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Abstract. Though the definition of gain from trade extends the definition of social welfare from auctions to mar-
kets, from a mathematical point of view the additional dimension added by gain from trade makes it much more
difficult to design a gain from trade maximizing mechanism. This paper provides a means of understanding when a
market designer can choose the easier path of maximizing social welfare rather than maximizing gain from trade.
We provide and prove the first formula to convert a social welfare approximation bound to a gain from trade ap-
proximation bound that maintains the original order of approximation. This makes it possible to compare algorithms
that approximate gain from trade with those that approximate social welfare. We evaluate the performance of our
formula by using it to convert known social welfare approximation solutions to gain from trade approximation
solutions. The performance of all known two-sided markets solutions (that implement truthfulness, IR, BB, and
approximate efficiency) are benchmarked by both their theoretical approximation bound and their performance
in practice. Surprisingly, we found that some social welfare solutions achieve a better gain from trade than other
solutions designed to approximate gain from trade.

1 Introduction

In recent years the established research on one-sided markets in economics and computer science was extended to
two-sided markets where both buying and selling agents are strategic. A key difficulty that arises when moving from
one-sided to two-sided markets is handling the additional intricacies that arise when approximating gain from trade
(acronym GFT). The need to approximate gain from trade stems from Myerson and Satterthwaite’s impossibility result
[?]. [?] states that no two-sided market can simultaneously satisfy the economically desirable properties (of truthful
reporting, participation without a loss and not running a deficit) while maintaining efficiency. The two-sided market
literature largely chooses to approximating efficiency in order to maintain the other economic properties.

Given the intricacies involved in approximating gain from trade the literature often chooses to approximate social
welfare (acronym SWF). Social welfare is the parallel of gain from trade in a one-sided market setting. In one-sided
markets, where only the buying agents are strategic and there is a single selling agent, efficiency is measured by
maximizing the sum of the buying agents’ valuations, i.e., social welfare. Social welfare in one-sided markets extends
to two-sided markets by summing the buying agents’ valuations and subtracting the selling agents’ costs, i.e., gain from
trade [?,?]. Much of the literature on two-sided markets provides solutions that approximates social welfare efficiency
maximization as opposed to approximating gain from trade efficiency, i.e., maximizing the sum of the buying agents’
valuations plus the sum of the non sold commodities’ costs held by selling agents at the end of trade [?,?,?,?,?,?,?].

One would expect that notionally gain from trade would be similar to social welfare in two-sided markets as
gain from trade extends the definition of social welfare from auctions (one-sided markets) to two-sided markets 1.
Despite their conceptual similarity, it is much more complex to design a gain from trade maximizing approximation
mechanism than a social welfare maximizing approximation mechanism. For example, if a buying agent has value $10
for a commodity and a selling agent has cost $7 and they trade. The social welfare is $10, while the gain from trade is

1 Illustratively, the broad explanation of maximizing social welfare in a two-sided market is that sellers who place a relatively
higher cost on a given commodity should end up retaining that commodity while the broad explanation of maximizing gain from
trade is that sellers who place a relatively lower cost on a given commodity should end up selling that commodity.



$3. It is easy to see that any mechanism that maximizes social welfare also maximizes gain from trade. However, the
two objectives are rather different in approximation. In the example above, if the buying agent and the selling agent
do not trade, the mechanism achieves a social welfare of $7 which is 70% of the optimal social welfare, however it
achieves 0 gain from trade which is not within any constant factor of the optimal gain from trade. It can be observed
that any constant factor approximation of a mechanism’s gain from trade is necessarily a constant factor approximation
of the mechanism’s social welfare, however the other direction does not hold. Thus, gain from trade is a more difficult
objective to approximate. Even so, gain from trade is an important market concept that accurately captures the value
of the market to both sides; buyers and sellers (see [?,?] as an example). This paper provides a means of understanding
when a designer can take the easier path of designing a market that approximates the maximization of social welfare
instead of gain from trade.

