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Abstract. Game theory has emerged as a powerful framework for mod-
eling a large range of multi-agent scenarios. Many algorithmic solutions
require discrete, finite games with payoffs that have a closed-form specifi-
cation. In contrast, many real-world applications require modeling with
continuous action spaces and black-box utility functions where payoff
information is available only in the form of empirical (often expensive
and/or noisy) observations of strategy profiles. To the best of our knowl-
edge, few tools exist for solving the class of expensive, black-box continu-
ous games. In this paper, we develop a method to find equilibria for such
games in a sequential decision-making framework using Bayesian Opti-
mization. The proposed approach is validated on a collection of synthetic
game problems with varying degree of noise and action space dimensions.
The results indicate that it is capable of improving the game-theoretic
regret in noisy and high dimensions to a greater extent than hierarchical
or discretized methods.

Keywords: Game Theory · Pure Strategy · Empirical Games · Black-
Box Optimization · Gaussian Processes · Nash Equilibrium.

1 Introduction

Game-theoretic solution concepts play an important role in understanding agents
interactions in various areas including ecnonomics [10], politics [21], and cy-
bersecurity [17]. The problem of approximating game equilibria and strategic
stability has received a lot of attention in the literature. Many of the present
solution algorithms and approximation tools are tailored to a restricted class of
games. Complex games are then either stylized into a version covered by available
solvers (e.g., coarse discretization for infinite games [15]) or estimated through
simulation and sampling (empirical game-theoretic analysis [25,31]). Solving fi-
nite approximations to an infinite game can be instructive, but also produce
misleading results [26]. On the other hand, analyzing games, through simulation
and sampling, poses a search problem with the goal of identifying equilibrium
profiles given a finite number of payoff (utility function) evaluations. In this
? This material is based upon work supported by the MIT-IBMWatson AI Lab and the
Defense Advanced Research Projects Agency (DARPA) under Contract No. HR0011-
16-C-0101.
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paper, our interest is the search problem when such evaluations are expensive
and/or noisy.

We consider one-shot non-cooperative normal-form games, where players
make decisions about their actions simultaneously and receive payoffs, upon
which the game ends. Our goal is a general-purpose Nash equilibrium approxi-
mation technique for such games that are expensive, black-box, and continuous.
We report the following contributions: 1) To the best of our knowledge, this is
the first work that approximates equilbria in an expensive, black-box context on
the full continuous action space, rather than a discretized representation of the
same. 2) While majority of equilibria search methods for black-box games cast
the problem as the bi-level optimization relying on a best-response search sub-
routine, we approximate best-responses based on the learned payoff functions.
Subsequently, our method solves a flat optimization problem, rather than a hi-
erarchical one. This saves significant computational expense. 3) We validate the
effectiveness of our proposition and compare its performance in terms of regret
against recent algorithms in the literature on a collection of synthetic games.
With about 25 function evaluations or more, the proposed algorithm is capable
of minimizing the regret to an extent which existing tailored methods are not
able to reach 4) Finally, we provide an implementation for public use.

2 Background

This section introduces the main terminology—which we adopt from [13,28,23]—
used in the rest of the paper, followed by a summary of related work.

2.1 Formal Background

We start with formalizing the notion of strategic interactions between a set of
rational players as follows.

Definition 1. (Normal Form Game [29]) (I, {Xi}, {ui(x)}) is a normal form
game, with I the set of players where |I|= p, Xi the set of strategies (pure or
mixed, depending on context) available to player i, X =

∏p
i=1 Xi ⊆ RnX the joint

strategy set, and ui : X → R the utility function for player i mapping the joint
strategy x to the real-valued payoff received by player i when x is played.

With pure strategies, players choose their actions deterministically in the game.
Thus, the joint strategy x ∈ X represents the joint actions of the set of players
I, and the term action is interchangeable with strategy. On the other hand,
mixed strategies are probability distributions over pure strategies. For brevity,
we sometimes omit the word pure when referring to a pure (joint) strategy in
the rest of the paper. Further, the term joint strategy is interchangeable with
profile.

