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SUMMARY

In this thesis we investigated the dynamic scheduling of computer communication net-

works that can be periodically overloaded. Such networks are modelled as mutliclass queue-

ing networks in a slowly changing environment. A hierarchical framework is established to

search for a suitable scheduling policy for such networks through its connection with stochas-

tic fluid models. In this work, the dynamic scheduling of a specific multiclass stochastic

fluid model is studied first. Then, a bridge between the scheduling of stochastic fluid models

and that of the queueing networks in a changing environment is established.

In the multiclass stochastic fluid model, the focus is on a system with two fluid classes

and a single server whose capacity can be shared arbitrarily among these two classes. The

server may be overloaded transiently and it is under a quality of service contract which is

indicated by a threshold value of each class. Whenever the fluid level of a certain class

is above the designated threshold value, the penalty cost is incurred to the server. The

optimal and asymptotically optimal scheduling policies are specified for such a stochastic

fluid model.

Afterwards, a connection between the optimization of the queueing networks and that

of the stochastic fluid models is established. This connection involves two steps. The first

step is to approximate such networks by their corresponding stochastic fluid models with a

proper scaling method. The second step is to construct a suitable policy for the queueing

network through a successful interpretation of the stochastic fluid model solution, and a

successful interpretation method is provided in this study.

ix



CHAPTER 1

INTRODUCTION

1.1 Motivation

The Internet has been growing rapidly as a medium to store, process and deliver information

since its birth. The Internet was first introduced when ARPANET adopted TCP/IP in the

late twentieth century. With only 213 hosts in 1981, now the Internet has more than 200

million hosts and more than 840 million users as of September of 2002 (from the information

released by Netsizer.com).

Accompanying the growth of the Internet, various Internet applications have been de-

veloped. These applications range from text-based utilities such as file transfer and remote

login to the integrated advent such as the World Wide Web and multimedia streaming.

Companies and costumers are increasingly reliant on these applications, especially the World

Wide Web service, which can provide dynamic content, integrate with databases and offer

secure commercial transactions. More and more people around the world tend to seek in-

formation and services from the Web, such as looking for driving directions, checking flight

information, booking hotels, banking, and stock trading.

An important factor in the growth of the World Wide Web is the deployment of the

electronic business (e-business). As a new communications medium, the Web becomes an

electronic market for companies or organizations to advertise and sell products or services

to consumers. With the trust in the provisioning of the Web sites, consumers also seek the

information, buy products or services, and complete the business transactions through the

on line services offered by those companies or organizations participating in this electronic

market.

In a general e-business environment, most companies or organizations that sell products

or services actually buy Internet services from a common Internet service provider such

as IBM, HP, Intel. When a customer visits the Web sites of a company and requests
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a Web page, the request is actually directly served by the Internet service provider of

that company. If the quality of service (QoS) provided by the Internet service provider

is unsatisfactory, then the company lose potential online customers. Therefore, as part of

the contract between each company (or organization) and the Internet service provider, the

service level agreement (SLA) is specified. In the service level agreement, the Internet service

provider guarantees to meet certain quality of service performance for each company. Each

company or organization will also pay the Internet service provider according to the quality

of service provided by the Internet service provider. The quality of service levels specified

between the Internet service provider and companies (or organizations) are different based

on the price negotiated between those companies (or organizations) and the Internet service

provider. A critical issue for the Internet service provider is how to allocate its resources to

meet the service level agreements and maximize its profits or minimize its costs.

We herein focus on determining the optimal decision for the Internet service provider

to maximize its profits or minimize its costs with regard to what is specified in the service

level agreement contracts. It is difficult to make the optimal decision for the Internet service

provider due to the complexity of the computer networks it is facing. First, the quality of

service levels as well as the prices for different companies or organizations are all different.

Second, it is extremely difficult to predict the online behaviors of customers who come

from all over the world. For example, when the customers will visit the Web sites, what

Web pages they will request, how long they will stay at these Web sites, and what is the

next Web page they will request are highly variable. Above all, the advancements of new

computer technologies continue to bring in new Internet applications and services, and thus

the complexity of the Internet also continues to grow rapidly.

We propose an analytical approach to investigate the decision problems concerning the

service performance for the Internet service providers, such as resource allocation, perfor-

mance prediction and quality of service provisioning. The analytical results can provide us

with a better understanding of the fundamental issues and tradeoffs at the core of perfor-

mance problems in the design and implementation of complex computer systems, networks

and applications. The mathematical model we consider is very general in the sense that it
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is a stochastic network model, where we allow that the time between consecutive customer

requests follows an unknown probabilistic distribution and the service time of each customer

request can also be random. Details of the model are provided in Section 1.2.

1.2 The mathematical model, challenges, and objective

In this section, we will provide more details of the mathematical models we investigate and

discuss the difficulties and challenges of analyzing such models.

1.2.1 The mathematical model

We consider optimizing the scheduling discipline of a multiclass queueing network model,

where multiple classes of jobs wait in buffers before being served by an available server. Dif-

ferentiation of different classes may result from different e-businesses with different quality

of service contracts. Jobs of each class represent the requests of Web pages submitted by the

customers visiting Web sites. It is important to note, however, that while our mathemat-

ical model and analysis are motivated by the e-business and Internet environments, they

also apply to more general networks, including manufacturing networks with high volume

production of small items.

We refer to the service requests submitted to a Web server as jobs. The workload

characterization study of Web servers reveals that jobs arrive at Web servers in a bursty

fashion. Not only are the inter-arrival times between jobs are random, but also the average

inter-arrival time can change significantly over time. There are some sustainable periods

when the Web site observes higher customer demand. For example, from the study of

Arlitt and Jin in [1], the minimum number of requests received by the the 1998 World Cup

Web site per hour from 16:30 to 21:00 on June 29th, 1998 is more than 4 millions, while

the maximum number of requests per hour from 01:00am to 1:00pm on June 30th, 1998

is around only 1 million. The average number of requests per minute during 11:30pm to

11:45pm on June 30th, 1998 is 19 times more than the average number of requests per

minute from June 7th to the July 18th of 1998. This type of bursty Web traffic is also

observed by other commercial Web sites and Web sites of research institutions, as reported

in Arlitt and Williamson [2].
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This non-homogeneous behavior of system parameters motivated us to model the queue-

ing networks as those operating in a changing environment. The change of the environment

state triggers the change of the arrival rates, service rates, and routing probabilities. In

particular, we consider that the state of the environment takes only discrete values. At

each state of the environment and within each minute, the high speed and the large scale

of contemporary Internet makes it possible that there are thousands of jobs, i.e. service re-

quests, arriving to the network and thousands of jobs completed by the network. However,

the time scale for a change in the environment state is larger than minutes. Therefore, the

state of the queueing network changes much faster than the state of the environment does.

In general, we consider that the network is operating in a slowly changing environment. By

slow, we mean that the number of environment transitions is much fewer than the number

of changes of the network state.

Our objective is to improve the performance of a mutliclass queueing network operating

in a slowly changing environment. The set of parameters to describe the multiclass queue-

ing network, such as the arrival rates, service rates, and the routing matrix, will change

whenever the state of the environment changes. At each state of the operating environment,

for a multiclass queueing network, there might be more than one class of jobs for a server to

process. Whenever a server is available, one needs to determine which job to be processed

next, (i.e the scheduling policy). In this mathematical model, we assume that violating

the quality of service level agreement will result in the profit loss or cost increase for the

Internet service provider. Our objective is to find an optimal or near optimal scheduling

policy to maximize the profits or minimize the cost for such a mutliclass queueing network

operating in a changing environment.

1.2.2 The objective

It is well known that finding the optimal scheduling policy for a multiclass queueing network

is difficult even when the environment state attains only one value. For the queueing

network in a changing environment, the scheduling problem is even more challenging since

the environment process is a stochastic process. We adopt a relatively modest objective

4



and plan to establish a hierarchical frame work to search for an asymptotically optimal

scheduling policy. In this frame work, we first study a stochastic fluid model which has

a simpler structure than the original queueing network in a changing environment. Then

we derive a suitable policy for the discrete queueing network based on the stochastic fluid

model solution.

We plan to establish this hierarchical frame work by providing a general method to

derive an asymptotically optimal scheduling policy for the queueing network if the optimal

policy of the stochastic fluid model is given.

We give a brief review of the related literature in Section 1.3 and discuss our results and

contributions in Section 1.4

1.3 Literature review

As mentioned earlier, in the Web traffic characterization study, it is observed that there

exist non-stationary effects and high peak-to-mean ratios in the Web traffic. It is reported

in Arlitt and Jin [1] that the traffic of the 1998 World Cup Web site is quite bursty.

The capacity of the system can hardly maintain the immediate responsiveness to all users’

requests during the peak hours. Similar observation is also reported in Iyenger, Squillante,

and Zhang [22]. Arlitt and Williamson [2] study the traffic pattern of six different Web

sites, including research institute Web sites and commercial Web sites. They find out that

generally the number of requests received per unit time during the peak hours is significantly

larger than the other hours, and point out the failure of modelling the system by a time

homogeneous network. The high peak-to-mean ratio of the demand pattern implies the

Web server can be potentially overloaded during the peak hours if the capacity planning is

made according to the mean value. The Web server being overloaded will result in longer

response time to Web page requests, and therefore the quality of service level agreements

might be violated. This consequently results in profit loss or cost increase of the Internet

service providers. The significance of sustainable peak hours and the need to optimize the

profit creates the necessity to model the Internet as a network in a changing environment.

As we have pointed out in Section 1.2, it is difficult to optimize such a network. However,

5



certain connections between the standard queuing network (i.e the case that the environment

stays at a single state) and its corresponding fluid model have been established. Scaling the

time and space properly, Chen and Mandelbaum [13] show that a general standard class

of queueing networks converges to deterministic fluid networks. In [15], Dai further reveals

that the queueing network is stable if its corresponding deterministic fluid model is stable.

In [12], Chen and Meyn suggest using the value function of the fluid model to initialize

the value iteration algorithm for the queueing network and show through some numerical

examples that such a choice may lead to faster convergence to an optimal policy.

With the hope that there is a connection between the optimal policy of the fluid model

and its corresponding queueing network, more studies in optimizing deterministic fluid mod-

els have been conducted. Avram, Bertsimas, and Ricard have provided optimal solutions

in [4] for various deterministic fluid models. In [11], Chen and Yao provide the conditions

under which the index policy is optimal for mutliclass fluid networks. Weiss [37] provides a

general algorithm to search for the optimal solution of the deterministic fluid models.

However, even if the optimal solutions of the fluid models are provided, how to derive a

good policy for the original discrete queueing network is still difficult. Intuitively, one would

consider to employ the solution of the fluid model for the queuing network. However, if

the solution of fluid model is employed in an unmodified way, the derived scheduling policy

of the queueing network may end in poor performance. This is indicated by the examples

in Yeh, Dai, and Zhou [39]. Examples in Meyn [30] and Maglaras [27] also show that the

derived policy may not even possess the fluid scale asymptotic optimality if the fluid policy

is not modified properly when it is applied to the discrete queueing network.

The fluid scale asymptotic optimality criterion is proposed by Meyn in [29] to measure

the goodness of a policy for the queueing network. If under the fluid scaling, the performance

of the queueing network under a policy converges to an optimal solution of the fluid model,

this policy is called an asymptotically optimal policy for this queueing network in the fluid

scale, or this policy possesses the fluid scale asymptotic optimality. Despite the modest

objective of fluid scale asymptotic optimality, the meaning of the fluid model solution is

still subtle for the queueing network. In [30], Meyn suggests that the fluid model policy
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can be translated by an affine shift method, i.e shifting the origin to a constant value.

But Meyn [30] does not provide the proof that this method will be effective in general.

Maglaras [27] proposes a general method to translate the optimal fluid model solution

to get a fluid scale asymptotically optimal scheduling policy for the queueing networks,

although proofs of his results are not mathematically rigorous. Bäuerle [5] studies the

asymptotic optimality of tracking policies for stochastic networks. However, the result in

[5] relies on the assumption of the piecewise constant structure of fluid model solutions and

the exponential type of distribution of inter-arrival times and service times.

Note that the above research activities concentrate on the setting where the network

operates at a single environment state, (a special case of the model we consider here).

The relation between the stochastic fluid models and the queueing networks in a random

environment is touched in Choudhury, Mandelbaum, Reiman, and Whitt [14]. In [14],

Choudhury et al show that queueing systems in a random environment can be approximated

by a stochastic fluid model, but this queueing system is mainly a single class queueing system

and the mathematical model of this queueing system is not completely and rigorously built.

Although the connection between optimizing the stochastic fluid model and optimizing

the queueing network in a changing environment is not well established, there are already

exsiting results on stochastic fluid models. In [6], Bäuerle and Rieder show that the index

policy is optimal for a multiclass fluid network where the external arrival process of fluid

is driven by a continuous time Markov chain with finite state space. The performance

measure in [6] is to maximize the expected total discounted rewards or the expected total

discounted costs. Note that the index type policies may not be optimal for general type of

cost functions as indicated by this study in Chapter 2. Harrison and Zeevi [19] study a call

center staffing problem using a stochastic fluid model.

This dissertation provides a bridge between the results of stochastic fluid models and

the scheduling policies of queueing networks in a changing environment.
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1.4 The approach, results, and contributions

In this section, we briefly describe our approach to search for the asymptotically optimal

policy for the queueing network model introduced in Section 1.2. We will also present the

results of this study and discuss its contributions.

1.4.1 The approach

We plan to take a two step approach to search for an asymptotically optimal policy of a

mutliclass queueing network in a slowly changing environment. The first step is to investi-

gate a stochastic fluid model which has a structure less complex than but is similar to that

of the queueing network in a slowly changing environment. The second step is to derive a

scheduling policy for the original queueing network from the stochastic fluid model solution.

Even though the stochastic fluid model is simpler than the original queueing network, it

still keeps certain structure of the queueing network model as well as the stochastic pattern

of the changing environment. In fact, the stochastic fluid model is an approximation of the

queueing network model. In Chapter 3, we provide the relative result on how to approximate

a queueing network in a slowly changing environment by its corresponding stochastic fluid

model. Rigorous description of the stochastic fluid model is provided in Theorem 14 in

Section 3.3.2.

Next, we assume that a solution of the corresponding stochastic fluid model is given, then

we derive a scheduling policy for the queueing network model. This step is referred to as

the translation or the tracking of the stochastic fluid model solution. If with proper scaling,

the performance of the queueing network operating under the derived policy converges to

the performance of the stochastic fluid model solution, then we say the translation of the

stochastic fluid model solution is successful with respect to this performance measure.

When translating the fluid model policy back to get a scheduling policy for queueing

networks, the caution is needed at the boundary of the fluid model. What we do is to

keep a certain number of jobs at each buffer to be above certain value, which is referred to

as the safety stock level. If the queue length of each buffer is above its designated level,

we implement the policy suggested by the fluid model solution; otherwise, we implement a
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special policy such that the state of network is adjusted as quickly as possible to reach that

level. We choose the safety stock level to be negligible compared to the network processing

speed, i.e the network can be emptied in a very short time if the queue length is at or below

the safety stock level. Essentially, we try to maintain the state of the network to be always

away from the boundary to avoid potential adverse consequences. But we do not want to

move the boundary too far, otherwise it may result in the profit loss or the cost increase.

So we need to be cautious when choosing how much to shift the boundary. The detailed

description of the translation method is provided in Section 3.4.

1.4.2 The results and contributions

In this dissertation, we build a mathematical model for multiclass queueing networks oper-

ating in a slowly changing environment. With the fluid scaling method, we show that the

mutliclass queueing network in a slowly changing environment can be approximated by a

stochastic fluid model. Then we provide a general translation method to derive a schedul-

ing policy for the queueing network from a given stochastic fluid model solution. We also

prove that the provided translation method is successful, i.e the derived scheduling policy

is asymptotically optimal in the fluid scale if the given stochastic fluid model solution is

optimal.

We also investigate the policy for a Web server through a stochastic fluid model, where

the Web server could be overloaded periodically. In this stochastic fluid model, we address

the service level agreement by adopting a threshold type cost function. This work shows

that the optimal policy of stochastic fluid models under service level contracts seriously

depend on the service level contract and the traffic pattern of the network. The simple

structured policies such as the index policy may not be optimal even for fluid models with

a simple cost structure to address certain quality of service contracts.

The contributions of our work are as follows.

• A complete mathematical model for multiclass queueing networks in a slowly changing

environment is built. Note that in the related work [14], Choudhury, Mandelbaum,

Reiman, and Whitt simply provide some suggestions to build such a network, but do
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not actually build the mathematical model rigorously.

• The multiclass queueing network in a slowly changing environment generalizes the

standard mutliclass queueing network. In the model considered in this study, the state

of the environment takes values from a discrete set, while in the standard mutliclass

queueing network model, the state of environment takes only one value.

• We generalize the result provided in Choudhury et al [14] and we present the result

in a more rigorous way. The result of [14] shows that a queueing system in a random

environment can be approximated by a stochastic fluid model, but it concentrates on

single class queueing systems only. And the result itself is not mathematically and

rigorously presented. Our result is for a general multiclass queueing networks, and we

state our result rigorously in Theorem 14.

• We provide a general method to translate the stochastic fluid model solution and this

method is easy to implement. This method is described in Section 3.4.

• We prove that the translation method is successful under moderate conditions, i.e the

derived scheduling policy for the queueing network is good by the fluid scale asymp-

totic optimality criterion proposed in Meyn [29]. Note that even for the standard

queueing network case where the operating environment is not changing, it is dif-

ficult to provide a general and successful translation method as we have discussed

in Section 1.3. Although Maglaras [27] provides a translation method for standard

multiclass queueing networks, his proof lacks mathematical rigor.

• We establish a hierarchical frame work to facilitate the search for the fluid-scale asymp-

totically optimal scheduling policy for multiclass queueing networks in a slowly chang-

ing environment. Our approach involves three steps. The first step is to approximate

the original network by a stochastic fluid network model. The approximation is pro-

vided in Section 3.3.2. The second step is to find the optimal scheduling policy for the

stochastic fluid model. The third step is to apply the translation method we provide

in Section 3.4 to obtain the scheduling policy for the original network.
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• We provide an asymptotically optimal scheduling policy for a stochastic fluid model

where Web servers are under quality of service contracts and can be overloaded peri-

odically.

1.5 Outline of the dissertation

The rest of the thesis is organized as follows. In Chapter 2, we provide the asymptotically

optimal scheduling policies for Web servers that are under quality of service contracts and

can be overloaded periodically. Then we bridge the gap between the solutions of general

stochastic fluid models and their corresponding queueing networks in Chapter 3. In partic-

ular, we establish a frame work in order to search for an asymptotically optimal scheduling

policy for mutliclass queueing networks in a slowly changing environment. In Chapter 4,

we conclude this work.

Throughout the manuscript, we use R to denote the real line, and R+ to denote the

nonnegative real numbers, i.e. [0, ∞). We use ′ to denote the transpose operation on a

vector or a matrix. Operations taken on vectors are interpreted as operations taken on

each corresponding component. For example, for K-dimensional vectors a = (a1, . . . , aK)′

and b = (b1, . . . , bK)′, a + b = (a1 + b1, . . . , aK + bK)′, a ≤ b means that ai ≤ bi for all

1 ≤ i ≤ K, and a 6≥ b means that there exists an i, 1 ≤ i ≤ K such that ai < bi. We

also use a = (ai, 1 ≤ i ≤ K)′ to denote a K-dimensional vector a. We use |a| to denote

max{a,−a}, where a is a real number or a vector of real numbers.
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CHAPTER 2

A STOCHASTIC FLUID MODEL WITH TRANSIENT

OVERLOAD AND QUALITY OF SERVICE

AGREEMENTS

In this chapter, we study a specific multiclass stochastic fluid model for a Web server with

two classes of jobs. The Web server is under quality of service contract and can be overloaded

periodically. After an introduction and the model description, we present our results. For

the rest of the manuscript, jobs or customers all mean service requests.

2.1 Introduction

Recent advances in Internet services and other emerging applications have created new

computing and networking paradigms in which a set of e-commerce businesses contract

with a common hosting provider of Internet applications and services for their respective

customers. In such an environment, the hosting service provider needs to meet a diverse

set of requirements of the various e-commerce businesses and customers. To address these

diverse requirements and leverage potential economies of scale, the hosting service provider

will often deploy a cluster of servers to effectively share the computing and networking

resources required to support the desired Internet applications and services. A number of

computer industry companies such as HP, IBM and Intel are already providing such hosting

services and it appears that more companies will be doing so in the future.

To differentiate the diverse requirements of e-commerce businesses and customers, it is

necessary to introduce the notion of different service classes. These service classes typically

have distinct levels of importance to the hosting service provider, the businesses and their

customers. Moreover, many of these service classes require specific Quality-of-Service (QoS)

performance guarantees; failures to deliver such levels of QoS can have a significant impact
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on the e-commerce businesses and customers. For example, customers may easily lose

patience and discontinue using the service if its responsiveness is perceived to be too long.

