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Abstract. Normal Form Games (NFGs) are one of the most familiar representa-
tions for modeling interactions among multiple agents. However, modeling realis-
tic interactions between agents often result in massive games, causing the compu-
tation of standard solutions like Nash equilibrium to be intractable. We propose
an approach for solving large games that have a particular structure such that
they can be (approximately) decomposed into strategically isolated subgames.
We propose an abstraction approach that can exploit such structure in arbitrary
NFGs and also present a cyber defense scenario in which this structure arises
naturally. We show that our algorithms are much more scalable than standard
methods, and achieve high-quality approximations even when the full game has
only an approximate subgame structure.

Keywords: Game theory, abstraction, Nash Equilibrium, solution quality, cyber-
security

1 Introduction

A Normal Form Game (NFG) is one of the most common representations for model-
ing interactions between multiple decision makers (i.e., players). While an NFG is very
general, it is often problematic to represent and solve an NFG for real-world scenarios
because enumerating all possible strategies results in tremendous game model. Solving
an NFG is known to be a computationally hard problem [6], and most existing algo-
rithms (e.g., implemented in the Gambit software package [18]) do not scale well in
practice.

To analyze games that are beyond the limits of standard solution algorithms, an
increasingly common approach is to apply some form of automated abstraction to sim-
plify the game. The simplified game is then analyzed using an available solver, and the
solution is mapped back into the original game. If the reduced game can retain the vital
strategic features of the original game, then in principle the solution of the simpler game
may be a reasonable approximation of the solution to the original game. This general
approach has been successful in developing computer poker agents, and most of the
successful players in the annual competition in computer poker over the past years have
used some variation of abstraction (e.g., [9, 10, 12, 13, 23]).
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In current literature, most of the abstraction techniques are on extensive form games,
a decision tree based structure where players move sequentially. And in most of the
literature Poker is used to do the evaluations. Some abstraction techniques are specially
focused on Poker [9] [10] [12] [13]. There is lossless abstraction technique [11] and also
lossy abstraction technique [20]. There is also decision theoretic clustering [2] where
the Bard et al. used utility based clustering technique for an NFG. Sandholm gave error
bounds on the abstraction techniques [20] [15] because as we know, abstraction will
discard information if it is lossy. Furthermore, an error in solution quality will arise
after the reverse mapping of the strategies to the original game. Most recently Brown
et al. used CFR [23] and imperfect recall abstraction with earth mover’s distance [8]
for a hierarchical abstraction [4] technique. Another widespread approach to handle
massive games is Double Oracle (DO) Algorithm [3] [19] which relies on the concept
of column/constraint generation techniques. In this paper we will focus on a recursive
abstraction technique [5] by Conitzer et al. which is the motivation for our proposed
algorithm.

Two works very closely related to an NFG reduction are one by Conitzer et al. [5]
and another one by Bard et al. [2]. In the former paper, the authors gave an abstraction
technique which can be used in a class of NFGs called Any Lower Action Gives Identi-
cal Utility (ALAGIU). The authors show that their technique can be applied recursively
in ALAGIU games to abstract the game and find approximate Nash equilibrium. Moti-
vated by the approach, we introduce an abstraction technique we call Iterative Subgame
Abstraction and Solution Concept (ISASC). To evaluate this technique, we use a class
of NFGs where some actions give identical utility that we call Approximately Identi-
cal Outside Subgames (AIOS). We also introduce a Pure Strategy Nash Equilibrium
solution concept called Minimum Epsilon Bound (MEB). Finally, we evaluated ISASC
and MEB by comparing against some other solution concepts by using NFGs of class
AIOS.

Next, we present a motivating domain based on a cyberdefense scenario that natu-
rally leads to games with this structure, and we also consider clustering methods that
can be used to find this type of structure in arbitrary games. Based on this structure
we present methods for abstracting an NFG, and algorithms for solving the abstracted
game and mapping the reduced solution back to a solution in the original game.

Our main contributions are as follows: (1) we introduce the AIOS structure and
present a realistic class of games with this structure, (2) we present fast methods for
building and solving abstracted games based on clustering strategies, (3) we offer more
sophisticated iterative algorithms for solving games using abstraction with both exact
and approximate AIOS structure, (4) we present experimental evaluation of our algo-
rithms on both generic games and games based on the cyber defense scenario, showing
that our algorithms substantially improve scalability over baseline equilibrium solution
algorithms.