We shall use the convention x = (xi,x-i) when the role of player i’s action xi

needs to be emphasized. Accordingly, for player i, we have ui(x) = ui(xi,x-i).
Likewise, X = Xi × X-i. Holding other players’ strategies x-i constant, player
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i can best respond by unilaterally deviating from her current strategy xi such
that her payoff is maximized, as described formally below.

Definition 2. (Best Response [13]) For some joint strategy x ∈ X , the player
i’s best-response correspondence is

Bi(x) = arg max
x′

i∈Xi

ui(x
′
i,x-i) . (1)

The joint best-response correspondence is then given by

B(x) =
∏
i∈I
Bi(x) . (2)

The notion of best response is related to another important measure of normal-
form games, viz. the game-theoretic regret (or simply regret). Denoted by ε(x),
the regret of x is the most any player i can gain by deviating from xi to any
strategy in Xi. Mathematically, we have

ε(x) = max
i∈I

ui(Bi(x),x-i)− ui(x) . (3)

Iterative application of best-response correspondence results in the best-response
dynamic, for which a pure-strategy Nash equilibrium (NE) x∗ is a fixed point.
That is, x∗ = B(x∗). Nash equilibrium is a game-theoretic solution concept for
non-cooperative static games with complete information and no leadership nor
followers features [10]. It formalizes the notion of strategic stability in the sense
that every player is playing optimally given other players’ choices, as defined
next.

Definition 3. A Nash equilibrium x∗ ∈ X is the joint strategy such that

∀i ∈ I , x∗i = Bi(x∗) , (4)

or equivalently,
ε(x∗) = 0 . (5)

A pure NE does not always exist. Moreover, a game can sometimes be too large
to compute a NE exactly, or only payoff estimates are available. For these cases,
ε-NE is an appropriate solution concept. A profile x ∈ X is an ε-NE if and only
if ε(x) ≤ ε, where ε ≥ 0. It follows that every profile x is an ε(x)-NE, and the
pure NE x∗ is a 0-NE.

In this paper, we are interested in approximating pure NEs for continuous
black-box games: i) By continuous, we mean that {Xi ⊆ RnXi}. That is, player i’s
actions are real-valued vectors of size nXi

. ii) By black-box, we mean that there
is no closed-form expression of the utility functions {ui}, or their gradients are
neither symbolically nor numerically available. Instead, one can query an oracle
o (e.g., a simulation), which produces a possibly noisy version of {ui} at spe-
cific profile x. Each oracle call—also referred to as a function evaluation (FE)—
is often expensive in terms of computational resources (e.g., CPU time). De-
noted by (I, {Xi},o), such games are also referred to as empirical or simulation-
based games [29,28]. Mathematically, we have o(x) = (o1(x), . . . , op(x)) and
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E[o(x)] = u(x), where u = (u1(x), . . . , up(x)). Further, we use the notation
o(t) and o(t)i to denote o(x(t)) and oi(x(t)), respectively. Similar notation will be
used for other quantities. In the next section, we summarize literature related
to approximating equilibria (if one exists) for expensive, black-box, continuous
game-theoretic models.

2.2 Related Work

Continuous Games. For many years, AI researchers have worked on techniques
for approximating equilibria in finite games (finite action spaces X ). For instance,
the Gambit [19] software package offers a collection of established algorithms to
find NEs for finite games. Similarly, theoretical and algorithmic works on con-
tinuous and infinite games are an area of active research. Debreu [6] showed
that pure-strategy equilibria exist for infinite games of complete information
with compact, convex action spaces (subsets of a Euclidean space RnX ) and
payoffs that are continuous and quasiconcave in the actions. Fixed-points meth-
ods for computing NEs, using standard nonlinear programming routines, were
extensively studied [3,16,27,14]. Some propositions employed coarse discretiza-
tion amenable to finite-game solvers [15], while others were tailored to restricted
classes of games. For instance, an algorithm was presented in [26] for two-player
games with a class of piecewise linear utility functions.

