2}, f2 with scope xf2 = {x2, x3}, and f3 with scope xf3 = {x1, x3}.

A pseudo-tree for P is a spanning tree TP =〈X, ET 〉 of GP , i.e., a connected
subgraph of GP that contains all nodes and is a rooted tree, with the following
additional condition: for each x, y ∈ X, if {x, y} ⊆ xf for some f ∈ F, then x
and y appear in the same branch of TP (i.e., x is an ancestor of y in TP or vice
versa). Figure 1(b) shows one possible pseudo-tree of our example DCOP, where
the solid lines represent tree edges and the dotted line represents a backedge that
connects an agent with one of its ancestors.

A factor graph [14] is a bipartite graph used to represent the factorization of
a function. Given a DCOP P , the corresponding factor graph FP = 〈X,F, EF 〉
is composed of variable nodes x ∈ X, function nodes f ∈ F, and edges EF such
that there is an undirected edge between function node f and variable node x
if and only if x ∈ xf . Figure 1(c) illustrates the factor graph of our example
DCOP, where each agent ai controls its variable xi and, in addition, a1 controls
the constraints f1 and f3, and a2 controls the constraint f2.
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2.2 Max-Sum

Max-Sum [6] is a popular incomplete DCOP algorithm. Max-Sum agents operate
on a factor graph FP through a synchronous iterative process. Albeit the logic of
each variable node and each function node is executed within an agent, to ease
exposition, in what follows, we treat them as entities that are able to send and
receive messages. In each iteration, each function node f exchanges messages
with the nodes of variables in its scope xf , and each variable node x exchanges
messages with the nodes of constraints which involve x in their scopes fx. Thus,
each node exchanges messages with its neighbors in the factor graph.

The content of the messages sent by each function (variable) node is based ex-
clusively on the information received from neighboring variable (function) nodes.
The message qix→f sent by a variable node x to a function node f in fx at itera-
tion i contains, for each value d ∈ Dx, the aggregated costs for d received from
all neighboring function nodes in iteration i − 1, excluding f . It is defined as a
function qix→f : Dx→R+ ∪ {∞}, whose value is 0 for all d∈Dx when i=0 and

qix→f (d) = αixf +
∑

f ′∈fx\{f}

ri−1f ′→x(d) (1)

when i > 0, where ri−1f ′→x is the message received by variable node x from function

node f ′ in iteration i−1 and αixf is a normalizing constant used to prevent the
values of the transmitted messages from growing arbitrarily and chosen so that∑
d∈Dx

qix→f (d) = 0 holds. The message rif→x sent by a function node f to a

variable node x in xf in iteration i contains, for each value d ∈ Dx, the minimum
cost of any assignments of values to the variables in xf in which x takes value d.
It is defined as a function rif→x : Dx → R+ ∪ {∞}, whose value is 0 when i = 0
and

rif→x(d) = min
σ
xf : πx(σxf )=d

f(σxf ) +
∑

x′∈xf\{x}

qix′→f (πx′(σxf )) (2)

when i > 0. Here, σxf represents a possible value assignment to all variables
involved in the scope xf of the constraint f , under the constraint that variable
x ∈ xf takes value d.

The agent controlling a variable node x decides its value assignment at
the end of each iteration by computing its associated belief bix(d) for each
d ∈ Dx: bix(d) =

∑
f∈fx r

i−1
f→x(d) and choosing the assignment d∗i such that,

d∗i = argmind∈Dx
bix(d).

This form of message passing allows an inference-based method: Max-Sum
agents initialize all their messages to 0 and, in each iteration i > 1, retain only the
most recent messages, overwriting the messages received in previous iterations.

