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SUMMARY

Complex systems like semiconductor wafer fabrication facilities (fabs), networks of

data switches, and large scale call centers all demand efficient resource allocation. Deter-

ministic models like linear programs (LP) have been used for capacity planning at both

the design and expansion stages of such systems. LP-based planning is critical in setting a

medium range or long term goal for many systems. But it does not translate into a day-to-

day operational policy that must deal with discreteness of jobs and the randomness of the

processing environment.

A stochastic processing network, advanced by J. Michael Harrison, is a system that takes

inputs of materials of various kinds and uses various processing resources to produce outputs

of materials of various kinds. Such a network provides a powerful abstraction of a wide

range of real world systems. It provides high-fidelity stochastic models in diverse economic

sectors including manufacturing, service and information technology. The key goal of this

research is to devise dynamic, operational policies that can achieve long term objectives for

networks. These objectives include (i) achieving maximum throughput predicted by LPs,

and furthermore, (ii) minimizing work-in-process, holding cost, or delay in networks.

In this research, we propose a family of operational policies called maximum pressure

policies. The maximum pressure policies are attractive in that their implementation uses

minimal state information of the network. The deployment of a resource (server) is decided

based on the queue lengths in its serviceable buffers and the queue lengths in their immedi-

ately downstream buffers. In particular, the decision does not use arrival rate information

that is often difficult or impossible to estimate reliably.

We prove that a maximum pressure policy can maximize throughput for a general class

of stochastic processing networks. The fluid model approach is a powerful tool to prove

whether an operational policy is throughput optimal for multiclass queueing networks. We

extend this approach to more general stochastic processing networks and prove that a

vii



maximum pressure policy is throughput optimal by showing that the fluid model under a

maximum pressure policy is weakly stable.

We also establish an asymptotic optimality of maximum pressure policies for stochastic

processing networks with a unique bottleneck. The optimality is in terms of stochastically

minimizing workload process. We conduct the heavy traffic analysis for stochastic processing

networks under maximum pressure policies. Bramson and Williams provided a powerful

framework to prove heavy traffic limit theorems for multiclass queueing networks. We apply

this framework to stochastic processing networks and prove a heavy traffic limit theorem

for stochastic processing networks under maximum pressure policies. A key to the proof is

to show that the network processes under maximum pressure policies exhibit a state space

collapse.
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CHAPTER I

INTRODUCTION

In a series of three papers, J. Michael Harrison [36, 37, 38] introduced progressively more

general stochastic models, called stochastic processing networks. These networks are much

more general than multiclass queueing networks that have been the subject of intensive

study in the research community in the last 15 years. See, for example, [10, 12, 18, 21, 33,

40, 44, 55, 71, 75].

Loosely speaking, an open processing network is a system that takes inputs of materials

of various kinds and uses various processing resources to produce outputs of materials of

various (possibly different) kinds. Here, material is used as a generic substitute for a variety

of entities that a system might process such as jobs, customers, packets, commodities, etc.;

we use material and job interchangeably in the rest of this thesis. In fact, material need not

be discrete although in this research we will focus on the case in which all jobs are discrete.

Typically, there are constraints on the amount of material that a given server can process

in a given time period. In addition, material may be processed by several servers, may

be split up, or combined with other kinds of materials, before a final output is produced.

Control is exerted through allocations of processors for the processing of one or more kinds

of materials.

As observed in Bramson and Williams [16], deterministic (or average) models for de-

scribing such processing networks have a long history in economics and operations research.

For example, the book “Activity Analysis of Production and Allocation” edited by T. C.

Koopmans [43], provides an excellent summary of the early stages of development of such

models. A prominent role is played there by the notion of a processing activity, which con-

sumes certain kinds of materials, produces certain (possibly different) kinds of materials,

and uses certain processors in the process. In a sense, Harrison’s [36] model of an open

stochastic processing network is a stochastic analog of dynamic deterministic production
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models such as those first considered by Dantzig [28].

In this research, we focus on a special class of Harrison’s model. Even this specialized

class of stochastic processing networks is broad enough to cover a wide range of application

fields including manufacturing systems, service systems, computer systems, and computer

communication networks. In addition to many systems that can be modeled by multiclass

queueing networks, the added features of a stochastic processing network can model many

new elements like machine-operator interaction and material handling in a semiconductor

wafer fabrication facility, cross trained workers at a call center, networks of data switches,

parallel processing computer systems, and routing in the Internet. Section 4.7 provides

more detailed descriptions for some applications including networks of data switches and

queueing networks with alternate routes. Readers are encouraged to jump to this section

to get a feel of the scope of the application domains.

We are interested in the dynamic control of these stochastic processing networks at

the operational level so that their long term objectives are met. Two types of long term

objectives are often considered in the literature: (i) maximizing system throughput and (ii)

minimizing work-in-process, holding cost, or delay of the system.

The maximum throughput or processing capacity of a system is often constrained by

the processing speed of bottleneck resources. These constraints can be turned into a linear

program (LP) from which the system processing capacity can be determined. This approach

has been used in practice in capacity planning at either the design or expansion stage of

a system. See, for example, Thomas and McClain [69]. LP based planning is very much

relevant in setting a medium range or long term goal for the system. Since servers have

overlapping processing capabilities, sometimes it may not be possible for any operational

policy to achieve the maximum throughput predicted by the LP (see the example in Sec-

tion 4.5). Indeed, even in the multiclass queueing network setting, it is now well known that

many commonly used service policies including first-in-first-out are not throughput optimal

(see Bramson [14] and Seidman [61]).

In our first line of research, we propose a family of operational policies called maximum
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pressure policies. There are two versions of these policies, depending on whether processor-

splitting is allowed in the policy space. We prove that both versions of these policies

are throughput optimal under an extreme-allocation-available (EAA) assumption on the

network structure. The assumption is satisfied for a wide class of networks. Such networks

include multiclass queueing networks, parallel server systems, networks of data switches and

queueing networks with alternate routes. In addition, we explicitly characterize, through

linear programs, the stability regions of stochastic processing networks operating under a

maximum pressure policy.

Our maximum pressure policies are generalizations of some forms of MaxWeight policies

studied in Andrews et al. [2] and Stolyar [64] in the network setting. In their papers, the

authors studied one-pass systems in which each job leaves the system after being processed

at one processing step. Except for the network structure limitation, their works are actually

more general than ours in the following two respects: (i) Job processing can depend on a

stationary, random environment, and (ii) their MaxWeight policies are a richer family of

policies for a one-pass system (see Section 3 for more detailed discussion). Although it has

not been attempted here, it should be straightforward to generalize our results to stochastic

processing networks with random environments. However, it is not at all clear how to

generalize their general MaxWeight policies to our network setting.

Variants of maximum pressure and MaxWeight policies were first advanced by Tassiulas

and Ephremides [67] under different names for scheduling a multihop radio network. Their

work was further studied by various authors for systems in different applications [2, 27,

54, 64, 65, 66, 68], all limited to one-pass systems except [66]. The work of Tassiulas and

Bhattacharya [66] represents a significant advance in finding efficient operational policies

for a wide class of networks, and is closely related to our current work. Although we

were ignorant of their work when our work was performed, there is a significant amount of

overlap and difference between these two works. The following are the major contrasts of

these two works. (a) They model server interdependence by directly imposing constraints

on servers, whereas we use processing activities and constraints on them to model server

interdependence; the latter is a more general approach to model server interdependence. (b)
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Their model, when translated into our stochastic processing network framework, appears

to be a special network within a class of strictly unitary networks. In a latter network,

each activity requires a single server that processes jobs in a single buffer. Thus, their

model cannot model activities that require simultaneous possession of multiple servers nor

activities that can simultaneously process jobs from multiple buffers. In particular, we are

not able to see how their model can model operator-machine interactions and networks of

data switches (see Section 4.7.2). (c) Their model requires processing speeds to depend

only on buffers, not on activities. This assumption rules out many models like skill-based

routing in call-center environments. (d) Our exogenous arrival model is more general.

This generality allows us to model alternate routes at source levels (see Section 4.7.1).

As a consequence of these model differences, they can focus on non-processor-splitting,

non-preemptive policies without additional assumptions on network structures. To prove

maximum pressure polices are throughput optimal for our general model, we need to allow

processor-splitting and preemption in our policies and to search for new assumptions on

network structure (see EAA assumption in Section 4.4). (e) Only throughput optimality

has been proven in [66]. No analysis of secondary performance measures was conducted.

In our research, we prove that maximum pressure policies can asymptotically minimize the

system workload for the stochastic processing networks with a unique bottleneck.

The maximum pressure policies are attractive in that their implementation uses minimal

state information of the network. The deployment of a processor is decided based on

the queue lengths in its serviceable buffers and the queue lengths at their immediately

downstream buffers. In particular, the decision does not use arrival rate information that

is often hard or impossible to estimate reliably. The maximum pressure policies are not

completely local in that they use immediately downstream buffer information of a processor.

Using such information is not an issue in many manufacturing systems, but may be a

problem for other systems. Searching for a purely local policy that is throughput optimal

remains an open problem. See Section 4.7.1 for more discussions on this point.

It is a more challenging problem to design dynamic control policies for stochastic pro-

cessing networks that are simple to implement and yet are at least approximately optimal in
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an appropriate sense in terms of some second order performance measures. As one approach

to this problem, Harrison [33] proposed Brownian network models as the heavy traffic ap-

proximation to the stochastic processing networks. By analyzing Brownian network models

and cleverly interpreting their solutions as control policies to the original stochastic net-

works, various researchers successfully developed good policies for some particular networks.

But in general, Brownian models are not always tractable, and it is not easy to interpret

the solutions as control policies for the original networks. There are very few proofs of

asymptotic optimality of the interpreted policies even when the interpretation is possible.

Most policies developed through this approach require arrival rate information.

A key step in Harrison’s approach is to form an equivalent workload formulation of the

Brownian network model, explained in Harrison and Van Mieghem [34], by replacing the

queue length process with a lower dimensional workload process. The Brownian model often

has a simple solution when the workload process is one-dimensional. This corresponds

to a complete resource pooling condition for the original stochastic processing network.

Roughly speaking, the complete resource pooling condition requires enough overlap in the

processing capacities of bottleneck servers such that these servers form a single pooled

resource or “super server”. The complete resource pooling condition is articulated by the

dual problem of a linear program (LP) called the static planning problem. For a network

satisfying the complete resource pooling condition, the corresponding dual LP has a unique

optimal solution and the one-dimensional workload process is defined by this unique optimal

solution. More specifically, let (y, z) be the unique optimal solution to the dual problem.

Then yi is interpreted as the workload contribution per buffer i job to the pooled bottleneck

resource. The workload process is defined as W = y · Z, where Z = {Z(t), t ≥ 0} is the

queue length process.

Our second line of research is to establish an asymptotic optimality of maximum pressure

policies in terms of minimizing the workload process for stochastic processing networks with

a unique bottleneck resource pool. Minimizing the workload process is important even if

the ultimate objective is to minimize the delay or some type of holding cost [6, 8, 36, 64].

In this line of research, we focus on the networks that satisfy a heavy traffic condition
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that at least one server has to be 100% busy in order to handle all the input. Our definition of

heavy traffic condition is less restrictive than those in [6, 39] the authors require the network

to be balanced; that is, every server in the network is heavily loaded. This balanced load

requirement, combined with the complete resource pooling assumption, rules out some well

known networks such as multiclass queueing networks. It is commonly believed that under

heavy traffic scaling, non-bottleneck stations disappear in the limit. Thus, one can confine

heavy traffic analysis to a subnetwork obtained by deleting all the non-bottleneck stations

from the network. However, operational policies based on the bottleneck subnetwork have

no natural extension to the original network. We will show that under a maximum pressure

policy, non-bottleneck stations will disappear in heavy traffic limits. Such disappearance

of non-bottleneck stations can by no means be assumed. This fact is false under some

commonly used operational policies like first-in-first-out [15].

Our asymptotic optimality result, to some extent, greatly generalizes the results in

Stolyar [64] from a one-pass system to the network setting. In [64], the author proved

that MaxWeight policies asymptotically minimize the workload processes in heavy traffic

for one-pass systems in which each job leaves the system after being processed at one

processing step. As a generalization of MaxWeight policies, Mandelbaum and Stolyar [49]

proposed generalized cµ rule and proved its asymptotic optimality for a general switch

model. Parallel server systems were studied by Harrison [35], Harrison and Lopez [39], Bell

and Williams [9, 8], and Williams [76]. Discrete review policies [35, 39] and continuous

review threshold policies [9, 8, 76] were proposed to minimize the expected discounted

cumulative linear holding costs. Ata and Kumar [6] recently proposed a discrete review

policy to for a class of stochastic processing networks called unitary networks. The network

model that we consider in our research is much more general than those that have been

studied in the literature.

Bramson [12] and Williams [75] developed a general framework for proving state space

collapse and heavy traffic limit theorems for multiclass queueing networks. Our proof of

the main results is an example of extending the Bramson-Williams framework to more

general stochastic processing networks. We first show that the fluid limits under maximum
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pressure policies exhibit some form of state space collapse. Then we translate the state

space collapse to the diffusion scaling using Bramson’s approach [12]. Finally, the state

space collapse is converted to a heavy traffic limit theorem, which immediately implies the

asymptotic optimality.

The remainder of this dissertation is organized as follows. In Chapter 2, we introduce

the stochastic processing networks to be studied in this research. The maximum pressure

policies are defined in Chapter 3. In Chapter 4, we prove that the maximum pressure

policies are throughput optimal. We establish an asymptotic optimality of the maximum

pressure policies in Chapter 5. Chapter 6 contains some concluding remarks and directions

of future research.

1.1 Notation

We denote the set of natural numbers as N, and the set of nonnegative integer numbers as

Z+. We use Rd to denote the d-dimensional Euclidean space. Vectors in Rd will be column

vectors unless indicated otherwise, and the transpose of a vector v will be denoted as v′.

For v, w ∈ Rd, v · w denotes the dot product. The max norm in Rd is denoted as |·|, and

for a matrix A, we use |A| to denote the maximum absolute value among all components.

The product norm ‖·‖ in Rd is defined by ‖v‖ =
√
v · v. For r1, r2 ∈ R, we denote r1 ∨ r2

and r1 ∧ r2 to be respectively the maximum and minimum of r1 and r2.

We shall use Dd[0,∞) to denote the set of functions f : [0,∞) 7→ Rd that are right

continuous on [0,∞) having left limits on (0,∞). For f ∈ Dd[0,∞), we let

‖f‖t = sup
0≤s≤t

|f(s)|.

We endow the function space Dd[0,∞) with the usual Skorohod J1-topology. A sequence

{fr} ⊂ Dd[0,∞) is said to converge to an f ∈ Dd[0,∞) uniformly on compact (u.o.c.) sets,

denoted as fr(·) → f(·), if for each t ≥ 0, limr→∞‖fr(s) − f(s)‖t = 0. We use “⇒” to

denote convergence in distribution.
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CHAPTER II

STOCHASTIC PROCESSING NETWORKS

In this section, we describe a variant of the class of stochastic processing networks advanced

in Harrison [36]. The network is assumed to have I + 1 buffers, J activities and K processors.

Buffers, activities and processors are indexed by i = 0, . . . , I, j = 1, . . . ,J and k = 1, . . . ,K,

respectively. For notational convenience, we define I = {1, . . . , I} the set of buffers excluding

buffer 0, J = {1, . . . ,J} the set of activities and K = {1, . . . ,K} the set of processors. Each

buffer, with infinite capacity, holds jobs or materials that await service. Buffer 0 is a special

one that is used to model the outside world, where an infinite number of jobs await. Each

activity can simultaneously process jobs from a set of buffers. It may require simultaneous

possession of multiple processors to be active. Jobs departing from a buffer will go next to

other buffers with certain probabilities that depend on the current activity taken.

2.1 Resource Consumption

Each activity needs one or more processors available to be active. For activity j, Akj = 1,

if activity j requires processor k, and Akj = 0 otherwise. The K × J matrix A = (Akj) is

the resource consumption matrix. Each activity may be allowed to process jobs in multiple

buffers simultaneously. For activity j, we use the indicator function Bji to record whether

buffer i can be processed by activity j. (Bji = 1 if activity j processes buffer i job.) The

set of buffers i with Bji = 1 is said to be the constituency of activity j. It is denoted by

Bj . The constituency is assumed to be nonempty for each activity j ∈ J , and may contain

more than one buffer. When a processing requirement of an activity is met, a job departs

from each one of the constituent buffers. For each activity j, we use uj(`)/µj to denote

the `th activity j processing requirement, where uj = {uj(`), ` ≥ 1} is an i.i.d. sequence

of random variables and µj is a strictly positive real number. We set σ2
j = var(uj(1)), and

assume that σj < ∞ and uj is unitized, that is, E[uj(1)] = 1. It follows that 1/µj and σj
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are the mean and coefficient of variation, respectively, for the processing times of activity j.

An activity j is said to be an input activity if it processes jobs only from buffer 0, i.e.,

Bj = {0}. An activity j is said to be a service activity if it does not process any job from

buffer 0, i.e., 0 6∈ Bj . We assume that each activity is either an input activity or a service

activity. We further assume that each processor processes either input activities only or

service activities only. A processor that only processes input activities is called an input

processor, and a processor that only processes service activities is called an service processor.

The input processors process jobs from buffer 0 (outside) and generate the arrivals for the

network. We denote JI to be the set of input activities, JS the set of service activities, KI

the set of input processors, and KS the set of service processors.

2.2 Routing

Buffer i jobs, after being processed by activity j, will go next to other buffers or leave

the system. Let e0 be the I-dimensional vector of all 0’s, and for i ∈ I, ei is the I-

dimensional vector with ith component 1 and other components 0. For each activity j ∈ J

and each constituent buffer i ∈ Bj , we use an I-dimensional binary random vector φj
i (`) =

(φj
ii′(`), i

′ ∈ I) to denote the routing vector of the `-th buffer i job processed by activity j,

where φj
i (`) = ei′ if the `-th buffer i job processed by activity j goes next to buffer i′, and

φj
i (`) = e0 if the job leaves the system. We assume the sequence φj

i = {φj
i (`), ` ≥ 1} is i.i.d.

for each activity j ∈ J and i ∈ Bj . Set P j
ii′ = E[φj

ii′(1)], then P j
ii′ is the probability that a

buffer i job processed by activity j will go next to buffer i′.

For each j ∈ J , i ∈ Bj , the cumulative routing process is defined by the sum

Φj
i (`) =

∑̀
n=1

φj
i (`),

and Φj
ii′(`) denotes the number of jobs that will go next to buffer i′ among the first ` buffer

i jobs that are processed by activity j.

The sequences

(uj , φ
j
i : i ∈ Bj , j ∈ J ) (2.1)

are said to be the primitive increments of the network. We assume that they are mutually
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independent and all are independent of the initial state of the network.

2.3 Resource Allocations

Because multiple activities may require usage of the same processor, not all activities can

be simultaneously undertaken at 100% level. For most of this thesis, we assume that each

processor’s service capacity is infinitely divisible, and processor-splitting of a processor’s

service capacity is realizable. We use a nonnegative variable aj to denote the level at which

processing activity j is undertaken. When aj = 1, activity j is employed at a 100% level.

When aj = 0, activity j is not employed. Suppose that the engagement level of activity j

is aj , with 0 ≤ aj ≤ 1. The processing requirement of an activity j job is depleted at rate

aj . (The job finishes processing when its processing requirement reaches 0.) The activity

consumes ajAkj fraction of processor k’s service capacity per unit time. The remaining

service capacity, 1− ajAkj , can be used for other activities.

We use a = (aj) ∈ RJ
+ to denote the corresponding J-dimensional allocation (column)

vector, where R+ denotes the set of nonnegative real numbers. Since each processor k can

decrease processing requirements at the rate of at most 1 per unit of time, we have

∑
j∈J

Akjaj ≤ 1 for each processor k. (2.2)

In vector form, Aa ≤ e, where e is the K-dimensional vector of ones. We assume that there

is at least one input activity and that the input processors are never idle. Namely,

∑
j∈J

Akjaj = 1 for each input processor k. (2.3)

We use A to denote the set of allocations a ∈ RJ
+ that satisfy (2.2) and (2.3).

Each a ∈ A represents an allowable allocation of the processors working on various

activities. We note that A is bounded and convex. Let E = {a1, . . . , aE} be the set of

extreme points of A, where the total number E of extreme points is finite.

2.4 Service Policies

Each job in a buffer is assumed to be processed by one activity in its entire stay at the buffer.

A processing of an activity can be preempted. In this case, each in-service job is “frozen”
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by the activity. When the next time the activity is made active again, the processing is

resumed from where it was left off. In addition to the availability of processors, a (non-

preempted) activity can be made active only when each constituent buffer has jobs that are

not in service nor frozen. We assume that within each buffer head-of-line policy is used.

When a (non-preempted) activity becomes active with a given engagement level, the leading

job in each buffer that is not in service nor frozen is processed. If multiple activities are

actively working on a buffer, there are multiple jobs in the buffer that are in service. For an

allocation a, if there is an activity j with aj > 0 that cannot be made active, the allocation

is infeasible. At any given time t, we use A(t) to denote the set of allocations that are

feasible at that time. A policy specifies which allocation being undertaken at each time

t ≥ 0, and it is denoted as π = {π(t) : t ≥ 0}. Under the policy π, allocation π(t) ∈ A(t)

will be employed at time t.

2.5 Stochastic Processing Network Equations

For each activity j, we first define the counting process Sj = {Sj(t), t ≥ 0} associated with

the processing requirement sequence {uj(`)/µj , ` ≥ 0}. For each t ≥ 0,

Sj(t) = max
{
n :

n∑
`=1

uj(`) ≤ µjt
}
. (2.4)

Since the service policy is assumed to be head-of-line, Sj(t) is the number of activity j

processing completions in t units of activity j processing time. Note that a unit of activity

j processing time is not the same as a unit of activity j busy time. When the activity

is employed at level aj , one unit of activity j busy time is equal to aj units of activity

j processing time. We use Tj(t) to denote the cumulative activity j processing time in

[0, t]. Let T (t) be the corresponding J-dimensional vector; we refer to T = {T (t), t ≥ 0}

as the cumulative activity level process. For each buffer i ∈ I, let buffer level Zi(t) denote

the number of jobs in buffer i at time t. We use Z(t) to denote the corresponding I-

dimensional column vector; we refer to Z = {Z(t), t ≥ 0} as the buffer level process.

Denoting X(t) = (Z(t), T (t)) for t ≥ 0, we call X = {X(t) : t ≥ 0} the stochastic processing

network process.
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Now we can write down the equations describing the dynamics of the stochastic pro-

cessing network:

Zi(t) = Zi(0) +
∑
j∈J

∑
i′∈Bj

Φj
i′i

(
Sj

(
Tj(t)

))
−
∑
j∈J

Sj

(
Tj(t)

)
Bji for each t ≥ 0 and i ∈ I,

(2.5)

Zi(t) ≥ 0 for each t ≥ 0 and i ∈ I, (2.6)∑
j∈J

Akj

(
Tj(t)− Tj(s)

)
= t− s for each 0 ≤ s ≤ t and each input processor k, (2.7)

∑
j∈J

Akj

(
Tj(t)− Tj(s)

)
≤ t− s for each 0 ≤ s ≤ t and each processor k, (2.8)

T is nondecreasing and T (0) = 0. (2.9)

Since quantity Tj(t) is the cumulative amount of activity j processing time in [0, t], Sj

(
Tj(t)

)
is the number of activity j processings completed by time t, and

∑
j∈J Sj

(
Tj(t)

)
Bji is the

total number of jobs that depart from buffer i ∈ I ∪ {0} in [0, t]. For each activity j,∑
i′∈Bj

Φj
i′i

(
Sj

(
Tj(t)

))
is the total number of jobs sent to buffer i by activity j from its

constituent buffers by time t, so
∑

j∈J
∑

i′∈Bj
Φj

i′i

(
Sj

(
Tj(t)

))
is the total number of jobs

that go to buffer i by time t. Equation (2.5) is the flow balance equation. It says that the

number of jobs in buffer i at time t equals the initial number plus the number of arrivals

subtracted from the number of departures. Inequality (2.8) holds because each processor

can spend at most t − s units of time processing various activities from time s to t, and

equation (2.7) holds because each input processor is assumed to never idle. To uniquely

define the network dynamics, it is enough to specify T (t).