Two-sided market research is motivated by numerous applications such as web advertising and securities trading,
and indeed the literature contains multiple two-sided market designs. Some solutions present two-sided markets with
a single commodity and unit-demand [?,?,?,?,?,?,?,?,?] while others are combinatorial markets with multiple com-
modities and demand for bundles [?,?,?,?]. Some of the two-sided markets are offline, i.e., optimize given all agents’
bids in advance [?,?,?,?,?,?,?,?,?] while others are online, i.e., optimize as agents’ bids arrive [?,?,?,?]. Lastly both
deterministic [?,?,?,?] and randomized [?,?,?,?,?,?,?,?,?,?] solutions exist. The above literature seeks to maintain the
desirable economic properties of truthfulness (agents dominant strategy is to report their true valuation/cost), IR ( No
agent should end up with a negative utility if the agent?s true valuation/cost is submitted to the mechanism. ) and BB
(The price paid by the buying agents is at least as high as the price received by the selling agents, i.e., the market does
not run a deficit), while keeping as much as possible of the trade efficiency. However, the existing theoretical tools
do not allow a designer to compare the efficiency of all the available solutions as some approximate social welfare
[?,?,?,?,?] while others approximate gain from trade [?,?,?,?,?,?].

We provide and prove the first formula to convert a social welfare approximation bound to a gain from trade
approximation bound that maintains the original order of approximation (under natural conditions). This makes it
possible to compare solutions that approximate gain from trade with those that approximate social welfare. The con-
version formula applies to the most general setting of two sided markets, i.e. each agent can buy or sell bundles of
multiple distinct commodities which may have a different number of identical units from each. This is the most general
combinatorial market setting and the conversion bound does not require any restrictions on the valuation functions.
Indeed the formula can convert the bounds of single unit-single demand markets as well as combinatorial markets (see
section 4). Moreover the formula does not change the mechanism’s allocation nor the computed prices and therefore
the economic properties remain the same.

We evaluate the performance of our formula by using it to convert social welfare approximating solutions in the
literature to gain from trade approximating solutions. We compare the performance of all known two-sided market so-
lutions (that implement truthfulness, IR, BB, and approximate efficiency) according to the theoretical approximation
bound as well as in practice. With respect to the comparisons of theoretical bounds, we show that the converted bounds
perform well even when our conditions are not met. More specifically, the converted bounds are guaranteed to main-
tain the competitiveness order of the original social welfare bound (roughly speaking) only when more commodities
switched hands in market than not. However, the converted bounds perform well even when most commodities did not
change hands and were not sold.

We also implement and run the various algorithms in practice using synthetic data to evaluate their relative perfor-
mance at maximizing gain from trade. These results are compared to the converted theoretical bounds. Surprisingly,
in the practical runs we found that some of the social welfare solutions achieve better gain from trade than solutions
that were designed to approximated gain from trade. This even happens in cases where the social welfare solution was
intended for a combinatorial market settings and the gain from trade solution was intended for single commodity and
unit-demand settings.

Another interesting aspect of our conversion formula is that it can be used to indicate, without an actual practical
run, the practical performance of a social welfare maximizing two-sided market compared to a gain from trade maxi-
mizing two-sided market. By converting the social welfare bound of a two-sided social welfare maximizing algorithm
to a gain from trade maximizing bound and comparing it with another gain from trade maximizing two-sided market
algorithm we found that one can estimate the practical performance of the two algorithms with respect to gain from
trade maximization.
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In summary, this paper’s contributions are threefold. First, we provide the first means of comparing the performance
of previously uncomparable solutions. Second, the experimental tests show that our conversion formula can be used to
predict the practical performance difference between the compared mechanisms. Third, we show that for combinatorial
two-sided markets it is better to use the known social welfare maximizing solutions than to use a solution that directly
maximizes gain from trade.