Max-Sum is an incomplete DCOP algorithm. However, on acyclic problems,
it is guaranteed to converge to an optimal solution [6].
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3 The Constraint Composite Graph

We now describe the constraint composite graph (CCG), a graphical structure
that can be used to represent DCOPs. Its goal is to exploit simultaneously the
graphical structure of the agent interactions as well as the numerical structure
of the cost functions. It is a node-weighted tripartite graph GCCG = 〈V = X ∪
Y ∪ Z, E, w〉, where X, Y, and Z are the three partitions of the nodes V : X
contains nodes that correspond to DCOP decision variables, whereas Y and Z
contain nodes that correspond to some auxiliary variables. The concept of a
CCG was first proposed by Kumar [15] as a combinatorial structure associated
with a Weighted Constraint Satisfaction Problem (WCSP). WCSPs are similar
to DCOPs, except that all computations are centralized. In this proposal, it
was shown that the task of solving a WCSP can be reformulated as the task of
finding a Minimum Weighted Vertex Cover (MWVC) on its associated CCG [15–
17]. A desirable property of the CCG is that it can be constructed in polynomial
time and is always tripartite [15–17]. CCGs also enable the use of kernelization
methods for solving WCSPs [34], which are polynomial-time procedures that can
simplify a problem to a smaller one, called the kernel. The Nemhauser-Trotter
reduction (NT reduction) [22, 3] is one such kernelization method and uses a
maxflow procedure to find the kernel.

In the next section, we introduce an extension of the Max-Sum algorithm,
called CCG-Max-Sum, which can be used directly on CCGs.

4 CCG-Max-Sum

CCG-Max-Sum is an incomplete, iterative DCOP algorithm which works in two
phases, namely, the CCG construction and the message passing, which are ex-
ecuted sequentially and summarized in Algorithm 1. In the CCG construction
phase, the agents coordinate in the construction of a CCG and take ownership
of the auxiliary variables and constraints introduced by this lifted graphical rep-
resentation. Afterwards, in the message passing phase, the agents execute the
iterative synchronous process which extends the Max-Sum algorithm.

In what follows, we useGi = 〈Xi,Fi〉 to denote the subgraph of the constraint
graph controlled by agent ai, where the sets Xi ⊆ X form a partition of the set
of variables X, and the sets Fi ⊆ F form a partition for the constraint set F.

4.1 CCG Construction Phase

The CCG construction proceeds in 3 stages:

1. Expressing Constraints as Polynomials In this stage, each agent ai transforms
the constraints fi ∈ Fi it controls into polynomials pi (line 2 of Algorithm 1)
using standard Gaussian Elimination. We use GCCGi

=〈Vi=Xi ∪Yi ∪Zi, Ei, wi〉
to denote the portion of the CCG decomposed from constraint fi. Consider
the example constraint f1 in Fig. 1(d), which involves the variables x1 and x2.
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Algorithm 1: CCG-Max-Sum

// CCG Construction Phase

1 foreach fi ∈ Fi do
2 pi ← construct-polynomial(fi);
3 GCCGi =〈Vi = Xi ∪ Yi ∪ Zi,Ei,wi〉 ← decompose-polynomial(pi) ;

4 foreach f ∈ FCCGi involving variable vj with α(vj) 6=ai do
5 ai sends f to aα(vj);

6 When agent ai receives f involving vi ∈ Xi from neighboring agent aj :
fvi(1)← fvi(1) + f(1) ;

// Message Passing Phase

7 µvi→vj ← 0 (∀vi ∈ Vi, ∀vj ∈ N(vi));
8 while termination condition is not met do
9 Wait for all messages µvj→vi from vj ∈N(vi) (∀vi∈Vi);

10 foreach vi ∈ Vi do
11 Update µvi→vj according to Eq. (5);

12 for vi ∈ Xi do
13 if wvi <

∑
vj∈N(vi)

µvj→vi then vi ← 1 else vi ← 0;

x1

0.2

y1

0.5

x2

0.1

Fig. 2: The projection of an MWVC on the IS {x1, x2} of this node-weighted
undirected graph leads to Fig. 1(d). The weights on x1, x2, and y1 are 0.2, 0.1,
and 0.5, respectively. The entry 0.6 in cell (x1 = 0, x2 = 1) in Fig. 1(d), for
example, indicates that, when x1 is necessarily excluded from the MWVC but
x2 is necessarily included in it, then the weight of the MWVC {x2, y1} is 0.6.