We note that equations (2.5)–(2.9) hold under any head-of-line service policy. They

are called stochastic processing network equations. Under a specific service policy like a

maximum pressure policy, there are additional equations for the network processes.
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CHAPTER III

THE MAXIMUM PRESSURE SERVICE POLICIES

In this section, we define a family of policies, called maximum pressure service policies.

Under a mild assumption on network structure, we will prove in Section 4.2 that a maximum

pressure policy is throughput optimal in the sense that it stabilizes a stochastic processing

network if the network is stabilizable at all.

For each buffer i = 1, . . . , I and each activity j = 1, . . . ,J we define

Rij = µj

(
Bji −

∑
i′∈Bj

P j
i′i

)
. (3.1)

The I × J matrix R = (Rij) is called the input-output matrix in Harrison [37]. (Harrison

took R as part of a model specification to allow more general modeling capability.) One

interprets Rij as the average amount of buffer i material consumed per unit of activity j,

with a negative value being interpreted to mean that activity j is a net producer of material

in buffer i. For a resource allocation a ∈ A and a given z ∈ RI
+, define the corresponding

total network pressure to be

p(a, z) = z ·Ra, (3.2)

where, for two vectors x and y, x · y =
∑

` x`y` denotes the inner product. Although we

interpret z as the buffer level vector in the network, its components do not have to be

integers.

The network pressure p(a, z) can also be written as

p(a, z) =
∑
j∈J

ajµj

∑
i∈Bj

(
zi −

∑
i′∈I

P j
ii′zi′

)
.

For each activity j, µj
∑

i∈Bj
(zi −

∑
i′∈I P

j
ii′zi′) is the pressure of activity j. It equals

the processing rate times the buffer level difference between the service buffers and their

immediate downstream buffers.
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The general idea of a maximum pressure policy is to employ an allocation

a∗ ∈ argmax
a∈A

p(a, Z(t)) (3.3)

at any given time t. Unfortunately, such an a∗ is not always a feasible allocation. Note

that p(a, Z(t)) is linear in a. Thus, the maximum in (3.3) is achieved at one of those

extreme allocations. Namely, p(a∗, Z(t)) = maxa∈E p(a, Z(t)), where, as before, E is the set

of extreme allocations of A.

Recall that A(t) is the set of feasible allocations at time t. Namely, A(t) is the set of

allocations a = (aj) such that at time t for each non-preempted activity j with aj > 0,

the constituent buffers (those buffers i with Bji = 1) have “fresh” jobs that are neither in

service nor preempted. Define E(t) = E ∩ A(t) to be the set of feasible extreme allocations

at time t. Because preemption is assumed, one can argue that E(t) is always nonempty. For

example, any extreme allocation that forces all service processors to stay idle is an element

in E(t).

Definition 3.1. A service policy is said to be a maximum pressure policy if at each time

t, the network chooses an allocation a∗ ∈ arg maxa∈E(t) p(a, Z(t)).

When more than one allocation attain the maximum pressure, a tie-breaking rule is

used. Our results are not affected by how ties are broken. However, for concreteness, one

can order the extreme allocation set E , and always chooses the smallest, maximum-pressure

allocation.

Note the buffer level process Z does not change between processing completions. Thus,

under a maximum pressure policy, allocations will not change between these completions.

Each allocation decision is triggered by the completion of either an input activity or a

service activity. Let t0 = 0, and {tn : n = 1, . . .} be the sequence of decision times under

a maximum pressure policy. At decision time tn, one observes the buffer level Z(tn), and

chooses an allocation an = f(Z(tn)), where f : RI
+ → E ⊂ A is a function such that f(z)

maximizes p(a, z) among all feasible allocations a ∈ E for each z ∈ RI
+. The allocation

remains fixed until the next activity completion time tn+1.
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For one-pass systems with no alternate routing, Rij = µjBji and the maximum pressure

policy is reduced to a special case of the MaxWeight policy proposed in [64]. In fact,

MaxWeight policy is to employ an allocation a ∈ argmaxa

∑
i

∑
j C

′
i(Zi(t))Rijaj where

Ci(·) is any convex function. Setting Ci(Zi) = Z2
i , MaxWeight policy reduces to a maximum

pressure policy.
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CHAPTER IV

STABILITY

In this chapter, we study the stability of stochastic processing networks. We prove that,

under a mild assumption on the network structure, a maximum pressure policy is through-

put optimal in the sense that it stabilizes a stochastic processing network if the network is

stabilizable at all.

We first define the pathwise stability for stochastic processing networks.

Definition 4.1. A stochastic processing network operating under a general service policy

is said to be pathwise stable or simply stable if for every initial state, with probability one,

lim
t→∞

Zi(t)/t = 0, i ∈ I. (4.1)

Pathwise stability ensures that the total departure rate from the network is equal to the

total input rate to the network. An unstable network incurs linear build up of jobs in the

system, at least for some network realizations. Although it will not be discussed further in

this thesis, one can employ other definitions of stability like positive Harris recurrence under

some stronger assumptions on the primitive processes. Readers are referred to Dai [21], Dai

and Meyn [26] and Stolyar [63] for such possible extensions.

The central focus of this chapter is to answer the following questions: (i) what is the

natural condition on the primitive processes under which the stochastic processing network

is stabilizable under some service policy? (ii) given that the network is stabilizable, are there

any dynamic polices that use “minimal system information” and stabilize the network?

4.1 The Static Planning Problem and the Main Stability
Theorems

In this section, we state the main stability theorems. We first introduce an LP called the

static planning problem that will be used in the theorems to characterize the stability of

16



a stochastic processing network. For a stochastic processing network with input-output

matrix R and capacity consumption matrix A, the static planning problem is defined as

follows: choose a scalar ρ and a J-dimensional column vector x so as to

minimize ρ (4.2)

subject to Rx = 0, (4.3)∑
j∈J

Akjxj = 1 for each input processor k, (4.4)

∑
j∈J

Akjxj ≤ ρ for each service processor k, (4.5)

x ≥ 0. (4.6)

For each optimal solution (ρ, x) to (4.2)-(4.6), the vector x is said to be a processing plan

for the stochastic processing network, where component xj is interpreted as the long-run

fraction of time that activity j is undertaken. Since one of the constraints in (4.5) must be

bounding for a service processor, ρ is interpreted as the long-run utilization of the busiest

service processor under the processing plan. With this interpretation, the left side of (4.3)

is interpreted as the long-run net flow rates from the buffers. Equality (4.3) demands

that, for each buffer, the long-run input rate to the buffer is equal to the long-run output

rate from the buffer. Equality (4.4) ensures that input processors are never idle, while

inequality (4.5) requires that each service processor’s utilization not exceed that of the

busiest service processor. The objective is to minimize the utilization of the busiest service

processor. For future references, the optimal objective value ρ is said to be the traffic

intensity of the stochastic processing network.

The following theorem provides a partial answer to question (i).

Theorem 4.1. The static planning problem (4.2)–(4.6) has a feasible solution with ρ ≤ 1

if the network is stable under some service policy.

We leave the proof of the theorem to Section 4.3. The next theorem, our main stability

theorem, provides a complete answer to questions (i) and (ii). To state the theorem, we

need to introduce an assumption on the network structure under which maximum pressure
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policies are shown to be throughput optimal. For an allocation a ∈ A, buffer i is said to be

a constituent buffer of a if it can generate positive flow under a, i.e.,
∑

j∈J ajBji > 0.

Assumption 4.1 (EAA assumption). For any buffer level vector z ∈ RI
+, there exists

an extreme allocation a∗ ∈ E that maximizes the network pressure p(a, z), i.e., p(a∗, z) =

maxa∈E p(a, z), and that for each constituent buffer i of a∗, the buffer level zi is positive.

The above assumption is called the extreme-allocation-available (EAA) assumption.

It basically ensures that the maximum pressure allocation in (3.3) can be achieved by

some feasible extreme allocation, i.e., maxa∈A p(a, Z(t)) = maxa∈E(t) p(a, Z(t)), when each

non-empty buffer has sufficiently many jobs. The EAA assumption is satisfied for a wide

range of familiar networks including strict Leontief networks introduced in Bramson and

Williams [16] and networks of switches (see Section 4.7.2). Assumption 4.1 fails to hold for

some networks. In Section 4.4, we will discuss the assumption in more detail.

Theorem 4.2. Consider a stochastic processing network that satisfies Assumption 4.1.

The network operating under a preemptive, processor-splitting maximum pressure policy is

pathwise stable if the static planning problem (4.2)–(4.6) has a feasible solution with ρ ≤ 1.

The proof of Theorem 4.2 will be given in Section 4.2 with some of the supporting results

proved in Section 4.3. The maximum pressure policy can be generalized in the following way.

For each buffer i, let γi be a positive number and θi be a real number. Given parameters

γ = (γi) and θ = (θi), define the new network pressure at time t under allocation a to

be p(a, Z̃(t)), where Z̃i(t) = γiZi(t) − θi. The parameterized maximum pressure policies

associated with parameters γ and θ can be defined through the total network pressure as

before. For the parameterized maximum pressure policies, we have the following corollary.

Corollary 4.1. Consider a stochastic processing network that satisfies Assumption 4.1. The

network operating under a parameterized, preemptive, processor-splitting maximum pressure

policy is pathwise stable if the static planning problem (4.2)–(4.6) has a feasible solution with

ρ ≤ 1.

Since the proofs of Theorem 4.2 and Corollary 4.1 are identical, to keep notation simple,
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we only consider the maximum pressure policies defined in Definition 3.1 except otherwise

mentioned.

4.2 Fluid Models and an Outline of the Proof of Theo-
rem 4.2

To prove Theorems 4.1 and 4.2, we adopt the standard fluid model approach [22]. In

addition to introducing fluid models and their stability, this section outlines a proof of

Theorem 4.2. The outline provides some key insights as to why a maximum pressure policy

can stabilize a stochastic processing network.

The fluid model of a stochastic processing network is the deterministic, continuous

analog of the stochastic processing network. It is defined by the following equations:

Z̄(t) = Z̄(0) +RT̄ (t), (4.7)

Z̄(t) ≥ 0, (4.8)∑
j∈J

Akj

(
T̄j(t)− T̄j(s)

)
= t− s for each 0 ≤ s ≤ t and each input processor k, (4.9)

∑
j∈J

Akj

(
T̄j(t)− T̄j(s)

)
≤ t− s for each 0 ≤ s ≤ t and each processor k, (4.10)

T̄ is nondecreasing and T̄ (0) = 0. (4.11)

Equations (4.7)–(4.11) are analogous to stochastic processing network equations (2.5)-

(2.9). They define the fluid model under any given service policy. Any quantity (Z̄, T̄ )

that satisfies (4.7)–(4.11) is a fluid model solution to the fluid model that operates under a

general service policy. Following its stochastic processing network counterparts discussed in

Section 2, each fluid model solution (Z̄, T̄ ) has the following interpretations: Z̄j(t) the fluid

level in buffer i at time t and T̄j(t) the cumulative amount of activity j processing time in

[0, t].

For each fluid model solution (Z̄, T̄ ), it follows from equations (4.9)-(4.10) that T̄ , and

hence Z̄, is Lipschitz continuous. Thus, the solution is absolutely continuous and has

derivatives almost sure everywhere with respect to Lebesgue measure on [0,∞). A time

t > 0 is said to be a regular point of the fluid model solution if the solution is differentiable
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at time t. For a function f : R+ → Rd for some positive integer d, we use ḟ(t) to denote the

derivative of f at time t when the derivative exists. From (4.9)-(4.10), one has ˙̄T (t) ∈ A at

each regular time t. Thus, for a fluid model solution (Z̄, T̄ ) under a general service policy,

the network pressure R ˙̄T (t) · Z̄(t) under allocation ˙̄T (t) when the fluid level is Z̄(t) is less

than or equal to the maximum pressure maxa∈ARa · Z̄(t). Namely,

R ˙̄T (t) · Z̄(t) ≤ max
a∈A

Ra · Z̄(t) = max
a∈E

Ra · Z̄(t). (4.12)

Under a specific service policy, there are additional fluid model equations. Under a

maximum pressure policy and the EAA assumption,

R ˙̄T (t) · Z̄(t) = max
a∈E

Ra · Z̄(t) (4.13)

for each regular time t. Thus, under a maximum pressure policy, the instantaneous activity

allocation ˙̄T (t) in the fluid model maximizes the network pressure at time t. Each fluid

model equation will be justified through a fluid limit procedure. Three types of fluid limits

are considered in this thesis. They will be introduced in Section 4.3, Section 5.5 and

Appendix B, respectively. They all satisfy the fluid model equations (4.7)–(4.11) and (4.13).

Any fluid model solution that satisfies fluid model equations (4.7)–(4.11) and (4.13) is called

a fluid model solution under the maximum pressure policy.

We now give another interpretation of a maximum pressure policy. Let (Z̄, T̄ ) be a fluid

model solution. Consider the following quadratic Lyapunov function:

f(t) =
∑

i

Z̄2
i (t). (4.14)

At a regular time t,

ḟ(t) = 2 ˙̄Z(t) · Z̄(t) = −2R ˙̄T (t) · Z̄(t), (4.15)

where, in the second equality, we have used the vector form of fluid model equation (4.7)

Z̄(t) = Z̄(0)−RT̄ (t). (4.16)

It follows from (4.12), (4.13) and (4.15) that the derivative of “system energy” f(t) is

minimized when ˙̄T (t) is chosen as a fluid model solution under a maximum pressure policy.
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Thus, a maximum pressure policy is system greedy in that the “system energy” decreases

fastest (or increases slowest) at any regular time.

In addition to providing interpretations of a maximum pressure policy in the fluid model

setting, the fluid model allows us to prove our main theorems. The following theorem

provides a connection between the stability of a stochastic processing network and the weak

stability of the corresponding fluid model, a notion we first define now.

Definition 4.2. A fluid model is said to be weakly stable if for every fluid model solution

(Z̄, T̄ ) with Z̄(0) = 0, Z̄(t) = 0 for t ≥ 0.

Theorem 4.3. For a stochastic processing network, if the corresponding fluid model is

weakly stable, it is pathwise stable.

The proof of Theorem 4.3 will be presented in Section 4.3. In light of the theorem, the

following theorem provides a complete proof of Theorem 4.2.

Theorem 4.4. Assume that the linear program (4.2)-(4.6) has a feasible solution with ρ ≤ 1

and the EAA assumption is satisfied. The fluid model under a maximum pressure policy is

weakly stable.

Proof. Let (Z̄, T̄ ) be a fluid model solution with Z̄(0) = 0, and f be the quadratic Lyapunov

function as defined in (4.14). Let x∗ be a solution to the linear program (4.2)-(4.6) with

ρ ≤ 1. Obviously x∗ ∈ A since ρ ≤ 1. Moreover Rx∗ = 0. It follows from (4.13) and (4.15)

that

ḟ(t) = −2R ˙̄T (t) · Z̄(t)

= −2 max
a∈A

Ra · Z̄(t)

≤ −2Rx∗ · Z̄(t)

= 0

for each regular time t. Since f(0) = 0, we have f(t) = 0 for t ≥ 0, proving the fluid model

is weakly stable.
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We end this section by stating a stronger version of Theorem 4.4. This result is of

independent interest. We first make another minor assumption on the stochastic processing

network.

Assumption 4.2. There exists an x ≥ 0 such that Rx > 0.

Definition 4.3. A fluid model is said to be stable if there exists a constant δ > 0 such that

for every fluid model solution (Z̄, T̄ ) with |Z̄(0)| ≤ 1, Z̄(t) = 0 for t ≥ δ.

Theorem 4.5. For a stochastic processing network satisfying Assumptions 4.1 and 4.2, the

corresponding fluid model is stable if the linear program (4.2)–(4.6) has a feasible solution

with ρ < 1.

Proof. Suppose that (x̃, ρ) is a feasible solution to (4.2)-(4.6). From Assumption 4.2, there

exists an x̂ ≥ 0 such Rx̂ > 0. Since for each input activity j, Rij = −µjBj0P
j
0i ≤ 0, we

can set x̂j = 0 for each input activity j so that Rx̂ > 0 still holds. As a consequence,∑
j Akj x̂j = 0 for each input processor k. Clearly, x̂ can be scaled so that

∑
j Akj x̂j ≤

(1 − ρ) for each service processor k. Let x∗ = x̃ + x̂. One can check that x∗ ∈ A, and

Rx∗ = Rx̃+Rx̂ = Rx̂ ≥ δe, where δ = mini
∑

j Rij x̂j > 0. By (4.13),

R ˙̄T (t) · Z̄(t) ≥ Rx∗ · Z̄(t) ≥ δ
∑

i

Z̄i(t) ≥ δ‖Z̄(t)‖,

where ‖ · ‖ is the Euclidean norm on RI. Therefore,

ḟ(t) = 2 ˙̄Z(t) · Z̄(t) = −2R ˙̄T (t) · Z̄(t) ≤ −2δ‖Z̄(t)‖ = −2δ
√
f(t).

It follows that Z̄(t) = 0 for t ≥ ‖Z̄(0)‖/δ.

4.3 Fluid Limits

In this section, we introduce fluid limits that connect a stochastic processing network with

the corresponding fluid model introduced in Section 4.2. As a consequence, we show that

the stability of a fluid model implies the stability of the corresponding stochastic processing

network (Theorem 4.3).

Recall that X = (Z, T ) is the stochastic network process describing the stochastic pro-

cessing network, where Zi(t) is the number of jobs at time t in buffer i, and Tj(t) is the
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cumulative activity j processing time in [0, t]. Clearly, X depends on a realization of sample

path ω. We use X(·, ω) to denote the trajectory of the network process along sample path ω.

For each r > 0 and ω, define the scaled process Xr via

X̄r(t, ω) = r−1X(rt, ω) for each t ≥ 0.

By strong law of large numbers, we have, with probability one,

lim
n→∞

n∑
`=1

uj(`)/n = 1 for each j ∈ J , (4.17)

lim
`→∞

Φj
i (`)/` = P j

i for each j ∈ J and i ∈ Bj . (4.18)

Definition 4.4. A function X̄ = (Z̄, T̄ ) is said to be a fluid limit of the processing network

if there exists a sequence r →∞ and a sample path ω satisfying (4.17)–(4.18) such that

lim
r→∞

X̄r(·, ω) → X̄(·).

To see the existence of a fluid limit, note that for each activity j and each sample path

ω, for all r > 0

T̄ r
j (t, ω)− T̄ r

j (s, ω) ≤ t− s for 0 ≤ s ≤ t.

Thus, the family of functions T̄ r
j (·, ω), r > 0, is equi-continuous, see for example Royden [59].

Thus, there is a subsequence rn →∞ as n→∞ such that

lim
n→∞

T̄ rn
j (·, ω) → T̄j(·)

for some continuous function T̄j(·). By a standard argument, one can find a further subse-

quence, still denoted by {rn} for notational convenience, such that

lim
n→∞

T̄ rn
j (·, ω) = T̄j(·) (4.19)

for each activity j.

To show that Z̄rn(·, ω) converges, we are going to use flow balance equation (2.5). Let

us first focus on the last term in the right side of (2.5). By (4.17), for the fixed sample path

ω,

lim
r→∞

Sj(rt, ω)/r = µjt for each t ≥ 0. (4.20)
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By (4.19) and (4.20), for each fixed t,

lim
n→∞

∑
j

Sj(Tj(rnt), ω)/rn =
∑

j

lim
n→∞

Sj(Tj(rnt), ω)
Tj(rnt)

Tj(rnt)
rn

=
∑
j∈J

µj T̄j(t). (4.21)

Since for each fixed n,
∑

j Sj(Tj(rnt), ω)/rn is a non-decreasing function of t, and the limit

function
∑

j∈J µjT̄j(t) is a continuous function of t, convergence in (4.21) actually holds

uniformly on compact sets; see, for example, Lemma 4.1 of Dai [21].

Similarly, by using (4.18), (4.19) and (4.20), we have

lim
n→∞

∑
j

∑
i′∈Bj

Φj
i′i(Sj(Tj(rnt)))/rn =

∑
j

∑
i′∈Bj

T̄j(t)µjP
j
i′i. (4.22)

It follows from (2.5), (4.21), and (4.22) that Z̄rn(·) → Z̄(·) with Z̄(0) = 0 and Z̄ satisfying

(4.7). Clearly, X̄ = (Z̄, T̄ ) also satisfies fluid model equations (4.8)-(4.11). Thus, the fluid

limit X̄ is a fluid model solution to fluid model equations (4.7)-(4.11). We end this section

by proving Theorems 4.1 and 4.3. Theorem 4.3 provides a connection between the stability

of a stochastic processing network and the stability of the corresponding fluid model.

Proof of Theorem 4.1. Assume that the stochastic processing network is pathwise stable

under some service policy. Fix a sample path that satisfies (4.1) and (4.17)-(4.18). Let (Z̄, T̄ )

be a fluid limit of (Z, T ) along the sample path. Following the arguments in Section 4.3

such a limit exists and satisfies the fluid model equations (4.7)-(4.11). Since the stochastic

processing network is stable, Z̄(t) = 0 for t ≥ 0. For each activity j, let xj = T̄j(1). It is

easy to see that x = (xj) satisfies (4.2)–(4.6) with ρ = 1.

Proof of Theorem 4.3. Let ω be a sample path that satisfies (4.17) and (4.18). Let {rn}

be a sequence such that rn → ∞ as n → ∞. Consider the scaled sequence {X̄rn(t, ω) =

r−1
n X(rnt, ω), t ≥ 0 : n ≥ 1}. By the arguments in preceding three paragraphs, fluid limits

exist. Namely, there exists a subsequence {rn′} such that

X̄rn′ (·, ω) → X̄(·).
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Since X̄ = (Z̄, T̄ ) is also a fluid model solution with Z̄(0) = 0, by the weak stability of the

fluid model, Z̄(1) = 0. Namely,

lim
n′→∞

Z(rn′ , ω)
rn′

= 0. (4.23)

Since {rn} is an arbitrary sequence with rn →∞, (4.23) implies that

lim
t→∞

Z(t, ω)
t

= 0.

Thus, the stochastic processing network is pathwise stable.

4.3.1 Fluid limits under a maximum pressure policy

The main purpose of this section is to prove the following lemma, justifying that the fluid

model under a maximum pressure policy is well defined by fluid model equations (4.7)-(4.11)

and (4.13).

Lemma 4.1. Consider a stochastic processing network operating under a processor-splitting,

preemptive maximum pressure policy. Assume the network satisfies Assumption 4.1. Each

fluid limit satisfies fluid model equation (4.13).

The proof of the lemma will be presented at the end of this section. For that, let T a(t)

be the cumulative amount of time that allocation a has been employed in [0, t]. Under a

maximum pressure policy, only extreme allocations are used. Thus,

Tj(t) =
∑
a∈E

ajT
a(t) for each t ≥ 0 and j ∈ J . (4.24)

Clearly,

T a(·) is nondecreasing for each allocation a ∈ E , (4.25)∑
a∈E

T a(t) = t for each t ≥ 0. (4.26)

Since each extreme allocation is in A, one can check that (4.24)–(4.26) imply (2.7) and

(2.8).

Under a maximum pressure policy, we modify the definition of the stochastic processing

network process via

X(t) = (Z(t), T a(t), Tj(t) : a ∈ E , j ∈ J ).
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Each X satisfies the stochastic processing network equations (2.5), (2.6), and (4.24)-(4.26).

The fluid limits of X are defined analogously as in Section 4.3.

Lemma 4.2. Assume that the EAA assumption holds. Each fluid limit X̄ = (Z̄, T̄ a, T̄j :

a ∈ E , j ∈ J ) under a preemptive, processor-splitting maximum pressure policy satisfies

fluid model equations (4.7)-(4.11), and the following equations

T̄j(t) =
∑
a∈E

ajT̄
a(t) for each t ≥ 0 and j ∈ J , (4.27)

T̄ a(·) is nondecreasing for each allocation a ∈ E , (4.28)∑
a∈E

T̄ a(t) = t for each t ≥ 0, (4.29)

˙̄T a(t) = 0, if p(a, Z̄(t)) < max
a′∈E

p(a′, Z̄(t)), (4.30)

Proof. Let X̄ be a fluid limit. Clearly, it satisfies (4.27)-(4.29). It remains to prove that X̄

satisfies (4.30).