Black-Box Continuous Games. Analytical tools of game theory have been ap-
plied to games that are constructed from empirical observations of strategic
play [31]. The source of these observations is an oracle o representing agent-
based simulation or real-world data. The main challenge is to develop algorithms
capable of approximating NEs without any information about the payoffs {ui},
except for a set of t profile-wise observations D1:t = {(x(1),o(1)), . . . , (x(t),o(t))}.
Vorobeychik et al. [30] studied approximating utility functions {ui} given a ran-
dom sample of pure profiles using supervised learning (regression) methods. Suc-
cess was measured by how close the players’ predicted behavior to that associ-
ated with the true utility functions. The o-query complexity (i.e., the number
of function evaluations #FEs) of learning equilibria for various classes of games
was theoretically addressed in [8]. For oracles with noisy outcomes, [29] presented
a convergent (in probability) algorithm, which approximates Nash equilibria by
minimizing the game-theoretic regret (Eq. 3), based on a hierarchical application
of Simulated Annealing (SA) and Monte Carlo methods (to estimate expected
payoffs). It was shown empirically that a hybrid method of SA and the Harmony
Search algorithm [9] converges to an approximate equilibrium point faster than
the plain SA at the expense of a slightly lower approximation accuracy [1].

Expensive Black-Box Continuous Games. To the best of our knowledge, very
little literature addresses game-theoretic models that are expensive to evaluate.
The aforementioned hierarchical SA becomes impractical when each oracle call
(or simulation) takes nearly an hour [32]. At the time of writing this paper, a
new version of an article [23] was released on arXiv proposing a novel approach
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for approximating equilibria in a continuous, black-box, expensive context using
Bayesian Optimization (BO) [20], which is an established technique to optimize
black-box problems. Their proposed approach is realized by fitting Gaussian Pro-
cesses (GPs) over a coarse discretization of the action space X . This is the most
relevant work to our proposition and shares the same goal. The main differences
are i) Representation of action spaces X : we seek to identify and learn the full
game from the limited oracle calls in a way similar to [30], while [23] assumes
that X is either originally discrete, or a representative discretization is available.
ii) BO acquisition function: we employ BO in minimizing an approximate of the
game-theoretic regret (Eq. 3) in a way similar to [29], whereas in [23], BO is
used to maximize the joint probability of achieving equilibrium or minimizing
an uncertainty measure related to equilibrium.

3 Methods

In this section, we describe our proposition, which we refer to as BN: Bayesian
optimization to approximate Nash equilibria given a finite number of oracle o
queries. The approach we take is similar to [29]: to minimize the regret (Eq. 3). As
shown in Figure 1, regret-minimization approaches usually employ best-response
{Bi(x)} approximation as a subroutine to estimate the regret ε(x) at a given
profile x ∈ X . This entails solving a bi-level optimization problem, which can
require a prohibitive number of function (oracle) evaluations. This poses a chal-
lenge in expensive settings. Instead of using best-response approximation as a

Fig. 1. A diagramatic view of finding Nash equilibrium based on regret minimization.
Adapted from [29].

subroutine [29], we make use of GPs to jointly learn the payoffs and approxi-
mate the regret based on D1:t: the set of empirical observations of strategic plays
obtained after t function evaluations (FEs). At the same time, we employ the
BO framework to search for a NE x∗ by sampling the profile space X sequen-
tially. The sequential sampling is guided by optimizing the approximated regret
ε̂(·|D1:t), which represents the so-called acquisition function in BO literature.
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Optimizing ε̂ can be carried out by off-the-shelf global optimization algorithms,
as it does not make any call to the oracle o and hence it is relatively inexpensive
to evaluate. Mathematically, at step t ≥ to,

x(t+1) ∈ arg min
x∈X

ε̂(x|D1:t).