Hence, as part of the contract between the service provider and each business, the hosting

service provider agrees to guarantee a certain level of QoS for each class of service, and

in return each e-commerce business agrees to pay the service provider for satisfying these

QoS performance guarantees. Such Service-Level-Agreements (SLA) are included in service

contracts between each business and the service provider, and they specify both performance

targets or QoS guarantees, and financial consequences for meeting or failing to meet these

targets. A service level agreement may also depend on the anticipated level of per-class

workload from the customers of the business.

Thus, it is critical for the hosting service provider to dynamically allocate its server

resources to optimize performance and profit measures in cluster-based computing envi-

ronments with SLA contracts containing QoS performance guarantees. This is also an

important issue for the continued growth and success of Internet services and applications.

Therefore, in this chapter we focus on a particularly important class of dynamic schedul-

ing problems that arise in these computing environments. However, it is important to

note that while our analysis and results are motivated by such environments, they apply

more generally to a wide variety of emerging computing environments with SLA-based QoS

performance guarantees.

Previous studies that address QoS performance guarantees have focused mostly on

throughput or mean response time measures. However, a crucial issue for Internet applica-

tions and services concerns the per-request efficiency with which the differentiated services

are handled, since delays experienced by customers can result in lost revenue and customers

for a business as described above. Furthermore, more standard performance metrics such

as throughput and mean response time may not fully capture such QoS performance guar-

antees. In order to address these issues, we consider a general class of SLAs in which a

threshold is defined for each class of service such that the hosting service provider gains

revenues when the QoS level experienced by the class stays at or below the threshold, but

the service provider pays penalties to the corresponding businesses when this threshold is
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exceeded. Then the optimal control problem focuses on allocating server resources in or-

der to maximize the profit of hosting the collection of e-commerce sites under these SLA

constraints.

Another big challenge of the problem concerns the diverse workloads of different e-

commerce businesses and their variation over time. It is common in the computing environ-

ments of interest to have the workload of certain classes in each e-commerce site alternate

between a period during which the arriving workload exceeds the allocated capacity, and a

period during which the arriving workload is less than this capacity, even though the average

load is within the allocated capacity; e.g., see [7]. These periods of transient overload can

have a significant effect on the performance experienced by the different classes of service.

This in turn can have a critical impact on the penalties that the hosting service provider

is required to pay each e-commerce business according to the SLA contract between them.

Hence, it is crucial to include these important workload characteristics in the analysis of

the optimal control problem.

This problem falls within the general class of optimal resource control problems with

the foregoing non-conventional performance metrics and workload characteristics. Several

researchers have studied the issue of workloads with transient overload, but their studies

have focused on single-class workloads and specific scheduling strategies, such as admis-

sion control (e.g., [21]) and direct modifications to the Internet server scheduling mech-

anism (e.g., [7, 10]). On the contrary, the focus in the present study is on the optimal

dynamic scheduling of a multiclass system with transient overload. Furthermore, little has

been done to consider the issue of maximizing profit in these computing paradigms under

non-conventional performance metrics. The primary exception is the study in [25], which

develops queueing-theoretic bounds and approximations to formulate the resource control

optimization problem and then develops efficient algorithms to compute the optimal so-

lution. This study is the one that is most relevant to this research, but it differs from

the present study in several important aspects. The present focus is on computing the

optimal dynamic scheduling policy and gaining insights into its fundamental properties,

as opposed to computing the steady-state solution, and to do so under a workload with
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transient overload, which is not considered in [25].

The primary concern in this chapter is to investigate the preceding optimal server re-

source control problem as a dynamic scheduling problem. The motivation behind consider-

ing a fixed time horizon is that in reality many web sites exhibit regular daily access patterns

(see [24]), typically there is one single peak period each day, the low period load is far below

the system capacity so that the system usually starts empty the next day. Distributed

architectures with separate machines for different geographical locations are also common

in practice in order to improve the response time for accessing data over the Internet. This

again validates the single period model. Hence, the traffic from the previous period does

not have an effect on the next period. The approach is based on formulating the problem as

a multiclass stochastic fluid model and employing optimal control theory [31, 32] to search

for the optimal control policy that maximizes the total revenue over a fixed time horizon.

Even though recent studies of a similar spirit for different dynamic scheduling problems

include [4, 6, 17, 37], to the best our knowledge, no optimal scheduling policy is known

for the general problem considered herein. As mentioned above, the present focus is on

minimizing the penalty of the hosting service provider by dynamically scheduling its server

resources among the fluid classes in a system that can be overloaded for a transient period.

In order to capture the QoS performance guarantees in the SLA contracts, we introduce a

threshold value for each fluid class such that a holding cost is incurred only if the amount

of fluid of a certain class exceeds its threshold value. In this study, we consider the specific

case of two fluid classes and a single server whose capacity can be shared arbitrarily among

the two classes. We assume that the class 1 arrival rate changes with time and the class 1

fluid can more efficiently reduce the holding cost and develop the optimal server resource

allocation policy that minimizes the holding cost in the corresponding fluid model when the

arrival rate function for class 1 is known. We then study the stochastic fluid system when

the arrival rate function for class 1 is random and propose various policies that are optimal

or near optimal under various conditions. In particular, we consider two different types

of heavy traffic regimes and prove that our proposed policies are strongly asymptotically

optimal in the following sense: the difference between its performance and the optimality
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is bounded from above by a constant even as the optimal value itself goes to infinity. This

notion of strong asymptotic optimality is used throughout this chapter and it has also been

considered in [35, 38], as a measure to evaluate the closeness to optimality of approximating

control policies. Numerical examples are also provided to demonstrate further that these

policies yield good results in terms of minimizing the expected holding cost.

The outline of this chapter is as follows. We define our multiclass fluid model in Sec-

tion 2.2. Deterministic instance of the model is analyzed in Section 2.4 where we provide the

optimal control policy. Section 2.5 and Section 2.6 consider the stochastic instance of the

model. In Section 2.5, we present a discrete review policy and show that it is asymptotically

optimal as the expected length of the high period tends to infinity. Other policies that are

asymptotically optimal are further discussed in Section 2.6. Our concluding remarks are

provided in Section 2.9. Throughout, proofs are relegated to Section 2.8.

2.2 The stochastic fluid model

This chapter focuses on the following stochastic fluid system that serves two classes of fluid.

Each class fluid continuously arrives at its buffer whose capacity is assumed to be infinite.

Both classes are served by a single server whose service capacity can be shared arbitrarily

among the two classes. When the server devotes full effort to class i, it processes class i

fluid at rate µi, i = 1, 2.

Class 2 fluid arrives at a constant rate λ2 throughout the time horizon under consider-

ation. Class 1 fluid has a high arrival rate λh
1 during the first part of the time interval and

a low arrival rate λl
1 in the rest of the time interval. Naturally, λl

1 ≤ λh
1 . The durations of

the first and second time intervals are denoted by H and L, respectively. Both H and L are

random. Some of their statistics like mean remaining life times are assumed to be known.

These assumptions will be spelled in more precise terms later. We call the time interval

[0,H) the high load period and the time interval [H,H + L) the low load period.

We use Zi(t) to denote the fluid level in class i at time t, and Ti(t) to denote the

cumulative amount of time in [0, t] that the server spends on class i fluid, i = 1, 2. The
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dynamics of the fluid model is given by the following equations

Zi(t) = Zi(0) +
∫ t

0
λi(s) ds− µiTi(t), t ∈ [0,H + L), (1)

Ti(0) = 0, Ti(t) is a nondecreasing function of t, (2)

t− (T1(t) + T2(t)) is a nondecreasing function of t, (3)

where λi(s) is the arrival rate to class i at time s. Since the class 1 arrival rate function

λ1(·) is random, the fluid level process Z is random as well. The allocation process T =

{(T1(t), T2(t)), t ≥ 0} reflects how the server spends its service capacity among two classes

and it is called a scheduling or a service policy.

Let hi > 0 and θi ≥ 0 be constants, i = 1, 2. For a real number x, define x+ = max(x, 0).

Consider the integral ∫ H+L

0

2∑
i=1

hi (Zi(t)− θi)
+ dt (4)

which is called the total cost of the system. Then one interprets hi as the holding cost per

unit time when the fluid level in class i exceeds θi. If the fluid level in class i is below θi,

the fluid does not accumulate cost for the system. Clearly, the cost depends on initial fluid

level z = Z(0), and allocation T employed. Since H and L are random variables, the cost is

also random. The focus of this chapter is to find an allocation T to minimize the expected

total cost for each initial point z. We assume that working on class 1 can more efficiently

reduce holding costs. Namely,

h1µ1 > h2µ2. (5)

If the assumption in (5) is violated, the optimal policy is a generalization of the well-known

cµ rule (see for example, Smith [36], Klimov [23] and Green and Stidham [18]). Details of

such an optimal policy are presented in Section 2.3.

When θi = 0 for i = 1, 2, the optimal policy is again given by the cµ-rule. That is

the server gives priority to class i with highest hiµi. To the best of our knowledge, the

optimal policy for our general problem is not known. In the special case when H and L

are deterministic and are known at the beginning of the time window, we will present an

optimal policy. Using this policy, we will construct heuristic policies, known as discrete
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review policies, for controlling the system. We will present numerical experiments showing

that these policies perform well. We will establish asymptotic results guaranteeing good

performance of these policies in certain parameter regions. We will also identify other

policies that are asymptotically optimal in certain parameter regions.

For any feasible allocation T , it follows that T (t) is Lipschitz continuous in t. Thus, T

is absolutely continuous and has derivatives almost everywhere. Therefore, specifying an

allocation T is equivalent to specifying its derivative Ṫ (t) for almost every t in (0,H + L).

(For a function f , ḟ(t) denotes the derivative of f at time t. Whenever ḟ(t) is used, the

derivative of f at time t is assumed to exist.) Clearly, any feasible allocation T should be

non-anticipating. Namely, Ṫ (t) depends only on the information available up to time t.

For future reference, we also define the traffic intensities of the system. The system load

per unit of time contributed by class 1 fluid is ρh
1 = λh

1/µ1 for the high load period and

ρl
1 = λl

1/µ1 for the low load period. The system load per unit of time contributed by class

2 fluid is constant and given by ρ2 = λ2/µ2 > 0. The overall system load is ρh = ρh
1 +ρ2 for

the high load period and ρl = ρl
1 + ρ2 for the low load period. When ρh > 1 and ρl < 1, the

total system work increases in the high load period and decreases in the low load period.

In this case, the high load period is also called the overload period. Thus, when ρh > 1

and ρl < 1 the system experiences an overload period followed by an under-load period,

a phenomenon known as transient overload in literature; see, for example, [7]. Although

understanding transient overload is the primary motivation of this chapter, except explicitly

stated otherwise, we do not assume ρh > 1.

2.3 Optimal policies if the consistent customer class is more
expensive

In this section, we provide the optimal policies for the case if the assumption (5) is violated,

i.e h1µ1 ≤ h2µ2. Under the assumption that the class 2 has constant arrival rate λ2 and

ρ2 < 1, if h1µ1 ≤ h2µ2, then the optimal policy is a generalization of the cµ rule. Such

an optimal policy is given below. The optimality of this policy can be proven using the

techniques in Section 2.8.1 as is done when the assumption in (5) holds and thus omitted.
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• If Z2(t) > θ2, full capacity is given to class 2, i.e. Ṫ1(t) = 0, Ṫ2(t) = 1.

• If Z2(t) = θ2 and Z1(t) > θ1, enough capacity is given to class 2 such that class

2 fluid level is kept at θ2 and the remaining capacity is used to serve class 1, i.e.

Ṫ1(t) = 1− ρ2, Ṫ2(t) = ρ2.

• If Z2(t) < θ2 and Z1(t) ≥ θ1, full capacity is given to class 1, i.e. Ṫ1(t) = 1, Ṫ2(t) = 0.

• If Z2(t) < θ2 and Z1(t) < θ1, and the system is in the high load period (t < H), full

capacity is given to class 1, i.e. Ṫ1(t) = 1, Ṫ2(t) = 0.

• If Z2(t) ≤ θ2 and Z1(t) ≤ θ1, and the system is in the low period (H < t < H + L),

enough capacity is given to each class such that the fluid levels of both classes are

kept below their threshold values. We have multiple choices in this case, one is to let

Ṫ1(t) ≥ ρl
1, Ṫ2(t) ≥ ρ2 such that Ṫ1(t) + Ṫ2(t) ≤ 1.

Throughout the rest of the chapter, we assume (5).

2.4 Optimal policies in the deterministic case

In this section, we present the optimal policy when the lengths of the high period and the

low period are known. Thus, H and L are deterministic quantities. The optimality of this

policy is proven in Section 2.8. For the sake of notational convenience, we first define the

following policy.

Definition 1 (Low-Period-Policy). The following policy referred to as the Low-Period-

Policy is implemented in the low period, i.e, when H < t ≤ H + L.

• If Z1(t) > θ1, full capacity is given to class 1, i.e. Ṫ1(t) = 1, Ṫ2(t) = 0.

• If Z1(t) = θ1, Z2(t) > θ2, class 1 fluid is kept at its threshold value θ1, while the

remaining capacity is used to serve class 2, i.e. Ṫ1(t) = ρl
1, Ṫ2(t) = 1− ρl

1.

• If Z1(t) < θ1, Z2(t) > θ2, then full capacity is given to class 2, i.e. Ṫ1(t) = 0, Ṫ2(t) = 1.

• If Z1(t) ≤ θ1, Z2(t) ≤ θ2, then the policy is not unique and Ṫ1(t) and Ṫ2(t) can be

chosen from any solution satisfying Ṫ1(t) ≥ ρl
1, Ṫ2(t) ≥ ρ2 and Ṫ1(t) + Ṫ2(t) ≤ 1.
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The optimal policy depends on the system load. In the next three sections, we will

describe the optimal policy under various load conditions. In the first case, ρh
1 > 1, ρl ≤ 1,

and we refer to this case as highly overloaded case; in the second case, ρh > 1, ρh
1 ≤ 1, ρl ≤ 1,

and we refer to this case as the overloaded case; and in the last case, ρh ≤ 1, ρl ≤ 1, and we

refer to this case as the lightly loaded case.

2.4.1 The highly overloaded case

In this section, we assume ρh
1 > 1 and ρl ≤ 1 and provide the optimal policy when the

duration of the high period H and the duration of the low period L is known.

Suppose that ρh
1 > 1 and ρl ≤ 1, then the optimal policy has the following structure:

(OPT)

∀t ∈ (0, s1) : Ṫ2(t) = 1, Ṫ1(t) = 0;

∀t ∈ (s1, s2) : Ṫ2(t) = u2, Ṫ1(t) = u1, u1 + u2 = 1;

∀t ∈ (s2, H) : Ṫ2(t) = 0, Ṫ1(t) = 1;

∀t ∈ (H, H + L) : Low-period-policy.

Thus, the optimal policy gives fixed priority to class 2 in the interval 0 to s1, employs

processor sharing in the interval s1 to s2 and gives fixed priority to class 1 in the interval s2

to H. Specific values of s1, s2, u1, and u2 depend on the initial fluid levels and the length

of the high and the low periods. Before discussing the computation of s1, s2, u1 and u2 for

all possible cases, we introduce the notation used in our developments:

d1 = θ1 − Z1(0), ψ1 = d1/µ1

ρh
1−1

, ψ̃1 =
d1/µ1

ρh
1

, (6)

d2 = θ2 − Z2(0), ψ2 = d2/µ2

ρ2
, ψ̃2 =

−d2/µ2

1− ρ2
. (7)

The quantities ψ1, ψ2, ψ̃1 and ψ̃2 have the following interpretations. Quantity ψ1 is the

time that class 1 increases to its threshold θ1 under the policy that gives fixed priority to

class 1 if the initial fluid level of class 1 is below θ1 and if the high period is long enough.

Quantity ψ̃1 is the time class 1 increases to its threshold θ1 under the policy that gives fixed

priority to class 2 if the initial fluid level of class 1 is below θ1 and if the high period is long
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enough. Quantity ψ2 is the time class 2 increases to its threshold θ2 under the policy that

gives fixed priority to class 1 if the initial fluid level of class 2 is below θ2. Finally, ψ̃2 is the

time class 2 decreases to its threshold θ2 under the policy that gives fixed priority to class 2

if the initial fluid level of class 2 is above θ2. Clearly, d1 and d2 denote the initial deviation

of the fluid levels from the desired thresholds for classes 1 and 2, respectively.

We also define

a1 =
d1/µ1 + d2/µ2

ρh
1 + ρ2 − 1

, a2 =
1− ηξ

1− η
ψ+

1 − η(1− ξ)
1− η

ψ+
2 , (8)

B =
1− ηξ

1− η
ψ+

1 − (1− ρl
1)[1 + η(ρh

1 − 1)] + (1− η)(ρh
1 − 1)

(ρh
1 − 1)(ρh

1 − ρl
1)(1− η)

ψ̃+
2 , (9)

where

ξ =
(ρh

1 − 1)
(ρh

1 − ρl
1)

and η =
h2µ2

h1µ1
.

Quantities a1, a2 and B have the following interpretations. Quantity a1 is the critical value

such that if the high period is longer than a1 then under any policy either class 1 fluid level

will exceed its threshold θ1 or class 2 fluid level will exceed its threshold θ2. Quantity a2 is

the critical value such that if the high period is longer than a2 and the low period is long

enough to reduce the fluid level of class 1 to its threshold θ1 then fixed priority to class 1 is

the optimal policy in the high period. Finally, B is the critical value such that if the high

period is longer than B and the low period is long enough to reduce the fluid level of class 1

to its threshold θ1 then the optimal policy never uses processor sharing in the high period.

Finally, for the sake of simplicity, we define

γ1 = η(ρh
1−1)(ρh

1+ρ2−1)

(1−ρl
1)[ρ2+η(ρh

1−1)]+(1−η)ρ2(ρh
1−1)

, γ2 = ηρh
1 (ρh

1−1)

(1−ρl
1)[1+η(ρh

1−1)]+(1−η)(ρh
1−1)

, γ3 = ρh
1−1

1−ρl
1
.

We now provide a more detailed description of the optimal policy by considering all

possible cases of the initial load. As can be seen below, Cases 1 and 3 are simple and have

no subcases (i.e the policy is independent of the length of H and L). However, Cases 2 and

4 have many subcases. Hence, for the sake of clarity, we provide pictorial representations of

Cases 2 and 4 in Figures 1 to 3. In particular, we present the corresponding case for each

value of H and L and demonstrate that we consider all possible values for the length of the

high and low periods. Depending on the relationship between ψ̃1 and ψ̃2, we provide the
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corresponding pictorial representation of Case 2, respectively in Figures 1 and 2. Figure 3

is the pictorial representation of Case 4.

• Case 1: Z1(0) ≥ θ1. In this case, the optimal policy is given by (OPT) with s1 = s2 =

0. Note that when setting s1 = s2 = 0, the (OPT) policy gives fixed priority to class

1 throughout the high period.

• Case 2: Z1(0) < θ1, Z2(0) > θ2. Computation of s1, s2, u1 and u2 depends on the

length of the high and the low periods.

– Case 2.1: If

a1 ≤ H ≤ B, L ≥ γ1(H − a1), (10)

then s1, s2, u1 and u2 are computed by solving

Z2(0) + (λ2 − µ2)s1 = θ2, (11)

Z1(0) + λh
1s1 = Z1(s1), (12)

Z2(s1) + (λ2 − µ2u2)(s2 − s1) = θ2, (13)

Z1(s1) + (λh
1 − µ1u1)(s2 − s1) = Z1(s2), (14)

u1 + u2 = 1, (15)

Z1(s2) + (λh
1 − µ1)(t1 − s2) = θ1, (16)

Z1(t1) + (λh
1 − µ1)(H − t1) = Z1(H), (17)

Z1(H) + (λl
1 − µ1)(t2 −H) = θ1, (18)

µ1h1(t2 − t1) = µ2h2(t2 − s2). (19)

Note that equations (11) to (18) describe the evolution of the fluid levels of class

1 and class 2 from time 0 to t2 under the optimal policy, where t2 represents

the time epoch at which the class 1 fluid level in the low period reaches its

threshold value as indicated in equation (18). In particular, equations (11) and

(12) describe the evolution of fluid levels from time 0 to s1 when higher priority

is given to class 2. At s1, class 2 fluid level is reduced to its threshold θ2 from
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above. Equations (13) to (15) describe the evolution of the fluid levels from s1

to s2 under the processor sharing policy. In [s1, s2], class 2 fluid level remains

at its threshold θ2. Equations (16) to (18) describe the evolution of class 1

fluid level from s2 to t2 under the policy that gives higher priority to class 1.