Recall that, p(a, Z̄(t)) = Z̄(t) · Ra is the network pressure under allocation a when

the fluid level is Z̄(t). Suppose that a ∈ E and p(a, Z̄(t)) < maxa′∈E p(a′, Z̄(t)). From

Assumption 4.1, we can choose an a∗ ∈ E such that

p(a∗, Z̄(t)) = max
a′∈E

p(a′, Z̄(t))

and the fluid level Z̄i(t) > 0 for each constituent buffer i of a∗. Denote I(a∗) the set of

constituent buffers. Namely,

I(a∗) =
{
i :
∑

j

a∗jBji > 0
}
.

Then Z̄i(t) > 0 for all i ∈ I(a∗). Since p(a, Z̄(t)) < p(a∗, Z̄(t)) and mini∈I(a∗) Z̄i(t) > 0, by

the continuity of X̄(·), there exist ε > 0 and δ > 0 such that for each τ ∈ [t − ε, t + ε] and

i ∈ I(a∗),

p(a, Z̄(τ)) + δ ≤ p(a∗, Z̄(τ)) and Z̄i(τ) ≥ δ.

Thus, when n is sufficiently large, p(a, Z̄(nτ)) + nδ/2 ≤ p(a∗, Z̄(nτ)) and Zi(nτ) ≥ nδ/2

for each i ∈ I(a∗) and each τ ∈ [t − ε, t + ε]. Choosing n > 2J/δ, then for each τ ∈
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[n(t− ε), n(t+ ε)] we have

p(a, Z(τ)) < p(a∗, Z(τ)), (4.31)

Zi(τ) ≥ J for each i ∈ I(a∗). (4.32)

Condition (4.32) implies that a∗ is a feasible allocation at any time τ ∈ [n(t− ε), n(t+ ε)],

i.e., a∗ ∈ E(τ). Following (4.31) and the definition of a (preemptive-resume) maximum

pressure policy, the allocation a will not be employed during time interval [n(t−ε), n(t+ε)].

Therefore,

T a(n(t+ ε))− T a(n(t− ε)) = 0, (4.33)

which implies T̄ a(t+ ε)− T̄ a(t− ε) = 0, and hence ˙̄T a(t) = 0.

Proof of Lemma 4.1. Let X̄ be a fluid limit. We would like to prove that (Z̄, T̄ ) satisfies

fluid model equation (4.13). By Lemma 4.2 and the fact that
∑

a∈E
˙̄T a(t) = 1,

∑
a∈E

˙̄T a(t)p(a, Z̄(t)) ≥ p(a′, Z̄(t)) for all a′ ∈ E .

Now,

R ˙̄T (t) · Z̄(t) =
∑
i∈I

Z̄i(t)
∑
j∈J

Rij
˙̄Tj(t) =

∑
i∈I

Z̄i(t)
∑
j∈J

Rij

∑
a′∈E

a′jT̄
a′

(t)

=
∑
a′∈E

˙̄T a′
(t)p(a′, Z̄(t))

≥ p(a, Z̄(t)) = Ra · Z̄(t).

The preceding inequality together with (4.12) proves (4.13).

4.4 EAA Assumption Revisited

In this section, we introduce strict Leontief networks and verify that the extreme-allocation-

available (EAA) assumption, Assumption 4.1, is always satisfied for such networks. We then

present a network example for which the EAA assumption fails to satisfy.
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4.4.1 Strict Leontief networks

A stochastic processing network is said to be strict Leontief if each service activity is

associated with exactly one buffer, i.e., Bj contains exactly one buffer for each activity

j ∈ J . (Recall that each input activity j is assumed to be associated with buffer 0 only,

i.e., Bj = {0}.)

Theorem 4.6. Assumption 4.1 is satisfied for strict Leontief networks.

Proof. For strict Leontief networks, each row j of matrix B has exactly one entry equal to

1. Denote the corresponding buffer as i(j). Then Bji = 0 and Rij ≤ 0 for each i ∈ I and

j ∈ J such that i 6= i(j). For any vector z ∈ RI
+, we define J0 as the set of service activities

j with zi(j) = 0. It is sufficient to show that there exists an allocation a∗ ∈ argmaxa∈E z
′Ra

with a∗j = 0 for all j ∈ J0. Let â be any extreme allocation such that z′Râ = max z′Ra.

Define ã via

ãj =

 0, j ∈ J0,

âj , j 6∈ J0.

Obviously, ã ∈ A. Note that

z′Râ =
∑

i

∑
j

ziRij âj =
∑

i

∑
j∈J0

ziRij âj +
∑

i

∑
j∈J\J0

ziRij âj =
∑

i

∑
j∈J0

ziRij âj + z′Rã.

Since ∑
i

∑
j∈J0

ziRij âj =
∑
j∈J0

∑
i6=i(j)

ziRij âj ≤ 0,

we have z′Rã ≥ z′Râ. Because z′Râ = maxa∈A z
′Ra, we have z′Rã = maxa∈A z

′Ra. If ã

is an extreme allocation, then the proof is complete. Otherwise, it is a linear combination

of some extreme allocations. Choose any one of these allocations as a∗. Then z′Ra∗ =

maxa∈A z
′Ra, and a∗j = 0 for all j ∈ J0.

4.4.2 A network example not satisfying the EAA assumption

In this section, we present a network example for which the EAA assumption is not satisfied.

The network has a feasible solution with ρ < 1 to the static planning problem (4.2)–(4.6),

yet it is not stable under any maximum pressure policy. The network is shown to be stable

under some allocation policy.
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Consider the network depicted in Figure 4.1. The network has 5 internal buffers, in

addition to the external buffer 0. Buffers are represented by open rectangular boxes. There

are 6 processors represented by circles, and 8 activities labeled on the lines connecting

circles to buffers. All processors, except processor 6, are input processors. For ` = 1, . . . , 5,

input processor ` works on activity ` to generate the arrivals to buffer ` with rate µ`.

Each time, the service processor, processor 6, can employ one activity from activities 6,

7, and 8. By employing activity 6, the service processor processes jobs from all the five

buffers simultaneously with rate µ6. By employing activity 7 (or 8), the service processor

works simultaneously on buffers 1 and 2 (or 4 and 5) with rate µ7 (or µ8). It is clear

that all input activities must always be employed. However each time only one service

activity can be employed. Therefore, there are a total of 4 extreme allocations. They

are a1 = (1, 1, 1, 1, 1, 1, 0, 0)′, a2 = (1, 1, 1, 1, 1, 0, 1, 0)′, a3 = (1, 1, 1, 1, 1, 0, 0, 1)′, and a4 =

(1, 1, 1, 1, 1, 0, 0, 0)′.

6

0

3

3

6

2 4 531

4 5

1 2 54

87

1 2

Figure 4.1: An example that does not satisfy the EAA assumption

We assume all the processing times are deterministic. Their values are specified as

follows. Denote ηj(`) to be the processing time of the `th activity j. For activities j = 1, 2

and 3, ηj(`) = 2, ` ≥ 1. For activities j = 4 and 5, ηj(1) = 1, and ηj(`) = 2 for ` ≥ 2. For

activities j = 6, 7 and 8, ηj(`) = 1, ` ≥ 1. Therefore,

µj =

 0.5, j = 1, . . . , 5,

1, j = 6, 7, and 8.
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The input-output matrix R in (3.1) can be written as

R =



−0.5 0 0 0 0 1 1 0

0 −0.5 0 0 0 1 1 0

0 0 −0.5 0 0 1 0 0

0 0 0 −0.5 0 1 0 1

0 0 0 0 −0.5 1 0 1


It can be easily checked that x = (1, 1, 1, 1, 1, 1/2, 0, 0)′ and ρ = 1/2 is a feasible solution to

the static planning problem (4.2)–(4.6).

The system is unstable under any maximum pressure policy. In the following, we show

that for any maximum pressure policy with given parameters (γ, θ), the queue size of buffer

3 can grow without bound under a certain initial condition. Without loss of generality,

we assume that γi = 1 for each buffer i. Now consider the system with initial buffer sizes

Z1(0) = θ1 + θ2, Z5(0) = θ4 + θ5, and Zi(0) = 0 for i = 2, 3, and 4. At time t < 1, buffers

2, 3 and 4 are empty. Thus, none of the service activities can be employed, and the service

processor is idle. At time t = 1, buffers 4 and 5 each have an arrival. Thus, Z4(t) = 1 and

Z5(t) = θ4 + θ5 + 1 ≥ 1, whereas buffers 2 and 3 remain empty. Therefore, allocations a1

and a2 are not feasible at time t = 1. Because buffers 4 and 5 have jobs at time t = 1,

allocation a3 is feasible. Furthermore, one can check that the network pressure p(a3, Z(t))

under allocation a3 is strictly larger than the network pressure p(a4, Z(t)) under allocation

a4. Under the maximum pressure policy, allocation a3 will be employed at time t = 1.

At time t = 2, buffers 1, 2 and 3 each have an arrival, and buffers 4 and 5 each have a

departure. Thus, Z1(t) = θ1 + θ2 + 1 ≥ 1, Z2(t) = 1, Z3(t) = 1, and Z4(t) = 0. Because

Z4(t) = 0, allocations a1 and a3 are not feasible. It is easy to verify that a2 will be employed

under the maximum pressure policy at time t = 2. At time t = 3, Z2(t) = 0, Z3(t) = 1,

Z4(t) = 1 and Z5(t) = θ4 + θ5 +1 ≥ 1. One can argue similar to the reasoning at time t = 1

that allocation a3 will be employed at time t = 3. At time t = 4, Z1(t) = θ1 + θ2 + 1 ≥ 1,

Z2(t) = 1, Z3(t) = 2 and Z4(t) = 0. One can argue similar to the reasoning at time t = 2

that allocation a2 will be employed at time t = 4. Continuing this process, one realizes that

at any time either buffer 2 or 4 will be empty. Therefore, activity 6 will always be infeasible,
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and thus allocation a1 is never feasible. Hence jobs in buffer 3 will never be processed. The

system is unstable.

So far, we have verified that our network example has a feasible solution to (4.2)–

(4.6). Yet none of the maximum pressure policies stabilize the network. These facts do not

contradict Theorem 4.2 because the network does not satisfy the EAA assumption, a claim

we now verify. Letting

zj =

 0, j 6= 3,

1, j = 3.

It is easy to see that a1 = arg maxa∈E z · Ra and a1 is the only one that achieves the

maximum. However, a1
6 = 1 and B61 = 1, whereas z1 = 0. This violates the EAA

assumption.

A closer examination of the instability analysis of the maximum pressure policies reveals

that under a maximum pressure policy, allocations a2 and a3 are so “greedily” employed

that activity 6 never has a chance to be employed. If the service processor takes activity

6 when all five buffers are non-empty and idles otherwise, the system would be stable.

To see this, we first assume that the system is initially empty. It is easy to see that

Z4(t) = Z5(t) = 1 for all t ≥ 1, and Z1(t) = Z2(t) = Z3(t) = 0 for t ∈ [2n+ 1, 2n+ 2), and

Z1(t) = Z2(t) = Z3(t) = 1 for t ∈ [2n + 2, 2n + 3). Thus, (4.1) holds. For more general

initial conditions, one can check that Zi(t) ≤ Zi(0) + 1 for i = 1, . . . , 5. Thus, (4.1) holds

in general, proving the stability of the network.

4.5 Non-processor-splitting Service Policies

In many applications including manufacturing systems, processor-splitting is not allowed.

In this case, each allocation a has components that are either 1 or 0, i.e., a ∈ ZJ
+, where

Z+ denotes the set of nonnegative integers. Since there are fewer possible allocations to

choose from at each decision point, the stability results developed earlier may not hold

anymore. In this section, we first provide an example for which, unlike Theorem 4.2,

Harrison’s static planning problem (4.2)–(4.6) does not determine the stability region of a

stochastic processing network when processor-splitting is not allowed. We then establish a
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theorem that is analogous to Theorem 4.2 when processor-splitting is not allowed. Finally,

we introduce a class of networks, called reversed Leontief networks, for which the static

planning problem (4.2)–(4.6) still determines the stability regions even when processor-

splitting is not allowed. Like previous sections, preemption is assumed throughout this

section.

Consider the following example. As depicted in Figure 4.2, the network has 4 buffers

(including buffer 0 representing the outside world), 6 processors, and 6 activities. Buffers are

represented by open rectangular boxes, processors are represented by circles, and activities

are labeled on lines connecting buffers with processors. Processors 1, 2, and 3 are input

processors, and processors 4, 5, and 6 are service processors. Activities 1, 2, and 3 are input

activities. Each input activity requires one input processor, taking input from buffer 0 and

producing output to the corresponding buffer as indicated in the figure. Activities 4, 5 and

6 are service activities. Activity 4 requires processors 4 and 5 simultaneously to process jobs

from buffer 1. Activity 5 requires processors 5 and 6 simultaneously to process jobs from

buffer 2. Activity 6 requires processors 4 and 6 simultaneously to process jobs from buffer

3. The processing times of each activity are assumed to be deterministic. For each input

activity i, the processing rate µi is assumed to be 0.4, i = 1, 2, 3. For each service activity

i, the processing rate µi is assumed to be 1.0, i = 4, 5, 6. It follows from the definitions of

input-output matrix R in (3.1) and the resource consumption matrix A that

R =


−0.4 0 0 1 0 0

0 −0.4 0 0 1 0

0 0 −0.4 0 0 1

 and A =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 1

0 0 0 1 1 0

0 0 0 0 1 1


.

It is easy to check that x = (1, 1, 1, 0.4, 0.4, 0.4)′ and ρ = 0.8 is the optimal solution to

the static planning problem (4.2)–(4.6). However, when processor-splitting is not allowed,

we know that at any given time only one service activity can be active. Thus, the total

maximum departure rate from the system is 1. But the total rate into buffers 1, 2 and 3 is
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Figure 4.2: A processing network for which processor sharing is important

1.2, exceeding the total departure rate. Hence the system is unstable.

Note that the popular round-robin mechanism as in Andradottir et al [1] is a temporal

way to share a processor’s capacity. The above example can not be stabilized by any

temporal sharing of the processors. However, it is stable if each service processor is shared

at 50% level among its activities.

To develop an analogous stability theory in the non-processor-splitting case, we first

change the allocation space A to N , where N is the set of allocations a ∈ ZJ
+ that satisfy

(2.2) and (2.3). Note that each allocation in N is an extreme one. Using N to replace E ,

one can define a maximum pressure policy exactly as in Section 3. In the example described

earlier in this section, N 6= E .

Consider the following static allocation problem (SAP): finding π = (πa) satisfying

Rx = 0, (4.34)

x =
∑
a∈N

aπa, (4.35)∑
a∈N

πa = 1, (4.36)

πa ≥ 0 for each a ∈ N . (4.37)

Here πa is interpreted as the long run fraction of time that allocation a is employed, and x

retains the same interpretation as in the static planning problem (4.3)–(4.6).
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Theorem 4.7. The static allocation problem (4.34)–(4.37) has a feasible solution if the

stochastic processing network is pathwise stable under some non-processor-splitting service

policy.

Proof. Since the proof is analogs to the proof of Theorem 4.1, we present an outline, high-

lighting the differences between the two proofs. As in Section 4.3.1, for each allocation

a ∈ N , let T a(t) be the cumulative amount of time that allocation a has been employed

in [0, t]. Since non-processor-splitting is assumed, equations (4.24)-(4.26) in Section 4.3.1

hold with N replacing E . Again as in Section 4.3.1, under a non-processor-splitting service

policy, we modify the definition of the stochastic processing network process via

X(t) = (Z(t), T a(t), Tj(t) : a ∈ N , j ∈ J ).

Each X satisfies the stochastic processing network equations (2.5), (2.6), and (4.24)-(4.26).

The fluid limits of X are defined analogously as in Section 4.3. Assume that the stochastic

processing network is pathwise stable under some non-processor-splitting service policy. Fix

a sample path that satisfies (4.1) and (4.17)-(4.18). Let (Z̄, T̄ a, T̄j : a ∈ N , j ∈ J ) be a

fluid limit of X along the sample path. Similar to the arguments in Section 4.3 such a

limit exists and satisfies the fluid model equations (4.7)-(4.11), and (4.27)-(4.29) with N

replacing E . Since the stochastic processing network is stable, Z̄(t) = 0 for t ≥ 0. For each

allocation a ∈ N , let πa = T̄ a(1). It is easy to see that π = (πa) is a feasible solution

satisfies (4.34)–(4.37).

Theorem 4.7 says that the feasibility of the static allocation problem (4.34)–(4.37) is

necessary for the network to be pathwise stable under any non-processor-splitting policy.

The following theorem asserts that if the static allocation problem (4.34)–(4.37) is feasible,

the network is pathwise stable under a non-processor-splitting maximum pressure policy.

Thus, non-processor-splitting maximum pressure policies are throughput optimal among

non-processor-splitting policies.

Theorem 4.8. Consider a stochastic processing network that satisfies Assumption 4.1 with

E replaced by N . If the static allocation problem (4.34)–(4.37) has a feasible solution,
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the network operating under a non-processor-splitting maximum pressure policy is pathwise

stable.

Proof. First under Assumption 4.1 with E being replaced by N , the fluid model operating

under a non-processor-splitting maximum pressure is defined by equations (4.7)–(4.11) and

R ˙̄T (t) · Z̄(t) = max
a∈N

Ra · Z̄(t). (4.38)

The last equation replaces the fluid model equation (4.13) for the fluid model operating

under a processor-splitting maximum pressure policy. With N replacing A, Lemmas 4.1

and 4.2 still hold. They provide a justification of fluid model equations (4.7)–(4.11) and

(4.38), via fluid limits introduced in Section 4.3.

Let X̄ = (Z̄, T̄ ) be a fluid model solution with Z̄(0) = 0. Consider the quadratic

Lyapunov function f(t) defined in (4.14). It follows from (4.15) and (4.38) that, for any

regular point t,

ḟ(t) = −2R ˙̄T (t) · Z̄(t)

= −2 max
a∈N

Ra · Z̄(t)

≤ −2

(
R
∑
a∈N

aπa

)
· Z̄(t)

for any distribution π = (πa)a∈N with πa ≥ 0 and
∑

a∈N πa = 1. Let π be a feasible solution

to (4.34)–(4.37). Then,

R
∑
a∈N

aπa = 0

and
∑

a∈N πa = 1. Thus, ḟ(t) ≤ 0. Hence Z̄(t) = 0 for t ≥ 0, proving the weak stability of

the fluid model. By Theorem 4.3, the stochastic processing network is pathwise stable.

When N = E , the maximum pressure policies used in Chapter 3 are actually non-

processor-splitting. Therefore, Theorem 4.2 still holds in this case.

Definition 4.5. A stochastic processing network is said to be reversed Leontief if each

activity requires exactly one processor.

35



Lemma 4.3. For a reversed Leontief network, every extreme allocation is an integer allo-

cation, i.e., E = N .

Proof. For each processor k, let J (k) be the set of possible activities that the processor can

take. We make the convention that when a processor is idle, it takes on activity 0. (Note

that idling is not an activity as defined in Section 2.) Thus,

J (k) =

 {j : Akj = 1}, for input processor k,

{0} ∪ {j : Akj = 1}, for service processor k.

We prove the lemma by contradiction. Suppose that there exists an allocation a ∈ E

such that 0 < aj̃ < 1 for some activity j̃ ∈ J . Let k̃ be the processor processing activity

j̃. For each j ∈ J (k̃), we define a new allocation bj by modifying the allocation a in the

following way. For activities j′ 6∈ J (k̃), we keep the activity level aj′ ; processor k̃ employs

activity j at 100% level. Clearly, bj is a feasible allocation for each j ∈ J (k̃). It follows that

a =
∑

j∈J (k̃) ajb
j , where, for a service processor k̃, we set a0 = 1 −

∑
j∈J (k̃),j 6=0 aj . Since∑

j∈J (k̃) aj = 1, j̃ ∈ J (k̃), and aj̃ < 1 by assumption, a is a proper linear combination of

feasible allocations. Thus, a is not an extreme allocation, contradicting the assumption that

a is an extreme allocation. Therefore, any extreme allocation must be an integer allocation.

On the other hand, any feasible integer allocation must be extreme. Hence E = N .

From the lemma, the maximum pressure policies in a reversed Leontief network are

always throughput optimal whether processor-splitting is allowed or not. The resulting

allocations are always non-processor-splitting.

4.6 Non-preemptive Service Policies

In the definition of maximum pressure policies, we have implicitly assumed that preemption

of activities is allowed. These policies are defined through extreme allocations. When

preemption is not allowed, at any given time the feasible set of allocations is reduced.

It is possible that this feasible set does not contain any extreme allocations, yielding the

current definition of the policy invalid in the non-preemption case. When preemption is

not allowed, even when a maximum pressure policy can be defined, the example to be
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presented below shows that Theorem 4.2 does not hold in general. In other words, even

if the static planning problem (4.2)–(4.6) has a feasible solution, the network is not stable

under a non-preemption version of a maximum pressure policy. In this section, we will first

present an example. We then prove that when a stochastic processing network has some

special structure, a non-preemptive maximum pressure service policy is well defined and is

throughput optimal.

Consider the example depicted in Figure 4.3 with 2 service processors processing jobs in

buffers 1 and 2. Jobs arrive at buffer 1 at time 0.5+2n, n = 0, 1, 2, . . . , and arrive at buffer

2 at time 1 + 1.5n, n = 0, 1, 2, . . .. The network is assumed to be empty initially. There are

three service activities: activity 1 requires service processor 1 and processes jobs in buffer

1 with a deterministic processing requirement of 1 unit of time; activity 2 requires service

processor 2 and processes jobs in buffer 2 with a deterministic processing requirement of 2

units of time; and activity 3 requires both servers 1 and 2 and processes jobs in buffer 2

with a deterministic processing requirement of 1 unit of time. (Input activities and buffer

0 representing the outside world are not drawn in the figure.)

One can easily verify that the static planning problem (4.2)–(4.6) has a feasible solution

with ρ = 11/12. Since each activity processes jobs from in a single buffer, the network is

strictly Leontief. By Theorem 4.6, the EAA assumption is satisfied. Hence any preemptive,

processor-splitting maximum pressure policy is pathwise stable for the network. We now

show that a non-preemptive maximum pressure policy is not pathwise stable. At time

t = 0.5, there is an arrival at buffer 1 and activity 1 becomes active because the allocation

(1, 0, 0) is the maximum pressure allocation. At time t = 1, there is an arrival at buffer

2

1 2

1

1 2

3

Figure 4.3: Non-preemption could make unstable
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2. Because processor 1 has been assigned to activity 1 which cannot be interrupted, only

allocations (1, 1, 0) and (1, 0, 0) are feasible at t = 1. It can be verified that allocation

(1, 1, 0) is the maximum pressure allocation at this time. Therefore, activity 2 becomes

active at time t = 1. At time t = 1.5, processor 1 completes the activity 1 processing

(of the job in buffer 1). Because processor 2 is still active processing activity 2, the only

feasible allocation during time interval [1.5, 2.5] is (0, 1, 0). At time t = 2.5, activity 1

will be active again. It is easy to verify that activity 1 will be active during time interval

[0.5+2n, 1.5+2n] and activity 2 completes a processing at time 1+2n at which the processor

1 is tied with an activity 1 processing. Thus, processors 1 and 2 have no chance to engage

activity 3. Therefore, under the non-preemptive maximum pressure policy, the departure

rate of buffer 2 is 1/2, which is less than the arrival rate 2/3. Hence, the network is not

pathwise stable.

Recall that a stochastic processing network is called a reversed Leontief network if

each activity needs exactly one processor to be active. By Lemma 4.3, each maximum

pressure policy is necessarily non-processor-splitting. We now show that, in a reversed

Leontief network, the non-preemptive version of a maximum pressure policy is well defined.

Furthermore, the network operating under such a policy is throughput optimal.

The following lemma shows that the non-preemption maximum pressure policies are

well defined for reversed Leontief networks.

Lemma 4.4. For reversed Leontief networks, the non-preemption maximum pressure poli-

cies are well defined. That is, E(t) is non-empty for each time t ≥ 0.