2 Preliminaries

There are multiple commodities and each one comes in a number of units. Let A be the total number of units of all
commodities in a market. There are l agents interested in selling commodities. These agents may also be interested
in selling multiple units of each of their commodities. There are n agents who are interested in buying commodities.
These agents may also be interested in buying multiple units of these commodities. An allocation in a two-sided
market can be represented as a pair of vectors (X ,Y ) = ((X1, ...,Xn),(Y1, ...,Yl)) such that sum of elements in the union
of X1, ...,Xn,Y1, ...Yl is A, and X1, ...Xn,Y1, ...,Yl are mutually non-intersecting. Each buying agent i, 1 ≤ i ≤ n has a
valuation function vi that assigns a non-negative value to each allocation Xi. Each selling agent t, 1≤ t ≤ l has a bundle
of commodities St that he initially owns and a cost function ct that assigns a positive cost for each allocation Yt . The
auctioneer’s goal in the one-sided auction is to partition the commodities by allocating each buying agent i, Xi, so as
to maximize ∑

n
i=1 vi(Xi). This goal is referred to as maximizing social welfare (SWF) (or efficiency).

In a two-sided market the market maker’s goal is to change hands and partition the commodities by allocating each
buying agent i, Xi and each selling agent t, Yt , so as to maximize ∑

n
i=1 vi(Xi)−∑

l
i=1 ct(Yt). This goal is referred to as

maximizing gain from trade (acronym GFT) (efficiency).
As discussed in section 1 much of the literature on two-sided markets provides solutions that approximates social

welfare efficiency maximization as opposed to approximating gain from trade efficiency. In a two-sided market SWF
means maximizing the sum of the buying agents’ valuations plus the sum of the unsold commodities’ costs. The
motivation behind this extension is that SWF accounts for all agents that end up with commodities at the end of the
trade.

Let (Xo,Y o) be the pair of vectors containing the optimal allocation in the two-sided market. Let (X ,Y ) be the
pair of vectors containing the two-sided market algorithm’s allocation solution. Let VALG = ∑

n
i=1 vi(Xi) and let VOPT =

∑
n
i=1 vi(Xo

i) be the two-sided market algorithm’s solution and the optimal SWF maximization solution computed
only using the buying agents, and without accounting for the unsold commodities. Let CALG = ∑

l
t=1 ct(Yt) and let

COPT = ∑
l
t=1 ct(Y o

t) be the two-sided market algorithm’s solution and optimal’s SWF minimization solution for the
selling agents. Let GALG = ∑

l
t=1(ct(St)− ct(Yt)) and let GOPT = ∑

l
t=1(ct(St)− ct(Y o

t)) be the two-sided market’s
solution and the SWF maximization solution computed using only the unsold commodities.

Let WALG =VALG +GALG and let WOPT =VOPT +GOPT .
Let γ = VOPT

COPT
, let δ = GOPT

COPT
and let µ ≥ WOPT

WALG
.

3 Converting Social Welfare to Gain from Trade

In this section we show how to convert SWF maximization approximation bound in two-sided markets into GFT
maximization approximation ratio guarantee.

In the following theorem we assume non trivial market mechanisms, i.e. mechanisms where at least one trade
occurs where the seller has a positive cost for that trade and the optimal GFT is strictly positive. That is γ > 1,

COPT > 0 and µ > 0. Let H =

(
2γ+(−µ+2)δ−µ− µWALG

COPT
µ(γ−1)

)
.

Theorem 1. Any two-sided market mechanism, such that γ > 1,COPT > 0, that maximizes SWF2 within a factor of
µ > 1, i.e., WALG ≥ 1

µ
WOPT is H-competitive with respect to the optimal GFT, i.e., (VALG−CALG)≥ 1

H (VOPT −COPT ).

2 maximizes SWF of buying agents and remaining commodities.
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Moreover if δ ≤ 1 and WALG > GOPT +COPT
3 then 0 < H ≤ 1 and 1

H approximation factor maintains the original 1
µ

order of approximation.

Hence, for WALG = 1
µ

WOPT the competitive ratio is VALG−CALG ≥
(

γ+δ

µ(γ−1) −
δ+1
γ−1

)
(VOPT −COPT ).