It can be written as a polynomial p1(x1, x2) in x1 and x2 of degree 1 each:
p1(x1, x2) = c00 + c01x1 + c10x2 + c11x1x2. The coefficients c00, c01, c10, and c11
of the polynomial can be computed by solving a system of linear equations, where
each equation corresponds to an entry in the constraint table, using standard
Gaussian Elimination. In our example:

p1(0, 0) = 0.5 p1(0, 1) = 0.6 p1(1, 0) = 0.7 p1(1, 1) = 0.3.

2. Decomposing the Terms of the Polynomials In this stage, for each fi ∈ Fi,
the agent that controls it constructs a subgraph GCCGi of the CCG (line 3
of Algorithm 1). At the end of this stage, each agent introduces new sets of
auxiliary variables Yi and Zi and replaces its constraints with a new set FCCGi

of
constraints that involve the decision variables and its newly introduced auxiliary
variables. Before describing this procedure, we review the concept of the MWVC,
a cornerstone concept for the notion of the CCG.
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Fig. 3: The lifted graphical representation of terms in a polynomial for linear (a),
negative nonlinear (b), and positive nonlinear (c) terms. We assume that w > 0
in (b) and (c) (but not in (a)). A node has a zero weight if no weight is shown.
In (a), w1 and w2 satisfy w1 − w2 = w.

A minimum vertex cover of G = 〈V,E〉 is the smallest set of nodes S ⊆ V
such that every edge in E has at least one of its nodes in S. When G is node-
weighted, (i.e., each node vi ∈ V has a non-negative weight wi associated with
it), its MWVC is defined as a vertex cover of minimum total weight of its nodes.

For a given graph G, one can project MWVCs on a given independent set
(IS) U ⊆ V . (An IS is a set of nodes in which no two nodes are connected
by an edge.) The input to such a projection is the graph G as well as an IS
U = {u1, u2, . . . , uk} on G. The output is a table of 2k numbers. Each entry in
this table corresponds to a k-bit vector. We say that a k-bit vector t imposes
the following restrictions: (a) If the ith bit ti is 0, then node ui has to be
excluded from the MWVC; and (b) if the ith bit ti is 1, then the node ui has
to be included in the MWVC. The projection of an MWVC on the IS U is then
defined to be a table with entries corresponding to each of the 2k possible k-bit

vectors t(1), t(2), . . . , t(2
k). The value of the entry that corresponds to t(j) is the

weight of the MWVC conditioned on the restrictions imposed by t(j).

Figure 2 illustrates this projection for the subgraph of our example DCOP
problem of Fig. 1(a) that involves variables x1 and x2 and constraint f1, whose
costs are shown in Fig. 1(d).

The table produced by projecting an MWVC on the IS U can be viewed as a
constraint over |U | Boolean variables. Conversely, given a (Boolean) constraint,
we design a lifted representation for it so as to be able to view it as the projection
of an MWVC on an IS for some intelligently constructed node-weighted undi-
rected graph [15, 16]. The lifted graphical representation of a constraint depends
on the nature of the terms in the polynomial that describes the constraint. We
distinguish three classes of terms: linear terms, negative nonlinear terms, and
positive nonlinear terms. We can construct a lifted graphical representation, i.e.,
a gadget graph, for each term in the polynomial of each constraint as follows.

– A linear term is represented with the two-node graph shown in Fig. 3(a)
by connecting the variable node with an auxiliary node.
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Fig. 4: (a)-(c): CCG gadget graph construction in the “Decomposing the Terms of
Polynomials” stage for the example DCOP of Fig. 1. The original constraint, the
associated CCG gadget, and the new constraint are shown on the left, middle,
and right of each panel, respectively. (d): CCG construction in the “Merging
Gadget Graphs into a CCG” stage for the example DCOP of Fig. 1. It is obtained
by merging the CCG gadget graphs in (a)–(c).

– A negative nonlinear term is represented with the “flower” structure in
Fig. 3(b). Consider the term −w · (xi · xj · xk) where w > 0. Projecting an
MWVC on the “flower” structure on the variable nodes represents w−w ·(xi ·
xj · xk). The constant term w does not affect the optimality of the solution.