Proof. It is easy to see that there exists a feasible extreme allocation initially. For instance,

one can let each input processor choose any associated activity and let all service processors

idle. Now suppose that a non-preemptive maximum pressure policy is well defined prior

to time t. We consider two cases, depending on if there is a service activity completion

at time t. (1) Assume there is no service activity completion at time t. For this case, the

previous allocation is still feasible and also extreme. Thus, E(t) is not empty. (2) Assume

that there is a service activity completion at time t. Let a be the allocation immediately
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preceding t. By assumption, a is extreme. We now define a new allocation ã. We let ãj = aj

for all activities j except the service activities that have completions at time t. For these

service activities j, we let ãj = 0. Clearly, ã is still extreme. Since each service activity is

associated with exactly one processor, allocation ã is a feasible allocation. Thus, E(t) is not

empty.

In the rest of this section, we will prove a theorem that non-preemption maximum pres-

sure policies are throughput optimal in reversed Leontief networks. To state the theorem,

we need a slightly stronger assumption on the service times than the one in (4.17).

Assumption 4.3. For each activity j ∈ J , there exist εj > 0 and m′
j > 0 such that, with

probability one,

lim
n→∞

n−1
n∑

`=1

η
1+εj

j (`) = m′
j , (4.39)

where ηj(`) = uj(`)/µj is the processing time of the `th activity j.

Theorem 4.9. Assume Assumption 4.1 and Assumption 4.3 are satisfied, then the reversed

Leontief networks operating under non-preemptive, non-processor-splitting maximum pres-

sure policies are pathwise stable if the static planning problem (4.2)–(4.6) has a feasible

solution (x, ρ) with ρ ≤ 1.

Remark. In some networks, preempting service activities is allowed, but preempting

input activities is not. In this case, if the input processors and input activities satisfy the

reversed Leontief property, the stability result analogous to Theorem 4.9 still holds.

To prove Theorem 4.9, in light of the proof of Theorem 4.2 and Lemma 4.5, it is suf-

ficient to prove that the fluid model for a reserved Leontief network operating under a

non-preemption maximum pressure policy is still defined by (4.7)–(4.11) and (4.13). We

leave the proof to the end of this Section. The proof needs the following lemma, which may

be of independent interest.

To present the lemma, recall that in a reversed Leontief network, by Lemma 4.5, each

extreme allocation a is an integer allocation. Thus, each processor k is employed by at

most one activity. We use jk(a) to denote the activity that processor k is working on under
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allocation a. We set jk(a) = 0 if processor k is idle under allocation a. Recall that J (k) is

the set of possible activities that processor k can take, including the idle activity 0.

For an activity j ∈ J , define activity j pressure when the buffer level is Z(t) to be

p(j, Z(t)) =
∑
i∈I

RijZi(t)

Clearly, the total network pressure p(a, Z(t)) under an allocation a is equal to

∑
j∈J

ajp(j, Z(t)).

If j is an idle activity, p(0, t) is set to be 0. The following lemma shows that, in a reversed

Leontief network, a maximum pressure policy yields a separable policy in the sense that when

there are sufficiently many jobs in each constituent buffer, processor k makes decisions based

on pressures p(j, t), j ∈ J (k), independent of other processors.

Lemma 4.5. In a reversed Leontief network, for any allocation a ∈ E, p(a, Z(t)) =

maxa′∈E p(a′, Z(t)) if and only if

jk(a) ∈ argmax
j∈J (k)

p(j, Z(t)) for all k ∈ K.

Proof. Suppose there exist a processor k and an activity j ∈ J (k) such that p(jk(a), Z(t)) <

p(j, Z(t)). Then we define another allocation ã = a − ejk(a) + ej , where, as before, ej is

the J-dimensional vector with the jth component equal to 1 and all other components 0.

Clearly, ã is an integer, feasible allocation, and hence it is extreme. Moreover,

p(ã, Z(t)) = p(a, Z(t))− p(jk(a), Z(t)) + p(j, Z(t)) > p(a, Z(t)).

Thus, a cannot be a maximum allocation.

Conversely, suppose that a is an extreme allocation that satisfies p(jk(a), Z(t)) ≥

p(j, Z(t)) for all j ∈ J (k) and all k ∈ K. We would like to show that a is a maximum

allocation. Let â be an extreme maximum allocation, i.e., maxa′∈E p(a′, Z(t)) = p(â, Z(t)).

Then,

p(a, Z(t)) =
∑

k

p(jk(a), Z(t)) ≥
∑

k

p(jk(â), Z(t)) = p(â, Z(t)),

which implies that a is a maximum allocation.

40



We end this section by proving Theorem 4.9. We first establish a lemma.

Lemma 4.6. Define η̂j(t) to be the residual processing time for activity j at time t. Then,

for any sample path ω satisfying (4.17) and (4.39),

lim
t→∞

η̂j(t)/t = 0.

Proof. It is straightforward to show that

η̂j(t) ≤ max
1≤`≤Sj(t)

ηj(`),

where Sj(t), as defined in (16), is the number of activity j processing completions in t units

of activity j processing time. It follows that

η̂
1+εj

j (t) ≤ max
1≤`≤Sj(t)

η
1+εj

j (`) ≤
∑

1≤`≤Sj(t)

η
1+εj

j (`).

Because Sj(t) →∞ as t→∞, we have

lim
t→∞

∑
1≤`≤Sj(t)

η
1+εj

j (`)/Sj(t) = m′
j .

Therefore,

lim sup
t→∞

η̂
1+εj

j (t)/t ≤ lim
t→∞

 ∑
1≤`≤Sj(t)

η
1+εj

j (`)/Sj(t)

 (Sj(t)/t) = m′
jµj ,

from which we have

lim
t→∞

η̂j(t)/t = 0.

Proof of Theorem 4.9. Let ω be a sample path that satisfies (4.17)–(4.18) and (4.39). Let

(Z̄, T̄ ) be a fluid limit along the sample path. We only need to show that fluid model

equation (4.30) is satisfied. The proof is similar to the proof of Lemma 4.1.

First, by the definition of a maximum pressure policy, for any allocation a 6∈ E , T a(t) = 0

for t ≥ 0. As a consequence, we have
∑

a∈E T
a(t) = t for t ≥ 0. It follows that

∑
a∈E T̄

a(t) =

t for t ≥ 0. Recall that, as in (3.2), p(a, Z̄(t)) = Z̄(t) · Ra is the network pressure under

allocation a.
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Suppose that a ∈ E and p(a, Z̄(t)) < maxa′∈E p(a′, Z̄(t)). From Assumption 4.1, we can

choose an a∗ ∈ E such that

p(a∗, Z̄(t)) = max
a′∈E

p(a′, Z̄(t))

and the fluid level Z̄i(t) > 0 for all buffers i with
∑

j a
∗
jBji > 0. Following the proof of

Lemma 4.5, one has that

p(jk̂(a), Z̄(t)) < p(jk̂(a
∗), Z̄(t))

for some processor k̂. Let

ĵ = jk̂(a), and j∗ = jk̂(a
∗).

Now we construct allocation â = a − eĵ + ej∗ . In other words, allocation â is exactly

the same as allocation a except that processor k̂ takes activity j∗ instead of ĵ. Obviously,

â ∈ E and

p(â, Z̄(t)) = p(a, Z̄(t))− p(ĵ, Z̄(t)) + p(j∗, Z̄(t)) > p(a, Z̄(t)).

We next show that there exists an ε > 0 such that for any large number n and each

τ ∈ [n(t− ε), n(t+ ε)],

p(a, Z(τ)) < p(â, Z(τ)), (4.40)

a ∈ E(τ) implies that â ∈ E(τ); namely, â is a feasible allocation if a is. (4.41)

We first assume that j∗ 6= 0. Denote by I(j∗) the set of constituency buffers of activity j∗

that have potential positive output flows. Namely,

I(j∗) =
{
i : Bj∗i > 0

}
.

Then, Z̄i(t) > 0 for all i ∈ I(j∗). Since p̄(â, Z(t)) > p̄(a, Z(t)) and mini∈I(j∗) Z̄i(t) > 0, by

the continuity of X̄(·), there exist ε > 0 and δ > 0 such that for each τ ∈ [t − ε, t + ε] and

i ∈ I(j∗),

p(a, Z̄(τ)) + δ ≤ p(a∗, Z̄(τ)) and Z̄i(τ) ≥ δ.

Thus, when n is sufficiently large, p(a, Z(nτ)) + nδ/2 ≤ p(â, Z(nτ)) and Zi(nτ) ≥ nδ/2

for each i ∈ I(j∗) and each τ ∈ [t − ε, t + ε]. Choosing n > 2J/δ, then for each τ ∈
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[n(t− ε), n(t+ ε)] we have

Zi(τ) ≥ J for each i ∈ I(j∗). (4.42)

Condition (4.42) implies that (4.41) holds, thus proving (4.41) and (4.40). When j∗ = 0,

(4.41) clearly holds for any ε > 0 and any n. The proof of (4.40) is identical to the case

when j∗ 6= 0.

Following the definition of the maximum pressure policy and (4.40), if allocation a is not

employed at time n(t−ε), it will not be employed during the time interval [n(t−ε), n(t+ε)].

If allocation a is employed at time n(t − ε), it will not be deployed during time interval

[n(t − ε) + η̂(n(t − ε)), n(t + ε)], where η̂(n(t − ε)) is the longest residual processing time

among activities j that are active under allocation a at time n(t − ε). In either case, we

have

T a(n(t+ ε))− T a(n(t− ε)) ≤ max
j∈J

η̂j(n(t− ε)).

It follows from Lemma 4.6 that

lim
n→∞

n−1(T a(n(t+ ε))− T a(n(t− ε))) = 0.

Thus, T̄ a(t+ ε)− T̄ a(t− ε) = 0, and hence ˙̄T a(t) = 0.

4.7 Applications

In this section, we describe two applications for which the non-processor-splitting, non-

preemptive maximum pressure policies are throughput optimal. The first application is to

queueing networks with alternative routes. Such a network can be modeled as a stochastic

processing network that is strictly unitary : each activity is associated with exactly one

buffer and it employs exactly one processor. The other application is to networks of data

switches. The resulting stochastic processing networks are not unitary. To the best of our

knowledge, our maximum pressure policies are the first family of stationary policies, with

the buffer level as a state, that are proven to be throughput optimal in these two settings.

Recently, there have been a lot of research activities on parallel server systems or more

generally queueing networks with flexible servers [1, 8, 9, 30, 39, 62, 76]. These networks
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have been used to model call centers with cross trained operators [4, 5, 31]. We will not

get into detailed discussion of these networks except pointing out that maximum pressure

policies are also throughput optimal for these systems.

4.7.1 Networks with alternate routing

Consider the queueing network depicted in Figure 4.4. It has 3 servers (represented by

circles) processing jobs in 3 buffers (represented by open rectangles). Server i processes

jobs exclusively from buffer i, i = 1, 2, 3. There are 4 exogenous Poisson arrival processes

that are independent. For i = 1, 2, 3, jobs from arrival process i goes to buffer i to be

processed by server i. Jobs from arrival process 4 can either go to buffer 1 or 2. They

are called discretionary jobs. The arrival rate for each process is given in the figure. The

processing times for jobs in buffer 2 and 3 are iid having exponential distribution with mean

1. The processing times for jobs in buffer 1 are iid having a general distribution with mean

1. Jobs processed by server 1 go to buffer 3, and jobs processed by Servers 2 and 3 leave

the network after processing.

When each server employs a non-idling service policy and processes jobs in an FIFO

order, the only decisions that are left for the network are the routing decisions for the

discretionary jobs. This network has been studied by Dai and Kim [23] to show that its

stability region depends on the processing time distribution for Server 1. Assume that the

join-shortest-queue routing policy is employed for the discretionary jobs, and a fair coin is

used to break ties. They proved that when the processing time distribution for Server 1

General Distribution Exponential

Exponential 

Poisson(.1)

Poisson(.17)

Poisson(.8)

Poisson(.8)

Server 1

Server 2

Server 3

Figure 4.4: A queueing network with alternate routes
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is exponential, the network is unstable in the sense that the three dimensional buffer level

process is not positive recurrent. They further demonstrated through simulation that the

buffer level in buffer 3 grows to infinity linearly as time goes to infinity. When the processing

time distribution for Server 1 is hyper-exponential with certain parameters, the network is

stable in the sense that a certain Markov chain describing the network is positive recurrent.

Their instability result is not surprising. When processing time distribution for Server

1 is exponential, Servers 1 and 2 are homogeneous. Thus, under the join-shortest-queue

routing policy, half of the discretionary jobs go to buffer 1, and these jobs will eventually

go to buffer 3. Thus, the traffic intensity of Server 3 is equal to

.8 + .17 + .05 = 1.02 > 1,

causing the instability of the network. When processing time distribution for Server 1 is

hyper-exponential, the processing times have more variability, producing a larger queue in

buffer 1 than the one in buffer 2, and hence fewer discretionary jobs joining buffer 1. By

choosing a parameter such that the hyper-exponential distribution has high enough vari-

ability, the network is actually stable. Having network stability to depend on its processing

time distributions is not attractive in practice. For the particular set of network parame-

ters, it can be proven that a round robin routing policy that routes 90% jobs to buffer 2

stabilizes the network. Of course, as the arrival rates change, the percentage in the round

robin policy needs to be adjusted as well. Having the policy to depend on the arrival rates

is not attractive either when the arrival rates are difficult to be reliably estimated.

We now describe our maximum pressure policies for the network. In turning the queueing

network with alternate routes into our stochastic processing network framework, we need to

introduce 4 input processors, one for each arrival process. The processing times are equal to

interarrival times. Input processor 4 is associated with two input activities, denoted as (4, 1)

and (4, 2). Each time the processor completes an activity (4, i) processing, a job goes to

buffer i, i = 1, 2. The 2 input activities exemplify an extension of the stochastic processing

networks in Harrison [36] to allow external inputs with routing capabilities. The resulting

stochastic processing network is unitary. The maximum pressure policy in Definition 3.1
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amounts to the following: discretionary jobs join the shorter queue among buffers 1 and 2

(with an arbitrary tie-breaking rule); Servers 2 and 3 employ the non-idling service policy;

Server 1 stops processing whenever

Z3(t) > Z1(t). (4.43)

By forcing Server 1 to idle when the downstream buffer has more jobs than its buffer, the

network is able to propagated its delay to the source nodes, making join–shortest-queue

routing policy stable. This example hints the difficulty in finding a pure local policy that is

throughput optimal. If, in addition to throughput, other performance measures like average

delay is important, one can consider a parameterized family of maximum pressure policies

as in Corollary 4.1. In this case, condition (4.43) is replaced by γ3Z3(t) > γ1Z1(t) + θ for

some positive numbers γ1, γ3 and real number θ. For any fixed choice of parameters, the

maximum pressure policy is throughput optimal. One can choose parameters to minimize

average delay.

Any maximum pressure policy is throughput optimal not only for the network depicted

in Figure 4.4 but also for general multiclass queueing networks with alternatives routes,

a class of networks studied in Laws[46]. Figure 4.5 depicts such a network that was first

studied by Laws and Louth [47] and later by Kelly and Laws [42]. There are two types

of jobs, horizontal and vertical. For each type of job, there are two arrival activities.

Each activity corresponds to a selection of a route that jobs will take. There are 4 service

processors represented by circles. Each service processor can process jobs from one of the

1

4

1 2

5 6

7 8

3 4

2

3

Figure 4.5: A routing network by Laws and Louth
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two constituency buffers that are represented by open rectangular boxes. This network

can be modeled by a stochastic processing network with a total of 8 service activities and

4 input activities. The example in Figure 4.5 does not have internal routing decisions or

probabilistic routing or feedback. A general multiclass queueing network with alternate

routes can have all these features. Any non-preemptive, non-processor-splitting maximum

pressure policy is throughput optimal in such a network.

Multiclass queueing networks, without routing capabilities, were first introduced by

Harrison [33]. They have been used to model re-entrant flows in semiconductor wafer

fabrication facilities [17, 20, 48, 72]. Multiclass queueing networks with alternate routes

have the potential to model Internet Border Gateway routing [7, 32, 45]. They also have

the prospect to serve as road traffic models that support time based or congestion based

pricing schemes [29, 70].

4.7.2 Networks of data switches

The Internet is supported by numerous interconnected data switches. A session of data

packets from a source to a destination typically traverses a number of switches. The speed

at which these switches process the packets influences the propagation delay of the Internet

session. Data switches based on an input-queued crossbar architecture are attractive for

use in high speed networks [27, 52, 53, 54]. Figure 4.6 depicts a network of 3 input-queued

switches. Each switch has 2 input ports and 2 output ports.

1 1

2 2

1 1

2 2

1 1

2 2

S2

S3

S1

Figure 4.6: A network of input-queued switches
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When a session of packets enters the network, it contains information regarding how

the packets traverse the network. We assume that these sessions are perpetual (relative

to the time window of interest). Such a session is referred to as a flow in the rest of this

section. Each flow corresponds to a sequence of input and output ports that the packets will

traverse. (Each pair of input and output ports is traversed at most once by each flow.) At

each input port, we assume there is an infinite capacity buffer that can hold packets to be

transmitted. We assume per-flow queueing. That is, each flow maintains a (logical) FIFO

queue, called flow queue, at each input port. Each flow queue is associated with a pair of

input and output ports at a switch. All packets in a flow queue are transmitted to the same

output port. On the other hand, a pair of input and output ports may be associated with

several flow queues if several flows traverse that input-output pair. A flow queue from flow

c at input port `1 to be transmitted to output port `2 is denoted by (c, `1, `2). Both the

input and output ports should be available to transmit a packet in the flow queue. At a

switch, in each time slot, at most one packet is sent from each input port and at most one

packet is sent to each output port. Although different switches may employ different time

units for a time slot, we assume that each packet takes exactly one unit of time to transmit

from a flow queue at the input port to the output port, and then instantaneously to the

next flow queue at a downstream input port. The restrictive assumption is mainly for the

ease of exposition. The conclusion in this section holds for the general case.

At the beginning of each time slot, each switch needs to find a matching of input and

output ports that can simultaneously be active during the slot. It also needs to decide

which flow queue to serve at each input port. Define the incidence matrix

Hc,(`1,`2) =


1, if `1 and `2 are an input-output port pair at

a switch and flow c traverses the pair,

0, otherwise.

Assume that αc is the arrival rate of packets from flow c. It is intuitively clear that for the
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network of switches to be stabilizable it is necessary that

∑
c, `2

αcHc, (`1,`2) ≤ 1 for each input port `1, (4.44)

∑
c, `1

αcHc, (`1,`2) ≤ 1 for each output port `2. (4.45)

Any scheduling policy that stabilizes the network whenever (4.44) and (4.45) are satisfied

is said to be throughput optimal.

For a single switch in isolation, it has been shown that certain policies that are based

on maximum weight matchings between input and output ports are throughput optimal,

where the weight for an input-output pair is based either on the queue size or the delay

[27, 54, 67]. However, Andrews and Zhang [3] provided a network of 8 switches for which

the maximum weight policy at each switch is not throughput optimal for the network.

They further showed that the longest-in-network policy is throughput optimal [3]. A family

of Birkhoff-von-Neumann based policies were shown to achieve maximum throughput for

networks of switches [51]. These policies use non-local information like arrival rates that

may be difficult to estimate in some situations. In the remainder of this section, we are

going to show that non-processor-splitting, non-preemptive maximum pressure polices are

throughput optimal for networks of switches. The maximum pressure policies are not purely

local in that each switch makes scheduling decisions based on the flow queue lengths at the

switch and their immediate downstream flow queues.

To state and prove our theorem, we use a stochastic processing network to model the

network of input-queued switches. Flow queues serve as buffers in the stochastic processing.

There are a total of L+1 buffers, L internal buffers for flow queues plus the external buffer 0

modeling the outside world. These internal buffers are indexed by i = (c, `1, `2) representing

the flow queue from flow c at input port `1 destined for output `2. Each flow c has an input

processor to generate packets from buffer 0 into the network at rate αc = 1/mj , where j

represents the input activity. Each input port is a service processor, and each output is a

service processor. Each service activity requires two processors, a pair of input and output

ports, to transmit a packet. Service activities are indexed by j = (c, `1, `2). If service

activity j = (c, `1, `2) is taken, then a packet of flow c is transmitted from input port l1 to
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output port l2 at the end of a service completion. When activity j = (c, `1, `2) is active,

both input port (processor) `1 and output port (processor) `2 are occupied, preventing the

transmission of packets from other flow queues through either port `1 or port `2. The total

number of service activities is identical to the total number of internal buffers. Clearly,

mj = 1 for each service activity j.

Theorem 4.10. Assume that strong-law-of-large-numbers assumption (4.17) is satisfied

for each input activity j. Assume further that traffic conditions (4.44) and (4.45) are satis-

fied. The network of switches operating under any non-preemptive, non-processor-splitting

maximum pressure policy is stable.

Proof. We first verify that traffic conditions (4.44) and (4.45) are equivalent to the existence

of a feasible solution (x, ρ) to the static planning problem (4.3)–(4.6) with ρ ≤ 1. To see

this, one can verify that the input-output matrix R in (3.1) can be written as

Ri,j =


−αc, if input activity j generates packets to buffer i = (c, `1, `2),

1, if service activity j processes packets in buffer i,

−1, if service activity j processes packets that go next to buffer i.

Define an L× L matrix R̂ via

R̂ij = Rij for each buffer i and each service activity j.

Then, we have R̂ = (I− P̂ )′, where P̂i,i′ = 1 if packets in flow queue i go next to flow queue

i′, and 0 otherwise.

Let (x, ρ) be a feasible solution to (4.3)–(4.6). Condition (4.5) implies that xj = 1 for

each input activity j. Let x̂ be the remaining components of x, namely, x̂j = xj for each

service activity. Condition (4.3) is equivalent to

R̂x̂ = λ,

where, for each buffer i = (c, `1, `2), λi = αc if flow queue i is the first queue for flow c and

λi = 0 otherwise. Since R̂ is invertible, we have

x̂ = R̂−1λ.
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For buffers i and i′, R̂−1
i,i′ is the number of times that a packet in buffer i′ will visit buffer i

before it exits the network. Therefore, R̂−1
i,i′ = 1 if i = i′ or i is a downstream flow queue of

i′, and 0 otherwise. One can verify that x̂(c,`1,`2) = αc if flow c traverses a pair (`1, `2), and

0 otherwise.

For each input port `1, A`1,j = 1 if j = (c, `1, `2) is a service activity at the flow queue

j, and 0 otherwise. Similarly, for each output port `2, A`2,j = 1 if j = (c, `1, `2) is a service

activity at the flow queue j, and 0 otherwise. Thus, condition (4.4) can be written as

∑
service activities j

A`1,j x̂j =
∑
c, `2

x̂(c,`1,`2) ≤ ρ for each input port `1,∑
service activities j

A`2,j x̂j =
∑
c, `1

x̂(c,`1,`2) ≤ ρ for each output port `2,

and setting ρ = 1 results in the usual traffic intensity conditions (4.44) and (4.45). This

proves the equivalence.

For the network of input-queued switches, since each activity is associated with exactly

one buffer, it is strict Leontief. Thus, Assumption 4.1 is satisfied. One can further verify

that E = N , and hence condition (4.34)–(4.37) is equivalent to (4.3)–(4.6). Therefore, by

Theorem 4.8, any non-processor-splitting maximum pressure policy that allows preemption

achieves the optimal throughput. Since the switches operate in time slots, the configurations

of the switches can be changed every time slot. As a consequence, the left hand side

of equation (4.33) in Section 4.3 is bounded by 1, which implies Lemma 4.1, and hence,

Theorems 4.2 and 4.8 still hold. Therefore, the non-preemptive, non-processor-splitting

maximum pressure policy is throughput optimal for the network of switches.
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CHAPTER V

ASYMPTOTIC OPTIMALITY

In this chapter, we investigate the performance of the maximum pressure policies in terms

of secondary performance measures. Some secondary performance measures like work-in-

process and holding cost can be expressed as functions of the queue length process of a

stochastic processing network. In heavy traffic, Reiman’s “snapshot principle” [56, 57, 58]

suggests that one can also represent the total delay experienced by an arrival job as a linear

combination of the queue lengths seen by that job upon arrival. However, the behavior of

the queue length process for a stochastic processing network under any policy is complex.