Intuitively the formula’s outcome GFT bound maintains the µ order of approximation only in settings where the
optimal solution SWF from sold commodities is at least as high as SWF from unsold commodities, i.e. δ less or equal
1. The performance condition is easier to understand when one considers a market where most trade can not occur and
most commodities are left unsold. In such a market the cost of the unsold commodities will contribute to the SWF sum
while the GFT will be unboundedly low including only the value of the few sold commodities in the few trades that
will occur. Furthermore the larger the ratio of buyers’ optimal SWF to sellers’ optimal SWF, i.e., γ , is with respect to
the converted SWF bound, the closer the converted approximation is to µ . Similarly to the above intuition, a market
with a higher γ has a high GFT “potential” as there are high values of sold commodities compared to their costs.

Proof. The proof of Theorem 1 is composed of Lemma 1 and Lemma 2.

Lemma 1 that shows that the two-sided market mechanism is

(
γ+δ− µGALG

COPT
µγ

)
-competitive with respect to the buying

agents’ optimal SWF, i.e., VALG ≥

(
γ+δ− µGALG

COPT
µγ

)
VOPT .

Lemma 2 that shows that the two-sided market mechanism is
(

1+δ (1− 1
µ
)− γ

µ
+ VALG

COPT

)
-competitive with respect

to the selling agents’ optimal SWF, i.e., CALG ≤
(

1+δ (1− 1
µ
)− γ

µ
+ VALG

COPT

)
COPT .

For simplicity of exposition, let α = µγ

γ+δ− µGALG
COPT

and let β = 1+δ (1− 1
µ
)− γ

µ
+ VALG

COPT
.

Combining the two Lemmas we have that

VALG−CALG ≥
1
α

VOPT −βCOPT =
[

γ

α
−β

]
COPT (1)

=

[
γ

α
−β

γ−1

]
(VOPT −COPT ) (2)

=

(
γ +δ − µGALG

COPT
−µ−δ (µ−1)+ γ− µVALG

COPT

µ (γ−1)

)
(VOPT −COPT ) (3)

=

(
2γ +(−µ +2)δ −µ− µWALG

COPT

µ (γ−1)

)
(VOPT −COPT )

Equalities (1) and (2) follow since γ = VOPT
COPT

. By substituting α and β in equality (2) we achieve equality (3).
It remains to show that the competitive ratio claimed in Theorem 1 is greater than zero and less or equal to one.

Since µ > 0 and γ > 1, in order for the competitive ratio to be greater than zero we assume that

2γ +(−µ +2)δ −µ− µWALG

COPT
> 0⇒

2
VOPT

COPT
−µ

GOPT

COPT
+

2GOPT

COPT
−µ− µWALG

COPT
> 0⇒

2VOPT −µGOPT +2GOPT −µCOPT −µWALG

COPT
> 0

3 Note that the requirement for WALG > GOPT +COPT is trivial in the context of two-sided markets where the SWF resulting from
unallocated commodities is included as the algorithm can at least gain the SWF resulting from not allocating any commodities.
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Since COPT > 0 we only need to assume that

2VOPT −µGOPT +2GOPT −µCOPT −µWALG > 0⇒

2(VOPT +GOPT )> µ(GOPT +COPT +WALG)⇒

2WOPT > µ(GOPT +COPT )+WOPT ⇒

WOPT > µ(GOPT +COPT )⇒WALG > GOPT +COPT

Note that the requirement for WALG > GOPT +COPT is trivial in the context of two-sided markets where the social wel-
fare resulting from unallocated commodities is included as the algorithm can at least gain the social welfare resulting
from not allocating any commodities.

For the competitive ratio to be less or equal 1 we need to assume that

2γ +(−µ +2)δ −µ− µWALG

COPT
≤ µ(γ−1)⇒

(−µ +2)δ −µ− µWALG

COPT
≤ µ(γ−1)−2γ ⇒

(−µ +2)δ − µWALG

COPT
≤ µγ−2γ ⇒

(2−µ)δ − µWALG

COPT
≤ γ(µ−2)

If µ ≥ 2 any positive γ will satisfy the above condition. Since we assume non trivial market where γ > 1 then in this
case no additional assumption is needed. If µ < 2 then it has to hold that

(2−µ)(δ + γ)<
µWALG

COPT
= γ +δ ⇒

2−µ < 1⇒ µ > 1

Note that the above requirement for µ > 1 is natural since µ ≥ WOPT
WALG

and is an approximation factor of a combinatorial
problem.