Equation (16) implies that at time t1, class 1 fluid level increases to its threshold

θ1. Equation (17) records the class 1 fluid level at the end of the high period.

Equation (19) ensures that the profit gained by serving class 1 is equal to the

profit lost by not serving class 2. Under the conditions given in (10), it will be

shown in Appendix 2.8.1 that equations (11) to (19) have a unique solution with

0 ≤ s1 ≤ s2 ≤ t1 ≤ H ≤ t2 ≤ H + L and u1, u2 ≥ 0.

– Case 2.2: If

L ≤ γ1(H − a1), a1 ≤ H, H + L ≤ ψ̃1 +
1 + η(ρh

1 − 1)
(1− η)(ρh

1 − 1)
(ψ̃1 − ψ̃2),

then we set t2 = H + L and compute s1, s2, u1, u2 and t1 by solving equations

(11)-(17) and (19).

– Case 2.3: If

max{B, ψ̃1} ≤ H ≤ a2, L ≥ γ2(H − ψ̃1),

then we set s1 = s2 and solve the equations (12) and (16)–(19) for s2, t1 and t2.

– Case 2.4: If

L ≤ γ2(H − ψ̃1), max
{
ψ̃1, ψ̃1 +

1 + η(ρh
1 − 1)

(1− η)(ρh
1 − 1)

(ψ̃1 − ψ̃2)
}
≤ H + L ≤ ψ1

1− η
,

then we set s1 = s2 and t2 = H +L and compute s2 and t1, by solving equations

(12), (16)-(17) and (19).

– Case 2.5: If H ≤ max{a1, ψ̃1}, then the optimal policy is given by (OPT) with

s1 = min{ψ̃2, H}, s2 = H, u2 = ρ2, and u1 = 1− ρ2.

– Case 2.6: If H ≥ a2 and H + L ≥ (1− η)−1ψ1, then the optimal policy is given

by (OPT) with s1 = s2 = 0.
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• Case 3: Z1(0) < θ1, Z2(0) ≤ θ2, ψ1 ≤ ψ2. In this case, the optimal policy is given by

(OPT) with s1 = s2 = 0.

• Case 4: Z1(0) < θ1, Z2(0) ≤ θ2, ψ1 ≥ ψ2. In this case, s1 = 0. However, the

computation of s2, u1 and u2 depends on the lengths of the high and the low periods

as discussed below.

– Case 4.1: If a1 ≤ H ≤ a2, L ≥ γ1(H−a1), then s2, u1, u2, t1 and t2 are computed

by solving equations (13)–(19) with s1 = 0.

– Case 4.2: If

H ≥ a1, H + L ≤ ψ1 +
η

1− η
(ψ1 − ψ2), L ≤ γ1(H − a1),

then we set t2 = H + L, and solve the equations (13)-(17) and (19) with s1 = 0

to compute s2, u1, u2 and t1.

– Case 4.3: If H ≤ a1, then the optimal policy is given by (OPT) upon setting s1 =

0, s2 = H, selecting u2 as any value in the interval [(ρ2−d2(µ2H)−1)+, d1(µ1H)−1−

(ρh
1 − 1)] and setting u1 = 1− u2.

– Case 4.4: If H ≥ a2, H +L > ψ1 + η(1− η)−1(ψ1 −ψ2), then the optimal policy

is given by (OPT) with s1 = s2 = 0.
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Figure 1: Optimal policies in the deterministic case for the first type initial condition.

We also provide a pictorial representation for the optimal policies corresponding to each

value of H and L through three figures. Figure 1 is for the case where the parameters
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Figure 2: Optimal policies in the deterministic case for the second type initial condition.
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Figure 3: Optimal policies in the deterministic case for the third type initial condition.

and initial condition satisfies Z1(0) ≤ θ1, Z2(0) ≥ θ2 and ψ̃1 ≥ ψ̃2. Figure 2 is for the

case that Z1(0) ≤ θ1, Z2(0) ≥ θ2 and ψ̃1 ≤ ψ̃2, and Figure 3 is for the case that Z1(0) ≤

θ1, Z2(0) ≤ θ2 and ψ2 ≤ ψ1. In all these three figures, the line l11 satisfies L = γ1(H − a1);

the line l12 satisfies L = γ2(H − ψ̃1); the line l13 satisfies L = γ3(H − ψ1); the line l22

satisfies H + L = ψ̃1 + ((1 − η)(ρh
1 − 1))−1(1 + η(ρh

1 − 1))(ψ̃1 − ψ̃2); and line l23 satisfies

H + L = (1− η)−1(ψ1 − ηψ+
2 ).

As mentioned above, we prove the optimality of this policy in Section 2.8.1. However,

in order to give the reader an intuitive explanation, we consider one of the cases above, for

example Case 3. We claim that if Z1(0) < θ1, Z2(0) ≤ θ2, ψ1 ≤ ψ2, then the optimal policy

is given by (OPT) with s1 = s2 = 0. In order to see this, first consider the case H ≥ ψ1.

Under the policy with s1 = s2 = 0, class 1 fluid level reaches its threshold θ1 at time ψ1,
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and class 2 fluid level reaches its threshold θ2 at time ψ2. Note that for any t ≥ ψ1, we have

µ1h1(t− ψ1) ≥ µ2h2(t− ψ2),

since ψ2 ≥ ψ1 ≥ 0 and µ1h1 > µ2h2. Thus, it is more profitable to give fixed priority to

class 1 until the class 1 fluid level decreases to its threshold in the low period. If H < ψ1,

then again the optimal policy is given by (OPT) upon setting s1 = s2 = 0 (i.e. giving fixed

priority to class 1 in the high period), which yields a total cost of 0.

The following corollary follows from the description of the optimal policy.

Corollary 2. If

(i) Z1(0) ≥ θ1 or,

(ii) Z1(0) ≤ θ1, Z1(0) ≤ θ2 and 0 ≤ ψ1 ≤ ψ2,

then the policy with

∀t ∈ (0,H) Ṫ1(t) = 1, Ṫ2(t) = 0;

∀t ∈ (H,H + L) Low-Period-Policy

is optimal for all H ≥ 0 and L ≥ 0.

Note that if the initial fluid levels satisfy the conditions in (i) or (ii), the policy described

in Corollary 2 is optimal even when the length of the high period and the length of the low

period are random variables.

2.4.2 The overloaded case

We assume ρh > 1, ρh
1 ≤ 1, ρl ≤ 1 in this section and provide the optimal policy when

the value of the high period duration H and the value of the low period duration L are

deterministic.

When ρh > 1, ρh
1 ≤ 1, ρl ≤ 1 , the optimal policy has the following structure:

∀t ∈ (0, s1) : Ṫ2(t) = 1, Ṫ1(t) = 0;

∀t ∈ (s1, s2) : Ṫ2(t) = ρ2 −
(θ2 − Z2(s1))/µ2

a1(s1)
, Ṫ1(t) = 1− Ṫ2(t);

∀t ∈ (s2, s3) : Ṫ2(t) = 0, Ṫ1(t) = 1;
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∀t ∈ (s3, H) : Ṫ2(t) = 1− ρh
1 , Ṫ1(t) = ρh

1 ;

∀t ∈ (H, H + L) : Low-period-policy;

where

a1(s1) =
(θ1 − Z1(s1))/µ1 + (θ2 − Z2(s1))/µ2

ρh
1 + ρ2 − 1

,

and s1, s2, s3 are given as

s1 = max{t : 0 ≤ t ≤ H,Z2(t) ≥ θ2, Z1(t) ≤ θ1},

s2 = max{t : s1 ≤ t ≤ H,Z1(t) ≤ θ1},

s3 = max{t : s2 ≤ t ≤ H,Z1(t) ≥ θ1}.

with the convention that max{t : x ≤ t ≤ y, t ∈ A} = x if A = ∅.

2.4.3 The lightly loaded case

We assume ρh ≤ 1, ρl ≤ 1, then the optimal policy has the following structure:

∀t ∈ (0,H) Low-Period-Policy except replace ρl
1 by ρh

1 ;

∀t ∈ (H,H + L) Low-Period-Policy.

Remark 3. The policies described in Sections 2.4.2 and 2.4.3 can be implemented without

knowing the length of the high and the low periods. Hence, these policies are also optimal

when the length of the high period and the length of the low period are random variables.

2.5 Discrete review policies in the stochastic case

Throughout the rest of this chapter, we shall consider the stochastic instance of the fluid

model described in Section 2.2. Recall that the system starts with a high period, followed

by a low period. The duration of the high period H, and the duration of the low period

L are independent random variables. For this stochastic fluid control problem, the optimal

policy when ρh > 1, ρh
1 ≤ 1, ρl ≤ 1 is given in Section 2.4.2 and the optimal policy when

ρh ≤ 1, ρl ≤ 1 is given in Section 2.4.3 (see Remark 3). We therefore focus only on the case

when

ρh
1 > 1, ρl ≤ 1.
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To specify the control policy in this case, we shall always consider the following four subcases

which were first introduced in Section 2.4 and are summarized below:

Case 1: Z1(0) ≥ θ1, (20)

Case 2: Z1(0) < θ1, Z2(0) > θ2, (21)

Case 3: Z1(0) < θ1, Z2(0) ≤ θ2, ψ1 ≤ ψ2, (22)

Case 4: Z1(0) < θ1, Z2(0) ≤ θ2, ψ1 ≥ ψ2. (23)

In this section, we present a discrete review policy that is asymptotically optimal as the

expected length of the high period tends to infinity. Under our discrete review policy, the

state of the system is observed at intervals of length τ which is a predetermined positive

number. Note that no assumptions are imposed on τ . Given τ , the distribution of the high

period and the mean of the low period, the discrete review policy is implemented as follows.

Let H0 and L0 denote the actual values of the high period and the low period respectively.

The state of the system is observed at times t = 0, τ, 2τ, . . . ,Mτ , where

M = min{n ∈ IN : nτ ≥ H0}.

Note that we do not assume that we know H0 initially. We assume that the system can

detect the end of the high period by observing a sudden drop in the arrival rate of class 1

fluid. At each time t, we observe the fluid level of both classes, i.e., Z1(t) and Z2(t). We then

predict the remaining high period H̃(t) and the low period L̃(t) using one of the methods

described below. If t < Mτ , we implement the policy described in Section 2.4 from t to

t+ τ using H̃(t) as the length of the high period, L̃(t) as the length of the low period, and

Z1(t) and Z2(t) as the initial fluid levels. If t = Mτ , we implement the Low-period-policy

from t until the end of the low period.

At time t, we either set

H̃(t) = E[H|H > t]− t, (24)

or

H̃(t) = min{x ≥ 0 : P(H > x+ t|H > t) = p}, (25)
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where p will be specified later. Note that in (24) remaining high period is estimated by its

expected value, and in (25) remaining high period is set equal to x which guarantees that

the probability that the remaining high period is larger than x is p. While implementing

the discrete review policy in the numerical examples of Section 2.7, we use both of these

methods to estimate the remaining high period and we set p = 0.25, 0.5 and 0.75. On the

other hand, the remaining low period is always set equal to its mean. Hence, L̃(t) = E[L].

We now show in Proposition 4 that our discrete review policy is asymptotically optimal

as the expected length of the high period tends to infinity and the proof is provided in

Section 2.8.2. Given the actual values of the high and low periods, let c(H0, L0) be the

holding cost under the optimal policy described in Section 2.4. The closed form expression

for c(H0, L0) is given in Appendix A. Similarly, let cDR(H0, L0) denote the holding cost

under our discrete review policy when the length of the high period is H0 and the length

of the low period is L0.

Proposition 4. There exist D > 0 and β1 ≥ 0 (which depend on the arrival rates, service

rates, initial fluid levels, threshold values and holding costs per unit time) such that if

H̃(0) ≥ D,

then the discrete review policy is equivalent to giving fixed priority to class 1 in the high

period, and we have

cDR(H0, L0)− c(H0, L0) ≤ β1 (26)

for all H0 ≥ 0 and L0 ≥ 0.

In the next section, we provide various policies for different parameter sets and initial

conditions. We also show that they are asymptotically optimal in certain regime.

2.6 Other policies that are asymptotically optimal

Throughout this section, we assume that ρh
1 > 1 and ρl ≤ 1. We are interested in two heavy

traffic regimes. In the first one, the expected length of the high period tends to infinity.

In the second one, traffic intensity of class 2 (i.e. ρ2) tends to 1 − ρl
1 when ρl

1 is fixed and
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the low period is infinitely long. Under both these regimes, we are interested in finding the

asymptotically optimal policies.

Consider the policy that gives fixed priority to class 1 in the high period and uses the

Low-Period-Policy in the low period. For the rest of the paper, we will refer to this policy

as FP1. We shall use cFP1(H0, L0) to denote the holding cost of the FP1 policy when the

length of the high period is H0 and the length of the low period is L0. Recall that c(H0, L0)

denotes the holding cost of the optimal control policy (as specified in Section 2.4) when the

lengths of the high and the low periods are known and equal to H0 and L0, respectively.

Holding cost expressions for all possible values of the high and low periods under the FP1

policy and the optimal policy (as well as other policies considered in this chapter) are given

in Appendix A. We have the following proposition and its proof is provided in Section 2.8.2.

Proposition 5. There exists β2 ≥ 0, which does not depend on the duration of the high

period and low period, such that

cFP1(H0, L0)− c(H0, L0) ≤ β2.

for all H0 ≥ 0 and L0 ≥ 0.

We next consider the case that the traffic intensify of class 2 tends to 1 − ρl
1 (i.e. the

system is always heavily loaded) and the expected length of the low period tends to infinity.

Again we consider Cases 1 to 4 given in (20) to (23), separately. We know from Corollary 2

that in Case 1 and Case 3, FP1 policy is optimal. Hence, we only consider Case 2 and

Case 4. We start with Case 4.

Definition 6. Assume conditions of Case 4. We define the πa1 policy as follows:

∀t ∈ (0, a1 ∧H), Ṫ2(t) = ρ2 −
θ2 − Z2(0)
a1µ1

, Ṫ1(t) = 1− Ṫ2(t);

∀t ∈ (a1 ∧H,H), Ṫ2(t) = 0, Ṫ1(t) = 1;

∀t ∈ (H,H + L), Low-period-policy.

Under Case 4, since initially both class 1 and class 2 fluid levels are below their threshold

values, πa1 policy starts with processor sharing. In the processor sharing serving scheme,
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Ṫ1(t) and Ṫ2(t) are chosen such that the time that class 2 fluid level reaches its threshold

is delayed while ensuring that the cost accumulated from class 1 in the high period is not

too high. Moreover, this choice of Ṫ1(t) and Ṫ2(t) guarantees that class 1 and class 2 reach

their thresholds from below at the same time if H is long enough to do so. Thus, during

the processor sharing period, the πa1 policy gives as much proportion of service as possible

to class 2 while maintaining class 1 below its threshold. Note that if the traffic intensity in

the low period is close to 1 and the low period is long, the holding cost for class 2 fluid in

the low period can be high. Hence, it is important to reduce the amount of class 2 fluid at

the beginning of the low period without incurring too much cost from class 1 fluid. We will

show in Proposition 9 that when ρ2 → 1−ρl
1 and E[L] →∞, πa1 is strongly asymptotically

optimal under the assumptions of Case 4. We use a notion of strongly asymptotically

optimal (as introduced in [35]) in the following sense:

Definition 7. Consider a control problem where the performance measure J(u, α) is a

function of the control policy u and parameter α. Let the optimal control policy be u∗(α),

and suppose J(u∗(α), α) →∞ as α→ α0. A control policy û is called strongly asymptotically

optimal if there exists K <∞ such that

J(û(α), α)− J(u∗(α), α) ≤ K, as α→ α0.

We will also use the following notation.

Definition 8. For f : R → R, we write

f(r) = O(1) as r → r0

to mean that there exists a constant M > 0 such that |f(r)| < M as r → r0.

Let ca1(H,L) denote the holding cost under policy πa1 when the length of the high

period is H and the length of the low period is L. The closed form expression for ca1(H,L)

is given in Appendix A.

Proposition 9. Assume conditions of Case 4. Suppose H and L are random variables with

E[H2] <∞. If E[L] →∞ and ρ2 → (1− ρl
1) (where ρl

1 is fixed), then

E[ca1(H,L)− c(H,L)] = O(1),
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and πa1 is strongly asymptotically optimal.

The proof of Proposition 9 is provided in Section 2.8.2.

We next consider Case 2 given in (21) and define the following policy.

Definition 10. Assume conditions of Case 2. We define the FP2-FP1 policy as follows:

∀t ∈ (0,H), if Z2(t) > θ2, Z1(t) < θ1 then Ṫ2(t) = 1, Ṫ1(t) = 0;

∀t ∈ (0,H) if Z2(t) = θ2, Z1(t) < θ1 then Ṫ2(t) = ρ2, Ṫ1(t) = 1− ρ2;

∀t ∈ (0,H) if Z1(t) ≥ θ1 then Ṫ2(t) = 0, Ṫ1(t) = 1;

∀t ∈ (H,H + L) Low-Period-Policy.

Note that FP2-FP1 policy is similar to the πa1 policy. However, since initially class 2

fluid is above its threshold level, FP2-FP1 policy starts with giving fixed priority to class 2.

Let cFP2−FP1(H,L) denote the holding cost under the FP2-FP1 policy when the length of

the high period is H and the length of the low period is L. The closed form expression for

cFP2−FP1(H,L) is given in Appendix A.

Proposition 11. Assume conditions of Case 2. Suppose H and L are random variables

with E[H2] <∞. If E[L] →∞ and ρ2 → 1− ρl
1 (where ρl

1 is fixed), then

E[cFP2−FP1(H,L)− c(H,L)] = O(1),

and FP2-FP1 policy is strongly asymptotically optimal.

The proof of Proposition 11 is provided in Section 2.8.2.

2.7 Numerical results

In this section, we provide numerical examples to demonstrate the performance of the

discrete review policy described in Section 2.5 in systems with random high and low periods.

Ideally, once the exact lengths of the high and low periods (H and L) are known, one can

follow the optimal policy in the deterministic case described in Section 2.4. Recall that

c(H,L) denotes the total holding cost under the optimal policy when the lengths of the

high and low periods are known. Since one can not observe the true lengths of the either
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periods until they end, such a policy is not implementable. However, the quantity E[c(H,L)]

can be used as a lower bound of the cost function since no other policy can outperform such

a policy with perfect knowledge of H and L. We will use this lower bound (which will be

referred as LB) as a guideline to evaluate the performance of other implementable policies.

While implementing the discrete review policy, we use both of the methods given in

(24) and (25) to estimate the remaining high period and set p = 0.25, 0.5 and 0.75. Recall

that the remaining low period is always set equal to its mean. The discrete review policy

implemented with the method in (24) (i.e. the remaining high period is set equal to its

expected value) will be called DR1, and the discrete review policies implemented with the

method given in (25) with p = 0.25, 0.5 and 0.75 will be called DR2, DR3, and DR4,

respectively. We compare the expected holding cost of these four policies with the lower

bound LB, the expected holding cost of the FP1 policy and the expected holding cost of

the πa1 policy.

Even though we have considered several systems, in the interest of space we report our

findings from two sets of examples referred to as System I and System II respectively. In

System I, parameters are set as follow: θ1 = 50, θ2 = 100, h1 = 2, h2 = 1, Z1(0) = 0,

Z2(0) = 90, ρh
1 = 2, ρl

1 = 0.1 and ρ2 = 0.4. In System II, ρl
1 = 0 and ρ2 = 0.95 and the

remaining parameters remain the same. We consider four different distributions (referred

to as Case A, Case B, Case C and Case D respectively) for the length of the high (H)

and the low (L) periods, In Case A, both H and L are Erlang-2 random variables. In

Case B, both H and L are exponential random variables. In Cases C and D, both H and

L are hyper-exponential random variables with squared coefficient of variation 2 and 10,

respectively. Note that the squared coefficient of variation of the distributions in Case A

and Case B are 1/2 and 1, respectively. In our experiments, E[H] attains the values: 5,

12.5, 25, 37.5 and 50 and E[L] attains the values: 12.5, 25, 50 and 1000.

Under a specified distribution with fixed values of E[H] and E[L], we generate 500,000

sets of H and L values. For each set of H and L values, we compute c(H,L) (lower

bound), cFP1(H,L), ca1(H,L) and the holding costs of the four discrete review policies.

We then compute the average holding costs over 500,000 replications. In all our numerical
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experiments, while implementing the discrete review policies, we set τ equal to 0.1. The

value of τ is determined by simulating the systems that we consider under the discrete

review policies with different τ values and eventually picking the τ value which yields a

good holding cost performance while keeping the run times reasonably short. Tables 1

through 4 display the average value of the lower bound on holding cost and the percentage

difference off the lower bound of the average holding cost of the FP1, πa1 , DR1, DR2, DR3

and DR4 policies.