2 Games with AIOS Structure

A Normal Form Game (NFG) is a standard representation in Game Theory in which
the outcomes of all possible combinations of strategies are represented using a payoff
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matrix. The tuple (N,A, u) represents a finite N -player NFG [21]. N is a finite set of
players, indexed by i. The set of actions (pure strategies) is given byA = A1× ...×An,
whereAi is the set of actions for player i. Each vector a = (a1, ..., an) ∈ A is an action
profile. ai,k is the kth action for player i. We extend to mixed strategies si ∈ Si, and
use the notation πi(ai) to refer to the probability of playing action ai for player i. Each
player has a real-valued utility (payoff) function u = (u1, ..., un) where ui : A 7→ R,
extended to mixed strategies as usual by using expected utility.

We will consider abstracted games represented as (simpler) NFGs. For these games,
we use the same notation but with a hat to denote that it is an abstracted game, (N̂ , Â, û).
We also use Ai(O) to refer to the set of available actions for player i in NFG O.

We now introduce a game structure based on the idea of forming subgames with
strong interactions within a subgame, but weak interactions outside of the subgame.
This structure is similar to ALAGIU games [5], but extended to multiple subgames. We
call this Approximately Identical Outside Subgames (AIOS), as shown in Figure 1. The
fundamental idea is to create clusters of strategies for both players that form subgames.
Within a subgame, the strategies and payoffs can vary arbitrarily. However, outside of
the subgame, the strategies for each player should have payoffs as similar as possible for
playing against any opponent strategy, not in the subgame. Games with exact AIOS have
identical payoffs outside the subgame, while games with approximate AIOS weaken
this to allow some variation in the payoffs outside the subgames.

Suppose the row player is player 1 and column player is player 2. If player 1 decides
to play any strategy from {1−10} ∈ c1,1, he needs to worry only about the probabilities
assigned by player 2 to strategies {1 − 10} ∈ c2,1. Intuitively this is because if player
2 plays from strategies outside of c2,1 the payoff is the same for the row player no
matter which action he chooses among {1− 10} ∈ c1,1. The subgame G1 is formed by
considering only actions in c1,1 and c2,1.

Fig. 1: AIOS Structure in an NFG
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3 A Cyber Defense Game with AIOS

Fig. 2: Example network with ti,j = 1 and T (ηk, ηl) = 0

We now present a cybersecurity scenario for a Botnet attack where the AIOS (Sec-
tion 2) structure arises naturally. Most real-world networks are divided into subnets
to increase performance and security, but there are limited resources to inspect/harden
devices against attacks. Automated intrusion detection systems (IDS) [22] [17] are an
important defense, but it may not be possible to use a costly IDS on every network
host [1]. We present a game-theoretic model for stopping the spread of an attacker (e.g.,
a botnet) through a network that has a subnet architecture. Botnets often spread eas-
ily within a subnet using worms that exploit open ports and unpatched vulnerabilities.
However, spreading between subnets requires moving through more secure and highly
monitored routers that limit connectivity. This locality leads a game model with AIOS
structure.

Figure 2 shows an example with 2 subnets containing 3 nodes each. A network is
a collection of nodes that belong to exactly 1 subnet ηk. Every host has a value vi. ti,j
represents the intra-transmission probability for the botnet to propagate from node i to
j within the same subnetwork ηk. T (ηk, ηl) represents the inter-transmission probabil-
ities for the botnet propagating from subnet ηk to ηl. We model a one-shot game where
the Defender selects a node i to defend (e.g., closing ports, patching vulnerabilities,
increasing monitoring). The defend action reduces the transmission probabilities for all
edges connected to i and stops any attack that spreads to node i. The attacker selects an
initial node to attack, which spreads according to the transmission probabilities (which
can be estimated using simulation).

If the botnet spreads to a defended node and is detected, the Defender pays a cost
equal to the total value of the infected nodes (to clean up the attack), but the attacker
receives a payoff of zero. If the attack does not interact with a defended node, the
attacker receives the sum of the values of all the infected nodes. We estimate the payoff
matrix for a particular game using Monte Carlo simulation to estimate the spread of the
infection for each pair of strategies.