The profile x(t+1), which is a potential NE, represents the next strategic play to
be evaluated by invoking the oracle o. At step t + 1, the GP models are fitted
with

D1:t+1 = D1:t ∪ {(x(t+1),o(x(t+1)))} ,

and the procedure continues iteratively. After T FEs, the algorithm returns
the profile x(T ) of the lowest obtained regret from the constructed sequence
{x(1), . . . ,x(T )}. Note that, o(x) corresponds to a single (possibly noisy) sample
of the payoffs value at profile x, in contrast to the Monte Carlo estimate (av-
eraging several samples) employed in the hierarchical SA approach of [29]. We
consider models with additive noise corruption, that is

oi(x) = ui(x) + ζi , ∀i ∈ I, (6)

where ζi ∼ N (0, vi) with vi ≥ 0.
A GP is a distribution over functions specified by its mean µ(·) and covariance

(or kernel) k(·, ·) functions. Given the profiles (x(1), . . . ,x(t)), denoted by x1:t,
and the corresponding observed player i’s payoffs (o

(1)
i , . . . , o

(t)
i ), denoted by o1:ti ,

we have
o1:ti ∼ N (µ1:t

i ,Ki) , ∀i ∈ I , (7)

where µ1:t
i = (µ

(1)
i , . . . , µ

(t)
i ) and Ki is the covariance matrix, with its en-

tries K(p,q)
i = ki(x

(p),x(q)). Common choices of {ki(·, ·)} in BO literature are
the squared exponential and Matérn kernels. For more details on GPs, we re-
fer the reader to [24]. Our choice of GPs was primarily due to their analytical
tractability, which enable us to compute exactly the posterior predictive mean
µi(·|D1:t) and variance σ2(·|D1:t) for any profile x ∈ X , as well as to approximate
the regret ε(x) (Eq. 3) by ε̂(·|D1:t). Recall that computing the regret requires
the values ui(xi,x-i) and ui(B(x),x-i) for all i ∈ I. In the literature [29,28], the
former quantity has been estimated by invoking the oracle multiple times for x
and averaging the obtained observations, while the latter quantity is estimated
by a stochastic search method (e.g., SA), which also invokes the oracle multiple
times at each point of its search trajectory. Here, we approximate ui(xi,x-i) and
ui(B(x),x-i) with GPs.

Approximating ui(xi,x-i). Given D1:t and assuming that the prior mean func-
tion µi(·) = 0, the posterior predictive distribution of oi(x(t+1)) is of the form [24]

o
(t+1)
i |D1:t ∼ N (µi(x

(t+1)|D1:t), σ2(x(t+1)|D1:t)) ,∀i ∈ I , (8)
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where

µi(x
(t+1)|D1:t) = ki(x

(t+1))TK−1i o1:ti ,

σ2
i (x(t+1)|D1:t) = ki(x

(t+1),x(t+1))− ki(x
(t+1))TK−1i ki(x

(t+1)) ,

with

ki(x
(t+1)) = (ki(x

(t+1),x(1)), . . . , ki(x
(t+1),x(t))) ,

ki(x,x
′) = viδ(x− x′) + ci exp

(
− (x− x′)TDi(x− x′)

2

)
.

One can observe that the kernel function ki(·, ·) is a combination of the white
kernel and the scaled squared exponential kernel to explain the noise-component
of the observations. The kernel’s hyperparameters vi, ci, and the diagonal matrix
Di are tuned by maximizing the GP log-marginal likelihood.

As mentiond in Section 2, E[o(x)] = u(x). Thus, according to our GP model,
for all i ∈ I, ui(xi,x-i) is approximated by

ui(xi,x-i) ≈ E[oi(x)|D1:t] = µi(x|D1:t) . (9)

Next, we show how GPs can be used to approximate ui(B(x),x-i).

Approximating ui(B(x),x-i). This value corresponds to the maximum of the set
of values

Ui(x-i)
def
={ui(x′i,x-i) | x′i ∈ Xi} ⊂ R .