As Tables 1 through 4 show, discrete review policies have a good holding cost perfor-

mance. The largest percentage difference between the holding cost of discrete review policies

and the lower bound on the holding cost is approximately 21%. Moreover, the discrete re-

view policies are more robust than the FP1 and the πa1 policies. Note that the average

holding cost under the discrete review policies is much less than the average holding cost

under the FP1 policy in Cases A and B when E[H] is small to moderate. The same result

also holds for Case C when ρl
1 = 0 and ρ2 = 0.95. However, as the variability increases,

FP1 policy outperforms all other policies. In particular, in Case D the holding cost under

the FP1 policy is less than the holding cost under all discrete review policies except when

E[L] is large (see Table 4). Discrete review policies outperform πa1 policy in Cases C and

D. When the system variability is low, for systems with ρl
1 = 0.1 and ρ2 = 0.4, the discrete

review policies outperform the πa1 policy. For systems with ρl
1 = 0 and ρ2 = 0.95, the same

observation holds for the DSview1, DSview3 and DSview4 policies. If ρl
1 = 0 and ρ2 = 0.95,

DSview2 has higher holding cost than πa1 policy in Cases A and B when E[H] is small and

E[L] is not large or when E[L] is large.

In systems with ρl
1 = 0.1 and ρ2 = 0.4, in general DSview4 policy has a poor performance

compared to the other discrete review policies. It performs well only for small values of E[H]

in Case A. On the other hand, DSview2 significantly outperforms DSview1 and DSview3

policies in Cases A and B and in Case C when E[H] is not large. In Case C, as E[H]

increases, DSview1 policy starts dominating the other discrete review policies. On the other

hand, in Case D, DSview1 policy always outperforms the other discrete review policies in

systems with ρl
1 = 0.1 and ρ2 = 0.4. The same assertion holds for systems with ρl

1 = 0 and
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ρ2 = 0.95 except when E[L] and E[H] are both large (see Table 4).

In systems with ρl
1 = 0 and ρ2 = 0.95, the performances of DR2 and DR4 policies

depend on the expected length of the low period. Even though the DR4 policy shows

poor performance (compared to the other discrete review policies) when E[L] is small, its

performance improves (in particular in Cases A and B) as E[L] gets large. On the other

hand, even though DR2 policy has one of the best performances among the discrete review

policies when E[L] is small, its performance deteriorates in Cases A and B as E[L] gets

large. However, in Cases C and D, DR1 and DR2 policies always have better holding cost

performance than the other discrete review policies.

In conclusion, discrete review policies yield good holding cost performance and they are

robust with respect to the system parameters. Among the discrete review policies, one can

employ the DR2 policy (in order to reduce the total holding cost) if class 2 is not heavily

loaded and the coefficient of variation of the high and the low periods is not large. However,

if the coefficient of variation of the high and the low periods is large, DR1 policy seems to

outperform the other discrete review policies. On the other hand, if class 2 is heavily loaded,

DR1 policy has a good overall policy.
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2.8 Proof of the desired results

In this section, we provide the proof of the desired results in the earlier sections. We first

prove in Section 2.8.1 the optimality of policies provide in Section 2.4. In Section 2.8.2, we

show the asymptotic optimality of the discrete review policies provided in Section 2.5 and

we also provide enough details for the proof of the asymptotic optimality proposed policies

in Section 2.6.

2.8.1 Proof of the optimality of the policies in the deterministic case

In this section, we provide the detailed proof of the optimality of the policies proposed in

Section 2.4. We first develop the lemmas needed and then we prove the desired result.

To prove the optimality of the policies given in Section 2.4, we first provide a lemma

related to the Pontryagin maximum principle. Originally, this lemma was given in Seier-

stad and Sydsaeter [32] but the version stated here was tailored for our problem. For

completeness, we also provide the proof of the lemma.

Consider an optimal control problem as follows,

max
∫ B1

B0

f0(x(t), u(t), t) dt (27)

such that

ẋ(t) = f(x(t), u(t), t), (28)

x(B0) = x0, (29)

x(B1) ≥ x1, (30)

u(t) ∈ U where U ⊂ Rr and (x(t), u(t)) ∈ Rn × Rr, (31)

where f0(x(t), u(t), t), and f(x(t), u(t), t) are continuous functions of t over [B0, B1] except

at finite number of points.

We say that (x(t), u(t)) is an admissible pair if x(t) is absolutely continuous, and

(x(t), u(t)) satisfies (28) to (31). We want to find an optimal admissible pair (x(t), u(t))

that maximizes integral in (27). In the following lemma, for vectors a and b, a · b denotes

the usual inner product of a and b.
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Lemma 12. Let (x̄(t), ū(t)) be an admissible pair for the problem given in (27) to (31).

Suppose there exists a continuous function p(t) = (p1(t), p2(t), . . . , pn(t)) on [B0, B1] such

that it has a piecewise continuous derivative ṗ(t), the continuity of ṗ(t) is violated only at

finite number of points, and p(t) satisfies

pi(B1) ≥ 0, and pi(B1) = 0 if x̄i(B1) > xi
1, ∀i = 1, . . . , n. (32)

In addition, the Hamiltonian function

H(x(t), u(t), p(t), t) = f0(x(t), u(t), t) + p(t) · f(x(t), u(t), t) (33)

satisfies the following

H(x̄(t), ū(t), p(t), t)−H(x(t), u(t), p(t), t) ≥ ṗ(t) · (x(t)− x̄(t)) (34)

for all admissible pairs (x(t), u(t)), for all t ∈ [B0, B1] except at finite number of points.

Then (x̄(t), ū(t)) is an optimal pair for problem (27) to (31).

Proof of Lemma 12. We use ∆ to denote the following

∆ =
∫ B1

B0

f0(x̄(t), ū(t), t)dt−
∫ B1

B0

f0(x(t), u(t), t) dt.

Then the optimality of (x̄(t), ū(t)) is equivalent to ∆ ≥ 0 for all admissible pairs (x(t), u(t)).

According to (33) we have

∆ =
∫ B1

B0

[H(x̄(t), ū(t), p(t), t)−H(x(t), u(t), p(t), t)] dt

+
∫ B1

B0

p(t) · [f(x(t), u(t), t)− f(x̄(t), ū(t), t)] dt.

It then follows from (28) and (34) that

∆ ≥
∫ B1

B0

ṗ(t) · [x(t)− x̄(t)] dt+
∫ B1

B0

p(t) · [ẋ(t)− ˙̄x(t)] dt.

Assume that B0 = ξ0 < ξ1 < · · · ξk < ξk+1 = B1, are all the possible discontinuity points of

ṗ(t), ẋ(t) and ˙̄x(t). So the right hand side of the above inequality can be written as

k∑
i=0

{∫ ξi+1

ξi

ṗ(t) · [x(t)− x̄(t)]dt+
∫ ξi+1

ξi

p(t) · [ẋ(t)− ˙̄x(t) dt]
}
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=
k∑

i=0

∫ ξi+1

ξi

d

dt
[p(t) · (x(t)− x̄(t))]

=
k∑

i=0

[
p(ξi+1) · (x(ξi+1)− x̄(ξi+1))− p(ξi) · (x(ξi)− x̄(ξi))

]
= p(B1) · (x(B1)− x̄(B1))

≥ 0,

where the last equality is due to the continuity of p(t), x(t), x̄(t) and (29), and the last

inequality is based on (30) and (32). Hence, ∆ ≥ 0, and the optimality of (x̄(t), ū(t)) is

proven.

We next prove that the policy specified in Section 3 is optimal for our original problem

described in Section 2.2 with deterministic high and low periods. First, replacing Ṫi(t) by

ui(t), notice that our original control problem is equivalent to

max
∫ H+L

0

2∑
i=1

−hi (Zi(t)− θi)
+ dt. (35)

such that Żi(t) = λi(t)− µiui(t) i = 1, 2 (36)

Zi(t) ≥ 0 ∀t ∈ [0,H + L], i = 1, 2 (37)

ui(t) ≥ 0 ∀t ∈ [0,H + L], i = 1, 2 (38)

u1(t) + u2(t) ≤ 1 ∀t ∈ [0,H + L], (39)

where λ1(t) = λh
1 , ∀t ∈ (0,H), and λ1(t) = λl

1, ∀t ∈ (H,H + L), and λ2(t) = λ2, ∀t ∈

(0,H + L).

Hereafter, we are going to use u∗(t) to denote the proposed policy given in Section 3,

and Z∗(t) to denote the fluid level under this policy.

Based on Lemma 12, in order to prove the optimality of (Z∗, u∗), it suffices to con-

struct continuous functions pi(t), i = 1, 2, with piecewise continuous derivatives such that

(Z∗(t), u∗(t), p(t)) satisfies (32) and (34). In what follows, we illustrate the basic idea of the

construction and proof by focusing on only one special case in Section 3. Notice that other

cases can be proved similarly.
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2.8.1.1 Proof of the optimality for the highly overloaded case

Before introducing our construction of p’s, we first describe the fluid level evolution of both

classes under the policy u∗ specified in Section 3.1.

Notice that under the policy u∗, class 1 will have higher priority starting from time s2

until time t in the low period such that Z∗1 (t) ≤ θ1. Corresponding to this policy, we define

two critical time instances for class 1 as follow

t1 = max{t : s2 ≤ t ≤ H, Z∗1 (t) ≤ θ1}, (40)

t2 = max{t : H ≤ t ≤ H + L, Z∗1 (t) ≥ θ1}, (41)

where t1 is the time that class 1 increases to its threshold from below in the high period if

the duration of high period is long enough and t2 is the time that class 1 decreases to its

threshold from above in the low period if the duration of the low period is long enough.

Similarly, we define two critical time instances for class 2

s̃2 = max{t : s2 ≤ t ≤ t2, Z
∗
2 (t) ≤ θ2}, (42)

t̃2 = max{t : t2 ≤ t ≤ H + L, Z∗2 (t) ≥ θ2}, (43)

where s̃2 is the time that class 2 increases to its threshold from below during the time

interval that class 1 has higher priority, i.e. during interval [s2, t2] and t̃2 is the time that

class 2 decreases to its threshold from above in the low period if the duration of the low

period is long enough. Note that after class 1 decreases to its threshold from above in the

low period at t2, the Low-period-policy gives enough capacity to class 2 to decrease class 2

fluid level.

Based on the definition of s1, s2 (described in Section 2.4) and the definition of t1, t2, s̃2, t̃2,

we claim the following holds:

Claim 1:

s1 ≤ s2 ≤ t1 ≤ H ≤ t2 ≤ H + L,

s1 ≤ s2 ≤ s̃2 ≤ t2 ≤ t̃2 ≤ H + L,

Claim 2:

∀t ∈ (0, s1) Z∗1 (t) < θ1, Z
∗
2 (t) > θ2,
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∀t ∈ (s1, s2) Z∗1 (t) < θ1, Z
∗
2 (t) ≤ θ2,

∀t ∈ (s2, t1) Z∗1 (t) < θ1,

∀t ∈ (t1, t2) Z∗1 (t) > θ1,

∀t ∈ (t2, H + L) Z∗1 (t) ≤ θ1,

∀t ∈ (s2, s̃2) Z∗2 (t) < θ2,

∀t ∈ (s̃2, t̃2) Z∗2 (t) > θ2,

∀t ∈ (t̃2, H + L) Z∗2 (t) ≤ θ2.

For ease of readability, we defer the proof of the claims to the end and next show how

to construct the auxiliary functions p(t).

It follows from the Pontryagin maximal principle that the optimal policy has to satisfy

ṗi(t) = ∂
∂Zi

H(Z(t), p(t), t) at the differentiable points, where the Hamiltonian function is

given by

H(Z(t), u(t), p(t), t) =
2∑

i=1

(
−hi (Zi(t)− θi)

+ + pi(t)(λi(t)− µiui(t))
)
. (44)

We therefore construct pi(t), i = 1, 2 (in a backward fashion) as follows:

pi(H + L) = 0; i = 1, 2,

∀t ∈ (t̃2, H + L) : ṗ1(t) = 0, ṗ2(t) = 0,

∀t ∈ (t2, t̃2) : ṗ1(t) =
µ2h2

µ1
, ṗ2(t) = h2,

∀t ∈ (t1, t2) : ṗ1(t) = h1,

∀t ∈ (s2, t1) : ṗ1(t) = 0,

∀t ∈ (s̃2, t2) : ṗ2(t) = h2,

∀t ∈ (s2, s̃2) : ṗ2(t) = 0,
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∀t ∈ (s1, s2) : ṗ1(t) = 0; ṗ2(t) = 0,

∀t ∈ (0, s1) : ṗ1(t) = 0; ṗ2(t) = h2.

Based on the above construction, we have the following properties stated as Claim 3, whose

proof is also deferred to the end of this section.

Claim 3:

∀t ∈ (t2, H + L) : µ1p1(t) = µ2p2(t) ≤ 0;

∀t ∈ (s2, t2) : µ1p1(t) < µ2p2(t) ≤ 0;

∀t ∈ (s1, s2) : µ1p1(t) = µ2p2(t) ≤ 0;

∀t ∈ (0, s1) : 0 ≥ µ1p1(t) > µ2p2(t).

Based on Lemma 12, the optimality follows once we show that (Z∗(t), u∗(t), p(t)) satisfies

(32) and (34). From the construction of pi(t), (32) holds immediately. It remains to show

that (34) holds in each time interval throughout (0,H + L) under all four cases given in

(20) to (23). Here, we focus only on Case 2.1 to illustrate the basic idea. The other cases

can be proved similarly.

Consider, for example, the first time interval (0, s1). The policy in this period is u∗1(t) =

0, u∗2(t) = 1, and from Claim 2 we have Z∗1 (t) < θ1, Z
∗
2 (t) > θ2. Note that no other

admissible policy can reduce more class 2 fluid level than u∗, thus under any admissible

policy ui(t), the fluid level will satisfy Z1(t) < θ1 and Z2(t) > θ2 for t ∈ (0, s1). Plugging

this in (44), we have the left hand side of (34) equal to

h2(Z2(t)− Z∗2 (t)) +
2∑

i=1

−µipi(t)(u∗i (t)− ui(t)).

Based on Claim 3, for all t in (0, s1), we have −µ2p2(t) ≥ −µ1p1(t) ≥ 0. Therefore,

2∑
i=1

−µipi(t)(u∗i (t)− ui(t)) ≥ −µ1p1(t)(u∗1(t) + u∗2(t)− u1(t)− u2(t)).

Note that u∗1(t) + u∗2(t) = 1, and the admissible ui(t), i = 1, 2 satisfies u1(t) + u2(t) ≤ 1,

so the right hand side of the above inequality is non-negative. It follows immediately that

(34) holds for all time t in the interval (0, s1).
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Repeating this procedure for the remaining intervals, we can similarly prove that (34)

holds for all time t in (0,H+L). Hence the optimality of the proposed policy is guaranteed.

We now prove the three claims we made earlier. Again, we focus only on Case 2.1 to

illustrate the basic idea. The other cases can be proved similarly.

• Proof for Claim 1 and Claim 2 in Case 2.1. Recall that in Case 2.1, we assume

that Z∗1 (0) < θ1, Z∗2 (0) > θ2, and condition (10) holds.

In this case, s1 and s2 are solved using the equations given in (11) to (19). Simulta-

neously, we also compute u1, u2, t1 and t2. They can all be expressed in terms of initial

fluid levels Z∗i (0), i = 1, 2, durations of the high and low periods H and L, the arrival rates

λh
1 , λ

l
1, and λ2, service rates µi, i = 1, 2, and holding cost rates hi, i = 1, 2.

Since Z∗2 (0) > θ2 and ρ2 < 1 (i.e λ2 < µ2), it follows from (11) that s1 > 0 (s1 is the

time that class 2 decreases to its threshold when it has higher priority). Since Z∗2 (s1) = θ2,

it follows from (13) that u2 = ρ2 > 0. Hence, from (15) u1 = 1 − ρ2 > 0. One can check

that the requirement t2 ≤ H +L is equivalent to L ≥ γ1(H − a1). In addition, t1 ≤ H ≤ t2

is equivalent to a1 ≤ H, and s1 ≤ s2 is equivalent to H ≤ B. So, in Case 2.1 of Section

3.1, condition (10) guarantees that we have 0 ≤ s1 ≤ s2 ≤ t1 ≤ H ≤ t2 ≤ H + L and

u1 > 0, u2 > 0.

Under the proposed policy, we know that λh
1 > µ1. Hence, the fluid level Z∗1 (t) increases

in the interval (0,H) and Z∗1 (0) < θ1 and Z∗1 (t1) = θ1 (see (16)). Thus, for any t ∈ (0, t1),

we know that Z∗1 (t) < θ1 and for any t ∈ (t1, H), Z∗1 (t) > θ1. Under the proposed policy,

in the low period, the fluid level Z∗1 (t) decreases until it hits its threshold at t2 (see (18)).

Hence, for any t ∈ (t1, t2), Z∗1 (t) > θ1. Then we can see that t1 and t2 obtained from the

set of equations of Case 2.1 coincide with their definitions given in (40) and (41). Hence,

the first inequality of claim 1 holds. From the definition of s̃2 and t̃2, we can immediately

see that the second inequality of claim 1 also holds.

We now prove Claim 2. While proving Claim 1, we have already shown that Z∗1 (t)

satisfies the inequalities in Claim 2 for all t < t2. Since λ2 < µ2 and u2 = ρ2, under the

proposed policy, Z∗2 (t) decreases in the interval (0, s1), until it reaches θ2 at s1 (see (11)).
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It is kept at its threshold θ2 in the interval (s1, s2) since λ2 = µ2u2. Then it increases

in the interval (s2, H) since class 1 has higher priority. Since Z∗1 (t) > θ1 in the interval

(H, t2), under the proposed Low-period-policy, class 1 still has higher priority and class 2

fluid continues to increase until class 1 fluid decreases to its threshold at t2. Hence,

∀t ∈ (0, s1), Z∗2 (t) > θ2, Z
∗
2 (s1) = θ2,

∀t ∈ (s1, s2), Z∗2 (t) = θ2, Z
∗
2 (s2) = θ2,

∀t ∈ (s2, t2), Z∗2 (t) > θ2, Z
∗
2 (t2) ≥ θ2.

After t2, under the proposed Low-period-policy, if Z∗2 (t2) > θ2, then class 1 fluid is going

to be kept at its threshold by setting u∗1(t) = ρl
1, and class 2 fluid is going to decrease by

holding service capacity at u∗2(t) = 1− ρl
1 > ρ2 until class 2 fluid reaches its threshold from

above at t̃2 (see the definition of t̃2 given in (43)). After t̃2, u∗1(t) > ρl
1 and u∗2(t) > ρ2. So,

fluid levels of both classes are going to decrease and are maintained below their thresholds.

Hence,

∀t ∈ (t2, t̃2), Z∗2 (t) > θ2, Z
∗
1 (t) = θ1,

∀t ∈ (t̃2, H + L), Z∗2 (t) ≤ θ2, Z
∗
1 (t) ≤ θ1.

This completes the proofs of Claims 1 and 2.

• Proof for Claim 3 in Case 2.1. From the proofs of Claims 1 and 2, we know that

in this case s̃2 = s2.

From the construction of pi(t), i = 1, 2, we know that they are piecewise linear functions.

To compare their values, it is sufficient to compare them at the end points of each interval.

Since pi(H + L) = 0 and ṗi(t) ≥ 0 at all differentiable points, we know pi(t) ≤ 0, i = 1, 2,

for all t ∈ [0,H + L]. Note that since p1(H + L) = p2(H + L) = 0 and µ1ṗ1(t) = µ2ṗ2(t)

for t ∈ (t2,H +L), we have µ1p1(t) = µ2p2(t) for t ∈ [t2, H +L]. Based on the derivatives,

we then have

∀t ∈ [t1, t2], µipi(t) = µipi(t2) + µihi(t− t2), i = 1, 2.
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Using the fact that µ1h1 > µ2h2, µ1p1(t2) = µ2p2(t2) and noting t− t2 < 0 for t ∈ (t1, t2),

we have

∀t ∈ (t1, t2), µ2p2(t) > µ1p1(t).

Based on the derivatives of p(t), we have

∀t ∈ [s2, t1], µ1p1(t) = µ1p1(t1),

∀t ∈ [s2, t2], µ2p2(t) = µ2p2(t2) + µ2h2(t− t2).

From (19) and µ1p1(t2) = µ2p2(t2), we have µ1p1(s2) = µ2p2(s2). Combining this with

µ1p1(t1) ≤ µ2p2(t1), we have

∀t ∈ (s2, t1), µ1p1(t) ≤ µ2p2(t).