Figure 3(a) shows the NFG representation for the example in Figure 2 assuming
ti,j = 1 and no edges exist between subnets. In this case, the game has an exact AIOS
structure. When the two players play on the same subnet, there is a strategically inter-
esting game. However, when the two players play outside of the same subnets, there
is no interaction. Intuitively, this is because the Defender will never be able to detect
the Attacker’s botnet because no connection exists between subnets. Figure 3(b) shows
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Fig. 3: (a) Game for Figure 2 with ti,j = 1 and T (ηk, ηl) = 0. (b) Game for Figure 2 with
ti,j = [0.85, 1.0] and T (ηk, ηl) = 0.10

the network seen in Figure 2 with a low inter-transmission probability between sub-
nets where T (ηk, ηl) = 0.10 and transmission probabilities within the subnets in the
range ti,j = [0.85, 1.0]. When we add these weak interactions between subnets (i.e.,
relatively low transmission probabilities) we have a game with an approximate AIOS
structure where actions in different subnets have only limited effects on the payoffs.

4 Fast Clustering Abstraction

We first describe a fast abstraction method based on clustering. The first step in the
abstraction is to identify clusters of similar actions and group these actions to define
smaller games.

The basic idea of a clustering abstraction is to find groups of similar actions and to
merge them to generate a smaller game. There are many different ways to perform clus-
tering, including different algorithms and different ways to define similarity. We use one
of the most common clustering methods, k-means [16, 7] clustering with a Euclidean
distance metric on the payoff vectors for each strategy. Other clustering techniques may
work as well (e.g., density-based clustering). However, we consider that for future work.

The set of clusters for player i is denoted using ci = {ci,1, ..., ci,m}, where ci,m is
the mth cluster for player i, and ci,m = {ai,1, ..., ai,k}. Every action belongs to exactly
one cluster, so ci,1 ∩ ci,2 ∩ ... ∩ ci,k = ∅. For example, if we apply k-means clustering
to the game shown in Figure 4(a) we might find the following clusters for each player:
c1,1 = {2, 4}, c1,2 = {1, 3} and c2,1 = {3, 4}, c2,2 = {1, 2}.

After clustering each strategy, each cluster maps to a single pure strategy in the ab-
stracted game. The outcomes in the abstracted game correspond to each player choos-
ing to play one of the clusters of strategies in the original game. For this initial solution
method, we do not attempt to solve the individual subgames; we will introduce meth-
ods in the next section that do use solutions to the subgames. Here we compute a quick
estimate of the payoffs in the subgames by averaging the payoffs, effectively assuming
that both players play a uniform random strategy in each subgame. More formally:
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ûi(âi, âj) =

∑
∀ai,k∈g(ci,m)
∀aj,l∈g(cj,n)

ui(ai,k, aj,l)

|ci,m| × |cj,n|
(1)

In Equation 1, âi = ci,m, âi ∈ Âi(R) and âj = cj,n, âj ∈ Âj(R). g is the re-
verse mapping function that we describe next. Figure 4(b) provides an example of an
abstracted game calculated from the NFG in Figure 4(a) using this method.

Fig. 4: (a) A NFG, (b) Abstracted NFG

Since the strategy space of the abstracted game is not the same as the original we
need the reverse mapping function g(ŝi) → si to map every strategy in the abstracted
game into a strategy in the original game. We also use a version of this function for
clusters: g(ci,m) = {ai,1, . . . , ai,k}. For a clustering abstraction, the original equilib-

rium actions can be obtained using the equation πi(ai,k ∈ g(ci,m)) =
πi(ci,m)
|ci,m| . The

NE for the abstract game in Figure 4(b) is {(1, 0), (1, 0)}. The reverse mapping gives
the strategy for the original game in Figure 4(a) as {(0, 0.5, 0, 0.5), (0, 0, 0.5, 0.5)}. In
general, the solution to the abstracted game (e.g., an NE) may not be an exact solution
in the original game since we do not directly analyze the subgames using this method,
but they can serve as a quick approximation method.

4.1 Solving Games

We consider several solution methods for solving games, including the abstracted games
described above. We consider both Pure and Mixed-Strategy Nash Equilibrium, as well
as a different concept that directly minimizes the bound on the approximation quality
in the original game.

