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Abstract. We study Stackelberg Security Games where the defender,
in addition to allocating defensive resources to protect targets from the
attacker, can strategically manipulate the attacker’s payoff under budget
constraints in weighted Lp-norm form regarding the amount of change.
For the case of weighted L1-norm constraint, we present (i) a mixed in-
teger linear program-based algorithm with approximation guarantee; (ii)
a branch-and-bound based algorithm with improved efficiency achieved
by effective pruning; (iii) a polynomial time approximation scheme for a
special but practical class of problems. In addition, we show that prob-
lems under budget constraints in L0 and weighted L∞-norm form can
be solved in polynomial time.

Keywords: Security games · Optimization · Game theory.

1 Introduction

Research efforts in security games have led to success in various domains, rang-
ing from protecting critical infrastructure [18, 26] and catching fare invaders in
metro systems [29], to combating poaching [9] and preventing cyber intrusions [7,
1]. In these games, a defender protects a set of targets from an attacker through
allocating defensive resources. One key element that characterizes the strategies
of the players is the payoff structure. Existing work in this area typically treats
the payoff structure of the players as given parameters, sometimes with uncer-
tainties known a priori given the nature of the domain. However, under various
circumstances, the defender is able to change the attacker’s payoff, thus render-
ing the existing models inadequate in expressiveness. For example, in wildlife
poaching, the law enforcement agency may charge a variable fine if the poacher
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is caught at different locations, e.g., in the core area v.s. in the non-core area.
[Ziye: Similarly in the case of catching fare invaders in metro systems.] In cybersecurity,
the network administrator may change the actual or appeared value of any net-
work node for a potential attacker. In these cases, the defender’s decision making
is two-staged: she needs to choose the payoff structure, as well as the strategy
of allocating defensive resources. With a properly chosen payoff structure, the
defender can potentially achieve much better utility with the same or even less
amount of resources, saving the effort of the defender.

As existing work in security games do not provide adequate tools to deal with
this problem (see Section 2 for more details), we aim to fill this gap as follows.
We study how to design the attacker’s payoff structure in security games given
budget constraints in weighted Lp-norm (it is easy to show that the problem be-
comes trivial without any budget constraints). The intuition behind this setting
is that the defender can change the payoffs to make a target that is preferable to
the defender more attractive to the attacker and disincentivize the attacker from
attacking targets that can lead to a significant loss to the defender, but more
change incurs a higher cost to the defender. Our findings can be summarized as
follows:

1. L1-norm case: When the budget constraint is in weighted L1-norm form, i.e.
additive cost, our contribution is threefold. (i) We exploit several key properties
of the optimal manipulation and propose a mixed integer linear program (MILP)-
based algorithm with approximation guarantee. (ii) We propose a novel branch-
and-bound approach with improved efficiency achieved by effective pruning for
the general case. (iii) Finally, we show that a polynomial time approximation
scheme (PTAS) exists for a special but practical case where the budget is very
limited and the manipulation cost is uniform across targets. The PTAS is built
upon the key observation that there is an optimal solution where no more than
two targets’ payoffs are changed in this restricted case.

2. L0 and L∞-norm cases: We propose a O(n3) and a O(n2 log n) algorithm
for problems under budget constraints in L0-norm form and weighted L∞-norm
form, respectively, where n is the total number of targets. For L0-norm form
budget, i.e. limited number of targets to manipulate, our algorithm converts the
problem into n2 subproblems and reduce each subproblem into a problem of
finding a subset of items with maximum average weight, which can be solved
in O(n) time. For L∞-norm form budget, i.e. limited range of manipulation on
each target, the proposed algorithm reduces the problem to traditional Stackel-
berg Security Games with fixed payoff structure, which again admits an efficient
algorithm.

3. Numerical evaluation: We provide extensive experimental evaluation for
the proposed algorithms. For problems with L1-norm form budget constraint,
we show that the branch-and-bound approach with an additive approximation
guarantee can solve up to hundreds of targets in a few minutes. This is faster
than other baseline algorithms we compare to. Somewhat surprisingly, naively
solving n non-convex subproblems using interior point method achieves good
performance in practice. Yet there is no theoretical guarantee in solution quality.
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We also evaluate the proposed O(n3) algorithm for the L0-norm form case and
show its superior performance over two greedy algorithms and a MILP based
algorithm.