From µ1p1(s2) = µ2p2(s2) and ṗi(t) = 0, i = 1, 2, for t ∈ (s1, s2), we can immediately see

that

∀t ∈ [s1, s2], µ1p1(t) = µ2p2(t) = µ2p2(s2).

For t ∈ (0, s1), based on the derivatives of p(t), we have

∀t ∈ [0, s1], µ2p2(t) = µ2p2(s1) + µ2h2(t− s1),

∀t ∈ [0, s1], µ1p1(t) = µ1p1(s1).

Note that µipi(t) has the same value at s1 for i = 1, 2 and for t ∈ (0, s1), ṗ2(t) = h2 > 0 =

ṗ1(t), then we have

∀t ∈ (0, s1), µ1p1(t) > µ2p2(t).

This completes the proof of Claim 3.

2.8.1.2 Proof of the optimality for the overloaded case

We will only construct the auxiliary function pi(t), i = 1, 2. To complete the proof of (34),

one only needs to go through the routine procedure as described in Section 2.8.1.1. We

define t2, s̃2 and t̃2 in the same way as in (41), (42) and (43) but now they are defined

44



under the policy given in Section 3.2. According to the definition of the break points

si, i = 1, 2, 3, s̃2, t2, and t̃2, we can specify the fluid level evolution for each time interval,

and the derivatives of pi(t), i = 1, 2. In the equations given below, if the right hand side

of an interval is not strictly larger than the left side of the interval, then that interval does

not exist but this does not affect our definition of the derivatives of pi(t) and the fluid level

description Z∗i (t) for i = 1, 2. We have

∀t ∈ (0, s1) : Z∗1 (t) < θ1, Z
∗
2 (t) > θ2, ṗ1(t) = 0, ṗ2(t) = h2,

∀t ∈ (s1, s2) : Z∗1 (t) < θ1, Z
∗
2 (t) ≤ θ2, ṗ1(t) = 0, ṗ2(t) = 0,

∀t ∈ (s2, s̃2) : Z∗2 (t) < θ2, ṗ2(t) = 0,

∀t ∈ (s̃2, t̃2) : Z∗2 (t) > θ2, ṗ2(t) = h2,

∀t ∈ (s2, s3) : Z∗1 (t) > θ1, ṗ1(t) = h1,

∀t ∈ (s3, H) : Z∗1 (t) = θ1, ṗ1(t) = µ2ṗ2(t)/µ1,

∀t ∈ (H, t2) : Z∗1 (t) > θ1, ṗ1(t) = h1,

∀t ∈ (t2, t̃2) : Z∗1 (t) = θ1, ṗ1(t) = µ2ṗ2(t)/µ1,

∀t ∈ (t̃2, H + L) : Z∗1 (t) ≤ θ1, Z
∗
2 (t) ≤ θ2, ṗi(t) = 0, i = 1, 2,

and we let pi(H +L) = 0, i = 1, 2. Thus, we can construct continuous and piecewise linear

functions pi(t), i = 1, 2 which have the specified derivatives in each interval and satisfy (32).

2.8.1.3 Proof of the optimality for the lightly loaded case

As in the proof of the optimality of the policies given in Sections 3.1 and 3.2, the proof

involves constructing the functions pi(t), i = 1, 2 based on the Pontryagin maximal principle

and is omitted.
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2.8.2 Proof of the asymptotic optimality of the policies in the stochastic case

In this section, we provide the proof of the asymptotic optimality of the polices proposed

in Section 2.5 and Section 2.6. We first prove the that the discrete review policies proposed

in Section 2.5 is asymptotically optimal as provided by Proposition 4. Then we prove the

results of Proposition 5, Proposition 9 and Proposition 11 in Section 2.6.

We first prove that the discrete review policies are asymptotically optimal when the

expected high period goes to infinity as provided in Proposition 4.

Proof of Proposition 4. We provide the proof for the discrete review policy where H̃(t)

is calculated based on the method given in (24). The proof for the discrete review policy

implemented with the method given in (25) is similar.

With a slight abuse of notation, we use di(t) and ψi(t), i = 1, 2 to denote the quantities

defined in (6) and (7) at time t when fluid levels are Zi(t), i = 1, 2. Similarly, let ai(t), i = 1, 2

denote the corresponding quantities given in (8) at time t. Hence, di(0) = di, ψi(0) = ψi

and ai(0) = ai for i = 1, 2. Let

D = max
{
a2(0), ψ1(0) +

η

1− η
(ψ1(0)− ψ2(0))

}
. (45)

We first show by induction that for all 0 ≤ n ≤ M − 1, the discrete review policy sets

Ṫ1(t) = 1, Ṫ2(t) = 0 for all t ∈ [nτ, (n+ 1)τ). Hence the discrete review policy is equivalent

to giving fixed priority to class 1 in the high period [0,H0).

First consider t = 0. Note that for Case 1 and Case 3, it follows immediately from

Corollary 2 that the discrete review policy gives fixed priority to class 1, i.e. Ṫ1(t) =

1, Ṫ2(t) = 0 for all t ∈ [0, τ).

For Case 2, note that ψ2 = ψ2(0) ≤ 0, then D ≥ a2 and D ≥ ψ1 + η(1 − η)−1ψ1 =

(1− η)−1ψ1. Hence, H̃(t) ≥ D (where D is given in (45)) which implies that the condition

of Case 2.6 in Section 2.4.1 is satisfied, where the discrete review policy gives fixed priority

to class 1 in the interval [0, τ).

For Case 4, H̃(t) ≥ D (where D is given in (45)) which implies that the condition of

Case 4.4 in Section (2.4.1) is satisfied, where the discrete review policy gives fixed priority

to class 1 in [0, τ).
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Therefore the claim is true for n = 0. Now assume that under the discrete review policy

fixed priority is given to class 1 until t = nτ for 1 ≤ n ≤M − 1. Then the fluid levels of the

two classes at time t = nτ are Z1(nτ) = Z1(0) + nτ(λh
1 − µ1), and Z2(nτ) = Z2(0) + nτλ2,

respectively. It is easily checked from (6),(7) and (8) that

ψ1(nτ) = ψ1(0)− nτ, ψ2(nτ) = ψ2(0)− nτ, a2(nτ) = a2(0)− nτ.

To specify the discrete review policy at time t = nτ , we again consider Cases 1 to 4

given in (20) to (23) separately. Note that the conditions of these four cases should now be

evaluated at time t = nτ based on Zi(nτ) and ψi(nτ), i = 1, 2.

Again under Case 1 and Case 3, Corollary 2 applies, hence, the discrete review policy

sets Ṫ1(t) = 1, Ṫ2(t) = 0 and gives fixed priority to class 1 for all t ∈ [nτ, (n+ 1)τ).

Under Case 2, since H̃(0) = E[H] and

H̃(nτ) ≥ E[H]− nτ ≥ D − nτ = max{a2(nτ), ψ1(nτ) +
η

1− η
(ψ1(nτ)− ψ2(nτ))}, (46)

it follows from Case 2.6 in Section 2.4.1 that the discrete review policy gives fixed priority

to class 1 in the interval [nτ, (n+ 1)τ).

Similarly, for Case 4, (46) implies that conditions of Case 4.4 in Section (2.4.1) hold,

hence the discrete review policy gives fixed priority to class 1 in the interval [nτ, (n+ 1)τ).

This then completes the induction and we therefore conclude that the discrete review

policy sets Ṫ1(t) = 1, Ṫ2(t) = 0 for all 0 ≤ t ≤ H0. The result in (26) then follows from

Proposition 5 in Section 2.6.

Remark 13. The proof for other methods are the same except E[H] is replaced by H̃(0) in

(46).

Next,we prove that the FP1 policy is asymptotically optimal when the expected high

period goes to infinity as stated in Proposition 5.

Proof of Proposition 5. We need to consider the holding costs under Cases 1 to 4 sepa-

rately. Note that for Case 1 and Case 3, Corollary 2 applies and the optimal policy is FP1,

hence we can take β2 = 0 for these two cases.
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Now consider Case 4. Note that the optimal policy (as described in Section 2.4) is the

same as the FP1 policy in Case 4.4, and differs from FP1 only under Cases 4.1, 4.2 and 4.3.

Thus, the two costs differ only when (H0, L0) belongs to the regions considered in Cases

4.1, 4.2 and 4.3. Our proof involves providing an upper bound on the difference between

the holding costs of the FP1 policy and the optimal policy. In the interest of space, we only

derive this upper bound when (H0, L0) is in the region given in Case 4.1. However, as it will

become clear from our analysis below, this will lead to subcases. Since the computation of

the upper bound for these subcases is similar, we only provide the analysis when (H0, L0)

satisfies (48) below.

We start by computing the holding cost expression for the FP1 policy. Under the FP1

policy, for any t ∈ (0,H0), we have Z1(t) = Z1(0)+ (λh
1 −µ1)t, and Z1(ψ1) = θ1 if H0 ≥ ψ1.

We consider the sample paths such that conditions of Case 4.1 and H0 ≥ ψ1 are both

satisfied. Thus, we have

ψ1 ≤ H0 ≤ a2, L0 ≥ γ1(H0 − a1). (47)

For (H0, L0) such that (47) is satisfied, we can specify the fluid level evolution under the

FP1 policy. Class 1 fluid level increases to its threshold value at ψ1 and stays above its

threshold until it decreases to its threshold value in the low period. Let t′2 denote the

time that the fluid level of class 1 decreases to its threshold value in the low period. Then

Z1(ψ1) + (λh
1 − µ1)(H0 − ψ1) + (λl

1 − µ1)(t′2 −H0) = θ1. Since Z1(ψ1) = θ1, we obtain

t′2 = H0 + (1− ρl
1)
−1(ρh

1 − 1)(H0 − ψ1).

Note that the conditions of Case 4.1 imply that t′2 ≤ H0 + L0. Thus, the fluid level of

class 1 can decrease to its threshold in the low period. On the other hand, since before t′2

class 2 is not served, its fluid level increases at rate λ2 and reaches its threshold value at

ψ2. Conditions of (47) imply that H0 ≥ ψ2. Hence, the fluid level of class 2 is above its

threshold in the interval (ψ2, t
′
2). After t′2, class 2 fluid level decreases at rate µ2(1−ρl

1)−λ2.

Let t̃′2 denote the time that class 2 decreases to its threshold value in the low period. Then

Z2(ψ2) + λ2(t′2 − ψ2) + (λ2 − µ2(1− ρl
1))(t̃

′
2 − t′2) = θ2.

48



Since Z2(ψ2) = θ2, we get

t̃′2 = t′2 + (1− ρ2 − ρl
1)
−1ρ2(t′2 − ψ2).

In order to have t̃′2 ≤ H0 +L0, we need L0 ≥ γ4(H0 − a1), where γ4 = (1− ρ2 − ρl
1)
−1(ρh

1 +

ρ2 − 1). Thus, we consider sample paths such that

ψ1 ≤ H0 ≤ a2, L0 ≥ γ4(H0 − a1) (48)

and specify the fluid level evolution of class 1 and class 2 as

if t ∈ [0, ψ1], Z1(t) = Z1(0) + (λh
1 − µ1)t ≤ θ1,

if t ∈ (ψ1,H0], Z1(t) = Z1(ψ1) + (λh
1 − µ1)(t− ψ1) > θ1,

if t ∈ [H0, t
′
2), Z1(t) = Z1(H0) + (λl

1 − µ1)(t−H0) > θ1,

if t ∈ [t′2,H0 + L0], Z1(t) ≤ θ1,

and

if t ∈ [0, ψ2], Z2(t) = Z2(0) + λ2t ≤ θ2,

if t ∈ (ψ2, t
′
2], Z2(t) = Z2(ψ2) + λ2(t− ψ1) > θ2,

if t ∈ (t′2, t̃
′
2), Z2(t) = Z1(t′2) + (λ2 − µ2(1− ρl

1))(t− t′2) > θ2,

if t ∈ [t̃′2,H0 + L0], Z2(t) ≤ θ2.

So, we can calculate the holding cost under the FP1 policy for (H0, L0) satisfying (48) as∫ H0+L0

0

2∑
i=1

hi(Zi(t)− θi)+ dt =
1
2
h1µ1

(
(ρh

1 − 1)(H0 − ψ1)2 + (1− ρl
1)(t

′
2 −H0)2

)
+

1
2
h2µ2

(
ρ2(t′2 − ψ2)2 + (1− ρ2 − ρl

1)(t̃
′
2 − t′2)

2
)
.

Plugging in the expressions of t′2 and t̃′2, we obtain

cFP1(H0, L0)− c(H0, L0) ≤ cFP1(H0, L0)

=
1
2
h2µ2

{(ρh
1 − 1)(ρh

1 − ρl
1)

η(1− ρl
1)

(H0 − ψ1)2

+
(1− ρ2 − ρl

1)
2

ρ2

[ρh
1 + ρ2 − 1

1− ρl
1 − ρ2

(H0 − a1)−
(ρh

1 − 1)
(1− ρl

1)
(H0 − ψ1)

]2

+(1− ρl
1 − ρ2)

[ρh
1 + ρ2 − 1

1− ρl
1 − ρ2

(H0 − a1)−
(ρh

1 − 1)
(1− ρl

1)
(H0 − ψ1)

]2
}
.
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Since H0 ≤ a2, cFP1(H0, L0) − c(H0, L0) is bounded when (H0, L0) satisfies (48). Hence,

the holding cost under FP1 policy differs from the holding cost of the optimal policy by a

constant. This completes the proof when (H0, L0) satisfies (48). Expressions in Appendix A

illustrate that the difference between the holding costs of the FP1 policy and the optimal

policy is also bounded by a constant for other values of the high and the low periods (i.e.

when (H0, L0) does not satisfy (48)).

The proof for Case 2 is similar and thus omitted.

Next, we show that the πa1 policy is asymptotically optimal when the traffic intensity

of class 2 increases as stated in Proposition 9.

Proof of Proposition 9. Similar to the proof of Proposition 5, we obtain an upper bound

on the difference between the holding costs of the πa1 policy and the optimal policy for each

possible value of H and L. In the interest of space, we only consider the values of H and L

that satisfy the conditions of Case 4.4. However, as it will become clear from our analysis

below, this will lead to subcases. Since the computation of the upper bound for these

subcases is similar, we only provide the analysis when (H,L) satisfies (53) below.

If H and L belong to the region given in Case 4.4, the optimal policy is the same as the

FP1 policy, which corresponds to s1 = s2 = 0 (see Section 2.4.1). We start with computing

the holding cost under the optimal policy and the πa1 policy when H and L belong to the

region of Case 4.4. Under the optimal policy, even though class 1 receives full capacity,

its fluid level increases in the high period. Let t1 denote the time that fluid level of class

1 reaches its threshold θ1 in the high period. Then we can solve for t1 which is equal to

ψ1 in this case. Note that the conditions of Case 4.4, in particular H ≥ a2 and ψ1 ≥ ψ2

imply that H ≥ ψ1. The fluid level of class 1 continues to increase after ψ1 during the

high period, and it is above its threshold at the beginning of the low period. Under the

Low-Period-Policy, class 1 still has full service capacity. Let t2 denote the time that the

fluid level of class 1 decreases to its threshold θ1 in the low period. Then

Z1(ψ1) + (λh
1 − µ1)(H − ψ1) + (λl

1 − µ1)(t2 −H) = θ1,
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where Z1(ψ1) = θ1 and we can compute t2 as

t2 = (ρh
1 − 1)(1− ρl

1)
−1(H − ψ1) +H. (49)

Note that t2 ≤ H + L implies that L ≥ γ3(H − ψ1). Thus, we consider sample paths such

that (H,L) satisfies both the conditions of Case 4.4 and L ≥ γ3(H − ψ1), i.e

H ≥ a2, H + L ≥ ψ1 +
η

1− η
(ψ1 − ψ2), L ≥ γ3(H − ψ1),

which is equivalent to

H ≥ a2, L ≥ γ3(H − ψ1). (50)

If H and L satisfy (50), the evolution of class 1 fluid under the optimal policy is as follows

if t ∈ [0, ψ1], Z1(t) = Z1(0) + (λh
1 − µ1)t ≤ θ1,

if t ∈ (ψ1,H), Z1(t) = θ1 + (λh
1 − µ1)(t− ψ1) > θ1,

if t ∈ [H, t2), Z1(t) = Z1(H) + (λh
1 − µ1)(t−H) > θ1,

if t ∈ [t2,H + L], Z1(t) ≤ θ1,

where t2 is given in (49). The holding cost incurred by class 1 is given as∫ H+L

0
h1(Z1(t)− θ1)+ dt =

1
2
h1µ1

(ρh
1 − 1)(ρh

1 − ρl
1)

(1− ρl
1)

(H − ψ1)2. (51)

Next we compute the holding cost incurred by class 2 under the optimal policy when H

and L satisfy (50). Under the optimal policy, class 2 is not served during the high period

and not served in the low period until class 1 fluid level decreases to its threshold. Hence,

class 2 is not served until t2. Therefore, the fluid level of class 2 increases until t2. Let t̃1

denote the time that the fluid level of class 2 increases to its threshold. We can compute

t̃1 as t̃1 = ψ2. Note that conditions in (50) imply that class 2 increases to its threshold in

the high period and reaches its threshold earlier than class 1. After t2, fluid level of class 2

begins to decrease at rate µ2(1− ρl
1)− λ2 under the Low-Period-Policy. Let t̃2 denote the

time that class 2 decreases to its threshold in the low period. Then

Z2(ψ2) + λ2(t2 −H) + (λ2 − µ2(1− ρl
1))(t̃2 − t2) = θ2,
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where Z2(ψ2) = θ2 and we have

t̃2 = t2 +
ρ2

1− ρ2 − ρl
1

(t2 −H), (52)

where t2 is given in (49). Note that t̃2 ≤ H + L implies that L ≥ γ4(H − a1).

Thus, we consider the sample paths such that H and L satisfy both (50) and L ≥

γ4(H − a1), which is equivalent to

H ≥ a2, L ≥ γ4(H − a1). (53)

Now we can specify the evolution of class 2 fluid under the optimal policy if (H,L) satisfies

(53). That is

if t ∈ [0, ψ2], Z2(t) = Z2(0) + λ2t ≤ θ2,

if t ∈ (ψ2, t2), Z2(t) = θ2 + λ2(t− ψ2) > θ2,

if t ∈ (t2, t̃2), Z2(t) = Z2(t2) + (λ2 − µ2(1− ρl
1))(t− t2) > θ2,

if t ∈ [t̃2,H + L], Z2(t) ≤ θ2,

where t2 and t̃2 are given in (49) and (52), respectively. The holding cost incurred by class

2 under the optimal policy if (H,L) satisfies (53) is given as∫ H+L

0
h2(Z2(t)− θ2)+ dt =

1
2
h2µ2

(
ρ2(t2 − ψ2)2 + (1− ρ2 − ρl

1)(t̃2 − t2)2
)
. (54)

Plugging in the expressions of t2 and t̃2 and using the fact that h2µ2 = ηh1µ1, the sum of

(51) and (54) is equal to

c(H,L) =
1
2
h2µ2

{
(ρh

1 − 1)(ρh
1 − ρl

1)
η(1− ρl

1)
(H − ψ1)2

+
(1− ρ2 − ρl

1)
2

ρ2

[ρh
1 + ρ2 − 1

1− ρl
1 − ρ2

(H − a1)−
(ρh

1 − 1)
(1− ρl

1)
(H − ψ1)

]2

+(1− ρl
1 − ρ2)

[ρh
1 + ρ2 − 1

1− ρl
1 − ρ2

(H − a1)−
(ρh

1 − 1)
(1− ρl

1)
(H − ψ1)

]2
}
. (55)

The expression in (55) yields the lower bound for the holding cost if (H,L) satisfies (53).

Next we calculate the holding cost under the πa1 policy when (H,L) belongs to the

region in (53). Note that H ≥ a2 and ψ1 ≥ ψ2 ≥ 0 imply that H ≥ a1. According to
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the πa1 policy, we know that both classes share the service capacity until a1 as specified in

Definition 6. Since a1 ≤ H, class 1 fluid increases before a1. Since the service speed for

class 2 is slower than its arrival rate under the πa1 policy before a1, class 2 fluid level also

increases before a1. Moreover, we can calculate that the fluid level of each class at a1 is

equal to its threshold value, i.e Zi(a1) = θi for i = 1, 2. From a1 to H, class 1 has higher

priority and gets the full service capacity. However, since ρh
1 > 1, the fluid level of class 1

continues to increase after a1 and reaches its highest level at the end of the high period.

Afterwards, under the Low-Period-Policy, the fluid level of class 1 decreases. Let t′2 denote

the time that the fluid level of class 1 decreases to its threshold value in the low period.