Assuming these values are finite (bounded), one may recover its maximum using
its mean and standard deviation, as shown in the motivating example below.

Example 1. Let Ui(x-i) be the support of a uniform distribution U([a, b]), then
the maximum of this set, which is b and in our setup it is ui(B(x),x-i), can
be recovered from the distribution mean (a+ b)/2 and standard deviation (b−
a)/
√

12 as
a+ b

2
+ γ

b− a√
12

where γ =
√

3.

Similarly, we approximate ui(B(x),x-i), the payoff of i’s best response to x-i,
according to our GP models as

ui(B(x),x-i) ≈ µ̄i(x|D1:t) + γσ̄i(x|D1:t) ,

where µ̄i(x|D1:t) and σ̄i(x|D1:t) are the mean and standard deviation of Ui(x-i),
respectively. Formally, we have

µ̄i(x|D1:t) = Ex′
i
[µi(x

′
i,x-i|D1:t)] , (10)

σ̄2
i (x|D1:t) = Ex′

i
[(µi(x

′
i,x-i|D1:t)− µ̄i(x|D1:t))2] , (11)
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and γ ≥ 0 is a hyperparameter of our algorithm. An appropriate value can be
the 99th percentile of the standard normal distribution ≈ 2.33. Provided that the
covariance functions {ki} of our GP models are separable, the values of Eq. 10
and Eq. 11 can be computed exactly (in a closed-form), as shown in Sections ??
and ?? of the supplement materials.

Approximating the regret (Eq. 3). Based on the above, in particular Eq. 9, Eq. 10,
and Eq. 11, the game-theoretic regret ε(x) can be estimated as

ε̂(x|D1:t) = max
i
µ̄i(x|D1:t) + γσ̄i(x|D1:t)− µi(x|D1:t) . (12)

This constitutes the acquisition function of our BO framework. In our imple-
mentation, we rescale this term by σ̄i(x|D1:t) to have similar sensitivity across
x ∈ X . This improves the performance of the global optimization procedure in
its search for the next play x(t+1).

Exploration-Exploitation Trade-off. In general, the acquisition function in the
BO framework balances between exploration (sampling from areas in X of high
uncertainty according to the GP model) and exploitation (sampling from po-
tentially optimal areas in X according to the GP model). One could observe
that the acquisition function represented by the estimated regret (Eq. 12) is
more exploitative than exploratory. This can be addressed with several policies
from the literature [2]. We employ an ε-greedy policy with ε ∈ (0, 1),1 where
the next strategic play x(t+1) is chosen with probability 1 − ε according to the
approximated regret ε̂(·|D1:t). Otherwise, it is chosen according to the posterior
uncertainty σi(·|D1:t).

Computational Tractability. With the use of separable kernels, we could compute
µ̄i(x|D1:t) and σ̄i(x|D1:t) exactly and evaluate the approximated regret ˆε(x|D1:t).
However, the computational complexity, besides the cost of computing and in-
verting the covariance matrix Ki, of computing the regret grows quadratically
in the number of observations |D1:t|. This could be manageable in an expensive
setup where the number observations is well below 100, i.e., |D1:t|≤ 100. Beyond
that, one could estimate these values through sampling. Mathematically, for all
i ∈ I,

ˆ̄µi(x|D1:t) =
1

S

S∑
s=1

µi(x̂
(s)
i ,x-i|D1:t) , (13)