– A positive nonlinear term is represented using the “flower+thorn” struc-
ture shown in Fig. 3(c). Consider the term w · (xi ·xj ·xk) where w > 0. The
projection of an MWVC on the “flower+thorn” structure on the variable
nodes represents L · (1−xk) +w−w · (xi ·xj · (1−xk)), where L > w+ 1 is a
large real number. By constructing gadget graphs that cancel out the lower
order terms as shown before, we arrive at a lifted graphical representation
of the positive nonlinear term.

Procedure decompose-polynomial on line 3 of Algorithm 1 takes the input
polynomial pi associated with a constraint fi, constructed in stage 1, and returns
its lifted representationGCCGi

, whereXi = xfi , and Yi, Zi are the set of auxiliary
variables introduced by the procedure, Ei is the set of edges between the GCCGi

graph nodes, and wi is the set of weights associated with the variables in Xi, Yi,
and Zi. For a variable vi ∈ Xi ∪ Yi ∪ Zi, a unary constraint fvi in FCCGi is
defined as

fvi(vi) =

{
wi, if vi = 1,

0, if vi = 0.
(3)

For each edge {vi, vj} in Ei, a constraint f{vi,vj} in FCCGi is defined as

f{vi,vj}(vi, vj) =

{
∞, if vi = vj = 0,

0, otherwise.
(4)
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For a CCG gadget graph GCCGi
, Xi contains nodes that correspond to decision

variables, Zi contains the nodes with weight L (if any), and Yi contains the other
nodes. At the end of this stage each agent ai ∈ A controls the set of decision
variables in Xi and the set of auxiliary variables ∪fj∈FiYj∪Zj , for all constraints
fj ∈ Fi controlled by agent ai.

3. Merging Gadget Graphs into a CCG Finally, the CCG-Max-Sum agents con-
struct the CCG by merging their gadget graphs GCCGi

. This stage is done in-
crementally. Every time an agent builds a new gadget graph, it (1) updates its
internal graphical representation to include the auxiliary variables introduced
by the construction, and (2) increases the weight associated with the agent’s
variables. Each agent ai sends to its neighbor aj all unary constraints in FCCGi

involving variable vj controlled by agent aj (i.e., α(vj) = aj) (lines 4–5). When
an agent receives a new unary constraint f which involves one of its decision
variables vi, it increases the weight associated with the constraint (fvi(vi)) for
the value fvi(1) (line 6). The communication structure of the underlying DCOP
does not vary after the CCG construction. If an agent ai is a neighbor of an
agent aj in the constraint graph of the original DCOP, then ai is also a neighbor
of aj in the lifted DCOP representation.

Figure 4 shows the construction of the CCG associated with our example
DCOP of Fig. 1. There are three unary and three binary constraints. Their
lifted graphical representations are shown next to them. Every node in the CCG
is given a weight equal to the sum of the individual weights of the nodes in the
merged CCG gadget graphs.

Computing the MWVC for the CCG yields a solution for the DCOP: If
variable xi ∈ X is in the MWVC, then it is assigned the value 1 in the DCOP,
otherwise it is assigned the value 0.

4.2 Message Passing Phase

Once the CCG has been constructed, the agents start the message passing phase
to find a vertex cover with a small total weight. The message passing scheme is
similar to that of Max-Sum: During each iteration, each agent waits to receive all
messages from its neighbors, updates the current values (beliefs) for the variables
it controls, computes the messages to send to its neighbors based on its new be-
liefs, and sends these to all its neighbors. Here, we adapt the algorithm presented
in [34] (see Algorithm 1). Differently from Max-Sum, where each function node
exchanges messages with its neighboring variable nodes, and each variable node
exchanges messages with its neighboring function nodes, in CCG-Max-Sum, the
messages are exchanged between (decision and auxiliary) variables nodes in the
CCG. The message µu→v sent by a variable u to a variable v in iteration i is:

µiu→v = max

wu − ∑
t∈N(u)\{v}

µi−1t→u, 0

 , (5)
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where wu is the weight associated with variable u, and N(u) is the set of neigh-
boring variables of variable u in the CCG. Equation (5) is derived from Eqs. (1)
and (2) using an approach similar to that in [34]. These steps are shown on
lines 7–11 of Algorithm 1. When the algorithm terminates, for a node v, if
wv <

∑
u∈N(v) µu→v, then v is selected into the MWVC; otherwise it is not.