Then

Z1(a1) + (λh
1 − µ1)(H − a1) + (λl

1 − µ1)(t′2 −H) = θ1,

where Z1(a1) = θ1 and from the above equation we can solve for t′2 as

t′2 =
ρh
1 − 1

1− ρl
1

(H − a1) +H. (56)

Since t′2 ≤ H +L, L ≥ (ρh
1 − 1)(1− ρl

1)
−1(H − a1). Note that for every (H,L) that satisfies

(53), this condition is satisfied. That is if (H,L) belongs to the region in (53), the fluid

level of class 1 decreases to its threshold before the low period is over. Then we can specify

the evolution of class 1 fluid under the πa1 policy as

if t ∈ [0, a1], Z1(t) = Z1(0) + (λh
1 − µ1a1)t ≤ θ1,

if t ∈ (a1,H), Z1(t) = θ1 + (λh
1 − µ1)(t− a1) > θ1,

if t ∈ [H, t′2), Z1(t) = Z1(H) + (λh
1 − µ1)(t−H) > θ1,

if t ∈ [t′2,H + L], Z1(t) ≤ θ1,

where t′2 is given in (56). The holding cost incurred by class 1 under the πa1 policy is equal

to ∫ H+L

0
h1(Z1(t)− θ1)+ dt =

1
2
h1µ1

(ρh
1 − 1)(ρh

1 − ρl
1)

1− ρl
1

(H − a1)2. (57)

Finally, we specify the evolution of class 2 fluid under the πa1 policy. Note that the fluid level

of class 2 increases to its threshold level at a1 and class 2 is not served in the interval (a1, t
′
2).
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Hence, the fluid level of class 2 is above its threshold value in the interval (a1, t
′
2). After t′2,

class 2 is served at the speed µ2(1−ρl
1) under the Low-Period-Policy. Since µ2(1−ρl

1) > λ2,

the fluid level of class 2 begins to decrease after t′2 and reaches its threshold at some point

in the low period denoted by t̃′2. Then

Z2(a1) + λ2(t′2 − a1) + (λ2 − µ2(1− ρl
1))(t̃

′
2 − t′2) = θ2,

where Z2(a1) = θ2. We can solve the above equation for t̃′2 and compute

t̃′2 = t′2 +
ρ2

1− ρ2 − ρl
1

(t′2 − a1). (58)

Since t̃′2 ≤ H + L, L ≥ γ4(H − a1). For each sample path such that (H,L) satisfies (53),

the fluid level of class 2 decreases to its threshold before the low period is over. Now we

can specify the evolution of class 2 fluid as

if t ∈ [0, a1], Z2(t) = Z2(0) + (λ2 − µ2a1)t ≤ θ2,

if t ∈ (a1, t
′
2), Z2(t) = θ2 + λ2(t− a1) > θ2,

if t ∈ (t′2, t̃
′
2), Z2(t) = Z2(t′2) + (λ2 − µ2(1− ρl

1))(t− t′2) > θ2,

if t ∈ [t̃′2,H + L], Z2(t) ≤ θ2,

where t′2 and t̃′2 are given in (56) and (58), respectively. The holding cost incurred by class 2

under the πa1 policy when (H,L) satisfies (53) is equal to∫ H+L

0
h2(Z2(t)− θ2)+ dt =

1
2
h2µ2

{
ρ2(t′2 − a1)2 + (1− ρ2 − ρl

1)(t̃
′
2 − t′2)

2
}

=
1
2
h2µ2

ρ2(ρh
1 − ρl

1)
2

(1− ρl
1)(1− ρl

1 − ρ2)
(H − a1)2. (59)

Summing (57) and (59), we obtain the total holding cost under πa1 when (H,L) satisfies

(53) as

ca1(H,L) =
1
2
h2µ2

(
(ρh

1 − 1)(ρh
1 − ρl

1)
η(1− ρl

1)
+

ρ2(ρh
1 − ρl

1)
2

(1− ρl
1)(1− ρl

1 − ρ2)

)
(H − a1)2. (60)

We can now compute the difference between the holding costs of the optimal policy and

the πa1 policy. Subtracting (55) from (60), we have

ca1(H,L)− c(H,L)
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=
1
2
µ2h2

{[
(ρh

1 − 1)(ρh
1 − ρl

1)
η(1− ρl

1)

]
[(H − a1)2 − (H − ψ1)2]

+
ρ2(ρh

1 − ρl
1)

2

(1− ρl
1)(1− ρl

1 − ρ2)
(H − a1)2 −

ρ2(ρh
1 − 1)2

(1− ρl
1)(1− ρl

1 − ρ2)
(H − ψ1)2

−2ρ2(ρh
1 − 1)

1− ρ2 − ρl
1

(H − ψ2)(H − ψ1)−
ρ2(1− ρl

1)
1− ρ2 − ρl

1

(H − ψ2)2
}
. (61)

First consider the last three terms in (61). Factoring out ρ2[(1−ρl
1)(1−ρl

1−ρ2)]−1, we can

combine them into

− ρ2

(1− ρl
1)(1− ρl

1 − ρ2)
[(ρh

1 − 1)(H − ψ1) + (1− ρl
1)(H − ψ2)]2.

Adding this value to the second term in (61) and taking the common factor ρ2[(1− ρl
1)(1−

ρl
1 − ρ2)]−1 out, we can combine all the terms with (1− ρ2 − ρl

1) in the denominator into

ρ2

(1− ρl
1)(1− ρl

1 − ρ2)

{
[(ρh

1 − ρl
1)(H − a1) + (ρh

1 − 1)(H − ψ1) + (1− ρl
1)(H − ψ2)]

×[(ρh
1 − ρl

1)(H − a1)− (ρh
1 − 1)(H − ψ1)− (1− ρl

1)(H − ψ2)]
}
. (62)

From the definitions of a1, ψ1, and ψ2, we know that a1 = ((ρh
1−1)ψ1+ρ2ψ2)(ρh

1 +ρ2−1)−1.

Plugging in this expression of a1, we can further simplify the expression in the second line

of (62) as

−(ρh
1 − 1)(1− ρ2 − ρl

1)
(ρh

1 + ρ2 + 1)
(ψ1 − ψ2).

Thus, we have

ca1(H,L)− c(H,L)

=
1
2
µ2h2

{
(ρh

1 − 1)(ρh
1 − ρl

1)
η(1− ρl

1)
(2H − a1 − ψ1)(ψ1 − a1)

− ρ2(ρh
1 − ρl

1)(ρ
h
1 − 1)

(1− ρl
1)(ρ

h
1 + ρ2 − 1)

(2H − a1 −
(ρh

1 − 1)ψ1 + (1− ρl
1)ψ2

ρh
1 − ρl

1

)(ψ1 − ψ2)
}

≤ 1
2
h2µ2

{
(ρh

1 − 1)(ρh
1 − ρl

1)
η(1− ρl

1)
(2H − a1 − ψ1)(ψ1 − a1)

}
,

where the inequality follows from the fact that the second term is not positive since 0 ≤ ψ2 ≤

a1 ≤ ψ1 ≤ a2 ≤ H. At the same time, since 0 ≤ ψ1−a1 ≤ H and 0 ≤ (2H−a1−ψ1) ≤ 2H,

we obtain

ca1(H,L)− c(H,L) ≤ 1
2
h2µ2

(
(ρh

1 − 1)(ρh
1 − ρl

1)
η(1− ρl

1)

)
2H2

=
1
2
h1µ1

(
(ρh

1 − 1)(ρh
1 − ρl

1)
(1− ρl

1)

)
2H2, (63)
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where the equality follows from the definition of η. Since E[H2] ≤ ∞, we have the desired

result.

Next, we provide the proof of Proposition 11.

Proof of Proposition 11. We again compare the holding cost under the optimal policy

and the FP2-FP1 policy for each possible value of H and L. In particular, as in the proof

of Proposition 9, we obtain upper bounds on the difference between the holding costs of

the FP2-FP1 policy and the optimal policy. In the interest of space, we only consider the

values of H and L that satisfy the conditions of Case 2.6. However, as it will become clear

from our analysis below, this will lead to subcases. Since the computation of the upper

bound for these subcases is similar, we only provide the analysis when (H,L) satisfies (67)

below and ψ̃1 ≤ ψ̃2.

If H and L belong to the region given in Case 2.6, the optimal policy is the same as

the FP1 policy, which corresponds to s1 = s2 = 0 (see Section 2.4.1). Note that in this

case Z2(0) ≥ θ2 and Z1(0) ≤ θ1, hence ψ2 ≤ 0 ≤ ψ1. Let t1 again denote the time that the

fluid level of class 1 increases to its threshold in the high period under the optimal policy.

Then Z1(t1) = Z1(0) + (λh
1 − µ1)t1 = θ1. Hence, t1 = ψ1, and the condition of Case 2.6, in

particular H ≥ a2, guarantees ψ1 ≤ H. Similar to the analysis in the proof of Proposition 9,

in the interval (t1,H), the fluid level of class 1 continues to increase and reaches its highest

level at the end of the high period and we have Z1(H) ≥ θ1. In the low period class 1 still

has the higher priority and its fluid level starts to decrease. If the low period lasts long

enough, the fluid level of class 1 decreases to its threshold at some point in the low period.

Let t2 denote the time that the fluid level of class 1 decreases to its threshold. Then

Z1(t1) + (λh
1 − µ1)(H − t1) + (λl

1 − µ1)(t2 −H) = θ1.

Note that since t1 = ψ1 and Z1(t1) = Z1(ψ1) = θ1, we have

t2 = H +
ρh
1 − 1

1− ρl
1

(H − ψ1) = H + γ3(H − ψ1). (64)
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In order to have t2 ≤ H + L, we need L ≥ γ3(H − ψ1). Thus, we consider sample paths

such that (H,L) satisfies both the conditions of Case 2.6 and L ≥ γ3(H − ψ1), i.e

H ≥ a2, H + L ≥ (1− η)−1ψ1, L ≥ γ3(H − ψ1),

which is equivalent to

H ≥ a2, L ≥ γ3(H − ψ1). (65)

Now we can specify the evolution of class 1 fluid which is

if t ∈ [0, ψ1], Z1(t) = Z1(0) + (λh
1 − µ1)t ≤ θ1,

if t ∈ (ψ1,H), Z1(t) = θ1 + (λh
1 − µ1)(t− ψ1) > θ1,

if t ∈ [H, t2), Z1(t) = Z1(H) + (λh
1 − µ1)(t−H) > θ1,

if t ∈ [t2,H + L], Z1(t) ≤ θ1,

where t2 is given in (64). We can calculate the holding cost incurred by class 1 under the

optimal policy for each sample path such that (H,L) satisfies (65) and it is in fact the same

as the one given in (57).

Now we analyze the evolution of class 2 fluid under the optimal policy when (H,L)

satisfies (65). From the optimal policy, class 2 is not served before class 1 decreases to its

threshold in the low period. Since the initial fluid level of class 2 is above its threshold

under the conditions of Case 2, it remains above its threshold until t2. After t2, class 2 is

served at the speed of µ2(1 − ρl
1) and its fluid level begins to decrease. If the low period

lasts long enough, the fluid level of class 2 decreases to its threshold value at some point in

the low period, denoted by t̃2. Then

Z2(0) + λ2t2 + (λ2 − µ2(1− ρl
1))(t̃2 − t2) = θ2.

Solving the above equation for t̃2 and plugging in the expression of ψ2 given in (7), we have

t̃2 = t2 + ρ2(1− ρ2 − ρl
1)
−1(t2 − ψ2), (66)

where t2 is given in (64). Since t̃2 ≤ H + L, L ≥ γ4(H − a1).
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Now we consider sample paths such that (H,L) satisfies both (65) and L ≥ γ4(H − a1).

Thus, (H,L) satisfies

H ≥ a2, L ≥ γ4(H − a1). (67)

For each sample path such that (H,L) satisfies (67), the evolution of class 2 fluid can be

specified according to the optimal policy as follows

if t ∈ (0, t2), Z2(t) = Z2(0) + λ2t > θ2,

if t ∈ (t2, t̃2), Z2(t) = Z2(t2) + (λ2 − µ2(1− ρl
1))(t− t2) > θ2,

if t ∈ [t̃2,H + L], Z2(t) ≤ θ2,

where t2 and t̃2 are given in (64) and (66), respectively. Then the holding cost incurred by

class 2 under the optimal policy for each sample path with (H,L) satisfying (67) is equal

to∫ H+L

0
h2(Z2(t)− θ2)+ dt =

1
2
h2µ2

{
ρ2(t2 − ψ2)2 − ρ2ψ

2
2 + (1− ρ2 − ρl

1)(t̃2 − t2)2
}
. (68)

Summing (57) and (68) and plugging in the expressions of t2 and t̃2, we have

c(H,L) =
1
2
h2µ2

{
(ρh

1 − 1)(ρh
1 − ρl

1)
η(1− ρl

1)
(H − ψ1)2 − ρ2(ψ−2 )2

+
(1− ρ2 − ρl

1)
2

ρ2

[ρh
1 + ρ2 − 1

1− ρl
1 − ρ2

(H − a1)−
(ρh

1 − 1)
(1− ρl

1)
(H − ψ1)

]2

+(1− ρl
1 − ρ2)

[ρh
1 + ρ2 − 1

1− ρl
1 − ρ2

(H − a1)−
(ρh

1 − 1)
(1− ρl

1)
(H − ψ1)

]2
}
. (69)

Now we analyze the fluid level evolution under FP2-FP1 policy when (H,L) satisfies

(67). Recall that under the conditions of Case 2, Z2(0) > θ2 and Z1(0) < θ1. Under the

FP2-FP1 policy, class 2 has higher priority before the fluid level of class 1 increases to θ1

and class 2 decreases to its threshold θ2. Let t′1 (t̃′1) be the time that the fluid level of class 1

(class 2) increases (decreases) to θ1 (θ2) when class 2 has higher priority. Then

Z1(0) + λh
1t
′
1 = θ1, Z2(0) + (λ2 − µ2)t̃1 = θ2,

and we have t′1 = ψ̃1 and t̃′1 = ψ̃2. We first consider the case that ψ̃1 ≤ ψ̃2, i.e the fluid

level of class 2 is still above its threshold θ2 while the fluid level of class 1 increases to its
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threshold θ1. According to the FP2-FP1 policy, class 1 has higher priority if its fluid level is

above its threshold value. Note that the above equation is valid only if H ≥ t′1, i.e H ≥ ψ̃1.

One can verify that if (H,L) satisfies (67), then H ≥ ψ̃1. Therefore, for any (H,L) that

satisfies (67) and ψ̃1 ≤ ψ̃2, under the FP2-FP1 policy, class 2 has higher priority before ψ̃1,

its fluid decreases before ψ̃1, and is still above its threshold θ2 at ψ̃1. On the other hand,

class 1 is not served before ψ̃1, its fluid level increases before ψ̃1, and reaches its threshold

θ1 at ψ̃1. Note that since ψ̃1 < H, the fluid level of class 1 increases even when it is served

with higher priority. Under the FP2-FP1 policy, class 1 has higher priority before its fluid

level decreases to its threshold θ1 which can only happen in the low period. Let t′2 be the

time that the fluid level of class 1 decreases to its threshold θ1, then

Z1(ψ̃1) + (λh
1 − µ1)(H − ψ̃1) + (λl

1 − µ1)(t′2 −H) = θ1.

Under the FP2-FP1 policy Z1(ψ̃1) = θ1. We can solve the above equation and obtain

t′2 = H + (ρh
1 − 1)(1− ρl

1)
−1(H − ψ̃1) = H + γ3(H − ψ̃1). (70)

If the fluid level of class 1 decreases to its threshold before the low period is over, t′2 ≤ H+L.

Thus, we need L ≥ γ3(H − ψ̃1). But for any sample path with (H,L) satisfying (67) and

ψ̃1 ≤ ψ̃2, L ≥ γ3(H − ψ̃1) holds.

If (H,L) satisfies (67) and ψ̃1 ≤ ψ̃2, the evolution of class 1 fluid is given as

if t ∈ [0, ψ̃1], Z1(t) = Z1(0) + λh
1t ≤ θ1,

if t ∈ (ψ̃1,H), Z1(t) = Z1(ψ̃1) + (λh
1 − µ1)(t− a1) = θ1 + (λh

1 − µ1)(t− a1) > θ1,

if t ∈ [H, t′2), Z1(t) = Z1(H) + (λh
1 − µ1)(t−H) > θ1,

if t ∈ [t′2,H + L], Z1(t) ≤ θ1,

where t′2 is in by (70). The holding cost incurred by class 1 is equal to∫ H+L

0
h1(Z1(t)− θ1)+ dt =

(ρh
1 − 1)(ρh

1 − ρl
1)

1− ρl
1

(H − ψ̃1)2. (71)

We now consider the evolution of class 2 fluid when (H,L) satisfies (67) and ψ̃1 ≤ ψ̃2.

Recall that class 2 has higher priority before ψ̃1 and its fluid level is still above its threshold
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at time ψ̃1 when class 1 starts receiving higher priority. Before the fluid level of class 1

decreases to its threshold θ1, class 2 is not served and its fluid level begins to increase until

t′2 (where t′2 is the time that the fluid level of class 1 decreases to its threshold in the low

period). After t′2, class 2 is served at the speed of µ2(1 − ρl
1). If class 2 continues to be

served at this speed, its fluid level decreases to its threshold at some time in the low period,

denoted by t̃′2. Then

Z2(0) + (λ2 − µ2)ψ̃1 + λ2(t′2 − ψ̃1) + (λ2 − µ2(1− ρl
1))(t̃

′
2 − t′2) = θ2.

¿From this equation, we can get

t̃′2 = t′2 +
(
(1− ρ2)(ψ̃2 − ψ̃1) + ρ2(t′2 − ψ̃1)

)
(1− ρ2 − ρl

1)
−1, (72)

where t′2 is given in (70). For class 2 fluid to decrease to its threshold level in the low period,

we need to have t̃′2 ≤ H + L, which requires that L ≥ γ4(H − a1).

Then the evolution of class 2 fluid under FP2-FP1 policy with (H,L) satisfying (67)

and ψ̃1 ≤ ψ̃2 is given as

if t ∈ [0, ψ̃1], Z2(t) = Z2(0) + (λ2 − µ2)t ≥ θ2,

if t ∈ (ψ̃1, t
′
2), Z2(t) = Z2(ψ̃1) + λ2(t− ψ̃1) > θ2,

if t ∈ (t′2, t̃
′
2), Z2(t) = Z2(t′2) + (λ2 − µ2(1− ρl

1))(t− t′2) > θ2,

if t ∈ [t̃′2,H + L], Z2(t) ≤ θ2,

where t′2 and t̃′2 are given in (70) and (72), respectively. The holding cost incurred by class 2

under the FP2-FP1 policy can be computed as∫ H+L

0
h2(Z2(t)− θ2)+ dt (73)

=
1
2
h2µ2

{
2
(1− ρ2)(ρh

1 − ρl
1)

1− ρl
1

(ψ̃2 − ψ̃1)(H − ψ̃1) + ρ2

[ρh
1 − ρl

1

1− ρl
1

(H − ψ̃1)
]2

+(1− ρ2 − ρl
1)

[ρh
1 + ρ2 − 1

1− ρ2 − ρl
1

(H − a1)−
ρh
1 − 1

1− ρl
1

(H − ψ̃1)
]2

+(1− ρ2)(2ψ̃2 − ψ̃1)ψ̃1

}
. (74)

Summing (71) and (74), we get the total holding cost under FP2-FP1 policy for each
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(H,L) that satisfies (67) and ψ̃1 ≤ ψ̃2 as

cFP2−FP1(H,L) =
1
2
h2µ2

{
(ρh

1 − 1)(ρh
1 − ρl

1)
η(1− ρl

1)
(H − ψ̃1)2 + (1− ρ2)(2ψ̃2 − ψ̃1)ψ̃1

+2
(1− ρ2)(ρh

1 − ρl
1)

1− ρl
1

(ψ̃2 − ψ̃1)(H − ψ̃1) + ρ2

[ρh
1 − ρl

1

1− ρl
1

(H − ψ̃1)
]2

+(1− ρ2 − ρl
1)

[ρh
1 + ρ2 − 1

1− ρ2 − ρl
1

(H − a1)−
ρh
1 − 1

1− ρl
1

(H − ψ̃1)
]2

}
. (75)

Subtracting (69) from (75), with some algebra we have

cFP2−FP1(H,L)− c(H,L)

=
1
2
h2µ2

{((ρh
1 − 1)(ρh

1 − ρl
1)

η(1− ρl
1)

+
(ρh

1 − 1)2

(1− ρl
1)

)
(2H − ψ1 − ψ̃1)(ψ1 − ψ̃1)− ρ2(H − ψ2)2

− 2ρ2(ρh
1 − 1)

(1− ρl
1)

(H − ψ2)(H − ψ̃1)−
2(ρh

1 − 1)2

(1− ρl
1)

(H − ψ1)(ψ1 − ψ̃1) + (1− ρ2)(2ψ̃2 − ψ̃1)ψ̃1

+
2(1− ρ2)(ρh

1 − ρl
1)

(1− ρl
1)

(ψ̃2 − ψ̃1)(H − ψ̃1) + ρ2ψ
2
2

≤ 1
2
h2µ2

{((ρh
1 − 1)(ρh

1 − ρl
1)

η(1− ρl
1)

+
(ρh

1 − 1)2

(1− ρl
1)

)
(2H − ψ1 − ψ̃1)(ψ1 − ψ̃1)− ρ2(H − ψ2)2

− 2ρ2(ρh
1 − 1)

(1− ρl
1)

(H − ψ2)(H − ψ̃1)−
2(ρh

1 − 1)2

(1− ρl
1)

(H − ψ1)(ψ1 − ψ̃1) + 2(1− ρ2)ψ̃2ψ̃1

+
2(1− ρ2)(ρh

1 − ρl
1)

(1− ρl
1)

ψ̃2(H − ψ̃1) + ρ2ψ
2
2

}
.