ˆ̄σ2
i (x|D1:t) =

1

S

S∑
s=1

(µi(x̂
(s)
i ,x-i|D1:t)− ˆ̄µi(x|D1:t))2 , (14)

where S is the number of samples, and x̂
(s)
i ∼ U(Xi) or any relevant sampling

technique. This approximation can also be used for GPs with inseparable ker-
nels. Note that there exist other methods to approximate the integrals associated
1 This ε is different from the ε in ε-NE. The two quantities happen to have the same
symbols. We sought to differentiate them with a bold version in the case of ε-NE.
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with the inseparable kernel [4]. On the other hand, the noise and randomness in-
troduced by sampling may help towards a better exploration-exploitation trade-
off. Our implementation supports both exact and approximate computation of
µ̄i(x|D1:t) and σ̄i(x|D1:t) and we refer to these algorithmic variants by BN-exact
and BN-approx, respectively. With this at hand, our general-purpose framework
for computing Nash equilibria in expensive, black-box, continuous games is now
complete. Algorithm 1 summarizes the procedure and we provide an illustra-
tion of the same (the exact variant BN-exact) in Fig. 2. The figure shows the
progress of BN variants from 5 to 20 observations. The top subfigures (a and b)
show the sampled profiles and their kernel density estimate (KDE) over the ac-
tion space X . With more iterations, the sampled profiles get closer to the actual
NE. The middle subfigures (c and d) show the estimated payoff and approxi-
mated regret for player 1 after 5 and 20 observations, respectively. Likewise, the
bottom subfgures (e and f) show the same for player 2. Since subfigures (c),
(d), (e), and (f) are similar. We describe them collectively. The center heatmap
represents the GP’s current estimate of player i’s payoff µi(x1, x2|D1:t) (Eq. 9).
The supplots to the left and bottom show the expectation (along with a 95%-
confidence interval) of µi(x1, x2|D1:t) over x1 and x2, respectively. For player
1, the left supplot of subfigures (c) and (d) represent µ̄1(x|D1:5) (Eq. 10) and
µ̄1(x|D1:20) in Fig. 2. For player 2, the bottom subplots in subfigures (e) and (f)
correspond to µ̄2(x|D1:5) and µ̄2(x|D1:20) in Fig. 2. For player 1 (i.e., subfigures
(c) and (d)), this is computed based on the center and the left subplots. For
player 2 (i.e., subfigures (e) and (f)), this is computed based on the center and
the right subplots. One can observe the smoothness of the plots in the figures of
BN-exact (Fig. 2). For further illustrations, we refer the reader to Section ?? of
the supplement materials.

Algorithm 1 Bayesian optimization for Nash Equilibrium (BN)
Require:
D1:t0 : initial design (e.g., Latin hypercube design [18])
T : number of iterations
ε ∈ (0, 1): probability of exploration

1: for t = 1 to T do

2: x(t+1) ←

{
arg minx∈X ε̂(x|D1:t) , with probability 1− ε;
arg maxx∈X maxi∈I σi(x|D1:t) , otherwise.

3: D1:t+1 ← D1:t ∪ {(x(t+1),o(x(t+1))}
4: end for

While the BO framework provides an efficient sampling of the profile space X ,
one should note that deciding which point (from D1:T ) corresponds to the ap-
proximate NE, x(T ), can be prone to over-fitting [5]. This is not a problem in the
standard BO where the best solution x(T ) can be decided directly by comparing
the values returned by the oracle. This is beyond the scope of this paper and we
leave it for future work.
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Fig. 2. Illustration of BN-exact after 5 and 20 observations on the zero-sum hyper-
bolic paraboloid game with NE being (0.5, 0.5). That is, u1(x1, x2) = (x2 − 0.5)2 −
(x1 − 0.5)2, and u2(x1, x2) = −u1(x1, x2). ε̂i denotes (µ̄i(x|D1:t) + γσ̄i(x|D1:t) −
µi(x|D1:t))/σ̄i(x|D1:t), where γ = 2.32635, the 99th percentile of the standard nor-
mal distribution.