A variable is assigned value 1 if its corresponding decision variable node in the
CCG is selected into the MWVC; otherwise it is assigned value 0 (lines 12–13).

5 Experimental Evaluation

In this section, we compare the solution costs of CCG-Max-Sum, Max-Sum (ex-
ecuted on the factor graph), and DSA [36], a local search DCOP algorithm. DSA
has been shown to outperform several other incomplete DCOP algorithms [4, 12]
and performs similarly to several Max-Sum variants, including Max-Sum ADVP
[38] which has been shown not to benefit from damping [4]. We also analyze the
effect of using the NT reduction [22] in conjunction with CCG-Max-Sum (de-
noted by CCG-Max-Sum-k). The NT reduction is executed as a preprocessing
centralized step.3 We use DSA type C with p = 0.6 and adopt a damping strat-
egy with γ = 0.7 in all Max-Sum variants [4]. We do not evaluate the algorithms
against domain-specific implementations of Max-Sum, (e.g., [27]) and follow a
more common domain-independent evaluation strategy. Additionally, we focus
our evaluation on DCOPs and thus do not evaluate the proposed algorithms
against previous work on Boolean distributed constraint satisfaction problems
[10, 11].

We evaluate all algorithms on federated social network problems—an appli-
cation domain that we introduce below—and on random minimization Boolean
DCOPs over three classical networks topologies [13]: grid networks, scale-free
networks, and random networks, to cover both structured and unstructured prob-
lems. We implement all algorithms within an anytime framework, as proposed
in [37], where the agents memorize the best solution found up to the current
iteration. All results are averages of 30 runs.

Federated Social Networks To address the privacy concerns raised in modern cen-
tralized social networks, open-source communities have developed decentralized
social networks, such as Diaspora, GNU Social, and pump.io [30]. An federated
social network (FSN) adopts a decentralized structure by allowing each user or
group of users to maintain its server and communicating using a common inter-
server protocol. In an FSN, multiple servers are used to store the information
of the social network users. A server ai fetches information from a server aj if a
user in ai follows a user in aj [30]. Qualitatively speaking, there are two fetching
strategies: freq-fetch, that fetches frequently and caches less information, and
more-cache, that fetches less frequently and caches more fetched information.
Each strategy has its own advantages and disadvantages: freq-fetch incurs

3 Its runtime is comparable to that of one iteration of CCG-Max-Sum, which in turn
takes 0.035 seconds on average in our experiments.
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Fig. 5: FSN based on Twitter network data: 100 agents (left), 500 agents (center),
and 1000 agents (right).

higher bandwidth costs but lower storage costs, while more-cache incurs lower
bandwidth costs but higher storage costs. Since freq-fetch incurs bandwidth
costs for both servers, this strategy takes effect between two servers only if both
have the strategy freq-fetch.

We model the relationship between the costs and fetching strategies as a
DCOP. The choice of strategy of each server ai (which is modeled as an agent)
is a variable xi. xi = 1 implies freq-fetch, and xi = 0 implies more-cache.

The binary f(xi, xj) cost functions capture the storage and bandwidth costs
for servers ai and aj . A user in ai following a user in aj and a users in ai and
one in aj following each other are modeled, respectively, as{

αij(c
b
i + cbj), if xi=xj=1

αijc
s
i , otherwise

{
(αij + αji)(c

b
i + cbj), if xi=xj=1

αijc
s
i + αjic

s
j , otherwise

where cbi and csi denote the unit bandwidth and unit storage costs of agent ai,
repsectively, and αij denotes the amount of information that ai needs to fetch
from aj .