In particular, deriving closed form expressions for performance measures involving these

processes is not possible. Therefore, we perform an asymptotic analysis for stochastic

processing networks operating under maximum pressure policies. Our asymptotic region is

when the network is in heavy traffic; i.e., the offered traffic load is approximately equal to

the system capacity.

As a step toward understanding the performance of the maximum pressure policies in

terms of general secondary performance measures like holding cost and delay, we establish an

asymptotic optimality of the maximum pressure policies for stochastic processing networks

with a unique bottleneck in heavy traffic. The optimality is in terms of stochastically

minimizing the workload process of a stochastic processing network.

The workload process of a stochastic processing network is to be defined in Section 5.1.

We will state the main asymptotic optimality result in Section 5.2 and give an outline

of the proof of the main theorem in Section 5.3. A key step in the proof is to show

that the network process under a maximum pressure policy exhibits a state space collapse,

for which we apply Bramson’s framework [12]. In Section 5.4, each fluid model solution

under a maximum pressure policy will be shown to exhibit a state space collapse. This

will be translated into the state space collapse of the diffusion-scaled network processes in
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Section 5.5. At last, in Section 5.6, the state space collapse result will be converted into a

heavy traffic limit theorem .

5.1 Workload Process and Complete Resource Pooling

We define the workload process through the following dual LP of the static planning prob-

lem (4.2)–(4.6): choose an I-dimensional vector y and a K-dimensional vector z so as to

maximize
∑
k∈KI

zk, (5.1)

subject to
∑
i∈I

yiRij ≤ −
∑
k∈KI

zkAkj , for each input activity j, (5.2)

∑
i∈I

yiRij ≤
∑

k∈KS

zkAkj , for each service activity j, (5.3)

∑
k∈KS

zk = 1, (5.4)

zk ≥ 0, for each service processor k. (5.5)

Recall that KI is the set of input processors, and KS is the set of service processors. Each

pair (y, z) that satisfies (5.2)-(5.5) is said to be a resource pool. Component yi is interpreted

to be the work dedicated to a unit of buffer i job by the resource pool, and zk is interpreted

to be the relative capacity of processor k, measured in fraction of the service capacity of

the resource pool; for each input processor k, the relative capacity zk is the amount of

work generated by input processor k per unit of time. Equality (5.4) ensures that the

service capacity of the resource pool equals the sum of service capacities of all service

processors. Constraint (5.3) demands that no service activity can accomplishes more work

than the capacity it consumes. Recall that −Rij is the rate at which input activity j

generates buffer i jobs. For each input activity j, constraint (5.2), which can be written as∑
i∈I yi(−Rij) ≥

∑
k zkAkj , ensures that the work dedicated to per unit of the activity is

no less than that it generates. The objective is to maximize
∑

k∈KI
zk, which is the total

amount of work generated from outside by the input processors per unit of time. A service

processor k is said to be in the resource pool (y, z) if zk > 0.

A bottleneck pool is defined to be an optimal solution (y∗, z∗) to the dual LP (5.1)–(5.5).
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Let (ρ∗, x∗) be an optimal solution to the primal LP, the static planning problem (4.2)–(4.6).

From the basic duality theory,
∑

j Akjx
∗
j = ρ∗ for any service processor k with z∗k > 0. It

says that all service processors in the bottleneck pool (y∗, z∗) are the busiest servers under

any optimal processing plan x∗.

For a bottleneck pool (y∗, z∗), let W (t) = y∗ · Z(t) for t ≥ 0. Then, W (t) represents

the average total work of this bottleneck pool embodied in all jobs that are present at

time t in the stochastic processing network. The process W = {W (t), t ≥ 0} is called the

workload process of this bottleneck pool. Although the workload process of a non-bottleneck

resource pool (y, z) can also be defined by y ·Z(t), we will focus on the workload processes

of bottleneck pools because bottleneck pools become significantly more important in heavy

traffic. In general, the bottleneck pool is not unique. However, we assume all the stochastic

processing networks considered in this thesis have a unique bottleneck pool; namely, they

satisfy the following complete resource pooling condition.

Definition 5.1 (Complete resource pooling condition). A stochastic processing net-

work is said to satisfy the complete resource pooling condition if the corresponding dual

static planning problem (5.1)–(5.5) has a nonnegative, unique optimal solution (y∗, z∗).

For a processing network that satisfies the complete resource pooling condition, we define

the bottleneck workload process, or simply the workload process, of the stochastic processing

network to be the workload process of its unique bottleneck pool.

The (bottleneck) workload process defined here is different from the workload process

defined in Harrison and Van Mieghem [34]. Their workload process is multi-dimensional,

with some components corresponding to the non-bottleneck pools; it is defined in terms of

what they called “reversible displacements”. For the networks where their workload process

has dimension one, these two definitions of the workload process are consistent.

Remark. Under certain assumptions including a heavy traffic assumption that requires

all servers in the network be critically loaded, Harrison [36] proposed a “canonical” represen-

tation of the workload process for stochastic processing networks through a dual LP similar

to (5.1)–(5.5). There, basic optimal solutions to the dual LP were chosen as rows of the

54



workload matrix which was used to define the workload process. Without his heavy traffic

assumption, his “canonical ” choice of workload matrix would exclude those non-bottleneck

servers. In this case, it is not yet clear how to define a “canonical” representation of the

workload process to include those nonbottleneck stations. Although, for some network ex-

amples like multiclass queueing networks, we can define the workload matrix such that its

rows are the basic solutions to the dual LP, more analysis is required for general stochastic

processing networks.

5.2 Main Asymptotic Optimality Result

The behavior of the buffer level process and the workload process for a stochastic processing

network under any policy is complex. In particular, deriving closed form expressions for

performance measures involving these processes is not possible. Therefore, we perform an

asymptotic analysis for stochastic processing networks operating under maximum pressure

policies. Our asymptotic region is when the network is in heavy traffic; i.e., the offered

traffic load is approximately equal to the system capacity. Formally, we consider a sequence

of stochastic processing networks indexed by r = 1, 2, . . .; as r → ∞, the traffic intensity

ρr of the rth network goes to one. We assume that these networks all have the same

network topology and primitive increments. In other words, the matrices A and B, and the

sequences (uj , φ
j
i : j ∈ J , i ∈ Bj) do not vary with r. However, we allow the processing

rates to change with r, and use µr
j to denote the processing rate of activity j in the r-th

network. Thus, the traffic intensity ρr of the rth network is the optimal objective value of

the static planning problem (4.2)–(4.6) with the input-output matrix Rr = (Rr
ij) given by

Rr
ij = µr

j

(
Bji−

∑
i′∈Bj

P j
i′i

)
. We assume the following heavy traffic assumption for the rest

of this thesis.

Assumption 5.1 (Heavy traffic assumption). There exists a constant µj > 0 for each

activity j ∈ J such that as r →∞,

µr
j → µj , (5.6)

and, setting R = (Rij) as in (3.1) with µj being the limit values in (5.6), the static planning

problem (4.2)–(4.6) with parameter (R,A) has a unique optimal solution (ρ∗, x∗) with ρ∗ =
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1. Furthermore, as r →∞,

r(ρr − 1) → θ (5.7)

for some constant θ.

We define the limit network of the network sequence to be the network that has the

same network topology and primitive increments as networks in the sequence, and that has

processing rates equal to the limit values µj , given in (5.6). Assumption 5.1 basically means

that in the limit network there exists only one unique processing plan x∗ that can avoid

inventory buildups over time, and the busiest service processor is fully utilized under this

processing plan. Condition (5.7) requires that the networks’ traffic intensities approach to

1 at rate r−1 or faster.

The heavy traffic assumption is now quite standard in heavy traffic analysis of queue-

ing networks [13, 19, 24, 73, 75] and stochastic processing networks [6, 36, 39, 34, 76].

However, heavy traffic assumptions in the literature usually assume that, in addition to

Assumption 5.1, all service processors are fully utilized. The latter assumption, together

with the complete resource pooling condition, rules out some common networks such as

multiclass queueing networks. In our heavy traffic assumption, only the busiest service

processor is required to be critically loaded, and some other service processors are allowed

to be under-utilized.

The optimal processing plan x∗ given in Assumption 5.1 is referred to as the nominal

processing plan. Recall that Tj(t) is the cumulative amount of activity j processing time in

[0, t] for the limit network, and T (t)/t is the average activity levels over the time span [0, t].

To avoid a linear buildup of jobs over time in the limit network, the long-run average rate

(or activity level) that activity j is undertaken needs to equal x∗j , i.e.,

lim
t→∞

T (t)/t = x∗ almost surely. (5.8)

There should be no linear buildup of jobs under a reasonably “good” policy. A policy is said

to be efficient for the limit network if (5.8) holds for the network operating under the policy.

Since we consider a sequence of networks, we would like to define an analogous notion of

a “good” or efficient policy for the sequence. One can imagine that under a reasonably
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“good” policy, when r is large, the average activity levels over long time spans must be very

close to the nominal processing plan x∗. To be specific, we define the notion of asymptotic

efficiency as follows. Let T r be the cumulative activity level process for the r-th network.

Definition 5.2 (Asymptotic efficiency). Consider a sequence of stochastic processing

networks indexed by r = 1, 2, . . ., where Assumption 5.1 holds. A policy π is said to be

asymptotically efficient if and only if under policy π, with probability 1, for each t ≥ 0,

T r(r2t)/r2 → x∗t as r →∞. (5.9)

Equation (5.9) basically says that, under an asymptotically efficient policy, the average

activity levels over a time span of order r2 are very close to the nominal processing plan,

so that no linear buildup of jobs will occur over the time span of this order.

Remark. Asymptotic efficiency is closely related to the throughput optimality as de-

fined in Chapter 4. Fluid models have been used to prove the throughput optimality of a

stochastic processing network operating under a policy. Similarly, the fluid model corre-

sponding to the limit network can be used to prove the asymptotic efficiency of a policy for

the sequence of networks that satisfies Assumption 5.1. In particular, one can prove that a

policy π is asymptotically efficient if the fluid model of the limit network operating under

π is weakly stable.

The following theorem says that a maximum pressure policy is asymptotically efficient

for a sequence of networks if the limit network satisfies the EAA assumption, Assump-

tion 4.1.

Theorem 5.1. Consider a sequence of stochastic processing networks with Assumption 5.1

assumed. If the limit network satisfies the EAA assumption, Assumption 4.1, then a maxi-

mum pressure policy is asymptotically efficient.

The proof of Theorem 5.1 is almost identical to the proof of Theorem 4.2 in Chapter 4,

and will be outlined in Appendix B.

Asymptotic efficiency helps to identify reasonably “good” policies, but it is not very

discriminating. We would like to demonstrate certain sense of optimality for maximum
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pressure policies in terms of secondary performance measures. For this, we will introduce

a notion of asymptotic optimality. The performance measure for our asymptotic optimality

is in terms of the workload process introduced in Section 5.1.

We focus on networks with a single bottleneck pool and assume the following:

Assumption 5.2 (Complete resource pooling). All networks in the sequence and the

limit network satisfy the complete resource pooling condition defined in Section 5.1. Namely,

the dual static planning problem (5.1)–(5.5) of the r-th network has a nonnegative, unique

optimal solution (yr, zr), and the dual static planning problem of the limit network also has

a nonnegative, unique optimal solution (y∗, z∗).

Under Assumption 5.2, we can define the one-dimensional workload process of the r-th

network as

W r(t) = yr · Zr(t).

Remark. In Assumption 5.2, we assume all networks in the sequence satisfy the com-

plete resource pooling condition so that the workload processes W r can be uniquely defined

as in Section 5.1 by the first order network data (Rr, Ar). This assumption can be removed

if one defines the workload process of a network with multiple bottleneck pools to be the

workload process of an arbitrarily chosen but prespecified bottleneck pool (with yr be any

given optimal solution to the dual problem). On the other hand, the complete resource

pooling condition for the limit network is crucial for our result to hold.

Definition 5.3 (Asymptotic optimality). Consider a sequence of stochastic processing

networks indexed by r. An asymptotically efficient policy π∗ is said to be asymptotically

optimal if and only if for any t > 0, w > 0, and any asymptotically efficient policy π,

lim sup
r→∞

P
(
W r

π∗(r2t)/r > w
)
≤ lim inf

r→∞
P
(
W r

π(r2t)/r > w
)
, (5.10)

where W r
π∗(·) and W r

π(·) are the workload processes under policies π∗ and π, respectively.

Define the diffusion-scaled workload process of the r-th network Ŵ r = {Ŵ r(t), t ≥ 0}

via Ŵ r(t) = W r(r2t)/r. Equation (5.10) says that, at every time t, asymptotically, the
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diffusion-scaled workload under policy π∗ is dominated by that of any other asymptotically

efficient policy π in the sense of stochastic ordering.

To state our main theorem, we make a moment assumption on the unitized service times

uj(`) and an assumption on the initial queue length processes.

Assumption 5.3. There exists an εu > 0 such that, for all j,

E
[
(uj(1))2+εu

]
<∞.

Assumption 5.3 requires that the unitized service times have finite 2 + εu moments. It

was introduced by Ata and Kumar [6], and it is stronger than some standard regularity

assumptions such as in Bramson [12]. Assumption 5.3 will be used in Section 5.5 to prove

a state space collapse result for stochastic processing networks operating under maximum

pressure policies.

We also assume that the queue length processes of the stochastic processing networks

satisfy the following initial condition. Define the diffusion-scaled queue length process Ẑr

via Ẑr(t) = Zr(r2t)/r, and let

ζr =
yr

yr · yr
. (5.11)

Assumption 5.4 (Initial condition). There exists a random variable wo such that

Ŵ r(0) → wo in distribution, (5.12)

and

|Ẑr(0)− ζrŴ r(0)| → 0 in probability. (5.13)

Assumption 5.4 holds if the initial queue lengths of the networks are stochastically

bounded, namely,

lim
τ→∞

lim sup
r→∞

P(|Zr(0)| > τ) = 0.

In this case, Ẑr(0) → 0 in probability.

Theorem 5.2 (Asymptotic Optimality). Consider a sequence of stochastic processing

networks. Assume Assumptions 5.1-5.4 and that the limit network satisfies the EAA as-

sumption. Maximum pressure policies are asymptotically optimal.

59



Hereafter, we shall assume Assumptions 5.1–5.4 and that the limit network satisfies the

EAA assumption.

Minimizing workload is important even if the ultimate objective is to optimize some

other secondary performance measures [6, 8, 36, 64]. For example, in Ata and Kumar [6], the

authors demonstrated that their discrete review policies are asymptotically optimal in linear

holding costs. They first proved the asymptotic optimality on the workload process. Then

the desired asymptotic optimality was achieved because the workload is “appropriately”

distributed under the discrete review policies.

Remark. Our asymptotic optimality is defined among the asymptotically efficient

policies. One natural question is whether the maximum pressure policies perform better, in

terms of equation (5.10), than the policies that are not asymptotically efficient. When the

optimal solution (y∗, z∗) to the dual problem (5.1)–(5.5) satisfies y∗ > 0, it can be proved

that the workload process under a maximum pressure policy is stochastically dominated by

the workload process under any policy. In fact, one can show that, under a policy that is not

asymptotically efficient, at least one component of the diffusion-scaled queue length process

Ẑr(t) will increase without bound almost surely for any t > 0 as r → ∞. This implies

that Ŵ r(t) increases without bound almost surely under the inefficient policy. Although

we believe that this is still true when y∗i = 0 for some i, we cannot provide a proof at this

point.

5.3 Outline of the Proof of Asymptotic Optimality

This section outlines the proof of our main asymptotic optimality theorem, Theorem 5.2.

We first derive an asymptotic lower bound on the workload processes under asymptoti-

cally efficient policies. Then we state a heavy traffic limit theorem, which implies that this

asymptotic lower bound is achieved by the maximum pressure policies. At the end, we

outline a proof, for the heavy traffic limit theorem, based on Bramson-Williams’ frame-

work [12, 74, 75].
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We first derive an asymptotic lower bound on the workload processes under asymptoti-

cally efficient policies. That is, we search for a process W ∗ such that under any asymptoti-

cally efficient policy

lim inf
r→∞

P
(
Ŵ r(t) > w

)
≥ P

(
W ∗(t) > w

)
, for all t and w.

We begin the analysis by defining a process Y r = {Y r(t), t ≥ 0} for the r-th network

via

Y r(t) = (1− ρr)t− yr ·RrT r(t). (5.14)

Since ρr is interpreted as the traffic intensity of the bottleneck pool, for each t ≥ 0, ρrt is

interpreted as the average total work contributed to the bottleneck pool from the exogenous

arrivals in [0, t], and (1−ρr)t represents the average total work that could have been depleted

by time t if the bottleneck pool is never idle. Because of the randomness of the processing

times, the idleness of the bottleneck pool will almost surely be incurred over time given the

system is not overloaded. Under a service policy and its corresponding activity level process

T r, the average total work that has been depleted by time t is given by

yr ·RrT r(t) =
∑
j∈JS

T r
j (t)

∑
i∈I

yr
iR

r
ij −

∑
j∈JI

T r
j (t)

∑
i∈I

yr
i (−Rr

ij).

Note that, as in Section 5.1, for each service activity j ∈ JS ,
∑

i∈I y
r
iR

r
ij is the average

work accomplished by per unit of activity j, and that for each input activity j ∈ JI ,∑
i∈I y

r
i (−Rr

ij) is the average work generated by per unit of activity j. Therefore, Y r(t)

represents the deviation of the workload depletion in [0, t] from that under the “best” policy.

The following lemma says that this deviation does not decrease over time.

Lemma 5.1. For each r and each sample path, the process Y r defined in (5.14) is a non-

decreasing function with Y r(0) = 0.

We leave the proof to Appendix B.

Remark. Some special stochastic processing networks, such as multiclass queueing

networks and unitary networks, have no control on the input activities. Then, T r
j (t) is fixed

for all j ∈ JI under different policies, and
∑

j∈JI
T r

j (t)
∑

i∈I y
r
i (−Rr

ij) = ρrt. For these

61



networks, one gets

Y r(t) = t−
∑
j∈JS

T r
j (t)

∑
i∈I

yr
iR

r
ij ,

and Y r(t) is interpreted as the cumulative idle time of the bottleneck pool by time t.

From the flow balance equation (2.5) for the r-th network, we can write the workload

process W r = yr · Zr as

W r(t) = W r(0) +
∑
i∈I

yr
i

∑
j∈J

(∑
i′∈Bj

Φj
i′i

(
Sr

j

(
T r

j (t)
))
−BjiS

r
j

(
T r

j (t)
))
,

where Sr
j (t) = max{n :

∑n
`=1 uj(`) ≤ µr

jt}.

Let Xr = W r − Y r. Then one can check that

Xr(t) = W r(0)+
∑
i∈I

yr
i

∑
j∈J

(∑
i′∈Bj

Φj
i′i

(
Sr

j

(
T r

j (t)
))
−BjiS

r
j

(
T r

j (t)
))
−(1−ρr)t+yr ·RrT r(t).

We define the following diffusion-scaled processes:

Ŝr
j (t) = r−1

[
Sr

j (r
2t)− µr

jr
2t
]

for each j ∈ J ,

Φ̂j
i′i(t) = r−1

[
Φj

i′i(br
2tc)− P j

i′ir
2t
]

for each j ∈ J and each i ∈ Bj ,

X̂r(t) = r−1Xr(r2t),

Ŷ r(t) = r−1Y r(r2t).

Here btc denotes the greatest integer number less than or equal to the real number t.

Then the diffusion-scaled workload process Ŵ r can be written as a sum of two processes

Ŵ r(t) = X̂r(t) + Ŷ r(t), (5.15)

and

X̂r(t) = Ŵ r(0) +
∑
i∈I

yr
i

∑
j∈J

(∑
i′∈Bj

Φ̂j,r
i′i

(
¯̄Sr
j

( ¯̄T r
j (t)

))

+
(∑

i′∈Bj

P j
i′i −Bji

)
Ŝr

j

( ¯̄T r
j (t)

))
− r(1− ρr)t, (5.16)

where

¯̄T r
j (t) = r−2T r

j (r2t) and ¯̄Sr
j (t) = r−2Sr

j (r
2t).
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The process X̂r depends on the policy only through the fluid-scaled process ¯̄T r. In fact, from

Lemma 4.1 of Dai [21] and (5.9), it follows that, under any asymptotically efficient policy,

¯̄T r ⇒ x∗(·), where x∗(t) = x∗t and x∗ is the optimal solution to the static planning prob-

lem (4.2)-(4.6) of the limit network. As a consequence, X̂r converge to a one-dimensional

Brownian motion independent of policies.

Lemma 5.2. Consider a sequence of stochastic processing networks operating under an

asymptotically efficient policy. Then X̂r ⇒ X∗, where X∗ is a one-dimensional Brownian

motion that starts from wo given in (5.12), has drift parameter θ given in (5.7), and has

variance parameter

σ2 = (y∗)′

∑
j∈J

x∗jµj

∑
i∈Bj

Υj,i

 y∗ +
∑
i∈I

∑
j∈J

(y∗i )
2R2

ijx
∗
jµjσ

2
j (5.17)

with Υj,i, j ∈ J , i ∈ Bj, defined by

Υj,i
i1,i2

=

 P j
i,i1

(1− P j
i,i2

), if i1 = i2,

−P j
i,i1
P j

i,i2
, if i1 6= i2.

Proof. First, Lemma 4.1 of Dai [21] and (5.9) implies that ¯̄T r(·) ⇒ x∗(·) under any asymp-

totically efficient policy. Then, the result in the lemma follows from (5.16), the functional

central limit theorem for renewal processes (cf. Iglehart and Whitt [41]), the random time

change theorem (cf. Billingsley [11] (17.9)), and the continuous mapping theorem (cf.

Billingsley [11] Theorem 5.1). Deriving the expression for σ2 is straightforward but tedious,

which is outlined in [33] for multiclass queueing networks, so we will not repeat here.

We define the one-dimensional reflection mapping ψ : D[0,∞) → D[0,∞) such that for

each f ∈ D[0,∞) with f(0) ≥ 0,

ψ(f)(t) = f(t)−min
(
0, inf

0≤s≤t
f(s)

)
.

Applying diffusion scaling to Lemma 5.1, we know that Ŷ r(·) is a nonnegative, non-

decreasing function, so, from (5.15) and the well-known minimality of the solution of the

one-dimensional Skorohod problem (cf. Williams [9] Proposition B.1),

Ŵ r(t) ≥ ψ(X̂r)(t) for every t and every sample path;
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namely, ψ(X̂r)(t) is a pathwise lower bound on Ŵ r. It then follows that

lim inf
r→∞

P(Ŵ r(t) > w) ≥ lim sup
r→∞

P(ψ(X̂r)(t) > w), for all t and w.

Because X̂r ⇒ X∗, by the continuous mapping theorem, we have

ψ(X̂r) ⇒W ∗,

where W ∗ = ψ(X∗) is a one-dimensional reflecting Brownian motion associated with X∗.

Because W ∗(t) has continuous distribution for each t, we have

lim
r→∞

P(ψ(X̂r)(t) > w) = P(W ∗(t) > w).

Therefore,

lim inf
r→∞

P(Ŵ r(t) > w) ≥ P(W ∗(t) > w) for each t and w.

So far, we have shown that W ∗ is an asymptotic lower bound on the workload processes

under asymptotically efficient policies. The following heavy traffic limit theorem ensures

that the workload processes under maximum pressure policies converge to W ∗. This com-

pletes the proof of Theorem 5.2.

Theorem 5.3 (Convergence). Consider a sequence of stochastic processing networks

operating under a maximum pressure policy. Assume Assumptions 5.1-5.4 in Section 5.2

and that the limit network satisfies the EAA assumption. Then

(Ŵ r, Ẑr) ⇒ (W ∗, Z∗) as r →∞,

where Z∗ = ζW ∗ with ζ defined as

ζ =
y∗

y∗ · y∗
. (5.18)

Theorem 5.3 also states a form of state space collapse for the network processes in the

diffusion limit: The I-dimensional queue length process is a constant vector multiple of the

one-dimensional workload process.

We will apply Bramson-Williams’ framework [12, 74, 75] to prove Theorem 5.3. The

framework consists of three steps that we will follow in the next three sections: First, in

Section 5.4, we will show that any fluid model solution for the stochastic processing networks
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under maximum pressure policies exhibit some type of state space collapse, which is stated

in Theorem 5.4 in that section. Then, in Section 5.5, we will follow Bramson’s approach [12]

to translate the state space collapse of the fluid model into a state space collapse result under

diffusion scaling which is to be presented in Theorem 5.5. Finally, in Section 5.6, we will

convert the state space collapse result to the heavy traffic limit theorem, Theorem 5.3, by

applying a perturbed Skorohod mapping theorem from Williams [74].