4 Experiments

In this section, we investigate how BN performs and compare it with [23]’s Gaus-
sian process method (GPG), which discretizes X , and the iterated best-response
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(BR) via stochastic search [29]. We are interested in the impact on performance
of using a continuous representation, in contrast to the grid that GPG uses. In
addition, we are interested in how each algorithm scales and is robust to a
noisy payoff function. Our experimental problems are shown in Table 1, the
columns show the action space for each player and the given number of function
evaluations (#FEs). Saddle.{1, 2, 3} are variants of the zero-sum hyperbolic
paraboloid game where the NE x∗ is shifted or the game is scaled to a higher-
dimensional action space. That is, u1(x1, x2) = (x2 − x∗2)2 − (x1 − x∗1)2, and
u2(x1, x2) = −u1(x1, x2). The MOP problem is taken from [23]. In line with [7],
all algorithms were terminated after 20nX FEs. For comparison with GPG which
evaluates at every discretized grid point, with Saddle.3 we terminated the algo-
rithms after #FEs equal to grid size (120). For experiments with noise, a Gaus-
sian noise was added to the payoff functions with a standard deviation σ′i that is
roughly 0.1 of its range: For MOP, σ′1 = 7.5 and σ′2 = 3. For Saddle variants,
σ′1 = σ′2 = 0.025.

Table 1. Problem setup. The columns show the dimensions for each player and the
number of fitness evaluations.

Problem (X1,X2) NE Function evaluations (#FEs)

Saddle.1 ([0, 1], [0, 1]) (0.5, 0.5) 40

Saddle.2 ([0, 1], [0, 1]) (0.3, 0.3) 40

Saddle.3 ([0, 1]2, [0, 1]2) ([0.5]2, [0.5]2) 120

MOP ([0, 1], [0, 1]) (0.08093, 1) 40

BN setup. The source for BN and the supplement materials are available at https:
//github.com/ALFA-group. The algorithm is implemented in Python and uses
the Scikit-learn package [22]. The hyperparameters that are not default in BN
were set to: A) The bounds of kernel {ki}’s hyperparameters were set as follows.
vi ∈ [10−5, 105], ci ∈ [10−3, 103], and Dl,l

i ∈ [10−2, 102]. The hyperparameters
were tuned with 2 restarts. B) The size of the initial design |D1:t| is set to
b#FEs/4c. C) The acquisition function (Line 2 of Algorithm 1) is optimized
with CMA-ES [11] and an evaluation budget of 250. D) The ε-greedy policy is set
with ε = 0.05. E) For BN-approx, 10nXi

samples from the Latin hypercube were
used to compute ˆ̄µi(x|D1:t) (Eq. 10) and ˆ̄σi(x|D1:t) (Eq. 11).

GPG setup. We tested two variants of the algorithm: GPG-psim and GPG-sur with
"psim" and "sur" as the solver criterion, respectively. Similar to BN, b#FEs/4c
are used as initial points. We used a 31× 31 grid for all the problems, except for
Saddle.3 that has 11× 11. The rest of the parameters were set to their default
settings.

BR setup. In our BR implementation, we used basinhopping from the SciPy
package [12], with L-BFGS-B as the local minimization method. BR is prohibitively

https://github.com/ALFA-group
https://github.com/ALFA-group
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expensive on problems with noisy observations, as it requires multiple samples
per profile. Therefore, BR is only tested on noiseless experiments for baseline
comparison to the methods tailored for expensive games.

Results. Fig. 3 shows the convergence of the best obtained regret ε (Eq. 3) as a
function of the number of function evaluations over 25 independent runs. Regret
is calculated numerically using CMA-ES. We start with Saddle.1 where the NE
is more appropriately placed for the grid used by GPG. In the noiseless version
(Fig. 3-a), we observe the lowest regret for the GPG variants. Both BN variants have
higher regret than the GPG variants. Still, the BR method has the highest regret.
In the noisy Saddle.1 (Fig. 3-b), the regret is higher for all the methods. But
BN variants show a relatively better performance in comparison to the noiseless
version of the problem (Fig. 3-a), when noise is added, the BN-approx has the
lowest, then BN-exact, both are lower than GPG-psim and GPG-sur. For noiseless
Saddle.2 (Fig. 3-c) the NE is shifted off the grid that GPG uses. Here, we observe
the lowest regret for the BN variants. Both BN variants have lower regret than
the GPG variants. The BR method has the highest regret. In the noisy Saddle.2
(Fig. 3-d) all methods have higher regret. Again, the order of the algorithms
final regret when noise is added, the BN-approx has the lowest, then BN-exact,
both are lower than GPG-psim and GPG-sur. The effect of discretizing X shows
up clearly in the inferior performance of GPG variants over the same problem but
with translated (shifted) NEs, namely Saddle.1 and Saddle.2.