Approximate Pure Strategy Nash Equilibrium In a Pure-Strategy Nash Equilibrium
(PSNE) all players play pure strategies that are mutual best-responses. However, PSNE
is not guaranteed to exist. Therefore, we instead look for the pure-strategy outcome
that is the best approximate equilibrium. We first calculate the values of deviations for
each action ai and then select the action profile that minimizes the maximum benefit to
deviating.

Mixed Strategy Nash Equilibrium We also calculate a version of mixed-strategy
Nash equilibrium using the software package Gambit [18]. There are several differ-
ent solvers for finding Nash equilibria in this toolkit. We used one based on Quantal



Algorithms for Subgame Abstraction with Applications to Cyber Defense 7

response equilibrium (QRE) [14]. QRE produces different versions of mixed strategy
equilibrium depending on a parameter λ = [0,∞]. When λ = 0 the players play uni-
form randomly and when λ = ∞ players play very close to a rational player which
produces an approximate Nash equilibrium. We choose λ =∞ for our work.

Minimum Epsilon Bounded Equilibrium When solving an abstracted game, the best
analysis may not be finding a Nash Equilibrium, since this may not be an equilibrium
of the original game. As an alternative, we introduce Minimum Epsilon (ε) Bounded
equilibrium (MEB). This alternative is an improved version of PSNE that considers ad-
ditional information about the abstraction in the analysis. Instead of considering devia-
tions to clusters of actions (and the average payoff of the cluster), we use the maximum
expected payoff for any of the actions in the original game. This allows for a better
estimate of how close the outcome will be to an equilibrium in the original game. The
difference in comparison with PSNE is in the calculation of ε(a∗i ). Equation 2 is used
to compute the ε for MEB.

ε(â∗i ) = max∀âi∈Âi,âj∈Âj
[ui(âi, âj)− ûi(â∗i , âj)] (2)

In the above equation ui(âi, âj) returns a payoff from an upper bound game R.
Payoffs for the upper-bounded game R are computed using Equation 3. Equation 3
calculates the maximum expected payoff for an abstracted action by reverse mapping
to the original actions and calculating the expected payoff for every original action,
selecting the maximum one. Next, where ∀âi ∈ Âi(R),∀âj ∈ Âj(R), (i, j) ∈ N, i 6=
j, the equation iterates over all the actions for every player and calculates the payoffs
for the upper-bounded gameR. Equation 2 cannot be used in the original game because
we need an upper-bounded game where we use reverse mapping. Unless we have an
abstracted game, it is not possible to compute an upper-bounded game.

ui(âi, âj) = max∀ai,k∈g(âi)

∑
∀aj,l∈g(âj) ui(ai,k, aj,l)

|g(âj)|
(3)

Double Oracle Algorithm (DO) The Double Oracle is not a solution concept. It is
a technique used to handle massive games. Double Oracle Algorithms [3] [19] utilize
the method of column/constraint generation. The idea is to restrict the strategies of
all the players and solve the restricted game exactly using the LP [21] for solving an
NFG. Next, for each player, the best response is computed given the strategy of the
opponent. The best response can be any strategy in the original game. Next, we add the
best responses to the strategy of the restricted game. If it’s not possible to add anymore
best responses, then the game is solved. In our case, we do not have a zero-sum game
to use the LP. So, we used the QRE [14] [18] to solve the restricted general-sum NFG.
The QRE gives an approximate Nash Equilibrium. Thus, in our case the DO we used to
compare against our proposed algorithm provides an approximate Nash Equilibrium.
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5 Hierarchical Solution Method

We now describe a more refined solution approach that constructs subgames based on
strategy clusters and uses the solutions to these subgames to create a more accurate
abstracted game. When games have exact AIOS structure, this will result in finding an
exact solution to the original game by composing the results of the subgame solutions.
In cases where games have approximate AIOS structure, we propose an iterative solu-
tion method that improves solution quality by taking into account error from outside of
the subgames.

5.1 Subgames

Consider the AIOS example shown in Figure 1. Ten subgames correspond to ten pairs
of clusters of actions for the players. For example, G1 is played using clusters c1,1
and c2,1. Now we consider building an abstracted game by first solving each of the
subgames G1 to G10 utilizing any solution concept to get a mixed strategy for each
player in each game.