2 Preliminaries and Related Work

The security game that we consider in this paper features a set of n targets,
T = {1, 2, . . . , n}. The defender has r units of defensive resources, each can
protect one target. The attacker can choose to attack one target after observing
the defender’s strategy. If the defender covers target i when it is attacked, the
defender gets a reward Rdi ≥ 0 and the attacker gets a penalty P ai ≤ 0. Otherwise,
the defender gets a penalty P di ≤ 0 and the attacker gets a reward Rai ≥ 0.
When the defender commits to a mixed strategy c, that is, covering target i
with probability ci, the defender’s and attacker’s expected utilities when target
i is attacked are Udi = ciR

d
i +(1−ci)P di and Uai = ciP

a
i +(1−ci)Rai , respectively.

We adopt the commonly used solution concept of Strong Stackelberg Equi-
librium (SSE). At an SSE, the defender chooses an optimal strategy that leads
to the highest expected utility for her when the attacker chooses a best response
(assumed to be a pure strategy w.l.o.g), breaking ties in favor of the defender.
Given a coverage c, the attack set Γ ⊆ T contains all targets which have a weakly
higher attacker’s expected utility than any other target, i.e.,

Γ = {j ∈ T : Uaj ≥ Uak ,∀k ∈ T} (1)

[13] show that there exists an SSE where the defender only covers the targets in
the attack set.

Given the game parameters, the optimal defender strategy in such a game
can be computed using multiple Linear Programs (LPs) [5] or an efficient O(n2)
algorithm called ORIGAMI [13] based on enumerating the possible attack sets.
We leverage insights from both works to devise our algorithms.

Although many algorithms have been developed to solve security games under
various settings, in most existing work, the payoff structure is treated as fixed
and cannot be changed by the defender, either in the full information case [16,
21, 17], or in the presence of payoff uncertainties [12, 15, 30, 19, 4]. As mentioned
in the introduction, in many real-world scenarios the defender has control over
the attacker’s payoffs. The above-mentioned approaches ignore this aspect and
thus leave room for further optimization.

Indeed, despite its significance, jointly optimizing the payoff structure and
the resource allocation is yet under-explored. A notable exception, and a most
directly related work to ours, is the audit game model [2, 3]. The defender can
choose target-specific ‘punishment rates’, in order to maximize her expected util-
ity offset by the cost of setting the punishment rate. Compared with their model,
ours is more general in that we allow not only manipulation of attacker’s penalty,
but also attacker’s reward. This realistic extension makes their core techniques
inapplicable. Also, we treat the manipulation cost as a constraint instead of
a regularization term in the objective function, for in some real-world settings,
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payoffs can be manipulated only once, yet the defender may face multiple attacks
afterwards, This makes it hard to determine the regularization coefficient. An-
other closely related work [23] extends previous work on the use of honeypot [14,
6, 7, 22]. It studies the problem of deceiving a cyber attacker through manipulat-
ing the attacker’s (believed) payoff. However, this work assumes the defender can
only change the payoff structure, ignoring the allocation of defensive resources
after the manipulation.

If we conceptually decouple the payoff manipulation from resource alloca-
tion, the defender faces a two-stage decision. She first chooses the structure of
the game, and then plays the game. Thus, our problem may be viewed as a mech-
anism design problem, albeit not in a conventional setting. Most work in mecha-
nism design considers private information games [10, 20], while in our work, and
most security game literature, the payoff information is public. Some design the
incentive mechanism using a Stackelberg game [11], with applications to network
routing [24], mobile phone sensing [28], and ecology surveillance [27]. However,
these work solves the Stackelberg game to design the mechanism, rather than
designing the structure of the Stackelberg game.

3 Optimizing Payoff with Budget Constraint in Weighted
L1-norm Form

In this section, we focus on computing the optimal way of manipulating at-
tacker’s payoffs and allocating defensive resources. Payoff manipulation is subject
to a budget constraint in weighted L1-norm form, i.e., the defender can change
the attacker’s reward and penalty, at a cost that grows linearly in the amount
of change. The cost rate, referred to as weights, may be different across targets.
This is an abstraction of several domains. For example, a network administrator
may change the actual or appeared value of any network node although such
change often incurs time and hardware costs.