In the case where WALG = 1
µ

WOPT the expression µ
WALG
COPT

can be simplify to γ +δ and therefore

=
2γ +(−µ +2)δ −µ− γ−δ

µ(γ−1)
(VOPT −COPT )

=
γ +δ (−µ +1)−µ

µ(γ−1)
(VOPT −COPT )

=

(
γ +δ

µ(γ−1)
− µ(δ +1)

µ(γ−1)

)
(VOPT −COPT )

=

(
γ +δ

µ(γ−1)
− δ +1

γ−1

)
(VOPT −COPT )

Lemma 1. The two-sided market mechanism is
γ+δ− µGALG

COPT
µγ

-competitive with respect to the buying agents’ optimal

social welfare, i.e., VALG ≥ 1
α

VOPT .

Proof. (Proof of Lemma 1) From µ definition we know that WALG
WOPT

≥ 1
µ

or in other words that VALG+GALG
VOPT+GOPT

≥ 1
µ

. Therefore

VALG ≥ VOPT+GOPT
µ

−GALG, dividing by VOPT we get that VALG
VOPT

= 1
α
≥ VOPT+GOPT

µVOPT
− GALG

VOPT
= 1

µ
+ GOPT−µGALG

µVOPT
. By multi-

plying GOPT−µGALG
µVOPT

numerator and denominator by 1
COPT

we get that = 1
µ
+

GOPT
COPT

− µGALG
COPT

µVOPT
COPT

= 1
µ
+

δ− µGALG
COPT
µγ

=
γ+δ− µGALG

COPT
µγ

.
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Lemma 2. The two-sided market mechanism is 1+δ (1− 1
µ
)− γ

µ
+ VALG

COPT
-competitive with respect to the selling agents’

optimal social welfare, i.e., CALG ≤ βCOPT .

Proof. (Proof of Lemma 2) From µ definition we know that WALG
WOPT

≥ 1
µ

or in other words that VALG+GALG
VOPT+GOPT

≥ 1
µ

. Therefore

GALG ≥ VOPT+GOPT
µ

−VALG, dividing by GOPT we get that

GALG

GOPT
=

β̃ ≥ VOPT

µGOPT
+

1
µ
− VALG

GOPT
=

1
µ
+

VOPT −µVALG

µGOPT
(4)

Now we need to convert β̃ the approximation ratio of GALG
GOPT

to β the approximation ratio of CALG
COPT

. Or in other words
we need to convert the social welfare approximation resulting from the unallocated selling agents’ commodities to
social welfare approximation resulting from allocated selling agents at the market.

We know from (4) that 1−
(

1− 1
µ
−
(

VOPT−µVALG
µGOPT

))
≤ β̃ ≤ 1+ ε holds, then we can say for β that

1−δε ≤ β ≤ 1+δ

(
1− 1

µ
−
(

VOPT −µVALG

µGOPT

))
(5)

It follows from (5) that β ≤ 1+δ (1− 1
µ
)−
(

VOPT−µVALG
µCOPT

)
= 1+δ (1− 1

µ
)− γ

µ
+ VALG

COPT
. It is easy to see that in order to

keep β̃ ’s approximation quality one needs to assume that δ ≤ 1.