Fig. 5: Abstracted (hierarchical) Game
R

As before, the abstracted game will have one
action for each player corresponding to each clus-
ter (10 in the example). To fill in the payoffs for
each pair of clusters (a 10x10 matrix), we com-
pute the expected payoffs using the mixed strate-
gies for the corresponding clusters (for the sub-
games, this is the expected payoff from the so-
lution to the game). Figure 5 shows the resulting
abstracted game R.

Next, we solve R using any solution con-
cepts mentioned in section 4.1. To get the reverse
mapping here we must distribute the probabili-
ties of c1,1, c1,2, ..., c1,10 over all the actions in
c1,1, c1,2, ..., c1,10 for player 1 to get the strategy for the original game (resp. for player
2). Equation 4 gives this reverse mapping, where i ∈ N, ∀ai,k ∈ g(ci,m), which is dif-
ferent from the uniform mapping described previously. In equation 4 the probabilities
πi(ai,k) on the right-hand side are the mixed strategies for the subgames.

πi(ai,k) = πi(ci,m)× πi(ai,k) (4)

5.2 Approximate AIOS Games

The AIOS structure is strict if we require exactly identical payoffs outside of the sub-
games. However, it is much more plausible to find approximate forms of this structure.
For example, in Section 3 we saw how low transmission probabilities between subnets
lead to an approximate AIOS game. For a noisy version of AIOS, we define the delta
(δ) parameter to specify how much variation in the payoffs is allowed outside of the
subgames. Let δi,k be the maximum payoff difference for any pair of actions in cluster
k for player i for any strategy of the of the opponent that is not in the same subgame.
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δi is the maximum of δi,k for player i, where k can be from 1 to a number of clusters.
Equation 5 picks the maximum δ considering all of the clusters and players. Equation 6,
where (i, j) ∈ N, i 6= j, calculates δ for one cluster ci,k for a player i.

δ = maxi∈N (max(δi,k)), k = 1, ..., |Âi(R)| (5)

δi,k = max(ui(ai,m, aj,t)− ui(ai,n, aj,t)) (6)

5.3 Iterative Solution Algorithm

For games with approximate AIOS structure, simply composing (as above) the solutions
of the subgames may not be an equilibrium of the original game. The solution may
occasionally play in quadrants of the game that are not one of the subgames solved
explicitly, which results in an error when the payoffs do not match identically. We now
introduce an iterative solution technique that (partially) accounts for this error. After
solving the subgames and abstracted game as previously, we now calculate the expected
payoff for each strategy outside its subgame. Then, we modify the subgames using
this error term added to the payoffs in the subgame and solve them again, and then
recalculate the abstracted game and solve it again. This process results in a sequence of
modified solutions that account for the differences in payoffs outside of the subgames
from the previous iteration. We call this algorithm the Iterative Subgame Abstraction
and Solution Concept (ISASC).

Consider the subgame G1 in Figure 1. We want to internalize the noise outside of
the subgame into the payoffs of the subgame. So, before solving G1, we update the
payoffs for both player 1 and player 2. For action {1 − 10} ∈ c1,1, we calculate the
expected utility when player 2 does not play the actions in the subgame. That means
that when player 1 plays {1−10}, we calculate the expected utility of {1−10}, denoted
Ωi, by considering the probabilities of player 2 playing {11 − 100} from the strategy
on the previous iteration. Then we update the payoffs of G1 for player 1 for action
{1 − 10} ∈ c1,1 for every {1 − 10} ∈ c2,1 by adding the Ωi. This process repeats for
all strategies in the game.

Pseudocode for updating the subgames is shown in Algorithm 1. [ui(ai, aj) =
ui(ai, aj) +Ωi(ai)], where ∀ai ∈ Ai(G),∀aj ∈ Aj(G),∀(i, j) ∈ N, i 6= j, line 4-12,
is used to update the subgames. Lines 5-7 are used to compute the expected payoff Ωi,
for an action of player i, when player j plays outside of the subgame G. Ai(G) gives
us the action set for player i in game G. πT−1(aj) is the probability of action aj from
the mixed strategy for iteration T − 1.