Let Ra, P a, R̄a, P̄ a denote the attacker’s reward and penalty vectors before
and after the manipulation. Similar to the initial payoff structure, we require
that R̄a ≥ 0 ≥ P̄ a and denote Dj = Raj −P aj . Let ε = R̄a−Ra and δ = P̄ a−P a
be the amount of change in attacker’s reward and penalty and µ, θ the weights
on ε, δ resp.. The weighted L1 budget constraint is then

∑
j(µj |εj |+ θj |δj |) ≤ B

where B is the budget. The defender’s strategy is characterized by (c, ε, δ). Given
this strategy, in the manipulated game the attacker attacks some target t, which
belongs to the attack set Γ . We first show some properties of the optimal solution.

Property 1. There is an optimal solution (c, ε, δ) with attack target t and attack
set Γ which satisfies the following conditions:

1. cj = 0, εj = 0, δj = 0,∀j /∈ Γ .
2. εt ≥ 0, δt ≥ 0; εj ≤ 0, δj ≤ 0, ∀j 6= t.
3. δtεt(δt + P at ) = 0 and δjεj(R

a
j + εj) = 0, ∀j 6= t.

Proof (Proof sketch). Condition 1: If any εj , δj 6= 0 with j /∈ Γ , we may either
set εj , δj = 0 or push j into the attack set. There is no need to protect a target
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that is not in the attack set. Condition 2: We may flip the sign of ε and δ without
affecting the solution structure. Condition 3: For each target i, changing Rai and
P ai are equivalent while one is more budget efficient than the other depending on
coverage. We can show that these manipulations can be done simultaneously.5

Similar to the multiple LPs formulation in [5], we consider n subproblems
Pi, each assuming some target i ∈ T is the attack target, and the best solution
among all n subproblems is the optimal defender strategy. Condition 2 in Prop-
erty 1 shows it is possible to infer the sign of ε and δ given the attack target. So
in the sequel, we abuse the notation by treating ε, δ as the absolute value of the
amount of change, and assume w.l.o.g. that in Pi, R̄ai = Rai + εi, P̄

a
i = P ai + δi

and ∀j 6= i, R̄aj = Raj − εj , P̄ aj = P aj − δj . Thus, a straightforward formulation for
Pi is

max
c,ε,δ

Udi = Rdi ci + P di (1− ci) (2)

s.t. Uai = ci(P
a
i + δi) + (1− ci)(Rai + εi) (3)

≥ Uaj = cj(P
a
j − δj) + (1− cj)(Raj − εj),∀j 6= i∑

j
(µjεj + θjδj) ≤ B (4)∑
j
cj ≤ r (5)

Raj − εj ≥ 0, ∀j 6= i (6)

P ai + δi ≤ 0 (7)

cj , εj , δj ≥ 0, cj ≤ 1, ∀j ∈ T (8)

The above formulation is non-convex due to the quadratic terms in Constraint
3, and thus no existing solvers can guarantee global optimality in polynomial
time for the above formulation.

3.1 A MILP-based Solution with Approximation Guarantee

To find a defender strategy with approximation guarantee, we solve the atomic
version of the subproblems with MILPs. We show an approximation guaran-
tee which improves with the fineness of discretization. We further propose a
branch-and-bound-like framework for pruning subproblems to improve runtime
efficiency.

In the atomic version of the payoff manipulation problem, we assume the
defender can only make atomic changes, with the minimum amount of change
given as ρ0. We refer to the atomic version of Pi as APi. APi can be formulated
as the MILP in Equations 9-19. We simplify the objective function as ci since
Di ≥ 0. All constraints involving sub/super-script j, k without a summation
apply to all proper range of summation indices. We use binary representation

5 Due to limited space, the omitted full proofs are included in the online appendix:
https://www.dropbox.com/s/d2bv1v8kzvf85i0/APPENDIX.pdf?dl=0
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for R̄ai /ρ0 and P̄ ai /ρ0 in constraints 10-14. The binary representation results in
bilinear terms like ykj cj . We introduce variables αkj , β

k
j and constraints 18-19 to

linearize them.