5.4 State Space Collapse for the Fluid Model

In this section, we show that any fluid model solution under the maximum pressure policy

exhibits a form of state space collapse.

Theorem 5.4. Consider a sequence of stochastic processing networks that satisfy Assump-

tions 5.1 and 5.2. There exists some finite τ0 > 0, which depends on just I, R, and A, such

that, for any fluid model solution (Z̄, T̄ ) under the maximum pressure policy, which satisfies

equations (4.7)–(4.11) and (4.13), if |Z̄(0)| ≤ 1, then

|Z̄(t)− ζW̄ (t)| = 0, for all t ≥ τ0, (5.19)

where W̄ = y∗ · Z̄ is the workload process of the fluid model and ζ is given by (5.18).

Furthermore, if

|Z̄(τ1)− ζW̄ (τ1)| = 0, for some τ1 ≥ 0,

then

|Z̄(t)− ζW̄ (t)| = 0, for all t ≥ τ1. (5.20)

Theorem 5.4 says that the fluid model under maximum pressure policy exhibits a form

of state space collapse: after some finite time τ0, the I-dimensional buffer level process

Z̄ equals a constant vector multiple of the one-dimensional workload process W̄ ; if this

happens at time τ1, it happens all the time after τ1. In particular, if Z̄(0) = ζW̄ (0), then

Z̄(t) = ζW̄ (t) for all t.

The rest of this section is to prove Theorem 5.4. We first define

Z̄∗(t) = ζW̄ (t),
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and we shall prove Z̄(t)− Z̄∗(t) = 0 for t large enough. Because Z̄∗(t) is the projection of

Z̄(t) on y∗, Z̄(t)− Z̄∗(t) is orthogonal to y∗. Therefore, we have the following lemma.

Lemma 5.3. For any t ≥ 0, (
Z̄(t)− Z̄∗(t)

)
· y∗ = 0,

and for each regular time t,

(
Z̄(t)− Z̄∗(t)

)
· ˙̄Z∗(t) = 0.

Proof.

Z̄∗(t) · y∗ = W̄ (t)ζ · y∗ = W̄ (t) = Z̄(t) · y∗.

Because ˙̄Z∗(t) = ζ ˙̄W (t),

(
Z̄(t)− Z̄∗(t)

)
· ˙̄Z∗(t) = ˙̄W (t)

(
Z̄(t)− Z̄∗(t)

)
· ζ = 0.

The following lemma will be used repeatedly in subsequel. It follows directly from

Lemma A.1 to be presented in Appendix A.

Lemma 5.4. Suppose (ŷ, ẑ) is a unique optimal solution to the dual problem (5.1)–(5.5)

with objective value ρ. Then ŷ is the unique I-dimensional vector that satisfies

max
a∈A

∑
i∈I,j∈JS

ŷiRijaj = 1, (5.21)

and

max
a∈A

ŷ ·Ra = 1− ρ. (5.22)

Define V = {Ra : a ∈ A}. Recall that A is the set of all possible allocations and the

vector Ra is the average rate at which material consumed from all buffers under allocation

a, so V is the set of all possible flow rate out of buffers in the limit network. It is obvious

that V is a polytope containing the origin because Rx∗ = 0, where, as before, x∗ is the

optimal solution to the static planning problem of the limit network. Furthermore, from

Lemma 5.4 and the fact that ρ∗ = 1 for the limit network, we have

max
v∈V

y∗ · v = 0.
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It says that the outer normal of V at the origin is y∗. Then, V is in a half space separated

by the (I − 1) dimensional hyperplane V o = {v ∈ RI : y∗ · v = 0}. The hyperplane V o

is orthogonal to y∗ and passes the origin, so V ∩ V o is not empty. Furthermore, in the

hyperplane V o, there exists some (I − 1) dimensional neighborhood of the origin that is a

subset of V . This is stated in the following proposition.

Proposition 5.1. There exists some δ > 0 such that {v ∈ V o : ‖v‖ ≤ δ} ⊂ V .

Proof. First, if the statement is not true, then we can find a v0 ∈ V o such that κv0 6∈ V for

all 0 < κ ≤ 1 because of the convexity of V . Denote V0 = {κv0, 0 < κ < 1}. Because any v

in V0 is not in V , V0 ∩ V = ∅. It is easy to see that V0 is open and convex. Therefore there

exists a hyperplane separating V and V0 (cf. Rudin [60] Theorem 3.4 ). In other words,

there exists a vector ŷ and a constant b such that ŷ · v ≤ b for all v ∈ V and ŷ · v > b for all

v ∈ V0. We notice that b must be zero. To see this, first we have b ≥ 0 because the origin

is in V . Moreover, for any ε > 0, we can choose κ arbitrarily small such that κŷ · v0 < ε.

Because κv0 ∈ V0, we have b < κŷ · v0 < ε. This implies b = 0, therefore the origin is in the

separating hyperplane and maxa∈A ŷ ·Ra = 0. Obviously, ŷ 6= y∗ because y∗ · v = 0 > ŷ · v

for v ∈ V0. We consider two cases:

Case 1: maxa∈A
∑

i∈I,j∈JS
ŷiRijaj > 0. For this case, without loss of generality, we select

ŷ such that maxa∈A
∑

i∈I,j∈JS
ŷiRijaj = 1. Then ŷ satisfies both (5.21) and (5.22)

with ρ = 1. On the other hand, from Lemma 5.4, y∗ is the unique vector that satisfies

both (5.21) and (5.22). This is a contradiction.

Case 2: maxa∈A
∑

i∈I,j∈JS
ŷiRijaj = 0. For this case, one can verify that y∗ + ŷ satisfies

both (5.21) and (5.22) with ρ = 1. This is also a contradiction.

The set V ∗ = V ∩ V o is the set of all possible flow rates that maximize y∗ · v; namely,

V ∗ = argmaxv∈V y
∗ · v.

Proof of Theorem 5.4. We consider the Lyapunov function f(t) = ‖Z̄(t) − Z̄∗(t)‖2. Let

v(t) = R ˙̄T (t) denote the net flow rate out of the system at time t (total departure rate
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minus total arrival rate). Then ˙̄Z(t) = −v(t), and we have

ḟ(t) = 2
(
Z̄(t)− Z̄∗(t)

)
·
(

˙̄Z(t)− ˙̄Z∗(t)
)

= 2
(
Z̄(t)− Z̄∗(t)

)
· (−v(t)) (5.23)

The second equality in (5.23) follows from Lemma 5.3.

Because ˙̄T (t) ∈ A, we have v(t) ∈ V . This implies that y∗ · v(t) ≤ 0 and hence

Z̄∗(t) · v(t) ≤ 0. Furthermore, under maximum pressure policies, it follows from the fluid

model equation that v(t) satisfies

v(t) · Z̄(t) = max
v∈V

Z̄(t) · v.

Therefore the last term in (5.23) is bounded from above as follows.

2(Z̄(t)− Z̄∗(t)) · (−v(t)) ≤ −2Z̄(t) · v(t) = −2 max
v∈V

(
Z̄(t) · v

)
(5.24)

Since V ∗ ⊂ V , we have

max
v∈V

Z̄(t) · v ≥ max
v∈V ∗

(
Z̄(t) · v

)
= max

v∈V ∗

((
Z̄(t)− Z̄∗(t)

)
· v
)
. (5.25)

The second equality in (5.25) holds because y∗ · v = 0 for all v ∈ V ∗ and Z̄∗(t) = ζW̄ (t).

If f(t) > 0, let

v∗ =
δ(Z̄(t)− Z̄∗(t))
‖Z̄(t)− Z̄∗(t)‖

.

Then ‖v∗‖ = δ and y · v∗ = 0. It follows from Proposition 5.1 that v∗ ∈ V ∗. Therefore

max
v∈V ∗

(Z̄(t)− Z̄∗(t)) · v ≥ (Z̄(t)− Z̄∗(t)) · v∗ = δ‖Z̄(t)− Z̄∗(t)‖. (5.26)

Combining (5.23)–(5.26), we have

ḟ(t) ≤ −2δ‖Z̄(t)− Z̄∗(t)‖ = −2δ
√
f(t). (5.27)

Therefore f(t) = 0 for t ≥
√
f(0)/δ. Set τ0 =

√
I/δ. Then f(t) = 0 for t ≥ τ0, because

f(0) = (Z̄(0)− Z̄∗(0)) · (Z̄(0)− Z̄∗(0)) = (Z̄(0)− Z̄∗(0)) · Z(0) ≤ ‖Z̄(0)‖2 ≤ I.

Here τ0 depends only on R, A, and I, because the set V is completely determined by R and

A and so is δ.

Equation (5.27) also implies that for any τ1, if f(τ1) = 0 then f(t) = 0 for all t ≥ τ1.
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5.5 State Space Collapse

In this section, we translate the state space collapse result of the fluid model into a state

space collapse result under diffusion scaling.

Theorem 5.5 (State Space Collapse). Consider a sequence of stochastic processing

networks operating under a maximum pressure policy. Assume Assumptions 5.1–5.4 and

that the limit network satisfies the EAA assumption. Then, for each T ≥ 0,

‖Ẑr(·)− ζrŴ r(·)‖T → 0 in probability.

Recall that ζr was given in (5.11) and ‖·‖T is the uniform norm over [0, T ]. (The readers

should not confuse the symbols T and T (·) with one another. We will always include “(·)”

when dealing with the cumulative activity level process T (·).)

Theorem 5.5 states a form of state space collapse for the diffusion-scaled network process:

for large r, the I-dimensional diffusion-scaled queue length process is essentially a constant

vector multiple of the one-dimensional workload process .

The rest of this section applies Bramson’s approach [12] to prove Theorem 5.5. In

Bramson’s approach, the following fluid scaling plays an important role in connecting The-

orems 5.4 and 5.5: For each r = 1, 2, . . ., and m = 0, 1, . . .,

Sr,m
j (t) =

1
ξr,m

(
Sr

j (rm+ ξr,mt)− Sr
j (rm)

)
, for each j ∈ J ,

Φj,r,m
i (t) =

1
ξr,m

(
Φj

i

(
Sr

j (rm) + bξr,mtc
)
− Φj

i

(
Sr

j (rm)
))
, for each j ∈ J , i ∈ Bj ,

T r,m
j (t) =

1
ξr,m

(
T r

j (rm+ ξr,mt)− T r
j (rm)

)
, for each j ∈ J ,

Zr,m
i (t) =

1
ξr,m

Zr
i (rm+ ξr,mt), for each i ∈ I,

where ξr,m = |Zr(rm)| ∨ r.

Here scaling the processes by ξr,m ensures |Zr,m(0)| ≤ 1, which is needed for compactness

reasons. And using index (r,m) allows the time scale to expand; we will examine the

processes over [0, L] for m = 0, 1, . . . , drT e − 1, where L > 1 and T > 0 are fixed, so the

diffusion-scaled time [0, T ] is covered by drT e fluid scaled time pieces, each with length

L ≥ 1. Here dte denotes the smallest integer greater than or equal to t.
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We outline the proof of Theorem 5.5 as follows. First, in Proposition 5.2, we give

a probability estimate on the upper bound of the fluctuation of the stochastic network

processes Xr,m(·) = (T r,m(·), Zr,m(·)). The estimates on the service processes Sr,m
j (·) and

the routing processes Φj,r,m
i (·) are also given. From Proposition 5.2, a so-called “good”

set Gr of sample paths can be defined, where the processes Xr,m perform nicely for r large

enough. On this “good” set, for large enough r, the processes Xr,m can be uniformly

approximated by so-called Lipschitz cluster points. These cluster points will be shown to be

fluid model solutions under the maximum pressure policy. Then because of Theorem 5.4,

the state space collapse of the fluid model under the maximum pressure policy, the network

processes Xr,m asymptotically have the state space collapse, which then will be translated

into the state space collapse for diffusion-scaled processes X̂r as r approaches ∞.

Notice that in Theorem 5.5 the state space collapse of the fluid model does not happen

instantaneously after time 0 if the initial state does not exhibit a state space collapse. The

fluid-scaled processes Xr,m start from time rm in the original network processes, so, for

m ≥ 1, Xr,m do not automatically have the state space collapse at the initial point, and

only the interval [τ0, L] can be used for our purpose. However, for m = 0, the state space

happens at time 0 because of the initial condition (5.13), so the whole interval [0, L] can be

used. For this reason, we separate the proof into two parts according to the two intervals

in the diffusion-scaled time: [0, Lξr,0/r2] and [τ0ξr,0/r2, T ].

Propositions 5.3–5.6 develop a state space collapse on the interval [τ0ξr,0/r2, T ]. Propo-

sition 5.3 shows that, on Gr, the scaled process Xr,m(·) are uniformly close to Lipschitz

cluster points for large r. Proposition 5.4 shows that the above cluster points are solutions

to the fluid model equations. Propositions 5.3 and 5.4 together with Theorem 5.4, the state

space collapse for the fluid model under the maximum pressure policy, imply the state space

collapse of the fluid scaled processes Xr,m(·) on Gr and the interval [τ0, L], which is the result

of Proposition 5.5. The result is translated into diffusion scaling, and Proposition 5.6 gives

a version of state space collapse for the diffusion process X̂r(t) on the interval [τ0ξr,0/r2, T ].

The state space collapse on the interval [0, Lξr,0/r2] are shown through Propositions 5.7–

5.9. The basic idea is the same as described in the preceding paragraph except that now
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we only consider the scaled processes with m = 0. The corresponding network processes

start from time 0, and by assuming the state space collapse happens at time 0, we have

stronger result for these type of processes: the state space collapse holds during the whole

time interval [0, L] instead of just on [τ0, L]. In fact, the scaled processes Xr,0(·) are proven

to be uniformly close to some cluster points for which the state space collapse starts at time

0. This is stated in Propositions 5.7 and 5.8. In Proposition 5.9, we summarize the state

space collapse for fluid scaled process on [0, L] and translate it into the diffusion scale on

[0, Lξr,0/r2].

The results to be obtained in Propositions 5.6 and 5.9 are actually multiplicative state

space collapse, as called in Bramson [12]. To obtain the state space collapse result that we

stated in Theorem 5.5, we will prove ξr,m/r are stochastically bounded at the end of this

section.

5.5.1 Probability estimates

In this section, we give probability estimates on the service processes Sr,m
j (·), the rout-

ing processes Φj,r,m
i (·), and the upper bound of the fluctuation of the stochastic network

processes Xr,m(·).

Proposition 5.2. Consider a sequence of stochastic processing networks where the moment

assumption, Assumption 5.3 is assumed. Fix ε > 0, L and T . Then, for large enough r,

P( max
m<rT

‖Sr,m
j (T r,m

j (t))− µr
jT

r,m
j (t)‖L > ε) ≤ ε, for each j ∈ J , (5.28)

P( max
m<rT

‖Φj,r,m
i (Sr,m

j (T r,m
j (t)))− P j

i µ
r
j(T

r,m
j (t))‖L > ε) ≤ ε, for each j ∈ J and i ∈ Bj ,

(5.29)

P( sup
0≤t1≤t2≤L

|Xr,m(t2)− Xr,m(t1)| > N |t2 − t1|+ ε for some m < rT ) ≤ ε, (5.30)

where N is some constant that depends on just the bounds of Rr.

To prove Proposition 5.2, we first need the following lemma.

Lemma 5.5. Assume that the moment assumption, Assumption 5.3, holds. Then for given

T , and each j ∈ J

ur,T,max
j /r → 0 as r →∞ with probability 1, (5.31)
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where ur,T,max
j = max{uj(`) : 1 ≤ ` ≤ Sr

j (r
2T ) + 1}. Furthermore, for any given ε > 0,

P(‖Φj
i (`)− P j

i `‖n ≥ εn) ≤ ε/n, for each j ∈ J and i ∈ Bj , and large enough n, (5.32)

and for large enough t,

P(‖Sr
j (τ)− µr

jτ‖t ≥ εt) ≤ ε/t, for all j ∈ J , and all r. (5.33)

We delay the proof of Lemma 5.5 to Appendix B, and now we are ready to prove

Proposition 5.2.

Proof of Proposition 5.2. The proof here essentially follows the same reasoning as in Propo-

sitions 5.1 and 5.2 of Bramson [12]. We first investigate the processes with index m, and

then multiply the error bounds by the number of processes in each case, drT e. We first

start with (5.28). From (5.31), we have, for large enough r,

P(ur,T,max
j /r ≥ ε) ≤ ε/2. (5.34)

Denote Mr to be the complement of the events in (5.34). Then, for large enough r,

P(Mr) ≥ 1− ε/2. (5.35)

Let τ be the time that the first activity j service completion occurs after time rm. Then

from (5.33), for large enough r, we have

P
(
‖Sr

j

(
rm+ ξr,mT

r,m
j (t)

)
− Sr

j (τ)− µr
j

(
rm+ ξr,mT

r,m
j (t)− τ

)
‖L ≥ εLξr,m

)
≤ ε/Lr;

we use the fact that T r,m
j (t) ≤ t, ξr,m ≥ r, and Sr

j (rm+ ξr,mT
r,m
j (t))−Sr

j (τ) is independent

of ξr,m. Because Sr
j (τ) = Sr

j (rm) + 1 and τ − rm ≤ ur,T,max
j /µr

j , we have

P
(
‖Sr

j

(
rm+ ξr,mT

r,m
j (t)

)
− Sr

j (rm)− µr
jξr,mT

r,m
j (t))‖L ≥ |1− ur,T,max

j |+ εLξr,m

)
≤ ε/Lr.

It follows that

P(‖Sr,m
j (T r,m

j (t))− µr
jT

r,m
j (t)‖L ≥ 2εL |Mr) ≤ ε/Lr, for large enough r. (5.36)

Therefore, by multiplying the lower bound by drT e,

P( max
m≤rT

‖Sr,m
j (T r,m

j (t))− µr
jT

r,m
j (t)‖L ≥ 2εL |Mr) ≤ εT.
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Then enlarging ε by a factor of 2(L ∨ T ), we have

P( max
m≤rT

‖Sr,m
j (T r,m

j (t))− µr
jT

r,m
j (t)‖L ≥ ε |Mr) ≤ ε/2.

This, together with (5.35) implies (5.28).

Let µmax be an upper bound on |µr|. Then from (5.36), for large enough r,

P
(
Sr,m

j

(
T r,m

j (L)
)
≥ (µmax + 2)L | Mr

)
≤ ε/Lr.

By (5.32) with n = (µmax + 2)Lξr,m, we have for each i ∈ Bj ,

P
(
‖Φj,r,m

i

(
Sr,m

j

(
T r,m

j (t)
))
− P j

i S
r,m
j

(
T r,m

j (t)
)
‖L > ε(µmax + 2)L | Mr

)
≤ ε/(µmax + 2)Lξr,m + ε/Lr.

Let Pmax = maxj∈J ,i∈Bj |P
j
i |, then from (5.36), we have

P(‖P j
i S

r,m
j (T r,m

j (t))− P j
i µ

r
jT

r,m
j (t)‖L ≥ 2PmaxεL |Mr) ≤ ε/Lr.

It follows that

P
(
‖Φj,r,m

i

(
Sr,m

j

(
T r,m

j (t)
))
− P j

i µ
r
j

(
T r,m

j (t)
)
‖L > ε(2Pmax + µmax + 2)L | Mr

)
≤ 5ε/2Lr.

Enlarging ε by a factor of (2Pmax + µmax + 2)L ∨ 5T and multiplying the error bound by

drT e, we have

P
(

max
m≤rT

‖Φj,r,m
i

(
Sr,m

j

(
T r,m

j (t)
))
−P j

i µ
r
j

(
T r,m

j (t)
)
‖L > ε | Mr

)
≤ ε/2.

Then (5.29) follows.

Now we are going to show (5.30). First, it is easy to see that, for each j ∈ J and each

r,

T r
j (t)− T r

j (s) ≤ t− s for 0 ≤ s ≤ t

along any sample path. Therefore, the bounds in (5.30) on components Tj is easy to obtain

with N = 1. For components Zi, i ∈ I, scaling (2.5) and applying (5.28) and (5.29) gives

P
(

sup
0≤t1≤t2≤L

|Zr,m
i (t2)− Zr,m

i (t1)|

> Rr
ij |T

r,m
j (t2)− T r,m

j (t1)|+ 2J(I + 2)ε for some m ≤ rT

)
≤ 2J(I + 2)ε.
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Then (5.30) is obtained by enlarging ε in the above inequality by a factor of 2J(I + 1) and

setting N = 1 ∨ supr|Rr|.

Now for each large enough r, we let ε(r) be the smallest ε such that (5.28)-(5.30) are

satisfied. By Proposition 5.2, it is easy to see that

lim
r→∞

ε(r) = 0.

We consider the complements of the “bad” events given in each of (5.28)-(5.30) with ε

replaced by ε(r), and denote the intersection of these “good” events by Gr. Obviously

lim
r→∞

P(Gr) = 1.

5.5.2 State space collapse on [ξr,0τ0/r2, T ]

We divide the diffusion-scaled time interval [0, T ] into two overlapping intervals: [0, ξr,0L/r2]

and [ξr,0τ0/r2, T ]. In this section, we show a state space collapse result on the time interval

[ξr,0τ0/r2, T ]. The state space collapse on [0, ξr,0L/r2] will be presented in the next section.

In order to connect the fluid-scaled processes with the fluid model, we first introduce

the notion of cluster point. Let F = Dd[0, L] with d = I + J, so F is the space of right

continuous functions with left limits from [0, L] to RI+J. Let F = {Fr} be a sequence of

subsets in F . A cluster point f of F is defined to be a point f ∈ F such that for all ε > 0

and r0 > 0, there exists r ≥ r0 and g ∈ Fr, with ‖f − g‖L < ε. Now, let Fr, r = 1, 2, . . ., be

certain subsets of F , where all elements f satisfy both

|f(0)| ≤ 1 (5.37)

and

|f(t2)− f(t1)| ≤ N |t2 − t1|+ ε(r) for all t1, t2 ∈ [0, L], (5.38)

with constant N chosen as in Proposition 5.2 and ε(r) → 0 as r →∞. The sequence {Fr}

is said to be asymptotically Lipschitz. Let F ′ denote those f ∈ F satisfying both (5.37) and

|f(t2)− f(t1)| ≤ N |t2 − t1| for all t1, t2 ∈ [0, L] (5.39)

The following lemma is due to Bramson [12]. We reproduce it here for completeness.
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Lemma 5.6 (Bramson [12] Proposition 4.1). For each ε > 0, there exists an r0, so

that for each r ≥ r0 and g ∈ Fr, one has ‖f − g‖L < ε for some cluster point f of F with

f ∈ F ′.

Lemma 5.6 says that, for large r, each element of the function sets in an asymptotically

Lipschitz sequence can be uniformly approximated by a cluster point that is Lipschitz

continuous.

We set

F r
g = {Xr,m(·, ω), m < rT, ω ∈ Gr} for each r,

and

Fg = {F r
g }.

From the choice of the fluid scale ξr,m and the definition of T r,m(·), it follows that

|Xr,m(0)| ≤ 1,

so (5.30) in Proposition 5.2 implies that the sequence of sets of scaled stochastic processing

network processes Xr,m(·) is asymptotically Lipschitz. Then Lemma 5.6 immediately implies

the following Proposition which says that Xr,m(·) are uniformly close to Lipschitz cluster

points X̃r,m(·) for large r.

Proposition 5.3. Fix ε > 0, L and T , and choose r large enough. Then, for ω ∈ Gr and

any m < rT ,

‖Xr,m(·, ω)− X̃(·)‖L ≤ ε

for some cluster point X̃(·) of Fg with X̃(·) ∈ F ′.

The next proposition says that if the stochastic processing networks operate under a

maximum pressure policy, then each cluster point of Fg is a fluid model solution under the

maximum pressure policy and satisfies fluid model equations (4.7)–(4.11) and (4.13).