To improve the speed of the algorithm, we do not need to solve all of the subgames
in each iteration. If a subgame does not occur with positive probability in the solution
to the abstracted game, it may not need to be solved again in the next iteration. We
can also create variations of ISASC by using different solution algorithms to solve
either the subgames or the abstracted game. For example, we can first use the PSNE
solution concept to get an NE. Then we calculate the ε for that equilibrium. If the ε is
greater than 0, we can use QRE to get another equilibrium which we can use instead of
the PSNE, drastically reducing computation time. In our experiments, we test several
different variations of the algorithm.
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Algorithm 1 Update Subgame Algorithm
Input: Subgame G’, original game G, player i
1: Subgame actions o’ = Actions(G’, i)
2: Opponent actions in G’, p = Actions(G, G’, iop)
3: Opponent actions outside G’, p’ = Actions(G, G’, iop)
4: for j ← 1, o′ do . for every action of player i in G’
5: for k ← 1, p′ do . for every action of opponent 6∈ G’
6: ω = ω + PayOff(j,k,G) ×π(k)
7: end for
8: for l← 1, p do . for every action of opponent in G’
9: Outcome o = [ j, l ]

10: G’(o,i) = PayOff(G, o) + ω . update the payoff in G’
11: end for
12: end for

6 Experiments

In the experiment section, we used two criteria to measure the performance of our pro-
posed algorithm: (a) runtime (b) epsilon (ε), which is different from ε. We know that
the idea of using abstraction is to make the solution concepts scalable. However, this
usage also suffers from loss of solution quality. So, We think that runtime combined
with solution quality measurement with epsilon will provide a better performance mea-
surement.

ε measures whether for a player there is an incentive to switch to another pure strat-
egy from the current Nash Equilibrium strategy (which can be either a mixed strategy
Nash Equilibrium using QRE or a pure strategy Nash Equilibrium using PSNE, MEB).
To compute ε of an approximate Nash Equilibrium strategy for player i first we calcu-
late the expected payoff of player i given the approximate Nash Equilibrium strategy
of the players. Next, we check whether there is an incentive for player i to switch to
a pure strategy from the current approximate Nash Equilibrium strategy (which can be
either pure or a mixed strategy Nash Equilibrium). Finally, we take the maximum of
all the players’ ε which gives us the ε for an approximate Nash Equilibrium. In a Nash
Equilibrium, there is no incentive to switch to a pure strategy for all the participating
players (ε = 0).

For our first experiment we generated 100 2-player games for different values of
δ = {0, 1, 2, 3, 5, 10, 15} with 100 actions for each player in the original game. The
strategies for each player are partitioned into 10 clusters with 10 actions each: |c1| =
|c2| = 10, |c1,m| = 10, m = 1, 2, ..., 10. The subgames are completely random games
with payoffs generated uniformly between 0 and 100. The payoffs outside of the sub-
games are generated randomly with the constraint that in every cluster the maximum
payoff difference between the payoffs for the actions is δ for all actions of the opponent
that are not part of the subgame. Meaning, for every action outside the subgames we
add noise.

We begin by showing whether there is any benefit of using the ISASC for different
levels of AIOS structure. To do that we compare the runtime performance and solution
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(a) Runtime comparison (b) Solution quality comparison

Fig. 6: Measuring performance against PSNE, QRE and DO which are applied in the original
game without any use of abstraction

quality of ISASC against different solution methods: PSNE, QRE and DO, when these
different methods are applied to the original game without the use of any abstraction
as shown in Figure 6a. The results clearly show that ISASC provides solutions using
considerably less time compared to QRE and DO. Even though PSNE provides an ap-
proximate pure strategy Nash Equilibrium very quickly, ISASC produces a mixed strat-
egy approximate Nash Equilibrium much quicker than the PSNE. Since ISASC uses
abstraction, the solution quality gets worse as we add more noise to the AIOS structure
by increasing δ as shown in Figure 6b. Providing a theoretical bound on the solution
quality is an interesting future work direction.

Fig. 7: Comparison of solution quality when PSNE, MEB and QRE are applied using fast clus-
tering abstraction

The next experiment compares the solution quality of ISASC with the fast clustering
abstraction methods. We use basic k-means clustering and the three different solution
methods to solve the abstracted games: PSNE, MEB, and QRE. We want to show that
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with the use of abstraction, ISASC is superior to other abstraction methods which use
the fast clustering abstraction methods.