max
ykj ,z

k
j ,cj

ci (9)

s.t. Constraint 4-8

εi = ρ0

∑
k

2kyki −Rai (10)

εj = Raj − ρ0

∑
k

2kykj , ∀j 6= i (11)

δi = −ρ0

∑
k

2kzki − P ai (12)

δj = P aj + ρ0

∑
k

2kzkj , ∀j 6= i (13)

ykj , z
k
j ∈ {0, 1} (14)

vi ≥ vj (15)

vi = Rai + εi − ρ0

∑
k

2k(αki + βki ) (16)

vj = Raj − εj − ρ0

∑
k

2k(αkj + βkj ),∀j 6= i (17)

0 ≤ αkj ≤ ykj , cj − (1− ykj ) ≤ αkj ≤ cj (18)

0 ≤ βkj ≤ zkj , cj − (1− zkj ) ≤ βkj ≤ cj (19)

The optimal defender strategy for the atomic payoff manipulation problem
can be found by checking the solution to all the subproblems and compare the
corresponding Udi . We can also combine all the subproblems by constructing a
single MILP, with additional variables indicating which subproblem is optimal.
The full MILP is included in Appendix.

A natural idea to approximate the global optima of the original L1-constrained
payoff manipulation problem is, for each attack target i, approximate Pi with
APi using small enough ρ0. Theorem 1 below shows such an approximation
bound.

Theorem 1. The solution of the atomic problem is an additive maxi 2ρ0(Rdi −
P di )/Rai -approximation to the original problem.

Proof (Proof sketch). The floor and ceiling notations are about the “integral
grid” defined by ρ0. Suppose (c∗, ε∗, δ∗) is an optimal solution to Pi. Let ε′ = bε∗c,
δ′ = bδ∗c, and c′ = c∗ except c′i = c∗i − 2ρ0/(Di + ε′i − δ′i). We can show such
feasible solutions yield the desired approximation bound.

We note that the idea of discretizing the manipulation space is similar to [2,
3]. Yet allowing changes in both reward and penalty and the difference in objec-
tive function make our formulation different and the reduction to SOCP tech-
nique inapplicable. We can further improve the practical runtime of the MILPs
by pruning and prioritizing subproblems as shown in Alg 1. We first compute a
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global lower bound by checking a sequence of greedy manipulations. Inspired by
Condition 2 and 3 in Property 1, we greedily spend all the budget on one target
to increase its reward or penalty, leaving all other targets’ payoff parameters
unchanged (Line 2 - 8).

Upper bounds in Pi can be computed with budget reuse: we increase Rai and
P ai as much as possible and decrease Raj and P aj , j 6= i, as much as possible.
For the ease of notation, in Algorithm 1 we assume manipulations have uniform
cost. The weighted case can be easily extended.

The subproblem Pi is pruned if its upper bound is lower than the global lower
bound. To make the pruning more efficient, we solve subproblems in descending
order of their corresponding lower bounds, hoping for an increase in the global
lower bound. For subproblems that cannot be pruned, we set ρ0 to a desired
accuracy and solve the MILP to approximate the subproblem optima. We also
add the linear constraint on ci derived from the global lower bound to the MILP.

To get the bounds, we call an improved version of the ORIGAMI algorithm
in [13] by doing a binary search on the size of the attack set Γ , and solve the
linear system. It is denoted as ORIGAMI-BS in Alg 1. Recall r is the defender’s
total resource. Let M be the attacker’s expected utility for attack set and Ēk =

1
R̄a

i−P̄a
i

. From Uai = Uaj ,∀j ∈ Γ and
∑
j∈Γ cj = r, we obtain

M =

∑
k∈Γ R̄

a
kĒk − r∑

k∈Γ Ēk
(20)

cj = Ēj

(∑
k∈Γ (R̄aj − R̄ak)Ēk + r∑

k∈Γ Ēk

)
, ∀j ∈ Γ (21)

We iteratively cut the search space by half based on cj and M . The complexity
improves from O(n2) to O(n log n). A complete description can be found in
Appendix.