For noiseless MOP (Fig. 3-e) we observe the lowest regret for the BN variants.
The BN-approx has the lowest average regret in the end. Both BN variants have
lower regret than the GPG variants. The BR method has the highest regret. When
noise is added (Fig. 3-f), all methods have higher regret. There are some changes
in the ranking of the algorithms based on final regret, the BN-approx has the
lowest, then BN-exact, is slightly lower than GPG-psim, and the highest regret is
reported for GPG-sur.

We scaled the easy (for GPG) variant of Saddle to 4 dimensions ( Saddle.3)
and studied its performance when the number of function evaluations are almost
equal to the number of GPG’s grid points. As 31 × 31 function evaluations were
computationally prohibitive, we used a grid size of 11× 11 for GPG. From Fig. 4,
we observe the lowest regret for the BN. The GPG versions are not capable on
improving the regret, because they are limited to the grid. However the BN vari-
ants, as the number of FEs increases, surpass the minimum regret of GPG. From
the results, we see that GPG performs well and rapidly finds solutions with low
regret when the grid provides the appropriate bias for the search. The GPG starts
to struggle when the NE is shifted or the discretization is too wide. This is the
gap in performance that the BN variants address. The continuous representation
of BN means that it is not limited to the grid and can continue to improve the
regret with more fitness evaluations. A drawback of the BN representation is that
it can take longer to reach low regret. This tradeoff is acceptable because it is
searching the full space and not constrained to only find estimates that occupy
the grid. Another benefit of BN is that the memory usage is not dependent on
discretization. Setting GPG’s grid size to 93× 93 produced a memory allocation
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(a) Noiseless Saddle1 (c) Noiseless Saddle2 (e) Noiseless MOP
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(b) Noisy Saddle1 (d) Noisy Saddle2 (f) Noisy MOP
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Fig. 3. Regret ε(x) convergence on a log scale as a function of the number of func-
tion evaluations #FEs, obtained using 25 independent runs. The markers indicate the
average regret value. The error bands corresponds to one standard deviation.
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Fig. 4. Regret ε(x) convergence on a log scale as a function of the number of function
evaluations #FEs, obtained using 8 independent runs. The markers indicate the average
regret value. The error bands corresponds to one standard deviation.

error on a 24-core Ubuntu machine with a 24-GB RAM. The tradeoff between
BN and GPG is the available #FEs, when #FEs ≤ 25, GPG methods are in general
preferable.

5 Conclusion

In this paper, we presented BN: a Bayesian framework for computing Nash equilib-
ria for expensive, black-box, continuous games. In contrast to proposed methods
in the literature, which either solve a bi-level optimization problem or assume a
discretized representation of the strategy space, our framework seeks to jointly
learn the full game and estimate the game-theoretic regret on the full continuous
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strategy space. The approach was validated on a collection of synthetic games
and compared to existing methods. We show that BN is capable of improving
the regret in noisy and high-dimensional games to an extent which hierarchi-
cal or discretized methods are not able to reach in an expensive setup. The
experiments demonstrated BN’s robustness to noise and translated NEs. Secon-
darily, we observed that the randomness introduced by the empirical compu-
tation of the approximated regret (BN-approx) can be helpful in directing the
search, compared to computing it exactly (BN-exact). This is in line with the
exploration-exploitation dilemma, in the sense that noisy approximated regret
can contribute to the exploration component of our search for NE. Future work
will include exploring the parameters of BN, incorporating inseparable kernels,
and applying it to a simulation-based model for a Cybersecurity application.
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