Figure 7 shows the results for a different set of games (generated using same param-
eters used for the first experiment) with varying levels of δ. ISASC does very well in
cases with low δ, as expected. However, it continues to perform better when the values
of δ are much more significant. We also note that MEB provides better solution quality
than PSNE and QRE. For this experiment, we did not show the runtime comparison be-
cause currently, we do not have an adequate clustering or community detection method
for finding the subgames of an NFG. It’s a hard problem since the cluster depends not
only the player whose strategy we want to cluster but also on every opponents’ actions
and payoffs. So, for ISASC we assume that the subgames are known, and for the other
algorithms, we used k-means clustering. We understand that this assumption is not fair.
However, later (in the cyber defense scenario) we show that even when PSNE, MEB and
QRE have the exact clusterings (because we know the subnets), our proposed algorithm
ISASC still outperforms all the other solution concepts.

6.1 Cyber Defense Games

Fig. 8: Network settings

We now consider the more realistic cyber defense games de-
scribed in Section 3. We compared our ISASC algorithm
against the PSNE, MEB and QRE solution concepts with fast
clustering abstraction. We generated 20 games using the pa-
rameter settings shown in Figure 8. Each parameter is drawn
uniformly from the given range. The number of edges in sub-
net ηl is |eηl | in the range |emin, emax| where emin and emax
are the minimum and maximum number of edges respectively.
All networks are connected, and worm propagation is con-
trolled by T (ηk, ηl) and ti,j , where ti,j >> T (ηk, ηl). We
use Monte Carlo simulation for 10, 000 iterations to estimate
the payoffs based on the propagation of the attack. Each sub-
net forms a cluster of actions for our solution methods. Since
we already know the subnets for this cyber defense scenario,
and thus the subgames, we assumed that the clusters are identified. PSNE, MEB and
QRE use the known clusters to make the abstracted game to find an approximate NE
in the abstracted game and then use reverse mapping to find the final approximate NE
strategy for the original game.

Our first experiment shows how delta varies as we vary the inter and intra-transmission
probability in Figure 9a,9b. We used games with 50 nodes and 5 subnets with the same
number of nodes. We can see in Figure 9a that when ti,j = [100, 100] and T (ηk, ηl) = 0
so the subnets are totally disconnected from each other delta = 0. In this case we can
find an exact equilibrium by composing subgame solutions. However, when T (ηk, ηl)
starts to increase delta increases. In both Figure 9a and Figure 9b, we see that δ reaches
a maximum when T (ηk, ηl) ≈ ti,j as the spreading of botnet becomes random across
the entire network, losing the AIOS structure.

Our next experiment shows that the ISASC algorithm improves solution quality
when there is delta > 0 in the cyber defense games. We increased the size of the



Algorithms for Subgame Abstraction with Applications to Cyber Defense 13

(a) Impact: T (ηk, ηl) on δ (b) Impact: ti,j on δ

Fig. 9: Effect of transmission parameters on δ

(a) Iterative decrements of ε (b) #node and #subnet vs ε

Fig. 10: Performance of ISASC

subnets to control delta for this experiment. As we can see in Figure 10a, when delta is
large, ISASC improves solution quality significantly through the iterative procedure.

Next, we show how delta and ε change when we vary both network size and subnet
size. In Figure 10b we can see that ISASC performs favorably compared to the other
solution algorithms. Next, we increase subnet size but keep the number of subnets fixed.
Figure 11a shows that as the subnet size increases delta increases. However, the ISASC
algorithm continues to provide better solution quality with very low ε for higher δ.

(a) Subnet size vs ε (b) #subnet vs ε

Fig. 11: Solver comparisons

Our last experiment shows how the number of subnets affects ε. We kept the number
of nodes fixed to 100. Figure 11b shows the result. ISASC dominates the results with
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low ε. In all of the experiments, ISASC gives very high solution quality compared to
other algorithms.

7 Conclusion

Solving large NFG is a fundamental problem in computational game theory, and ab-
straction is a promising direction for scaling up to solve the largest and most chal-
lenging games. We propose a new class of abstraction methods for NFG based on the
AIOS structure, motivated by earlier game reduction techniques proposed by Conitzer
et al. [5]. Identifying subgames in a random NFG and providing a bound on the solu-
tion quality of ISASC are possible future directions. We show that realistic cybersecu-
rity scenarios can lead to this type of structure. We also show that there exist several
abstraction-based solution methods that can take advantage of this structure to quickly
find solutions to huge games by decomposing them into subgames. For games with only
approximate AIOS structure, we show that iterative solution methods can give us very
high-quality approximations to the solution of the original game.
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