We end this subsection by remarking that atomic payoff manipulation arises
in many real-world applications. For example, it is infeasible for the wildlife
ranger to charge the poacher a fine of $100/3. In those cases, our proposed
MILP formulation could be directly applied.

3.2 PTAS for Limited Budget and Uniform Costs

We show that for a special but practical class of problems, there exist a PTAS.
In many applications, the defender has only a limited budget B ≤ minj∈T

∣∣P aj ∣∣.
Additionally, the weights on ε and δ are the same. W.l.o.g., we assume µj = θj =
1. We first show a structural theorem below and then discuss its algorithmic
implication.

Theorem 2. When budget B ≤ minj∈T
∣∣P aj ∣∣ and µj = θj = 1,∀j ∈ T , there

exists an optimal solution which manipulates the attack target and at most one
other target.
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Algorithm 1 Branch-and-bound

Input: Payoffs σ = {Rd, Pd, Ra, Pa}, budget B
1: Initialize LB ← ∅, globalLB ← −∞, N ← ∅ containing set of indices of pruned subproblems.

Set ρ0 to be a desired accuracy.
2: for Subproblem Pi do
3: Greedy Modifications (GM):
4: GM1 ← R̄a

i = Ra
i + B

5: GM2 ← P̄a
i = min{Pa

i + B, 0}, R̄a
i = max{Ra

i , R
a
i + B + Pa

i }
6: LBi ← maxj∈{1,2} ORIGAMI-BS(GMj)

7: end for
8: globalLB ← maxi∈[n] LBi

9: Sort Pi in decreasing LBi.
10: for sorted Pi do
11: Overuse Modifications (OM): ∀j 6= i, R̄a

j = max{0, Ra
j − B}, P̄

a
j = min{Pa

j , P
a
j − B + Ra

j }
12: OM1 ← R̄a

i = Ra
i + B.

13: OM2 ← P̄a
i = min{Pa

i + B, 0}, R̄a
i = max{Ra

i , R
a
i + B + Pa

i }
14: UBi ← minj∈{1,2} ORIGAMI-BS(OMj)

15: if UBi ≤ globalLB then
16: Prune Pi

17: else

18: run MILP of Pi with additional constraint ci ≤
globalLB−Pd

i
Rd

i
−Pd

i

19: end if
20: end for
21: Output: Best solution among globalLB and all Pi’s.

Proof. Let t and Γ be the attack target and the attack set in the optimal solution.
Let V = {k : k ∈ Γ\{t}, εk 6= 0 or δk 6= 0}. Since B is limited, either Rat or P at
is unchanged according to Condition 3 of Property 1. Further, with uniform
cost, it is easy to show ∀j ∈ T, εj > 0 only if cj ≤ 1/2. Below we assume
all manipulations happen on attacker’s reward; other cases also hold due to
symmetry. We may assume targets in V are sorted in increasing order by the

value of (1− ck)εk. First, we increase εt by ∆εt = ε1(1−c1)
1−ct . Then, for each target

j ∈ V , we decrease εj by some ∆εj such that j’s utility increases to be the same
as target t, i.e. ∆εj(1 − cj) = ∆εt(1 − ct). This is possible if

∑
j∈V ∆εj ≥ ∆εi.

To show this, we lower bound
∑
j∈V ∆εj as follows:∑

j∈V
∆εj = ∆εt(1− ct)

∑
j∈V

1

1− cj
(22)

≥ ∆εt(1− ct) |V | (23)

where inequality (23) follows since 1 − cj ≤ 1. Recall we assume εt > 0, which
implies ct ≤ 1

2 , then if |V | ≥ 2, we have
∑
j∈V ∆εj ≥ ∆εt. This process stops

when |V | ≤ 1, i.e. when the payoff of at most one non-attack target in the attack
set is manipulated.

Note the assumption B ≤ minj∈T
∣∣P aj ∣∣ is needed when the optimal solution

increases the attack target’s penalty.