Since H ≥ a2 ≥ ψ1 ≥ ψ̃1 (which also implies that (H − ψ2)(H − ψ̃1) ≥ −ψ2(H − ψ̃1)), we

have

((ρh
1 − 1)(ρh

1 − ρl
1)

η(1− ρl
1)

+
(ρh

1 − 1)2

(1− ρl
1)

)
(2H − ψ1 − ψ̃1)(ψ1 − ψ̃1)− ρ2(H − ψ2)2

− 2ρ2(ρh
1 − 1)

(1− ρl
1)

(H − ψ2)(H − ψ̃1)−
2(ρh

1 − 1)2

(1− ρl
1)

(H − ψ1)(ψ1 − ψ̃1)

≤
((ρh

1 − 1)(ρh
1 − ρl

1)
η(1− ρl

1)
+

(ρh
1 − 1)2

(1− ρl
1)

)
(2H − ψ1 − ψ̃1)(ψ1 − ψ̃1)

−ρ2(H − ψ2)2 +
2ρ2(ρh

1 − 1)
(1− ρl

1)
ψ2(H − ψ̃1).

Thus,

cFP2−FP1(H,L)− c(H,L)

≤ 1
2
h2µ2

{((ρh
1 − 1)(ρh

1 − ρl
1)

η(1− ρl
1)

+
(ρh

1 − 1)2

(1− ρl
1)

)
(2H − ψ1 − ψ̃1)(ψ1 − ψ̃1)
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−ρ2(H − ψ2)2 +
2ρ2(ρh

1 − 1)
(1− ρl

1)
ψ2(H − ψ̃1) + 2(1− ρ2)ψ̃2ψ̃1

+
2(1− ρ2)(ρh

1 − ρl
1)

(1− ρl
1)

ψ̃2(H − ψ̃1) + ρ2ψ
2
2

}
.

Note that since (1− ρ2)ψ̃2 = −ρ2ψ2, we can further simplify the above upper bound as

1
2
h2µ2

{((ρh
1 − 1)(ρh

1 − ρl
1)

η(1− ρl
1)

+
(ρh

1 − 1)2

(1− ρl
1)

)
(2H − ψ1 − ψ̃1)(ψ1 − ψ̃1)− ρ2H

2
}
.

Then we have

cFP2−FP1(H,L)− c(H,L)

≤ 1
2
h2µ2

{((ρh
1 − 1)(ρh

1 − ρl
1)

η(1− ρl
1)

+
(ρh

1 − 1)2

(1− ρl
1)

)
(2H − ψ1 − ψ̃1)(ψ1 − ψ̃1)

}
≤ 1

2
h1µ1

{((ρh
1 − 1)(ρh

1 − ρl
1)

(1− ρl
1)

+
(ρh

1 − 1)2

(1− ρl
1)

)
(2H − ψ1 − ψ̃1)(ψ1 − ψ̃1)

}
, (76)

where the last inequality follows from the definition of η and our assumption that h1µ1 >

h2µ2. The analysis for ψ̃1 > ψ̃2 is similar and omitted. Since E[H2] ≤ ∞, we have the

desired result.

2.9 Summary and conclusions

We studied the dynamic scheduling of different classes of service in a fluid model of com-

puting paradigms for Internet services that may be overloaded for a transient period. We

focused on minimizing the penalty of the hosting service provider by scheduling its server

resources among various e-commerce sites under Service-Level-Agreement (SLA) contracts

with specific Quality-of-Service (QoS) performance guarantees for each class of service.

Our focus in this chapter was on a system with two fluid classes and a single server whose

capacity can be shared arbitrarily among the two classes. To capture the QoS performance

guarantees in the SLA contracts, we introduced a threshold value for each fluid class such

that a holding cost is incurred only if the amount of fluid of a certain class exceeds its

threshold value. We assumed that the class 1 arrival rate changes with time and the class 1

fluid can more efficiently reduce the holding cost. Under these assumptions, our objective

is to specify the optimal server allocation policy that minimizes the total holding cost.
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We first considered the case that the arrival rate function for class 1 fluid is known.

In this deterministic setting we could completely characterize the optimal server allocation

policy that minimizes the holding cost. We then studied the stochastic fluid system when

the arrival rate function for class 1 is random. Using the key insights gained from the op-

timal policy in the deterministic setting, we developed simple (heuristic) server allocation

policies. These policies called “discrete review policies” are not only easy to implement

but also shown to be strongly asymptotically optimal for the two heavy traffic regimes con-

sidered in this chapter. Moreover, numerical studies have also demonstrated that discrete

review policies yield good holding cost performance in general (not only in the asymptotic

sense) and they are robust with respect to the system parameters such as load and class 1

arrival rate function.

In the next chapter, we will establish the connection between the stochastic fluid models

and queueing networks in a slowly changing environment. We first show that the stochastic

fluid models are actually an approximation to queueing networks in a stochastically and

slowly changing environment. Then we provide a method to derive a scheduling policy

from the solutions of the stochastic fluid models. We also prove that the derived scheduling

policy with the provided method is asymptotically optimal if the solution of the stochastic

fluid model is optimal.
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Table 1: Average holding costs when E[L] = 12.5.
Percentage Differences off the Lower Bound

System Case E[H] LB FP1 πa1 DSv1 DSv2 DSv3 DSv4
A 5 0.00 0.0026∗ 0.00 0.00 0.00 0.00 0.00

12.5 1.98 100.77 21.36 19.76 13.34 16.70 19.34
25 132.16 9.48 15.59 12.66 7.09 10.52 13.35

37.5 705.40 2.42 11.71 7.66 2.79 6.29 9.31
50 1883.35 0.90 9.24 3.73 1.36 3.30 6.67

B 5 0.03 332.61 22.97 16.94 15.29 18.56 21.09
I 12.5 20.68 17.92 16.70 10.53 8.99 12.12 14.67

25 407.05 2.43 10.90 4.90 3.50 6.41 8.88
37.5 1535.52 0.75 8.01 2.14 0.93 3.59 6.01

50 3516.83 0.33 6.32 0.61 0.35 1.95 4.33
C 5 29.51 3.27 11.36 5.58 4.29 7.03 9.41

12.5 523.38 0.33 5.65 2.05 1.84 3.01 4.26
25 2962.87 0.17 3.18 0.97 1.08 1.95 2.61

37.5 7544.71 0.11 2.34 0.45 0.54 1.32 1.88
50 14337.9 0.07 1.89 0.13 0.17 0.92 1.46

D 5 3230.38 0.0004 0.73 0.12 0.18 0.23 0.28
12.5 21190.3 0.002 0.30 0.07 0.18 0.22 0.26

25 86143.0 0.004 0.15 0.04 0.10 0.12 0.14
37.5 194926 0.004 0.10 0.02 0.05 0.08 0.10

50 347597 0.003 0.09 0.005 0.03 0.06 0.07
A 5 0.00 67296.6 14.87 13.84 15.74 11.54 12.75

12.5 14.68 452.27 21.58 18.18 15.69 15.18 18.19
25 344.88 46.81 22.15 15.58 12.67 13.42 17.60

37.5 1332.03 12.86 19.44 10.78 8.82 9.61 14.29
50 3073.30 4.96 16.66 6.54 4.75 6.14 11.05

B 5 0.43 2061.88 18.97 13.30 14.39 13.82 16.32
II 12.5 67.00 104.28 21.63 13.29 13.74 14.41 17.90

25 756.57 15.74 18.41 8.85 8.76 10.35 14.30
37.5 2404.51 5.11 14.96 5.19 4.84 6.79 10.82

50 5085.14 2.27 12.41 2.71 2.31 4.27 8.29
C 5 59.54 21.69 18.05 9.19 8.99 10.56 14.23

12.5 747.00 4.34 11.20 5.02 4.82 6.92 9.12
25 3870.27 2.01 6.82 2.77 2.95 4.53 5.79

37.5 9600.58 1.06 5.12 1.54 1.67 3.07 4.20
50 17991.4 0.62 4.19 0.81 0.88 2.18 3.28

D 5 3908.27 0.01 1.62 0.36 0.56 0.71 0.87
12.5 25373.9 0.05 0.67 0.23 0.49 0.58 0.63

25 102840.0 0.05 0.35 0.12 0.23 0.29 0.32
37.5 232504.0 0.04 0.25 0.06 0.13 0.18 0.22

50 414419.0 0.02 0.20 0.03 0.07 0.13 0.17
Note: * indicates the actual value of the average holding cost for the FP1 policy.
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Table 2: Average holding costs when E[L] = 25.
Percentage Differences off the Lower Bound

System Case E[H] LB FP1 πa1 DSv1 DSv2 DSv3 DSv4
A 5 0.00 0.0026∗ 0.00 0.00 0.00 0.00 0.00

12.5 2.36 86.93 20.92 19.43 13.34 16.57 19.04
25 160.28 8.03 15.49 12.69 7.13 10.62 13.35

37.5 847.81 2.06 11.68 7.73 2.62 6.37 9.35
50 2230.50 0.78 9.22 3.77 1.28 3.33 6.71

B 5 0.03 294.06 22.96 17.21 15.60 18.78 21.18
I 12.5 24.52 15.61 16.48 10.55 9.00 12.10 14.55

25 478.94 2.13 10.83 4.92 3.46 6.43 8.86
37.5 1774.28 0.67 7.98 2.13 0.85 3.60 6.01

50 3998.12 0.30 6.30 0.58 0.31 1.95 4.33
C 5 33.96 2.95 11.36 5.65 4.30 7.10 9.46

12.5 578.39 0.31 5.63 2.05 1.84 3.01 4.25
25 3174.51 0.17 3.19 0.97 1.08 1.95 2.61

37.5 7964.52 0.11 2.35 0.45 0.54 1.33 1.90
50 15003.8 0.07 1.92 0.13 0.17 0.94 1.48

D 5 3270.14 0.0004 0.73 0.12 0.18 0.23 0.29
12.5 21300.0 0.002 0.30 0.07 0.18 0.22 0.26

25 86382.7 0.004 0.15 0.04 0.10 0.12 0.14
37.5 195315 0.004 0.11 0.02 0.05 0.08 0.10

50 348157 0.003 0.09 0.005 0.03 0.06 0.07
A 5 0.01 65776 9.40 8.74 12.53 7.46 8.04

12.5 21.73 471.27 16.69 14.19 14.51 12.28 14.20
25 462.35 50.90 19.88 14.39 13.51 12.77 16.03

37.5 1687.87 14.39 18.44 10.73 9.88 9.76 13.79
50 3756.04 5.66 16.17 6.80 5.35 6.45 10.93

B 5 0.65 2113.81 14.14 10.65 12.36 10.62 12.25
II 12.5 91.84 112.58 18.42 12.36 13.64 12.82 15.39

25 949.06 17.91 17.16 9.07 9.56 10.13 13.49
37.5 2879.99 5.99 14.39 5.58 5.57 6.88 10.52

50 5914.70 2.72 12.11 3.06 2.76 4.43 8.18
C 5 74.93 23.78 16.53 9.07 9.29 10.06 13.17

12.5 852.74 5.35 10.81 5.10 4.93 6.78 8.83
25 4212.98 2.57 6.73 2.93 3.08 4.51 5.72

37.5 10251.4 1.37 5.11 1.70 1.82 3.09 4.19
50 18997.4 0.79 4.21 0.95 1.01 2.22 3.30

D 5 3962.43 0.014 1.63 0.37 0.56 0.71 0.87
12.5 25524.5 0.07 0.67 0.23 0.49 0.58 0.63

25 103166 0.07 0.35 0.13 0.23 0.29 0.32
37.5 233036 0.05 0.25 0.07 0.13 0.19 0.22

50 415185 0.03 0.20 0.04 0.08 0.13 0.17
The star (*) indicates the actual value of the average holding cost for the FP1 policy.
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Table 3: Average holding costs when E[L] = 50.
Percentage Differences off the Lower Bound

System Case E[H] LB FP1 πa1 DSv1 DSv2 DSv3 DSv4
A 5 0.00 0.0027∗ 0.00 0.00 0.00 0.00 0.00

12.5 2.69 76.98 20.01 18.63 12.91 15.96 18.26
25 191.80 6.78 14.76 12.16 6.84 10.22 12.77

37.5 1029.76 1.72 11.23 7.50 2.40 6.19 9.04
50 2712.54 0.65 8.95 3.69 1.18 3.26 6.55

B 5 0.04 264.86 22.08 16.66 15.12 18.14 20.41
I 12.5 28.61 13.63 15.88 10.28 8.77 11.76 14.07

25 570.02 1.82 10.47 4.80 3.33 6.28 8.61
37.5 2106.81 0.58 7.76 2.07 0.76 3.53 5.87

50 4708.96 0.26 6.16 0.54 0.27 1.92 4.25
C 5 39.83 2.57 11.18 5.61 4.25 7.06 9.35

12.5 659.90 0.28 5.55 2.03 1.82 2.98 4.20
25 3511.68 0.15 3.16 0.96 1.08 1.94 2.60

37.5 8655.56 0.10 2.35 0.45 0.54 1.33 1.90
50 16120.7 0.06 1.93 0.13 0.17 0.94 1.50

D 5 3346.52 0.0004 0.73 0.12 0.18 0.23 0.29
12.5 21512.7 0.002 0.30 0.07 0.18 0.22 0.26

25 86834.6 0.004 0.15 0.04 0.10 0.12 0.14
37.5 196039 0.004 0.11 0.02 0.05 0.08 0.10

50 349187 0.003 0.09 0.006 0.03 0.06 0.08
A 5 0.01 60834.20 5.81 5.40 8.63 4.67 4.97

12.5 34.48 472.51 11.30 9.65 11.70 8.57 9.66
25 679.44 54.28 15.35 11.35 12.94 10.41 12.50

37.5 2336.96 16.06 15.52 9.46 10.62 8.84 11.76
50 4988.97 6.52 14.34 6.55 5.93 6.30 9.84

B 5 1.02 2040.44 9.61 7.63 9.41 7.37 8.36
II 12.5 137.10 116.42 13.77 10.06 12.01 9.93 11.59

25 1299.36 19.96 14.39 8.50 9.77 8.92 11.41
37.5 3739.20 7.00 12.77 5.71 6.30 6.49 9.43

50 7410.93 3.27 11.10 3.41 3.31 4.39 7.58
C 5 102.12 25.17 13.99 8.35 9.05 8.88 11.25

12.5 1044.08 6.34 9.93 4.98 4.87 6.34 8.15
25 4836.52 3.24 6.43 3.06 3.16 4.36 5.48

37.5 11441.8 1.77 4.98 1.90 1.97 3.06 4.10
50 20846.7 1.04 4.16 1.14 1.19 2.23 3.26

D 5 4605.41 0.02 1.62 0.37 0.56 0.71 0.87
12.5 25815.6 0.11 0.66 0.24 0.50 0.58 0.63

25 103803 0.10 0.35 0.14 0.24 0.29 0.33
37.5 234065 0.07 0.25 0.08 0.14 0.19 0.23

50 416648 0.04 0.21 0.05 0.08 0.14 0.18
The star (*) indicates the actual value of the average holding cost for the FP1 policy.
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Table 4: Average holding costs when E[L] = 1000.
Percentage Differences off the Lower Bound

System Case E[H] LB FP1 πa1 DSv1 DSv2 DSv3 DSv4
A 5 0.00 0.0027∗ 0.00 0.00 0.00 0.00 0.00

12.5 3.04 68.30 18.55 17.29 12.03 14.85 16.96
25 246.67 5.29 12.83 10.61 5.98 8.94 11.13

37.5 1463.13 1.21 9.39 6.32 1.91 5.22 7.59
50 4161.72 0.43 7.31 3.05 0.89 2.68 5.38

B 5 0.04 231.28 21.14 16.13 14.67 17.51 19.60
I 12.5 37.56 10.58 14.15 9.28 7.92 10.59 12.59

25 846.81 1.25 8.86 4.11 2.80 5.38 7.32
37.5 3386.34 0.36 6.41 1.70 0.53 2.96 4.88

50 7981.57 0.15 5.03 0.40 0.16 1.58 3.50
C 5 62.00 1.70 9.53 4.87 3.64 6.11 8.03

12.5 1174.26 0.16 4.61 1.71 1.53 2.51 3.52
25 6481.53 0.09 2.64 0.80 0.90 1.63 2.17

37.5 15825.0 0.06 1.98 0.36 0.45 1.13 1.60
50 28922.2 0.04 1.64 0.09 0.13 0.81 1.28

D 5 5151.63 0.0002 0.69 0.12 0.17 0.22 0.27
12.5 27731.1 0.001 0.29 0.07 0.17 0.22 0.25

25 101086 0.004 0.15 0.04 0.10 0.12 0.14
37.5 218685 0.004 0.11 0.02 0.05 0.08 0.10

50 380521 0.003 0.09 0.006 0.03 0.06 0.08
A 5 0.03 42604.30 2.25 2.09 3.43 1.80 1.92

12.5 158.84 297.99 2.56 2.19 3.30 1.99 2.19
25 4177.56 31.79 2.77 2.08 4.00 2.03 2.27

37.5 15194.7 9.47 2.80 1.85 4.69 1.89 2.14
50 31848.9 4.03 2.77 1.64 2.95 1.69 1.94

B 5 3.88 1275.31 2.75 2.33 3.15 2.16 2.40
II 12.5 721.66 69.32 3.03 2.57 3.69 2.30 2.57

25 7654.53 11.62 3.03 2.40 3.76 2.08 2.43
37.50 21436.6 4.30 2.90 2.10 3.41 1.74 2.18

50 40180.6 2.15 2.77 1.74 2.17 1.41 1.93
C 5 525.66 17.23 3.56 2.79 3.88 2.51 2.91

12.5 4768.37 4.52 3.15 1.94 1.97 2.11 2.61
25 18169.3 2.99 2.56 1.65 1.61 1.80 2.20

37.5 37865.5 1.91 2.25 1.39 1.33 1.45 1.87
50 62926.3 1.25 2.05 1.13 1.10 1.18 1.62

D 5 6885.53 0.03 1.38 0.32 0.48 0.61 0.74
12.5 34368.7 0.29 0.63 0.28 0.47 0.55 0.60

25 123211 0.36 0.34 0.24 0.24 0.29 0.32
37.5 265930 0.25 0.26 0.19 0.16 0.19 0.23

50 462363 0.17 0.21 0.15 0.12 0.15 0.18
The star (*) indicates the actual value of the average holding cost for the FP1 policy.
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CHAPTER 3

SCHEDULING OF MULTICLASS OPEN QUEUEING

NETWORKS IN A SLOWLY CHANGING

ENVIRONMENT

In this chapter, we provide a relationship between the optimal scheduling policy for the

stochastic fluid model and the asymptotically optimal policy for the corresponding queueing

network in a slowly changing environment. We provide a general method to derive a fluid-

scale asymptotically optimal scheduling policy for the queueing network if the optimal policy

for its corresponding stochastic fluid model is given.

3.1 Introduction

The contemporary Internet is a large, complex, rapidly changing system characterized with

many uncertainties, such as unpredictable user behaviors, server break downs, new tech-

nology and service advances. Mathematical modelling and analysis of such a system can

augment the understanding of key issues of its performance problems. However it is impossi-

ble to model such a complex system precisely, therefore stochastic processing networks have

been selected as a more realistic mathematical model for it. In this study, we particulary

consider a multiclass open queueing network.

In a queueing network, customers (jobs or service requests) arrive randomly and wait

in queue before being served. In a multiclass queuing network, one server might need to

process more than one class of customers. When a server is available and there are more

than one class of customers waiting in the queue, a scheduling policy determines which

customer class to serve next. Our concern is to search for an optimal or near optimal

scheduling policy for such networks. In this study, we only consider head of line policies, i.e

for the customers of the same class, the earliest one has the highest priority. So the decision

68



to make is what is the next class to serve when a server is available.