We model an FSN based on Twitter network data [5], which describe a graph
whose nodes model Twitter users. There is a link between two nodes if at least
one of the corresponding users follows the other one. The graph contains 456,626
nodes and 14,855,842 edges. We map the Twitter network to an FSN graph G.
Its nodes represent the FSN severs and are constructed as follows. We first
randomly assign one distinct Twitter user to each node in G. Then, we associate
each remaining user u to a node of G with a probability proportional to the
number of followers user u has in the corresponding server. We add an edge
(ai, aj) to G if there exist a user in ai and a user in aj such that at least one of
them follows the other one. The costs cbi and csi are generated by sampling from
the discrete uniform distribution U(1, 10), and all weights αij are set to be equal
to the number of users in ai following users in aj divided by the total number
of users in ai.

Figure 5 illustrates the anytime behavior of the algorithms on FSN problems
with 100 (left), 500 (center), and 1000 (right) agents. The shaded region around
each line describes the confidence interval of the solution costs reported by each
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Fig. 6: Grid networks (top left), scale-free networks (top right), low-density
random networks (p1 = 0.2) (bottom left), and high-density random networks
(p1 =0.6) (bottom right). The blue and red curves overlap in the last two plots.

algorithm. The plots use a log-10 scale for the x-axis. The algorithms in order
of their solution costs (from highest to lowest) tend to be: Max-Sum, DSA,
and both CCG-Max-Sum variants. In particular, CCG-Max-Sum-k dominates
all other algorithms from the very first iteration.

Random DCOPs We now discuss the solution cost of the algorithms on random
minimization Boolean DCOPs. The costs of each assignment to the variables
involved in a constraint are generated by sampling from the discrete uniform
distribution U(1, 100). For grid networks, we generate two-dimensional 10 ×
10 grids and connect each node with its four nearest neighbors. For scale-free
networks, we create an n-node network based on the Barabasi-Albert model
[1]. Starting from a connected 2-node network, we repeatedly add a new node,
randomly connecting it to two existing nodes. These two nodes are selected with
probabilities that are proportional to the numbers of their incident edges. Finally,
for random networks, we create an n-node network whose density p1 produces
bn(n − 1)p1c edges. We report experiments on low-density problems (p1 = 0.2)
and high density problems (p1 = 0.6) and fix the maximum constraint arity to
4. Constraints of arity 4 and 3, respectively, are generated by merging first all
cliques of size 4 and then those of size 3. The other edges are used to generate
binary constraints. In each configuration, we verify that the resulting constraint
graph is connected and set the number of agents to 100.

The results are similar to the ones on FSN problems: The algorithms in or-
der of their solution costs (from highest to lowest) tend to be: Max-Sum, DSA,
and both CCG-Max-Sum variants, except on high-density random networks,
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x1 0 0 0 1 1 1

x2 0 1 2 0 1 2

f1 0.5 0.6 0.2 0.7 0.3 0.5

Fig. 7: A cost function with a non-Boolean variable. This cost function extends
the Boolean cost function in Fig. 1(d) with x2 being able to take 3 values 0, 1
and 2. The tuples highlighted in red are the parts additional to Fig. 1(d).

where the solution costs of DSA are slightly lowest lower than the ones of the
CCG-Max-Sum variants. On all networks, CCG-Max-Sum-k dominates all other
algorithms from the first ten iterations. On random networks (Figure 6 (bot-
tom)), the effect of kernelization is negligible and both CCG-Max-Sum variants
are thus almost indistinguishable, meaning that both of them dominate all other
algorithms on low-density random networks.

Thus, our experiments suggest that CCG-Max-Sum has strong advantages
on grid and scale-free networks, which are important for a large variety of DCOP
applications [6, 8, 29].

6 Discussion: Non-Boolean DCOPs

The construction of the CCG for CCG-Max-Sum can be extended to DCOPs
with non-Boolean domains [16] as outlined in the following.