Proposition 5.4. Consider a sequence of stochastic processing networks operating under

a maximum pressure policy. Assume Assumption 5.1 and that the limit network satisfies

the EAA assumption. Fix L and T . Then all cluster points of Fg are solutions to the fluid

model equations (4.7)–(4.11) and (4.13) on [0, L].
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Proof. The idea is to approximate each cluster point of Fg with some Xr,m on Gr and show

that the equations (4.7)–(4.11) and (4.13) are asymptotically satisfied by Xr,m. We will

only demonstrate equations (4.7) and (4.13); the others are quite straightforward and can

be verified similarly. We first verify equation (4.7). For any ε > 0, we can choose large

enough r, and appropriate ω ∈ Gr and m < rT , such that

‖Sr,m
j (T r,m

j (t))− µr
jT

r,m
j (t)‖L ≤ ε for each j ∈ J , (5.40)

‖Φj,r,m
i

(
Sr,m

j (T r,m
j (t))

)
− P j

i µ
r
jT

r,m
j (t)‖L ≤ ε, for each j ∈ J , i ∈ Bj , (5.41)

‖Z̃(·)− Zr,m(·)‖L ≤ ε, (5.42)

‖T̃ (·)− T r,m(·)‖L ≤ ε, (5.43)

|Rr −R| ≤ ε. (5.44)

Scaling (2.5) and plugging in the bounds in (5.40) and (5.41), we have

|Zr,m(t)− Zr,m(0)−RrT r,m(t)| ≤ 2ε for each t ≤ L.

From (5.43) and (5.44), we have, for each t ≤ L,

|RrT r,m(t)−RT̃ (t)| ≤ |Rr(T r,m(t)− T̃ (t)|+ |(Rr −R)T̃ (t)| ≤ NJε+ εNLJ.

Recall that N ≥ supr|Rr|. It then follows that, for each t ≤ L,

|Z̃(t)− Z̃(0)−RT̃ (t)| ≤ |Z̃(t)− Zr,m(t)|+ |Zr,m(0)− Z̃(0)|+ |RrT r,m(t)−RT̃ (t)|

+|Zr,m(t)− Zr,m(0)−RrT r,m(t)|

≤ (4 +NLJ +NJ)ε.

Then equation (4.7) is satisfied by X̃ because ε can be arbitrarily small.

To show equation (4.13), first observe that for any allocation a ∈ A,

|p(Z̃(t), a)− pr(Zr,m, a)| = |Z̃(t) ·Ra− Zr,m(t) ·Rra|

≤ |Z̃(t) · (Ra−Rra)|+ |(Z̃(t)− Zr,m(t)) ·Rra|

≤ (NL+ 1)IJε+ εIJN.

Denote E∗ as the set of maximum extreme allocations under buffer size Z̃(t). Suppose

that a ∈ E \ E∗ and p(a, Z̃(t)) < maxa′∈E p(a′, Z̃(t)). Because the limit network satisfies the
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EAA assumption, we can choose an a∗ ∈ E∗ such that Z̃i(t) > 0 for each constituent buffer

i of a∗. Denote I(a∗) the set of constituent buffers. Namely,

I(a∗) =
{
i :
∑

j

a∗jBji > 0
}
.

Then Z̃i(t) > 0 for all i ∈ I(a∗). Since p(a, Z̃(t)) < p(a∗, Z̃(t)) and mini∈I(a∗) Z̃i(t) > 0, by

the continuity of X̃(·), there exist ε1 > 0 and δ > 0 such that for each τ ∈ [t− δ, t+ δ] and

i ∈ I(a∗),

p(a, Z̃(τ)) + ε1 ≤ p(a∗, Z̃(τ)) and Z̃i(τ) ≥ ε1.

For sufficiently large r, we can choose ε small enough such that (NL+N+1)IJε ≤ ε1/3.

Then, for all τ ∈ [t− δ, t+ δ],

pr(a, Zr,m(τ)) + ε1/3 ≤ pr(a∗, Zr,m(τ)),

Zr,m
i (τ) ≥ ε1/2 for each i ∈ I(a∗).

Choosing r > 2J/ε1, for each τ ∈ [rm+ ξr,m(t− δ), rm+ ξr,m(t+ δ)], we have

pr(a, Zr(τ)) < pr(a∗, Zr(τ)), (5.45)

Zr
i (τ) ≥ J for each i ∈ I(a∗). (5.46)

Condition (5.46) implies that a∗ is a feasible allocation at any time τ ∈ [rm + ξr,m(t −

δ), rm + ξr,m(t + δ)], i.e., a∗ ∈ E(τ). Following (5.45) and the definition of a (preemptive-

resume) maximum pressure policy, the allocation a will not be employed during time interval

[rm+ ξr,m(t− δ), rm+ ξr,m(t+ δ)]. Therefore, only the allocations in E∗ will be employed

during this interval. For each a ∈ E , denote (T a)r(t) to be the cumulative amount of time

allocation a has been employed by time t. It is easy to see that, for each r and all t ≥ 0,

under the maximum pressure policy,

∑
a∈E

(T a)r(t) = t, (5.47)

T r(t) =
∑
a∈E

a(T a)r(t). (5.48)
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Then it follows that

Z̃(t) ·
(
R
[
T r
(
rm+ ξr,m(t+ δ)

)
− T r

(
rm+ ξr,m(t− δ)

)])
=
∑
a∈E

(Z̃(t) ·Ra)
[
(T a)r

(
rm+ ξr,m(t+ δ)

)
− (T a)r

(
rm+ ξr,m(t− δ)

)]
=
∑
a∈E∗

(Z̃(t) ·Ra)
[
(T a)r

(
rm+ ξr,m(t+ δ)

)
− (T a)r

(
rm+ ξr,m(t− δ)

)]
= max

a∈A

∑
a∈E∗

[
(T a)r

(
rm+ ξr,m(t+ δ)

)
− (T a)r

(
rm+ ξr,m(t− δ)

)]
= max

a∈A

∑
a∈E

[
(T a)r

(
rm+ ξr,m(t+ δ)

)
− (T a)r

(
rm+ ξr,m(t− δ)

)]
= 2ξr,mδmax

a∈A
Z̃(t) ·Ra.

(5.49)

The second and fourth equalities in (5.49) hold because only allocations in E∗ will be

employed during [rm+ξr,m(t−δ), rm+ξr,m(t+δ)]; the third holds because every allocation

a ∈ E∗ has the same network pressure equal to maxa∈A Z̃(t) ·Ra. From (5.49), we have

Z̃(t) ·R
(
T r,m(t+ δ)− T r,m(t− δ)

)
/2δ = max

a∈A
Z̃(t) ·Ra.

Because ε in (5.43) can be arbitrarily small, we have

Z̃(t) ·R
(
T̃ (t+ δ)− T̃ (t− δ)

)
/2δ = max

a∈A
Z̃(t) ·Ra,

and (4.13) is verified.

From Theorem 5.4, every fluid model solution under the maximum pressure policy sat-

isfies (5.19), so Proposition 5.4 implies that any cluster point X̃ of Fg satisfies (5.19). That

is,

|Z̃(t)− ζW̃ (t)| = 0 for t ≥ τ0,

where W̃ (·) = y∗ · Z̃(t). Because the fluid-scaled stochastic processing network processes

can be uniformly approximated by cluster points, it leads to the following proposition.

Proposition 5.5. Fix L, T and ε > 0. For r large enough,

|Zr,m(t)− ζrW r,m(t)| ≤ ε for all 0 ≤ m ≤ rT, τ0 ≤ t ≤ L, ω ∈ Gr.

To prove Proposition 5.5, we first need yr → y∗ as r →∞.
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Lemma 5.7. Assume Assumptions 5.1 and 5.2. Then, (yr, zr) → (y∗, z∗) as r →∞.

The proof of Lemma 5.7 will be provided in Appendix B.

Proof of Proposition 5.5. From Proposition 5.3, for large enough r and each 0 ≤ m ≤

rT, ω ∈ Gr, we can find a cluster point X̃ such that

‖Z̃(·)− Zr,m(·)‖L ≤ ε.

From Proposition 5.4 and Theorem 5.4, we have

|Z̃(t)− ζW̃ (t)| = 0 for t ≥ τ0.

Then, for each t ≥ τ0,

|Zr,m(t) − ζrW r,m(t)| ≤ |Zr,m(t) − Z̃(t)| + |ζW̃ (t) − ζrW̃ (t)| + |ζrW̃ (t) − ζrW r,m(t)|.

(5.50)

Because yr → y∗ as r →∞, for large enough r,

|yr − y∗| < ε, and |ζr − ζ| < ε.

Let κ = (supr|yr|) ∨ (supr|ζr|). Then we have

|W̃ (t)−W r,m(t)| ≤ |y · Z̃(t)− yr · Z̃(t)|+ |yr · Z̃(t)− yr · Z̃(t)|

≤ I
(
ε|Z̃(t)|+ κε

)
≤ (L+ κ)Iε.

Note that Z̃(t) ≤ NL for all t ≤ L. One also gets W̃ (t) ≤ κNL since |y∗| ≤ κ. From (5.50),

we have

|Zr,m(t)− ζrW r,m(t)| ≤ ε+ εIκNL+ κ(NL+ κ)Iε.

Rechoosing ε, the result follows.

We need to translate the results in Proposition 5.5 into the state space collapse results

under diffusion scaling. First we can express Zr,m(t) by Ẑr via

Zr,m(t) =
r

ξr,m
Ẑr(

tξr,m + rm

r2
) =

1
ξ̄r,m

Ẑr(
tξ̄r,m +m

r
),

where ξ̄r,m = ξr,m/r.

The interval [τ0, L] in Zr,m corresponds to the diffusion-scaled time interval [(m +

ξ̄r,mτ0)/r, (m+ ξ̄r,mL)/r], and Proposition 5.5 immediately leads to the following.
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Proposition 5.6. Fix L > 0, T > 0 and ε > 0. For r large enough and each m < rT ,

|Ẑr(t)− ζrŴ r(t)| ≤ ξ̄r,mε for all (m+ ξ̄r,mτ0)/r ≤ t ≤ (m+ ξ̄r,mL)/r, ω ∈ Gr. (5.51)

Proposition 5.6 gives estimates on each small interval for |Ẑr(t) − ζrŴ r(t)|. We shall

obtain the estimate on the whole time interval [0, T ], and then show ξ̄r,m are stochastically

bounded. The following lemma ensures that for large enough L, L > 3NT , the small

intervals in Proposition 5.6 are overlapping, and therefore the estimate on [ξ̄r,0τ0/r, T ] is

obtained.

Lemma 5.8. For fixed T and large enough r,

ξ̄r,m+1 ≤ 3Nξ̄r,m,

for ω ∈ Gr and m < rT .

Proof. By the definition of Gr,

|Zr,m(t2)− Zr,m(t1)| ≤ N |t2 − t1|+ 1.

for t1, t2 ∈ [0, L] and m < rT . Set t1 = 0 and t2 = 1/ξ̄r,m, we have

|Ẑr ((m+ 1)/r) | − |Ẑr (m/r) | ≤ N + ξ̄r,m.

Therefore,

ξ̄r,m+1 ≤ |Ẑr ((m+ 1)/r) | ∨ 1 ≤
(
|Ẑr (m/r) |+N + ξ̄r,m

)
∨ 1 ≤ N + 2ξ̄r,m ≤ 3Nξ̄r,m.

5.5.3 State space collapse on [0, ξr,0L/r2]

Now we shall estimate |Ẑr(t) − ζrŴ r(t)| on the interval [0, ξ̄r,0L/r]. This will be given by

the initial condition (5.13) and the result in the second part of Theorem 5.4.

Condition (5.13) implies that

|Zr,0(0)− ζrW r,0(0)| → 0 in probability.
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Then, for each r > 0, we let

ε1(r) = min{ε : P
(
|Zr,0(0)− ζrW r,0(0)| > ε

)
≤ ε}.

It is easy to see that

lim
r→∞

ε1(r) → 0.

Now let Lr be the subset of Gr such that for all events in Lr

|Zr,0(0)− ζrW r,0(0)| > ε1(r).

Obviously, limr→∞ P(Lr) = 1.

We define

Fo = {F r
o }

with

F r
o = {Xr,0(·, ω), ω ∈ Lr}.

Parallel to Proposition 5.3, we have the following proposition which states that Fo can

be asymptotically approximated by cluster points of Fo.

Proposition 5.7. Fix ε > 0, L and T , and choose r large enough. Then, for ω ∈ Lr,

‖Xr,0(·, ω)− X̃(·)‖L ≤ ε

for some cluster point X̃(·) of Fo with X̃(·) ∈ F ′.

Proof. Since both (5.37) and (5.39) are satisfied by Xr,m, the result follows from Lemma 5.6.

Proposition 5.8. Fix L. Then for any cluster point X̃(·) of Fo,

Z̃(t) = ζW̃ (t) for t ≤ L.

Proof. Since any cluster point of Fo is automatically a cluster point of Fg, it satisfies all

the fluid model equations. Now we show that

|Z̃(0)− ζW̃ (0)| = 0, (5.52)
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which together with Theorem 5.4 implies the result.

For given δ > 0, one can choose r large enough so that

‖Xr,0(·)− X̃(·)‖L ≤ δ,

|Zr,0(0)− ζrW r,0(0)| ≤ δ,

and

|ζr − ζ| ≤ δ.

Let κ = supr |yr|. Then

|W r,0(0)| = |yr · Zr,0(0)| ≤ Iκ,

and

|W̃ (0)−W r,0(0)| = |y∗ · Z̃(0)− yr · Zr,0(0)|

≤ |y∗ · (Z̃(0)− Zr,0(0)) + (y∗ − yr) · Zr,0(0)|

≤ I(|y∗|+ 1)δ.

It follows that

|Z̃(0)− ζW̃ (0)| ≤ |Z̃(0)− Zr,0(0)|+ |Zr,0(0)− ζrW r,0(0)|

+ |(ζr − ζ)W r,0(0)|+ |ζ(W r,0(0)− W̃ (0))|

≤ 2δ + I(Iκ)δ + |ζ|I(|y|+ 1)δ.

Because δ can be arbitrarily small, we have (5.52) and the result follows.

Propositions 5.7 and 5.8 immediately lead to the following proposition, which is parallel

to Propositions 5.5 and 5.6.

Proposition 5.9. Fix L and ε > 0. For large enough r,

|Zr,0(t)− ζrW r,0(t)| ≤ ε for all 0 ≤ t ≤ L, ω ∈ Lr,

and

|Ẑr(t)− ζrŴ r(t)| ≤ ξ̄r,0ε for all 0 ≤ t ≤ ξ̄r,0L, ω ∈ Lr. (5.53)
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5.5.4 Proof of Theorem 5.5

Propositions 5.6 and 5.9 together give the multiplicative state space collapse of the stochastic

processing network processes. To prove the state space collapse result stated in Theorem 5.5,

it is enough to prove that ξ̄r,m are stochastically bounded. We first give an upper bound

on ξ̄r,m in terms of Ŵ r.

Lemma 5.9. If |Ẑr(m/r)− ζrŴ r(m/r)| ≤ 1, there exists some κ ≥ 1 such that

ξ̄r,m ≤ κ(Ŵ r(m/r) ∨ 1).

Proof. We have

ξ̄r,m = |Ẑr(m/r)| ∨ 1 ≤ |ζr|Ŵ r(m/r) + 1 ≤ 2(|ζr|Ŵ r(m/r) ∨ 1)

The result follows by choosing κ = 2(supr |ζr| ∨ 1).

The following proposition will be used to derive an upper bound on the oscillation of

Ŵ r.

Proposition 5.10. Consider a sequence of stochastic processing networks operating under

maximum pressure policies. There exists ε0 > 0 such that for large enough r, and any

0 ≤ t1 < t2, if Ŵ r(t) ≥ J/(rε0) and |Ẑr(t)/Ŵ r(t)− ζr| ≤ ε0 for all t ∈ [t1, t2], then

Ŷ r(t2) = Ŷ r(t1).

Proof. First, we let 0 < ε0 ≤ ζi/3 for all i with ζi > 0. Since ζr → ζ as r →∞, for r large

enough |ζr
i − ζi| < ε0. Then for all i with ζi > 0, we have, for all t ∈ [t1, t2],

Ẑr
i (t) ≥ Ŵ r(t)(ζr

i − ε0) ≥ Ŵ r(t)ε0 ≥ J/r.

Namely, Zr
i (τ) ≥ J for all i with ζi > 0 and all τ ∈ [r2t1, r2t2]. Define E∗ = argmaxa∈E y

∗ ·

Ra. Because the limit network satisfies the EAA assumption, there exists an allocation

a∗ ∈ E∗ such that for each i ∈ I, ζi > 0 if
∑

j Bjia
∗
j > 0. It follows that Zr

i (τ) ≥ J for

all τ ∈ [r2t1, r2t2] if
∑

j Bjia
∗
j > 0. This implies that a∗ is a feasible allocation during

[r2t1, r2t2].
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Next, we will show that if ε0 is chosen sufficiently small, only allocations in E∗ can

be employed under a maximum pressure policy during [r2t1, r2t2]. Let ε1 = (ζRa∗ −

maxa∈E\E∗ ζRa) and κ0 = supr maxa∈E |Rra|. We set ε0 = ε1/(5κ0) ∧ min{ζi/3 : ζi > 0}.

Furthermore, choose r large enough such that |(ζr)′Rr − ζ ′R| ≤ κ0ε0/J. Then for any

a ∈ E \ E∗,(
Zr(t) ·Rra∗ − Zr(t) ·Rra

)
/W r(t)

=
(
Zr(t)
W r(t)

·Rra∗ − ζr ·Rra∗
)

+ (ζr ·Rra∗ − ζ ·Ra∗)

+ (ζ ·Ra∗ − ζ ·Ra) + (ζ ·Ra− ζr ·Rra) + (ζr ·Rra− Zr(t)
W r(t)

·Rra)]

≥ −ε0κ0 − ε0κ0 + ε1 − ε0κ0 − ε0κ0 ≥ ε1 − 4ε0κ0 > 0

(5.54)

Equation (5.54) implies that the pressure under allocation a∗ is strictly larger than that

under any allocation a ∈ E \ E∗. It follows that only the allocations in E∗ can be employed

during [r2t1, r2t2]. From Lemma 5.10 stated immediately below this proof, we have, for

every a∗ ∈ E∗,

yrRra∗ = max
a∈E

yrRra∗ = 1− ρr.

Therefore,

yr ·Rr
(
T r(r2t2)− T r(r2t1)

)
=
∑
a∈E∗

yr ·Rra
(
(T a)r(r2t2)− (T a)r(r2t1)

)
=
∑
a∈E∗

(1− ρr)
(
(T a)r(r2t2)− (T a)r(r2t1)

)
= (1− ρr)(r2t2 − r2t1).

(5.55)

This implies Ŷ (t2)− Ŷ (t1) = 0.

Lemma 5.10. For all a∗ ∈ E∗ = argmaxa∈E y ·Ra,

yr ·Rra∗ = max
a∈E

yr ·Rra = 1− ρr.

The proof of Lemma 5.10 will be provided in Appendix B. We now complete the proof

of Theorem 5.5.

Proof of Theorem 5.5. We only need to show that ξ̄r,m are stochastically bounded. Because

Ŵ r(0) is stochastically bounded and X̂r converge to a Brownian motion, for any ε > 0,
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there exists some κ1 and κ2 and r1 such that for all r ≥ r1

P(Ŵ r(0) ≤ κ1) ≥ 1− ε,

and

P(Osc(X̂r, [0, T ]) ≤ κ2) ≥ 1− ε,

where Osc(f, [0, T ]) = sup0≤s<t≤T |f(t)− f(s)|.

Meanwhile, because

|Ẑr(0)− ζrŴ r(0)| → 0 in probability,

we have

P(|Ẑr(0)− ζrŴ r(0)| ≤ ε) ≥ 1− ε,

for r large enough.

Define

Hr = {ω : Ŵ r(0) ≤ κ1,Osc(X̂r, [0, T ]) ≤ κ2, and |Ẑr(0)− ζrŴ r(0)| ≤ ε}.

Then for r large enough,

P(Hr) ≥ 1− 3ε.

Furthermore, we can choose r large enough such that Proposition 5.6 and 5.9 hold with ε

replaced by ε/κ(κ1 + κ2 + 1) and P(Lr) ≥ 1 − ε, where κ is given as in Lemma 5.9. Note

that P(Lr) → 1 as r →∞.

Denote N r = Lr ∩Hr, then for all r large enough,

P(N r) ≥ 1− 4ε.

Now we are going to show that if ε ≤ ε0, ξ̄r,m ≤ κ(κ1 + κ2 + 1) on N r for all r large enough

and m ≤ rT . In fact, we are going to show the following is true on N r for all r large enough

and m ≤ rT :

85



|Ẑr(m/r)− ζrŴ r(m/r)| ≤ ε (5.56)

ξ̄r,m ≤ κ(κ1 + κ2 + 1) (5.57)

|Ẑr(t)− ζrŴ r(t)| ≤ ε for all 0 ≤ t ≤ (m+ ξ̄r,mL)/r (5.58)∫ (m+ξ̄r,mL)/r

0
1
(cW r(s)>1)

dŶ r(s) = 0. (5.59)

This will be shown by induction. When m = 0, (5.56) obviously holds on N r, and

ξ̄r,0 = κ(Ŵ r(0) ∨ 1) ≤ κ(κ1 ∨ 1) ≤ κ(κ1 + κ2 + 1).

Meanwhile, from (5.53), replacing ε by ε/κ(κ1 + κ2 + 1), we have

|Ẑr(t)− ζrŴ r(t)| ≤ ε for all t ∈ [0, ξ̄r,0L/r].

Then from Proposition 5.10, with r ≥ 2J/ε0, we have∫ ξ̄r,0L/r

0
1(Ŵ r(s)>1)dŶ

r(s) = 0.

Now we assume that (5.56) - (5.59) hold up to m, and we shall show they also hold for

m + 1. First, (5.58) directly implies (5.56) because ξ̄r,mL > 1, and because of (5.59), by

Theorem 5.1 in [74], we have

Osc(Ŵ r, [0, (m+ ξ̄r,mL)/r]) ≤ Osc(X̂r, [0, (m+ ξ̄r,mL)/r]) + 1 ≤ κ2 + 1.

It then follows that

ξ̄r,m+1 = κ(Ŵ r((m+ 1)/r) ∨ 1)

≤ κ(Ŵ r(0) + Osc(Ŵ r, [0, (m+ 1)/r]) ∨ 1)

≤ κ(Ŵ r(0) + Osc(Ŵ r, [0, (m+ ξ̄r,mL)/r]) ∨ 1)

≤ κ(κ1 + κ2 + 1).

And by (5.51),

Ẑr(t)− ζrŴ r(t)| ≤ ε for all t ∈ [(m+ 1 + ξ̄r,m+1τ0)/r, (m+ 1 + ξ̄r,m+1L)/r].
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Then because ξ̄r,mL/r ≥ (1 + ξ̄r,m+1τ0)/r, it follows that

|Ẑr(t)− ζrŴ r(t)| ≤ ε for all t ∈ [0(m+ 1 + ξ̄r,m+1L)/r].

Then again Proposition 5.10 gives∫ (m+1+ξ̄r,m+1L)/r

0
1
(cW r(s)>1)

dŶ r(s) = 0.

Therefore, we can conclude that ξ̄r,m ≤ κ(κ1 + κ2 + 1) for all 0 ≤ m ≤ rT which implies

‖Ẑr(t)− ζrŴ r(t)‖T ≤ ε for all large enough r.

Theorem 5.5 follows because ε can be chosen arbitrarily small.

5.6 Proof of the Heavy Traffic Limit Theorem

In this section, we will convert the state space collapse results proved in Section 5.5 to the

heavy traffic limit theorem, Theorem 5.3. The proof follows from a particular version of the

invariance principle of Semimartingale reflecting Brownian motions (SRBMs) developed in

Williams [74].

As shown in Section 5.5, for any T > 0,

‖Ẑr(·)− ζrŴ r(·)‖T → 0 in probability.

Now let

εr = Ẑr − ζrŴ r, and δr(t) = (|εr(t)| ∨ 2J/r)/ε0.