4 Experimental Results

We used simulations to empirically study the performance of our conversion formula. We investigated the questions,
if and when a mechanism designer can replace the use of gain-from-trade maximizing algorithm with a social-welfare
maximizing algorithm given the convergence formula. Our simulations involved two types of empirical evaluations.
The first evaluation type reflected by Figures 1, 3, 6 and 7 studies the converted theoretical gain from trade (acronym
GFT) approximation bounds on the simulated data as a function of δ and 1

Kmax
, where 1

Kmax
is the maximal de-

mand/supply number of units of any commodity by any agent. The second evaluation type reflected by Figures 2,
4, 5 and 8 shows the actual GFT approximation achieved by the benchmarked algorithms’ runs on the same simu-
lated data, shown as a function of δ and 1

Kmax
. In order to compute the actual GFT approximation achieved by the

benchmarked algorithms we implemented the algorithms in [?,?,?,?,?,?,?,?,?,?,?].
Inputs were generated based on various random distributions and found minimal to no qualitative difference be-

tween distributions. In the figures the uniform distribution was used in the following manner: Agents’ costs and values
bids were selected as uniformly random independent values between 1 and 105. The supply/demand of different com-
modities the agents hold/desire were also selected as uniformly random independent values between 1 and 5000. For
each supplied/demanded commodity we selected the number of units as uniformly random independent values be-
tween 1 and 106. All parameters showing in the plots such as δ , Kmax are histograms based on the instances generated
for empirical evaluation.

The literature we compare makes different assumptions and valuation distribution limitations under which their
theoretical bounds are guaranteed. In our experiments, for all figures, when comparing two algorithms we construct
markets that maintain the distribution assumptions of both algorithms by choosing markets that fulfill the most restric-
tive assumptions needed by the compared algorithms. It is important to note that some algorithms are more restrictive
than others in which case the worst case of one may fall beyond the restriction of the other. For every comparison
presented in the paper we also performed a comparison based on the less restrictive algorithm of the two. However,
the results were not significantly different and therefore those figures were not included.

The results presented in Figures 5, 7, 6, and 8 were averaged over 30,000 trials and reflect millions of sellers,
buyers and units of each of 5000 commodities. The comparisons were performed on markets with Kmax = 1600. While
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we could compute the theoretical bounds of all the two-sided markets in the literature using the above magnitude
we could not do so with [?]’s theoretical bound as it gives a negative (N/A) bound in these cases4. Therefore for the
comparisons with [?]’s algorithm and bound, presented in Figures 2, 1, 4, and 3 we used a different setting. Figures
2, 1, 4, and 3 were averaged over 15,000 trails per each column due to their very large size. These markets support
millions of sellers, buyers and units but can only run on 4 commodities. The upper bound for a single trade is 0.3,
δ = 0.5 and every agent supplies/demands a single unit.

We first empirically evaluate the performance of our formula for converting from a SWF approximation bound to a
GFT approximation bound by applying the formula to the known two-sided market mechanisms that provide a bound
for the SWF approximation maximization ([?,?,?,?,?]). We convert the above five bounds to a GFT approximation
bound and compare the resulting bounds with the known two-sided market mechanisms that provide a direct bound
on their GFT approximation maximization ([?,?,?,?]). The figures comparing the theoretical GFT bound with the
formula converted theoretical SWF bound illustrates the formula guaranty, i.e., even when the formula is used in some
worst-case scenarios it is better for a designer to consider SWF maximizing algorithm over a GFT one.

Conversion of the bounds is accomplished by simply computing the values of γ and δ for the simulated data, after
which the SWF bound µ of the SWF maximizing algorithms ([?,?,?,?,?]) is plugged into the formula of Theorem 1
and compared with ([?,?,?,?]) algorithms’ bound on GFT. We show that though the converted bounds are guaranteed to
maintain the competitiveness order of the original SWF bounds only if δ ≤ 1, the converted bounds perform well even
when δ is as large as 5 and most commodities did not change hands and were not sold (see Figure 6 and Figure 7). This
result holds across all converted bounds whether they bound a single-unit single-commodity setting or a combinatorial
market setting.

It is important to note that for conducting Figures 1, 3, 6 and 7 one does not need to compute γ directly from an
algorithm’s run. A bound on γ can be concluded without running an algorithm to compute GFT. This results from
much of the current literature assuming a bound on the maximum valuation bid and minimum cost bid from which
one can conclude a bound on VOPT and COPT .