We remark the above theorem is tight, i.e. there exists an instance where
two targets are manipulated. See Appendix for details. When B ≤ minj∈T

∣∣P aj ∣∣
and µj = θj = 1,∀j ∈ T , Thm. 2 naturally suggests a PTAS – we can use linear
search for manipulations on all pairs of targets as shown in Alg. 2, where ei is
a unit vector with a single one at position i . Thm. 3 shows the approximation
guarantee, with a proof similar to Thm. 1 (full proof included in Appendix).
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Algorithm 2 PTAS for limited budget and uniform costs in L1

Input: Payoffs {Rd, Pd, Ra, Pa}, budget B, tolerance η.
1: Initialize M ← −∞
2: for all ordered pairs of targets (i, j) do
3: for s = 0, 1, . . . , bB/ηc do
4: M ← max{M,ORIGAMI-BS(Rd, Pd, Ra + sei − (B − s)ej , Rd)}
5: M ← max{M,ORIGAMI-BS(Rd, Pd, Ra + sei, R

d − (B − s)ej)}
6: M ← max{M,ORIGAMI-BS(Rd, Pd, Ra, Rd + sei − (B − s)ej)}
7: M ← max{M,ORIGAMI-BS(Rd, Pd, Ra − (B − s)ej , Rd + sei)}
8: end for
9: end for
10: Output: M

Theorem 3. Alg. 2 returns an additive maxi∈[n]
2η(Rd

i−P
d
i )

Ra
i

approximate solu-

tion.

4 Optimizing Payoff with Budget Constraint in Other
Forms

In this section, we explore budget constraints in other forms and show polynomial
time algorithms correspondingly.

4.1 Weighted L∞-norm Form

When the budget constraint is in weighted L∞-norm form, the defender can
make changes to Ra and P a for every target to the extent specified by Bri and
Bpi respectively. Equivalently, the defender can choose Ra and P a from a given
range. A real-world setting for this problem is when a higher level of authority
specifies a range of penalty for activities incurring pollution and allow the local
agencies to determine the concrete level of penalty for different activities.

We observe that Condition 2 of Property 1 still holds in this setting. There-
fore, such problem can be solved by simply solving n subproblems. In the ith

subproblem which assumes i is the attack target, set reward and penalty of i to
be the upper bound in the given range and choose the lower bound for other
targets. With our improved ORIGAMI-BS algorithm, this problem can be solved
in O(n2 log n) time.

Theorem 4. With budget constraint in weighted L∞-norm, solving for defender’s
optimal strategy reduces to solving for defender’s optimal coverage in fixed-payoff
security games.

4.2 L0-norm Form

When the budget constraint is in L0-norm form, the defender needs to choose
which targets to make changes, while the amount of change can be unconstrained.
Notice that allowing the defender to arbitrarily modify the attacker’s reward Ra

is not practical and will lead to a trivial solution: the defender will place all
coverage on one attack target t = arg maxiR

d
i and set Rat = ∞. So we only
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allow the defender to change P a to P̄ a and write R̄a = Ra. This corresponds
to the domains where the defender can make some of the targets special. For
example, in wildlife protection, legislators can designate some areas as ”core
zones”, where no human activity is allowed and much more severe punishment
can be carried out. But the defender cannot set all the areas to be core zones.

We assume the defender has a budget which allows her to change the penalty
of B targets. Similar to L∞ case, we first observe that the defender will choose
an extreme penalty value once he decides to change the penalty of a target.

Property 2. There exists an optimal solution where either P̄ aj = −∞ for B

targets or P̄ aj = −∞ for (B − 1) targets and P̄ at = 0 for 1 target. If P̄ aj = −∞,
then cj = 0.

Proof. When t is the attack target, the defender would like to maximize P̄ at and
minimize P̄ aj for all j 6= t. If P̄ aj = −∞ and cj > 0, target j will not be attacked
as Uaj = −∞. In such case, target j is effectively removed from the game.

The defender’s problem becomes non-trivial when the budget B < T , and we
now provide a O(n3) algorithm for solving this problem. We note that several
intuitive greedy algorithms do not work, even in more restrictive game settings.
A detailed comparison of our algorithm, several greedy algorithms, and a baseline
MILP is provided in Section 5.