1. Expressing Constraints as Polynomials For a cost function with non-Boolean
variables, this step outputs polynomials of degrees at least 2 instead of polyno-
mials of degree 1. The degree of each variable equals its domain size - 1. Fig. 7
shows an example cost function. Similar to Boolean DCOPs, a polynomial of the
following form can be used to characterize this cost function:

p1(x1, x2) = c00 + c01x1 + c10x2 + c11x1x2 + c20x
2
2 + c21x1x

2
2.

Here, the coefficients c00, c01, c10, c11, c20, and c21 can be computed by solving a
system of linear equations, where each equation corresponds to an entry in the
constraint table, using standard Gaussian Elimination. In our example:

p1(0, 0) = 0.5 p1(0, 1) = 0.6 p1(0, 2) = 0.2

p1(1, 0) = 0.7 p1(1, 1) = 0.3 p1(1, 2) = 0.5.

2. Decomposing the Terms of the Polynomials The procedure to construct
graph gadgets is similar to Boolean DCOPs, except that each variable xi with
domain Dxi

= {0, 1, . . . , |Dxi
| − 1} is now represented by |Dxi

| − 1 vertices
in the gadget graph. The value of xi in the to-be-determined optimal solution
equals the number of vertices representing xi in the computed MWVC. Fig. 8
illustrates the lifted representation of linear terms, negative non-linear terms,
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vertices representing xi in the computed MWVC. Figure 9 illustrates the lifted
representation of linear terms, negative non-linear terms and positive non-linear
terms. It is not hard to verify that Sections 6 and 6 and ?? represent w · xi,
2w � w · (xi · xj) and L · (1 � xj) + 2w � w · (xi · (1 � xj)), respectively.

3. Merging Gadget Graphs into a CCG Similar to Boolean DCOPs, A CCG can
be constructed by merging corresponding vertices of every variable.

We note that, by following the procedure above for DCOPs with non-Boolean
variables, the size of the CCG only increases polynomially with respect to domain
sizes. This may imply that CCG-Max-sum may still be e�cient for DCOPs with
non-Boolean variables.

7 Conclusions

In this paper we adapted the Constraint Composite Graph (CCG) graphi-
cal representation encoding for Distributed Constraint Optimization Problems
(DCOPs). The CCG provides a framework for exploiting simultaneously the
graphical structure of the agent interaction process as well as the numerical
structure of the constraints of a DCOP instance. We use this representation to
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and positive non-linear terms. It is not hard to verify that Fig. 8 (a-c) represent
w · xi, 2w − w · (xi · xj) and L · (1− xj) + 2w − w · (xi · (1− xj)), respectively.

3. Merging Gadget Graphs into a CCG Similar to Boolean DCOPs, a CCG can
be constructed by merging all vertices corresponding to the same variable. The
size of the CCG increases only polynomially in the domain sizes. Extending the
approach presented in this paper to the non-Boolean case will be the subject of
future work.

7 Conclusions

In this paper, we adapted the Constraint Composite Graph (CCG) graphi-
cal representation encoding for Distributed Constraint Optimization Problems
(DCOPs). The CCG provides a framework for exploiting simultaneously the
graphical structure of the agent interaction process as well as the numerical
structure of the constraints of a DCOP instance. We use this representation to
introduce CCG-Max-Sum, a novel incomplete DCOP algorithm which extends
Max-Sum by executing the distributed message passing phase on the CCG.

Compared to a version of Max-Sum which is executed on factor graphs and
other incomplete DCOP algorithms, CCG-Max-Sum finds solutions of better
quality within fewer iterations on several DCOP benchmarks.

While this paper introduced an inference-based algorithm that operates on
the CCG of a DCOP, we believe that the CCG can also be exploited with other
classes of DCOP algorithms. Additionally, the ideas presented in this paper are
extendable to DCOPs with non-Boolean variables, as shown Section 6. We expect
CCG-Max-Sum to be efficient for large domain sizes since the size of the CCG
increases only polynomially with respect to the domain sizes.

Future directions include applying CCG-Max-Sum to problems with hard
constraints (since many types of hard constraints can be simplified during the
construction of the CCG, resulting in smaller problems) and investigating the
application of the Crown Reduction [3] to CCG-Max-Sum.
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