In addition to the theoretical bound comparison we empirically compare the various algorithms in practice using
synthetic data to evaluate their relative performance at maximizing GFT. These results are compared to the converted
theoretical bounds. Surprisingly, in the practical runs, we found that some of the SWF solutions achieve better GFT
than other solutions designed to approximated GFT. More specifically we found that Colini-Baldeschi et al. 2017 [?]
that originally approximates SWF achieves a higher GFT than McAfee 2008 [?], which approximates GFT though
Colini-Baldeschi et al. 2017, is intended for combinatorial market settings and McAfee 2008 is intended for single
commodity and unit-demand settings (see Figure 5). Another example is the work by Blum et al. [?] that originally
approximates SWF in the single-commodity unit-demand setting and performs better at GFT approximation in practice
than Segal-Halevi et al. [?] in settings where Segal-Halevi et al.’s algorithm runs instances with unit-demand (see
Figure 2). The above observation is particularly interesting given the fact that Blum et al. is an online algorithm (i.e.,
computes the SWF optimization function on an ongoing input steam) while Segal-Halevi et al. is an offline algorithm
(that computes the GFT optimization function given all input agents’ bids in advance). Gonen & Egri [?] is similarly
interesting in that it originally approximates SWF in an online combinatorial market environment and in practice
performs better at approximating GFT than Segal-Halevi et al. [?]. This is achieved despite the fact that Segal-Halevi
et al. is an offline algorithm (see Figure 4).

Another interesting observation is that the practical runs appear to show that for combinatorial markets one is
better off using the known social-welfare maximizing solutions [?,?] than using the known GFT maximizing solution
[?], even if the designer is interested in maximizing GFT. This observation was made from figures 8 and 4 comparing
[?] to [?] and [?] which show the social-welfare maximizing solutions consistently outperforming the GFT solutions.

An interesting aspect of our conversion formula is that it can be used to estimate, without an actual practical run,
the practical performance of a SWF maximizing two-sided market compared to a GFT maximizing two-sided market.
By converting the SWF bound of a two-sided SWF maximizing algorithm to a GFT maximizing bound and comparing
it with another GFT maximizing two-sided market algorithm we found that one can evaluate the practical performance
of the two algorithms with respect to GFT maximization. For example see Figure 3 showing that in the worst case
analysis running Gonen and Egri will result in almost the same performance as running Segal-Halevi et al. and indeed

4 [?]’s theoretical bound is negative unless markets are very large as the bound is not tight and the algorithm only performs well
on very large markets.
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in practice (see Figure 4) Gonen and Egri performs slightly better. We found similar prediction in the case of Blum et
al. with respect to Segal-Halevi et al. See Figures 1 and 2.

A detailed table summarizing the comparative practical performance of the known social-welfare maximizing
two-sided markets against the known GFT maximizing two-sided market can be found in Figure 9.

Fig. 1: Segal-Halevi et al. 2017’s theoretical bound on gain from trade competitive ratio vs. Blum et al. 2002’s converted theoretical
bound on gain from trade competitive ratio. When under 106 units are traded Segal-Halevi et al. 2017’s theoretical bound results
in a negative value. For very large markets where over 108 units are traded one might consider using Segal-Halevi et al. 2017’s
solution if no online aspect is required from the market.

5 Conclusion and Discussion

In this paper we provided and proved the first formula to convert a SWF approximation bound for two-sided markets
into a bound on a GFT approximation that maintains the original order of approximation. This conversion makes it
possible to compare solutions that approximate GFT with those that approximate SWF. We evaluate the performance
of our conversion formula by using it to convert SWF approximation solutions in the literature to GFT approximation
solutions.

The experimental results showed that our conversion formula can be used to estimate (without an actual practical
run) the practical performance (in GFT) of a social-welfare maximizing two-sided market compared to a (directly
computed) GFT maximizing two-sided market.

We found that in some cases the solutions designed for SWF maximization perform better at maximizing GFT than
algorithms designed for directly maximizing GFT. This is true in particular in the case of combinatorial markets where
most known social-welfare maximizing solutions consistently perform better at maximizing GFT than the known
combinatorial GFT (directly) optimizing solution.