First, we sort the targets in decreasing attacker’s reward Rak. Let Ek = 1
Ra

k−P
a
k

and Ēk = 1
R̄a

k−P̄
a
k

for all k ∈ T . When i is the attack target, by Property 2, we

have Ēi ∈ {1/Rai , Ei} and Ēj ∈ {0, Ej}. Let Γl = {1, 2, . . . , l} for l = 1, 2, . . . , n.
The ORIGAMI algorithm implies that in a fixed-payoff game, the defender’s
optimal strategy can be found by assuming each of Γl is the attack set [13]. We
leverage this idea by noting that one of the Γl’s contains as a subset the attack
set in the optimal solution to our problem, i.e. after some targets are removed or
set P̄ a = 0. This allows us to formally define a subproblem Ql,i: assume (i) the
optimal attack set is contained in Γl, (ii) the attack target is i ∈ Γl, and (iii) no
target is covered with certainty, what is the defender’s optimal strategy (c, Ē)?
A subproblem may be infeasible. First, we show that Ql,i can be solved in O(n)
time. From Equation 21, for subproblem Ql,i, we have

ci
Ēi

=

∑
k∈Γl\{i}(R

a
i −Rak)Ēk + r

Ēi +
∑
k∈Γl\{i} Ēk

(24)

Let s = min{B, l − 2} if Ēi = Ei and s = min{B − 1, l − 2} if Ēi = 1
Ri

.

Then Ql,i reduces to finding s out of the (l − 1) Ēk’s to set to 0, and set the
rest Ēk = Ek, so as to maximize the above quotient. Below we show that finding
the optimal Ē is equivalent to a problem of choosing subsets with maximum
weighted average.

Proposition 1. [8] Given a set S where |S| = n, real numbers {vk : k ∈ S},
positive weights {wk : k ∈ S}, and an integer r. Among all subsets of S of order

n− r, a subset T ⊂ S maximizing A(T ) =
∑

k vk∑
k wk

can be found in O(n) time.
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Algorithm 3 Algorithm for budget in L0-norm form

Input: Payoffs {Rd, Pd, Ra, Pa}, budget B

1: Initialize Ud(1..n, 1..n)← −∞.
2: for attack set Γl do
3: for attack target i ∈ Γl do

4: {V alue, Γdrop
l , Γkeep

l } ← Random(〈v, w〉, s)
5: Set Ēj ← 0 for j ∈ Γdrop

l , Ēj ← Ej for j ∈ Γkeep
l .

6: Update Ud(l, i) if solution is valid
7: Repeat inner iteration with s← min{B − 1, l− 2} and Ēi ← 1/Ra

i .
8: end for
9: end for
10: for target k with largest s Pa

k do
11: for attack target i do
12: Update Ud(l, i) if r big enough for ck = 1
13: end for
14: end for
15: Output: max(Ud)

Lemma 1. The subproblem Ql,i can be solved in O(n) time.

Proof. Consider Equation 24. We equate vk = (Ri − Rk)Ek + m
l−s−1 and wk =

Ek + 1
l−s−1 Ēi. Let v = {vk : k ∈ Γl\{i}}, w = {wk : k ∈ Γl\{i}}. By Property 2,

we may assume s targets will be removed. Finding a subset T ⊂ Γl{i}, |T | =
l−s−1, to maximize A(T ) is equivalent to our problem to maximize the quotient
in Equation 24.

After we find the optimal choices for the s targets, we need to verify on Line 6
of Algorithm 3 that the attack set is valid. Since ck = 0 for k /∈ Γl, we need
M ≥ Ral+1, with valid coverage probabilities cj ’s. These could have been violated
by setting several P̄i’s to −∞.

We are now ready to show the main result of this section.

Theorem 5. There is a O(n3) algorithm for finding the optimal defender strat-
egy with budget constraint in L0-norm.

Proof (Proof sketch). Consider Alg. 3. Since Ra is fixed, Γl’s cover all the attack
sets that need to be checked. There are n2 subproblems Ql,i. For each Ql,i, we
run a randomized algorithm for the maximum weighted average problem with
expected running time O(n) (Line 4). A deterministic O(n) algorithm exists
in [8]. The subproblems Ql,i miss the solutions where some target j is covered
with certainty. In this case, Γn is the only possible attack set, and the solution
is found on Lines 10-14. A solution is feasible if by removing targets we can keep
the sum of coverage probabilities below the defender’s resources.