Then define γr(t) = Ŵ r(t) ∧ δr(t) and W̃ r = Ŵ r − γr. It is easy to see that W̃ r =

(Ŵ r − δr) ∨ 0, and we claim ∫ ∞

0
W̃ r(s)dŶ r(s) = 0. (5.60)

To show this, it is enough to show that for any 0 ≤ t1 < t2, if W̃ r(t) > 0 for all t ∈ [t1, t2],

Ŷ r(t2) = Ŷ r(t1). Suppose W̃ r(t) > 0 for all t ∈ [t1, t2], then Ŵ r(t) > δr(t) for all t ∈ [t1, t2],

which implies that Ŵ r(t) ≥ 2J/(rε0) and |Ẑr(t)/Ŵ r(t)−ζr| ≤ ε0. Then by Proposition 5.10,

Ŷ r(t2) = Ŷ r(t1).

With (5.60), we can obtain the result by the following particular version of the invariance

principle of SRBMs developed in Williams [74].
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Theorem 5.6 (Williams [74] Theorem 4.1). If the processes (Ŵ r, X̂r, Ŷ r), r = 1, 2 . . . ,

satisfy

Ŵ r = X̂r + Ŷ r,

Ŵ r = W̃ r + γr where W̃ r(t) ≥ 0 for all t and γr → 0 in probability,

X̂r converges in distribution to a Brownian motion X∗,

Ŷ r(0) = 0 and Ŷ r(t) is non-decreasing with probability 1,∫ ∞

0
W̃ r(s)dŶ r(s) = 0 with probability 1,

then Ŵ r converge in distribution to a reflecting Brownian motion W ∗ = ψ(X∗).
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

The main contribution of this work is to propose the maximum pressure policies for a general

class of stochastic processing networks and prove that these policies are both throughput

optimal and asymptotically optimal in terms of minimizing the workload process.

The class of stochastic processing networks that we have studied is broad enough to

cover a wide range of application fields, including manufacturing systems, service systems,

computer systems, and computer communication networks. The maximum pressure policies

are attractive in that their implementation uses minimal state information of the network.

The deployment of a processor is decided based on the queue lengths in its serviceable

buffers and the queue lengths at their immediately downstream buffers. In particular, the

decision does not use arrival rate information that is often hard or impossible to estimate

reliably.

We have shown that the maximum pressure policies are throughput optimal in the sense

that they stabilize the network if the network is stabilizable. The fluid model approach has

been adapted to our stochastic processing networks to prove the throughput optimality.

For the networks that have a unique bottleneck resource pool, we have proved that the

workload processes are stochastically minimized in heavy traffic. A key step in the proof of

the asymptotic optimality is to extend Bramson’s framework to show a state space collapse

result for stochastic processing networks under maximum pressure policies.

The maximum pressure policies are not completely local in that they use immediately

downstream buffer information of a processor. Using such information is not an issue in

many manufacturing systems, but may be a problem for other systems. Searching for a

purely local policy that is throughput optimal remains an open problem.

The maximum pressure policies can maximize system throughput and asymptotically

minimize system workload. More practical performance measures include holding cost and
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delay. Regarding linear holding costs, it will be shown that for any arbitrarily small ε there

is a maximum pressure policy with some parameter such that the holding cost rate under

this maximum pressure policy is stochastically smaller than (1 + ε) times the holding cost

rate under any other efficient policy for all time. Evaluating the performance in terms of

the delay under maximum pressure policies is another interesting extension. Although it is

believed that in heavy traffic, there is a relation between the total delay experienced by an

arrival job and the queue length process (or even the workload process), it is not clear how

they relate to each other under maximum pressure policies. The other performance measure

of interest is load balancing. From the definition of the network pressure, we observe that

maximum pressure policies try to maximize the total processing speed meanwhile balancing

the buffer levels in the network.

In terms of workload minimization, the results in this work may be generalized in the

following two directions. First, the current asymptotic optimality is defined among the

asymptotically efficient policies, but one may show that the maximum pressure policies

asymptotically minimize the workload among all policies. When the workload contributor

y∗ is strictly positive, one can show that, under a policy that is not asymptotically efficient,

at least one component of the diffusion-scaled queue length process Ẑr(t) will increase

without bound almost surely for any t > 0 as r → ∞. This implies that Ŵ r(t) increases

without bound almost surely under the inefficient policy. More analysis is needed when some

components of y∗ equal zero. The other research direction is to relax the complete resource

pooling condition. This will allow us to cover the networks with multiple bottlenecks.

However, we have multidimensional workload process in this case, and it turns out the

queue length process in the diffusion limit cannot be lifted from the workload process. To

characterize the performance in the diffusion limit, one will probably need to introduce a

generalized version of state space collapse.
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APPENDIX A

EQUIVALENT DUAL STATIC PLANNING PROBLEM

In this section we describe an equivalent dual formulation for the static planning prob-

lem (4.2)-(4.6). Throughout this section, we will consider an arbitrary stochastic processing

network, so the results developed here can be applied to each r-th network in the network

sequence we discussed before and they can also be applied to the limit network. The main

result of this section is the following lemma.

Lemma A.1. Suppose ρ is the optimal objective value to the static planning problem (4.2)-

(4.6). Then (y∗, z∗) is optimal to the dual problem (5.1)-(5.5) if and only if y∗ satisfies

max
a∈A

∑
i∈I,j∈JI

y∗iRijaj = −ρ (A.1)

and

max
a∈A

∑
i∈I,j∈JS

y∗iRijaj = 1, (A.2)

and {z∗k, k ∈ KI} and {z∗k, k ∈ KS} are, respectively, optimal solutions to

min −
∑
k∈KI

zk (A.3)

s.t.
∑
i∈I

y∗iRij ≤ −
∑
k∈KI

zkAkj , for each input activity j; (A.4)

and

min
∑

k∈KS

zk (A.5)

s.t.
∑
i∈I

y∗iRij ≤
∑

k∈KS

zkAkj , for each service activity j, (A.6)

zk ≥ 0, for each service processor. (A.7)

Proof. For the “only if” part, we assume (x∗, ρ) and (y∗, z∗) are an optimal dual pair for the

static planning problem and its dual problem. We will show that y∗ satisfies (A.1)-(A.2)
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and z∗ is optimal to (A.3)-(A.4) and (A.5)-(A.7). We first show that

max
a∈A

∑
i∈I,j∈JI

y∗iRijaj ≥ −ρ, (A.8)

and

max
a∈A

∑
i∈I,j∈JS

y∗iRijaj ≥ 1. (A.9)

For this, we construct a feasible allocation a∗ with a∗j =

 x∗j , j ∈ JI

x∗j/ρ, j ∈ JS

. By the com-

plementary slackness on the constraints (5.2) and (5.3), we have

∑
i∈I,j∈JI

y∗iRijx
∗
j = −

∑
k∈KI ,j∈JI

z∗kAkjx
∗
j , (A.10)

and ∑
i∈I,j∈JS

y∗iRijx
∗
j =

∑
k∈KS ,j∈JS

z∗kAkjx
∗
j . (A.11)

By the complementary slackness on the constraints (4.3) and (4.4), we have

∑
j∈JI ,k∈KI

z∗kAkjx
∗
j =

∑
k∈KI

zk = ρ, (A.12)

and ∑
j∈JS ,k∈KS

z∗kAkjx
∗
j = ρ

∑
k∈KS

zk = ρ. (A.13)

The last equality in (A.12) is from the strong duality theorem; the optimal objective value

of the dual problem equals the optimal objective value of the primal problem. The last

equality in (A.13) follows from (5.4). Then from the definition of a∗ and (A.10)-(A.13), it

immediately follows that

∑
i∈I,j∈JI

y∗iRija
∗
j =

∑
i∈I,j∈JI

y∗iRijx
∗
j = −ρ (A.14)

and ∑
i∈I,j∈JS

y∗iRija
∗
j =

∑
i∈I,j∈JS

y∗iRijx
∗
j/ρ = 1. (A.15)

Then (A.8) and (A.9) follow because a∗ ∈ A.
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Next we shall show that

max
a∈A

∑
i∈I,j∈JI

y∗iRijaj ≤ −ρ, (A.16)

and

max
a∈A

∑
i∈I,j∈JS

y∗iRijaj ≤ 1. (A.17)

For any a ∈ A, we have

∑
i∈I,j∈JI

y∗iRijaj ≤ −
∑

k∈KI ,j∈JI

z∗kAkjaj = −
∑
k∈KI

z∗k = −ρ. (A.18)

The first inequality above follows from (5.2), and the non-negativity of a; the second in-

equality holds since a ∈ A and therefore
∑

j∈JI
Akjaj = 1 for each k ∈ KI ; the third is due

to the strong duality theorem. Similarly, we have

∑
i∈I,j∈JS

y∗iRijaj ≤
∑

k∈KS ,j∈JS

z∗kAkjaj ≤
∑

k∈KS

z∗k = 1. (A.19)

The first inequality above is for (5.3); the second is for
∑

j∈JS
Akjaj ≤ 1 and zk ≥ 0 for

each k ∈ KS ; and the third is due to (5.4).

Hence y∗ satisfies (A.1) and (A.2). To see z∗ is an optimal solution to (A.3)-(A.4) and

(A.5)-(A.7), we consider the following problems:

max{
∑

i∈I,j∈JI

y∗iRijaj :
∑
j∈JI

Akjaj = 1 for each input processor k}, (A.20)

and

max{
∑

i∈I,j∈JS

y∗iRijaj :
∑
j∈JS

Akjaj ≤ 1 for each service processor k}. (A.21)

It is easy to see that the above two problems are equivalent to (A.1) and (A.2). Furthermore

they are the dual problems of (A.3)-(A.4) and (A.5)-(A.7). This implies that the optimal

objective values to (A.3)-(A.4) and (A.5)-(A.7) are −ρ and 1 respectively. Because (y∗, z∗)

is an optimal solution to (5.1)-(5.5), (A.4) and (A.6) are satisfied by z∗,
∑

k∈KI
z∗k = ρ, and∑

k∈KS
z∗k = 1. This implies that z∗ is feasible to (A.3)-(A.4) and (A.5)-(A.7) with respective

objective values −ρ and 1. Therefore, z∗ is optimal to (A.3)-(A.4) and (A.5)-(A.7).

93



For the “if” part, let (y∗, z∗) be such that y∗ satisfies (A.1) and (A.2) and z∗ is optimal

to (A.3)-(A.4) and (A.5)-(A.7). Because (A.3)-(A.4) and (A.5)-(A.7) are dual problems of

the equivalent formulation of (A.1) and (A.2),

∑
k∈KI

z∗k = ρ, (A.22)

and ∑
k∈KS

z∗k = 1. (A.23)

The fact that z∗ is feasible to (A.3)-(A.4) and (A.5)-(A.7), together with (A.23), implies that

(y∗, z∗) is feasible to the dual problem (5.1)-(5.5). Furthermore, the corresponding objective

value is ρ because of (A.22). This implies that (y∗, z∗) is optimal to (5.1)-(5.5).

Lemma A.1 immediately implies Lemma 5.4 in Section 5.4 because the LP problem

maxa∈A y
∗ ·Ra can be decomposed into problems (A.20) and (A.21).
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APPENDIX B

PROOFS

In this section, we provide the proofs for Lemmas 5.1, 5.5, 5.7, and 5.10, and Theorem 5.1.

Proof of Lemma 5.1. From Lemma 5.4 and Assumption 5.2, we have

max
a∈A

yr ·Ra = 1− ρr.

On the other hand, T r(t)/t ∈ A. Hence (1 − ρr)t ≥ yr · RT r(t), which implies Y r is

nonnegative. Similarly, for any 0 ≤ t1 ≤ t2,
(
T r(t2)− T r(t1)

)
/(t2 − t1) ∈ A, and we have

yr ·R
(
T r(t2)− T r(t1)

)
/(t2 − t1) ≤ (1− ρ),

It follows that Y r(t2)− Y r(t1) ≥ 0.

Proof of Lemma 5.5. It is natural to work in a more general setting. Consider an i.i.d.

sequence of nonnegative random variables {v`, ` = 1, 2, . . . , } with mean 1/µv. Assume v`

have finite 2 + εv moments for some εv > 0. That is, there exists some σ̂ < ∞ such that

E(v2+εv
` ) = σ̂. Let V (n) =

∑n
`=1 v`, n ∈ Z+. Define the renewal process associated with

V (n) as R(t) = max{n : V (n) ≤ t}. Let vr,T,max = max{v` : 1 ≤ ` ≤ R(r2T ) + 1}. We first

show that

vr,T,max/r → 0 with probability 1. (B.1)

By strong law of large numbers, with probability 1,

R(t)/t→ µv as t→∞, (B.2)

and
n∑

`=1

v2+εv/n→ σ̂ as n→∞. (B.3)

Choose a sample path such that both (B.2) and (B.3) are satisfied. Then

(vr,T,max)2+εv = max
1≤`≤R(r2T )+1

v2+εv
` ≤

∑
1≤`≤R(r2T )+1

v2+εv
` .
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Because R(r2T ) →∞ as r →∞, we have

lim
r→∞

∑
1≤`≤R(r2T )+1

v2+εv
` /

(
R(r2T ) + 1

)
= σ̂.

Therefore,

lim sup
r→∞

(vr,T,max)2+εv

r2
≤ lim

r→∞

( ∑
1≤`≤R(r2T )+1

v2+εv
`

R(r2T ) + 1

)R(r2T ) + 1
r2

= σ̂µvT.

This implies that

lim
r→∞

(vr,T,max)2+εv

r2+εv
= 0.

The result follows.

We next show that for any fixed ε > 0 and large enough n,

P(‖V (`)− `/µv‖` ≥ εn) ≤ ε/n. (B.4)

Because v` have finite 2 + εv moments, one gets

E
(
|V (`)− `/µv|2+εv

)
≤ κv`

1+εv/2 for all ` ≤ n,

where κv is a some constant that depends just on σ̂ and εv (cf. Ata and Kumar [6] Lemma

8). Then from Chebyshev’s inequality, we have, for each ` ≤ n,

P(|V (`)− `/µv| ≥ εn) ≤ κv`
1+εv/2/(εn)2+εv ≤ κv/ε

2+εvn1+εv/2.

Choosing n large enough,

P(|V (`)− `/µv| ≥ εn) ≤ ε/n.

Let

τ = min{` : |V (`)− `/µv| ≥ nε}.

Then, restarting the process at time τ ,

P
(
|V (n)− n/µv| ≤ εn/2 | τ ≤ n

)
≤ P

(
|V (n)− V (τ)− (n− τ)/µv| ≥ εn/2 | τ ≤ n

)
≤ ε/2n.

On the other hand,

P
(
|V (n)− n/µv| ≤ εn/2

)
≥ 1− ε/2n.
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It then follows that P(τ ≤ n) ≤ ε/(2n− ε) ≤ ε/n. This implies the result.

Finally, the inversion of (B.4) gives

P(‖R(s)− µvs‖t ≥ εt) ≤ ε/t for large enough t. (B.5)

Applying (B.1) and (B.5) to the utilized service times uj(`), one gets (5.31) and (5.33)

in Lemma 5.5. Using (B.4) for each component of the routing vector φj
i (`) yields (5.32).

Proof of Lemma 5.7. We first show that {(yr, zr)} is bounded. Since zr ≥ 0,
∑

k∈KS
zr
k = 1,

and
∑

k∈KI
zr
k = ρr for all r, we have |zr| ≤ 1. To show {yr} is bounded, we consider the

following primal-dual pair:

minimize ρ (B.6)

subject to Rx ≥ be, (B.7)∑
j∈J

Akjxj = 1 for each input processor k, (B.8)

∑
j∈J

Akjxj ≤ ρ for each service processor k, (B.9)

x ≥ 0, (B.10)

and

maximize
∑
k∈KI

zk + b
∑
i∈I

yi, (B.11)

subject to
∑
i∈I

yiRij ≤ −
∑
k∈KI

zkAkj , for each input activity j, (B.12)

∑
i∈I

yiRij ≤
∑

k∈KS

zkAkj , for each service activity j, (B.13)

∑
k∈KS

zk = 1, (B.14)

y ≥ 0; and zk ≥ 0, for each service processor k. (B.15)

The dual LP (B.11)–(B.15) is obtained by perturbing the objective function coefficients

of the dual static planning (5.1)–(5.5). Because the dual static planning problem (5.1)–

(5.5) has a unique optimal solution, for sufficiently small b > 0, the optimal solution to the
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dual LP (B.11)–(B.15) equals to (y∗, z∗) (cf. Mangasarian [50] Theorem 1). Therefore, the

primal problem (B.6)–(B.10) has an optimal solution (ρ̂, x̂). Now choose r large enough

such that |Rrx̂ − Rx̂| < be/2. Then Rrx̂ ≥ be/2. Consider the problem (B.6)–(B.10)

wiht b replaced by b/2 and R replaced by Rr. Because (ρ̂, x̂) is a feasible solution, the

optimal objective value ρ̃r ≤ ρ̂. The corresponding dual problem of this new LP is the dual

problem (B.11)–(B.15) with b in the objective function coefficients replaced by b/2 and R

replaced by Rr. The optimal objective value of this new dual LP equals ρ̃r ≤ ρ̂. Because

(yr, zr) is a feasible solution to the new dual LP,∑
k∈KI

zr
k + b/2

∑
i∈I

yr
i ≤ ρ̃r ≤ ρ̂.

This implies that
∑

i y
r
i ≤ 2ρ̂/b for large enough r, so {yr} is bounded.

Then we only need to show that every convergent subsequence of {(yr, zr)} converges

to (y∗, z∗). Let (ŷ, ẑ) be a limit point of any subsequence {(yrn , zrn)}, we will verify that

(ŷ, ẑ) is an optimal solution to the dual static planning problem (5.1)–(5.5) of the limiting

network. First, we show that they are feasible. Since {(yrn , zrn)} → (ŷ, ẑ) as n → ∞, for

any ε > 0, for large enough n, |ŷ− yrn | < ε, |ẑ− zrn | < ε and |R−Rrn | < ε. For each input

activity j ∈ JI , ∑
i∈I

ŷiRij ≤
∑
i∈I

yrn
i Rrn

ij + Iε(|ŷ|+ sup
r
|Rr|)

≤ −
∑
k∈KI

Akjz
rn
k + Iε(|ŷ|+ sup

r
|Rr|)

≤ −
∑
k∈KI

Akj ẑk + Iε(|ŷ|+ sup
r
|Rr|) + Kε

(B.16)

Since ε can be arbitrarily small, we have∑
i∈I

ŷiRij ≤ −
∑
k∈KI

Akj ẑk for each input activity j ∈ JI .

Similarly, one can verify that∑
i∈I

ŷiRij ≤
∑

k∈KS

Akj ẑk for each service activity j ∈ JS ,

and ∑
k∈KS

ẑk = 1.
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Furthermore, because (yrn , zrn) are optimal solutions,
∑

k∈KI
zrn
k = ρrn . Again we can show

that ∑
k∈KI

ẑk = 1.

Therefore, (ŷ, ẑ) is an optimal solution to the dual problem (5.1)-(5.5) of the limit network.

Then by the uniqueness of the optimal solution, we conclude that (ŷ, ẑ) = (y∗, z∗). Since

the subsequence is arbitrary, we have (yr, zr) → (y∗, z∗) as r →∞.

Proof of Lemma 5.10. Similar to the proof of Lemma 5.7 above, we can prove that xr → x∗

as r → ∞. From the strict complementary theorem (cf. Wright [77]), every pair of primal

and dual LPs has a strict complementary optimal solution if they have optimal solutions.

Hence we have the following relations: for the limit network,

∑
j∈JS

Akjx
∗
j = 1 ⇐⇒ z∗k > 0, for all k ∈ KS ; (B.17)

∑
i∈I

y∗iRij =
∑

k∈KS

Akjz
∗ ⇐⇒ x∗j > 0, for all j ∈ JS ; (B.18)

and for each r,

zr
k > 0 =⇒

∑
j∈JS

Akjx
r
j = 1− ρr for all k ∈ KS ; (B.19)

xr
j > 0 =⇒

∑
i∈I

yr
iR

r
ij =

∑
k∈KS

Akjz
r, for all j ∈ JS . (B.20)

Since xr → x∗ as r → ∞, for large enough r, xr
j > 0 if x∗j > 0. This, together with (B.18)

and (B.20), implies that for each j ∈ J ,

y∗iRij =
∑

k∈KS

Akjz
∗ =⇒

∑
i∈I

yr
iR

r
ij =

∑
k∈KS

Akjz
r for large enough r. (B.21)

Suppose z∗k = 0 for some k ∈ KS , then
∑

j∈JS
Akjx

∗
j < 1. There exists an ε > 0 such that∑

j∈JS
Akjx

∗
j = 1 − ε. For large enough r, we have

∑
j∈JS

Akjx
r
j ≤

∑
j∈JS

Akjx
∗
j + ε/2 ≤

1 − ε/2 because xr → x∗ as r → ∞. This implies zr
k = 0 for large enough r by (B.19).

Therefore,

z∗k = 0 =⇒ zr
k = 0 for large enough r (B.22)
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Because (y∗, z∗) is the optimal solution to the dual static planning problem (5.1)–(5.5),

we have for each a ∈ E ,

∑
j∈J

(∑
i∈I

y∗iRij

)
aj ≤

∑
j∈JS

( ∑
k∈KS

Akjz
∗
k

)
aj −

∑
j∈JI

(∑
k∈KI

Akjz
∗
k

)
aj ≤ 0 (B.23)

Since a∗ ∈ E∗, y∗ ·Ra∗ = maxa∈E y
∗ ·Ra = 0. It follows that both inequalities in (B.23) are

equalities for each a∗ ∈ E∗, and therefore,

∑
i∈I

y∗iRij =
∑

k∈KS

Akjz
∗
k for all j ∈ JS with a∗j > 0, (B.24)

∑
j∈JS

Akja
∗
j = 1 for all k ∈ KS with z∗k > 0. (B.25)

From (B.21) and (B.24), we have for large enough r,

∑
i∈I

yr
iR

r
ij =

∑
k∈KS

Akjz
r
k for all j ∈ J with a∗j > 0.

Therefore, ∑
j∈J

a∗j
∑
i∈I

yr
iR

r
ij =

∑
j∈J

a∗j
∑

k∈KS

Akjz
r
k for large enough r. (B.26)

From (B.22) and (B.25), it follows that for large enough r,

∑
j∈Js

a∗jAkj = 1 for all k ∈ KS with zr
k > 0.

Therefore, ∑
k∈KS

zr
k

∑
j∈Js

a∗jAkj =
∑

k∈KS

zr
k for large enough r. (B.27)

It follows from
∑

j∈JI
a∗jAkj = 1 for each k ∈ KI ,

∑
j∈JI

zr
k = ρr, (B.26) and (B.27)

that ∑
j∈J

a∗j
∑
i∈I

yr
iR

r
ij =

∑
j∈J

a∗j
∑

k∈KS

Akjz
r
k = 1− ρr for large enough r. (B.28)

Then the result follows from maxa∈E y
r ·Rra = 1− ρr.

Proof of Theorem 5.1. We define the scaled process ¯̄Xr via

¯̄Xr(t) = r−2X(r2t) for each t ≥ 0.
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Fix a sample path that satisfies the strong law of large numbers for uj and φi
j . Let ( ¯̄Z, ¯̄T )

be a fluid limit of ( ¯̄Zr, ¯̄T r) along the sample path. Following the arguments in Section 4.3

such a limit exists and satisfies the fluid model equations (4.7)-(4.11). Under a maximum

pressure policy, each fluid limit ( ¯̄Z, ¯̄T ) also satisfies the fluid model equation (4.13). The

justification of fluid model equation (4.13) is similar to Lemma 4.1, with the scaling r

replaced by r2. Therefore, ( ¯̄Zr, ¯̄T r) is a fluid model solution under maximum pressure

policy. From Theorem 4.4, the fluid model under the maximum pressure policy is weakly

stable, so, under the maximum pressure policy, ( ¯̄Z, ¯̄T ) satisfies ¯̄Z(t) = 0 for each t ≥ 0 given

¯̄Z(0) = 0. As a consequence, we have for any t > 0, ¯̄T (t)/t satisfies (4.3)–(4.6) with ρ = 1.

Because x∗ is the unique optimal solution to the static planning problem (4.2)–(4.6) with

objective value equal to 1, ¯̄T (t)/t = x∗ and ¯̄T (t) = x∗t for each t ≥ 0. Since this is true

for any fluid limit, we have ¯̄T r(t) → x∗t for each t with probability 1, which implies the

asymptotic efficiency.
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