We would like to see our conversion formula used in future work in multi-sided market design as a means for
evaluation and comparison of new solutions to existing ones.
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Fig. 2: Segal-Halevi et al. 2017’s practical gain from trade competitive ratio vs. Blum et al. 2002’s practical gain from trade
competitive ratio. Similar to Figure 1 it can be seen that for very large markets where over 108 units are traded one might consider
using Segal-Halevi et al. 2017’s solution if no online aspect is required from the market.

Fig. 3: Segal-Halevi et al. 2017’s theoretical bound on GFT competitive ratio vs. Gonen & Egri 2017’s converted theoretical bound
on GFT competitive ratio. When under 106 units are traded Segal-Halevi et al. 2017’s theoretical bound results in a negative value.
For very large markets, where over 108 units are traded, one might consider using Segal-Halevi et al. 2017’s solution if no online
aspect is required from the market.
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Fig. 4: Segal-Halevi et al. 2017’s practical GFT competitive ratio vs. Gonen & Egri 2017’s practical GFT competitive ratio. It
seems that in practice Gonen & Egri 2017 performs better than Segal-Halevi et al. 2017 despite the fact that Gonen & Egri 2017
provides an online solution as opposed to Segal-Halevi et al. 2017’s offline solution and Gonen & Egri 2017 are designed to
maximize SWF as opposed to Segal-Halevi et al. 2017’s which is designed to maximize GFT.

Fig. 5: McAfee 2008’s practical GFT competitive ratio vs. Colini-Baldeschi et al. 2017’s practical GFT competitive ratio. It appears
that in practice Colini-Baldeschi et al. 2017 performs better than McAfee 2008 despite the fact that Colini-Baldeschi et al. 2017
provides a combinatorial solution as opposed to McAfee 2008’s single commodity single-unit demand solution and Colini-Baldeschi
et al. 2017 is designed to maximize SWF as opposed to McAfee 2008’s which is designed to maximize GFT.
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Fig. 6: McAfee 2008’s theoretical bound on gain from trade competitive ratio vs. Colini-Baldeschi et al. 2017’s converted theoretical
bound on gain from trade competitive ratio. The theoretical bounds indicate that McAfee 2008 should perform better than Colini-
Baldeschi et al. 2017. However the figure also indicates that the gap in performance might not be very large in particular if
one wishes to design a combinatorial market (as Colini-Baldeschi et al. 2017) as opposed to a single-commodity unit-demand
mechanism (as McAfee 2008 provides). Another interesting aspect of the figure is the effect of δ on the converted bound. One can
see that the relative difference in the converted theoretical bound between a market where most commodities are sold (δ = 0.001)
to a market where most commodities are not sold (δ = 5) is less than 2%.
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Fig. 7: McAfee 1992’s theoretical bound on GFT competitive ratio vs. Blum et al. 2002’s converted theoretical bound on GFT com-
petitive ratio. Based on the theoretical bounds McAfee 1992 should perform better than Blum et al. 2002. However, the figure also
indicates another interesting aspect which is the effect of δ on the converted bound. One can see that the relative difference in the
converted theoretical bound between a market where most commodities are sold (δ = 0.001) to a market where most commodities
are not sold (δ = 5) is less than 2%.

Fig. 8: Segal-Halevi et al. 2017’s practical gain from trade competitive ratio vs. Colini-Baldeschi et al. 2017’s practical gain from
trade competitive ratio. In practice Colini-Baldeschi et al. 2017 performs better than Segal-Halevi et al. 2017 despite the fact that
Colini-Baldeschi et al. 2017 is geared to maximize social welfare as opposed to Segal-Halevi et al. 2017’s result which is geared to
maximize gain from trade.
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Fig. 9: This table demonstrates the practical performance of most known two-side market mechanisms with respect to GFT. The
results suggest that it is better for a two-sided market designer who wishes to maximize GFT to use algorithms that directly maximize
GFT. However, if the designer wishes to design a GFT maximizing two-sided combinatorial market than he/she should consider
using a SWF maximizing algorithm as opposed to an algorithm that directly maximizes GFT.
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