5 Experimental Results

5.1 Simulation results for L1 budget problem

We compare our branch-and-bound (BnB) algorithm (Alg. 1) with three baseline
algorithms – NonConv, multiple MILP and single MILP shown in Appendix.
NonConv refers to solving n non-convex optimization problems as shown in 2-8
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using IPOPT [25] solver with default parameter setting, which converges to local
optima with no global optimality guarantee. Multiple MILP and single MILP
formulations are equivalent and have an approximation guarantee specified in
Thm. 1. The original payoff structures are randomly generated integers between
1 and 2n with penalties obtained by negation (recall n is the number of targets).
Budget and weights of manipulations are randomly generated integers between
1 and 4n.

We set ρ0 = mini∈T
Ra

i

4(Rd
i−Pd

i )
which gives an additive 1

2 -approximate solu-

tion. Gurobi is used for solving MILPs, which is terminated when either time
limit (15 min) or optimality gap (1%) is achieved. For each problem size, we
run 60 experiments on a PC with Intel Core i7 processor. The solution quality
of a particular algorithm is measured by the multiplicative gap between that
algorithm and BnB, i.e. ZA−ZBnB

ZBnB
where ZA is best solution value by algorithm

A. Thus a positive (negative) gap indicates better (worse) solution value than
BnB. We report mean and standard deviation of the mean of runtime and solu-
tion quality in Fig. 1. Small instances refer to problem size from 5 to 25. Large
instances refer to problem size from 50 to 250.
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Fig. 1: Runtime and solution quality for L1 case with standard deviation of the mean
shown as vertical line

For problems of small size (Fig. 1a and 1b), BnB finds better solutions in
nearly the same time as NonConv, faster than the other two. Since budget size
can easily be indivisible by ρ0 which is the atomic change we can make, greedy
manipulation cannot be achieved by MILPs when such indivisibility happens.
On the other hand, BnB first computes a global lower bound using such greedy
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manipulations, thus creating a gap between BnB and other two MILP-based
algorithms. Indeed the multiplicative gap between greedy solution and optimal
solution is reported as 0.39% with a variance of 0.14%. For problems of large size
(Fig. 1c and 1d), we only compare BnB and NonConv as other two algorithms
timed out in solving MILP. BnB runs faster than NonConv. It returns better
solutions for three problem sizes and nearly the same solution for other two
cases. MILP-based solution including BnB also has a larger standard deviation
in runtime than NonConv.

5.2 Simulation results for L0 budget problem

We compare the performance of our O(n3) algorithm with a baseline MILP and
two greedy algorithms. Greedy1 uses ORIGAMI to remove one target at a time.
Greedy2 starts from the target with highest |P d| and determines whether to
remove it based on ORIGAMI. Details of these algorithms are in Appendix.
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Fig. 2: Runtime and solution quality for L0 case averaged over 22 trials. MILP has a
time limit of 300 seconds. The error bars are standard deviations of the mean.

Initial payoffs are generated in the same way as in previous subsection. In
Fig. 2a, we assume the defender has r = 1 resource and budget B = n/2, the
worst case for the O(n3) algorithm. The runtime of MILP starts to explode with
more than 100 targets, while the O(n3) algorithm solves the problem rather effi-
ciently. We also note that MILP exhibits high variance in runtime. The variances
of other algorithms, including the O(n3) algorithm, are relatively trivial and thus
not plotted. We then test the algorithms with multiple defender resources, as
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shown in Fig. 2b. With n targets, we assume the defender has r = n/10 units of
resources and a budget B = n/2. Most MILP instances reach the time limit of
5 minutes when n ≥ 100. Yet the O(n3) algorithm’s runtime is almost the same
as the single resource case.

Our O(n3) algorithm and MILP are guaranteed to provide the optimal so-
lution. In contrast, the greedy algorithms exhibit fast runtime but provide no
solution guarantee. We measure the solution quality in Fig. 2c and 2d using
Ud

greedy−p
Ud

opt−p
where p = minj P

d
j . Greedy1, which runs slightly slower than Greedy2,

achieves higher solution quality but both greedy algorithms can lead to a signif-
icant loss. In fact, extreme examples exist and are shown in Appendix.
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