In a standard multiclass queueing network, the arrival pattern of customers is not chang-

ing, although certain fluctuation is allowed. Essentially the arrival rate is assumed to be a

constant throughout the whole time horizon. However, Web traffic characterization studies

such as [1, 2] have shown that there can be some sustainable periods during which the

traffic volume is significantly larger than other periods. The standard queueing network

model fails to capture the time varying characteristics of such communication networks.

Our goal therefore is to build a mathematical model for time varying networks and de-

velop a framework to search for an optimal or a nearly optimal scheduling policy for such

networks.

More specifically, we consider a multiclass queueing network that operates in a slowly

changing environment. The changing environment is modelled as a stochastic process which

takes discrete values and each value is referred to as an environment state. Each environment

state corresponds to an operating state of the network, and the operating state of the

network is described by a set of parameters, such as the arrival rates, the service rates,

and the routing matrix. In other words, each environment state corresponds to one set

of parameters that describe the dynamics of the network. At each specific environment

state, the network operates the same as the standard queuing networks with the associated

parameters. If the state of the environment takes only one value, i.e the environment is not

changing, the queueing network under our consideration reduces to the standard multiclass

queueing network. At some environment states, the network might be overloaded, i.e the

traffic intensity of some service stations (i.e servers) might be bigger than one.

We assume that the environment changes very slowly relative to the network dynamics,

i.e the customers arrive and depart the network much more frequently than the environ-

ment changes states. For example, within one minute, there are hundreds or thousands of

customers trying to gain the access of Internet, while the peak time will last tens of minutes

or even hours until the network observes off peak time. In other words, there exist different

behaviors on different time scales in the computer communication networks. As pointed

out in [14], “the relevant time scale for users may be seconds, while the relevant time scale
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for system transactions may be milliseconds or microseconds”.

The existence of different time scales in the Internet results from its large scale and

high processing speed, which is also referred to as the network speed. We focus at the

time scale of users. We will show that with proper scaling the stochastic network under

our consideration can be approximated by a stochastic fluid model when the network speed

increases. Given a solution of the stochastic fluid model, we provide a general method to

construct an implementable policy. We refer to this methodology as a translation method

of fluid model policies. The policy produced by this method is a discrete review type policy,

similar to the ones in the literature, e.g [3, 20, 27]. When implementing a discrete review

policy, the network reviews its status and makes the scheduling decision at discrete instances

of time. However, in this study, the implementation of the discrete review policy will be

interrupted by each environment state transition. We prove that the queueing network

controlled by this derived policy will converge to the given stochastic fluid model solution.

In this way, we say that the translation method we provide is a successful or valid translation

method.

Showing that the mutliclass open queueing networks in a slowly changing environment

can be approximated by a stochastic fluid model and providing a general method to success-

fully translate the fluid model policy, we have established a hierarchical framework to search

for suitable scheduling policies for such queueing networks by studying their corresponding

stochastic fluid models. It is important to note that although our study here is motivated

by the Internet setting, the model and results also apply to more general settings, including

large manufacturing firms in which events occur at different time scales. Readers can find

such discussions in Sethi and Zhang [33].

Similar results of approximating time varying queueing networks can also be found

in Choudhury, Mandelbaum, Reiman, and Whitt [14] and Massey [28] and the references

therein. But Choudhury et al [14] considers only single class queueing systems, and our

results generalize the result of [14] to not only multiclass queueing systems but also to

the network setting. And Choudhury et al [14] did not rigorously build the mathematical

model of queueing systems in a random environment although some suggestions about
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the model were made. The approximation results of Massey [28] apply only to the case

that the environment is deterministically changing, while we allow the environment to

change stochastically. To the best of our knowledge, there is not a general and successful

translation method for time varying queuing networks. For queueing networks without a

changing environment, Maglaras [26, 27] provide a general translation method, although

some of the proofs provided in [26, 27] lack mathematical rigor. In this chapter, we provide

a rigorous mathematical proof of our result which is similar to [26, 27]; moreover, our result

provides a successful translation method in a more general setting, i.e queueing networks

in a stochastically changing environment. At the same time, we relax some assumptions

required in [26, 27]. But we want to acknowledge that results claimed in [26, 27] inspire us to

investigate the translating method for queueing networks in a slowly changing environment;

and we adopt the uniform acceleration scaling method developed by William Massey.

Bäuerle [5] also provides a general scheme to track the fluid model solutions, but the

results therein rely on the piecewise constant structure of the fluid model solutions and

the exponential distribution of the inter-arrival times and service times. More discussions

about the relation between the fluid model policy and that of queueing networks can also

be found in Bäuerle [5], Meyn [30], and the references therein. Note that the research

of [5, 26, 27, 30] and the references therein concentrate on standard queueing networks, i.e

the queueing networks operating at a single environment state.

The rest of the chapter is organized as follows. In Section 3.2, we build the mathematical

model for multiclass open queueing networks in a changing environment. We show in

Section 3.2 that such a queueing network can be approximated by a stochastic fluid model

when the network speed increases. In Section 3.4, we describe a general method to derive

a scheduling policy for queueing networks by modifying the fluid model solutions. We

provide the proof in Section 3.5 that the provided method is successful, i.e the queueing

network controlled by the derived policy will converge to the given stochastic fluid model

solution under the fluid scaling method. The fluid scale asymptotic optimality is introduced

in Section 3.6. We provide the proof in Section 3.7 for all the lemmas that appear in

Section 3.5. Finally, we give a brief summary of our results in Section 3.8.
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3.2 Queueing network model

In this section, we will describe the mathematical model of the queueing network in a

changing environment. We first present the primitive data, then we describe the network

dynamics.

3.2.1 Primitive data

We consider a queueing network that has S service stations, indexed by s = 1, . . . , S,

serving K classes of jobs (or customers), indexed by k = 1, . . . ,K. Jobs of class k are

served exclusively at station s = σ(k), where σ(·) is a many-to-one mapping from class to

stations. We denote by Cs = {k : σ(k) = s} the set of classes that are served at station s,

and by C = (csk) an S ×K matrix with csk = 1 if σ(k) = s and csk = 0 otherwise. C is

referred to as the constituency matrix later on. Without loss of generality, we assume that

Cs is non-empty for all s = 1, . . . , S.

All the random variables throughout what follows are defined on the same probability

space (Ω,F ,P). Let X = {X(t), t ≥ 0} denote a stochastic process which represents a

changing environment. For each t ≥ 0, the random variable X(t) takes values in I, where

I is a fixed finite subset of R. For each i ∈ I, we refer to i as a state of the environment.

For each i ∈ I, there exist 2K sequences of independent and identically distributed (i.i.d.)

nonnegative random variables ξk(i) = {ξk(i, n), n ≥ 1} and ηk(i) = {ηk(i, n), n ≥ 1}, and K

sequences of i.i.d. K-dimensional random vectors φk(i) = {φk(i, n), n ≥ 1} (k = 1, . . . ,K).

We assume that ξk(i, n) and ηk(i, n) are strictly positive with probability one. The random

vector φk(i, n) takes values in the set {0, e1, . . . , eK} (where ek is the kth unit vector in

K-dimensional metric space RK), and P{φk(i, n) = el} = pkl(i) and P{φk(i, n) = 0} =

1 −
∑K

l=1 pkl(i). We use P (i) to denote the K ×K routing matrix associated with i, and

its (k, l)th element is pkl(i) for 1 ≤ k, l ≤ K. We assume that ξk(i), ηk(i) and φk(i),

k = 1, . . . ,K, i ∈ I, are mutually independent.

For each i ∈ I, there exists a nonnegative K-dimensional vector α(i) = (αk(i), 1 ≤

k ≤ K) and a strictly positive K-dimensional vector µ(i) = (µk(i), 1 ≤ k ≤ K). When

αk(i) > 0, we refer to ξk(i, n) as the time between the (n−1)st and nth exogenous arrival of
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a class k job at state i of the environment and we take E[ξk(i, n)] = 1/αk(i); when αk(i) = 0,

there are no exogenous arrivals of class k jobs at state i of the environment, and we take

ξk(i, n) = ∞ for all n ≥ 1. We refer to αk(i) as the exogenous arrival rate to class k at state

i of the environment. The random variable ηk(i, n) is the required service time for the nth

class k job that is served at state i of the environment and satisfies E[ηk(i, n)] = 1/µk(i),

where µk(i) is referred to as the service rate for class k at sate i of the environment. The

random variable φk describes the routing mechanism for class k jobs: the nth class k job

after service completion turns into a class l job if φk(i, n) = el, and leaves the network if

φk(i, n) = 0.

We are also going to use the following notations. For each environment i ∈ I, and each

class k = 1, . . . ,K,

Ek(i, t) = sup{n ≥ 0 :
n∑

m=1

ξk(i,m) ≤ t}, (77)

Sk(i, t) = sup{n ≥ 0 :
n∑

m=1

ηk(i,m) ≤ t}, (78)

Φk(i, n) =
n∑

m=1

φk(i,m). (79)

We refer to {Ek(i, t), t ≥ 0}, {Sk(i, t), t ≥ 0}, and {Φk(i, n), n ≥ 0} respectively as the

exogenous arrival process, the service process, and the routing process of class k at state

i of the environment. Note that Ek(i, t) indicates the number of class k jobs that arrive

exogenously at state i of the environment if the network has stayed at this state for t

units of time, and Sk(i, t) indicates the number of class k jobs completed at state i of the

environment under the head-of-line policy if the station σ(k) spends t units of service time

on class k at this state. We assume that all policies considered throughout this paper are

of head-of-line type, and idling type policies are allowed.

3.2.2 Network dynamics

The performance measure of interest is the K-dimensional queue length process Z =

(Z1, . . . , ZK)′, where Zk = {Zk(t), t ≥ 0}, 1 ≤ k ≤ K. Each component of process Z

is nonnegative and integer-valued with Zk(t) indicating the number of class k jobs in the
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network at time t. We assume that the queueing network operates in the changing envi-

ronment described by X and that X satisfies the regularity condition, i.e. averagely X has

only finite number of state transitions within any finite time. If we denote N(t) the number

of state transitions of the environment before time t, then E[N(t)] <∞ for any finite t > 0.

For each i ∈ I, we use I(i, t) to denote the total time the network has stayed at state

i of the environment in the interval [0, t], and Tk(i, t) to indicate the cumulative time that

server σ(k) has spent on serving class k customers at state i of the environment in the

interval [0, t]. We also introduce Dk(i, t) to indicate the total number of class k service

completions at state i of the environment in the interval [0, t], and Ak(i, t) to indicate the

total number of class k arrivals at state i of the environment in the interval [0, t]. Recall that

Ek(i) = {Ek(i, t), t ≥ 0}, Sk(i) = {Sk(i, t), t ≥ 0}, and Φk(i) = {Φk(i, n), n ≥ 0} (i ∈ I,

1 ≤ k ≤ K) respectively describe the exogenous arrival process, the service process and

the routing process of class k at state i and they are defined as in Section 3.2.1. Note that

Φk
l (i, n) is the lth element of the random vector Φk(i, n), and it denotes the total number

of class k customers that are routed to class l among the first n customers that departed

class k in environment state i. Then we have

Ak(i, t) = Ek(i, I(i, t)) +
K∑

l=1

Φl
k(i,Dl(i, t)),

Dk(i, t) = Sk(i, Tk(i, t)),

Zk(t) = Zk(0) +
∑
i∈I

Ak(i, t)−
∑
i∈I

Dk(i, t)

and

• I(i, t) is nondecreasing in t for all i ∈ I,

• Tk(i, t) is nondecreasing in t for each i ∈ I and 1 ≤ k ≤ K, and Tk(i, t) ≤ I(i, t),

•
∑

k∈Cs

∑
i∈I (Tk(i, t2)− Tk(i, t1)) ≤ t2 − t1 for all 0 ≤ t1 ≤ t2 and 1 ≤ s ≤ S.

3.3 The stochastic fluid model approximation

In this section, we are going to present our first result for the queueing network described in

Section 3.2. The result shows that the queueing network in a slowly changing environment
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can be approximated by a stochastic fluid model under appropriate assumptions. We first

describe the assumptions on the network data, and then we present our first theorem. We

also provide a sequence of lemmas in order to prove this theorem.

3.3.1 Assumptions on the network data

As is traditionally done in fluid limit theorems for open queueing networks, we consider a

sequence of queueing networks as described in the previous section, indexed by r, where

r ∈ R+. For r ∈ R+, let the stochastic process Xr = {Xr(t), t ≥ 0} denote the changing

environment of the rth network, where Xr(t) takes values in I for each t; let r−1ξk(i) =

{r−1ξk(i, n), n ≥ 1} and r−1ηk(i) = {r−1ηk(i, n), n ≥ 1} respectively be the exogenous

inter-arrival time sequence and the service time sequence of class k at state i of the environ-

ment for rth queueing network. For rth queueing network, the exogenous arrival process of

class k at state i of the environment is denoted by {Er
k(i, t), t ≥ 0}, which is defined in the

same way as (77); and the service process of class k at state i of the environment is denoted

as {Sr
k(i, t), t ≥ 0}, which is defined in the same way as (78). We assume that the routing

processes do not vary with r. For rth queueing network, we use Ar
k(i, t) to denote the total

number of class k customers that arrive at state i of the environment until t, Dr
k(i, t) to

denote the total number of class k customers that depart at state i of the environment until

time t, T r
k (i, t) to denote the total time spent on serving class k customers at state i of

the environment until time t, 1 ≤ k ≤ K, i ∈ I. We also use Ir(i, t) to denote the total

time that the queueing network has stayed at state i of the environment until time t for rth

queueing system, i ∈ I. The dynamics of the queueing network satisfy the following set of

equations:

Ar
k(i, t) = Er

k(i, I
r(i, t)) +

∑
1≤l≤K

Φl
k(i,D

r
l (i, t)), k = 1, . . . ,K, (80)

Ir(i, t) =
∫ t

0
χ(Xr(s) = i)ds, (81)

Dr
k(i, t) = Sr

k(i, T
r
k (i, t)), k = 1, . . . ,K, (82)

T r
k (i, t) is nondecreasing in t, k = 1, . . . ,K, i ∈ I (83)

t2 − t1 ≥
∑
k∈Cs

∑
i∈I

(T r
k (i, t2)− T r

k (i, t1)), for any t2 ≥ t1 ≥ 0, s = 1, . . . , S, (84)
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where χ(A) is a indicator random variable for any A ∈ F , i.e.

χ(ω,A) =

 1 if ω ∈ A,

0 otherwise.

We use vector Zr(t) to denote the number of customers in the system at time t, where the

kth component corresponds to the number of class k customers. Then we have

Zr(t) = Zr(0) +
∑
i∈I

(Ar(i, t)−Dr(i, t)), (85)

where Ar(i, t) = (Ar
k(i, t), 1 ≤ k ≤ K)′ and Dr(i, t) = (Dr

k(i, t), 1 ≤ k ≤ K)′.

We assume that the sequence of stochastic processes which describe the changing envi-

ronments converges almost surely to a stochastic process such that

w.p.1 Xr(·) → X(·) in DR[0,∞) as r →∞, (86)

where DY [0,∞) is the space of functions defined on [0,∞) and taking values in a metric

space Y , and each function is right continuous on [0,∞) and have left limits on (0,∞).

DY [0,∞) is endowed with the Skorohod J-1 topology (see Ethier and Kurtz [16]). We

assume that the stochastic process X satisfies the regularity condition, i.e. almost surely X

has only finite transitions within any finite time. Later on, X is referred to as the limiting

environment process. By the strong law of large numbers, we know that for each state i ∈ I

of the environment and each class k and l,

w.p.1 Er
k(i, t)/r → αk(i)t in R as r →∞, (87)

w.p.1 Sr
k(i, t)/r → µk(i)t in R as r →∞, (88)

w.p.1 Φk
l (i, n)/n→ pkl(i) in R as n→∞. (89)

3.3.2 Stochastic fluid model approximation

Now we are ready to see our first result, i.e. the limiting points of the scaled queue length

processes {r−1Zr(t), t ≥ 0}r≥0 satisfy a stochastic fluid model as the network speed in-

creases. We use |I| to denote the cardinality of I.
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Theorem 14. If assumption (86) holds, then for almost all ω ∈ Ω (for notational conve-

nience, ω is not specified explicitly in what follows) and for each sequence of {rn, n ≥ 1} ⊂

{r, r ∈ R+}, there exists a subsequence {rnm ,m ≥ 1} such that as m→∞, rnm →∞ and

(Irnm (i, t), T rnm (i, t), Ernm (i, t)/rnm , D
rnm (i, t)/rnm , A

rnm (i, t)/rnm , i ∈ I)

→ (I(i, t), T (i, t), E(i, t), D(i, t), A(i, t), i ∈ I) in DR4K+1+|I| [0,∞), (90)

where for each i ∈ I, (I(i, t), T (i, t), E(i, t), D(i, t), A(i, t)) satisfies

I(i, t) =
∫ t

0
χ(X(s) = i)ds, (91)

A(i, t) = E(i, I(i, t)) + P (i)′D(i, t), (92)

E(i, t) = α(i)t, (93)

D(i, t) = (M(i))−1T (i, t), (94)

T (i, t) is a vector of nondecreasing functions in t, (95)

and M(i) = diag(µ1(i)−1, . . . , µK(i)−1). We also have that∑
k∈Cs

∑
i∈I

(Tk(i, t2)− Tk(i, t1)) ≤ t2 − t1, for any 0 ≤ t1 ≤ t2, s = 1, . . . , S. (96)

Moreover, if Zrnm (0)/rnm → Z(0) in R, then Zrnm (t)/rnm → Z(t) in DR+ [0,∞) and it

satisfies that

Z(t) = Z(0) +
∑
i∈I

A(i, t)−
∑
i∈I

D(i, t). (97)

Throughout what follows, we use τn and τ r
n to denote the nth transition time of X(·)

and Xr(·) respectively, n ≥ 0, with τ0 = τ r
0 = 0 and τn = ∞ (τ r

n = ∞) if X (Xr) has fewer

than n transitions.

Before giving the proof of this theorem, we first present the following lemma which will

be needed in our analysis and uncovers a condition equivalent to assumption (86).

Lemma 15. Assumption (86) holds if and only if for every m ≥ 0, both of the following

conditions hold almost surely.

(i) {(τ r
n, X

r(τ r
n)) : 0 ≤ n ≤ m} → {(τn, X(τn)) : 0 ≤ n ≤ m} in R2m+2 if τm <∞,(98)

(ii) τ r
m →∞ in R if τm = ∞. (99)

77



We now define an alternative convergence in the space of real valued functions defined

on [0,∞).

Definition 16. Let fn(·) and f(·) be non-negative real valued functions defined on [0,∞),

n ≥ 1, then we say fn(·) → f(·) uniformly on compact sets (u.o.c) if for any t ≥ 0,

sup
u∈[0,t]

|fn(u)− f(u)| → 0 as n→∞. (100)

The following convergence together theorem is also needed in our proof for Theorem 14

and its proof is given in Billingsley [8]. This result gives a sufficient condition for the

convergence of a compound sequence.

Lemma 17. (convergence together theorem) Assume that fn(·), gn(·), f(·), and g(·) are

non-negative real valued functions defined on [0,∞), n ≥ 1. If as n → ∞, fn(·) → f(·)

u.o.c, gn(·) → g(·) u.o.c, f(·) and g(·) are both continuous, then

fn(gn(·)) → f(g(·)) u.o.c.

The following lemma is useful in our analysis and has been proven in Ethier and Kurtz

[16].

Lemma 18. Assume that fn ∈ DR[0,∞) for each n ≥ 1 and f(·) is a real valued function

which is continuous in (0,∞) and right continuous at 0. Then

fn(·) → f(·) in DR[0,∞) as n→∞

if and only if fn(·) → f(·) u.o.c.

In our analysis, we also need the following lemma which gives a sufficient condition for

(100) to hold and has been proven in Dai [15].

Lemma 19. Let {fn} be a sequence of nondecreasing real valued functions defined on R+

and f be a real valued continuous function defined on R+. Assume that fn(t) → f(t) for

all rational t ≥ 0, then fn → f u.o.c.

Before giving the famous Ascoli-Arzela theorem in Lemma 21, we define the equiconti-

nuity first.
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Definition 20. A family of real valued functions fn : [0,∞) → R, n ≥ 0, are equicontinuous

if and only if for any t ≥ 0 and any ε > 0, there exists δ(t, ε) > 0 such that for any t′ ≥ 0

and |t′ − t| < δ(t, ε), it satisfies supn≥0 |fn(t′)− fn(t)| < ε.

A particular family of equicontinuous functions satisfy the following Ascoli-Arzela the-

orem which will be needed in our proof for Theorem 14.

Lemma 21. (Ascoli-Arzela) Assume that the sequence {fn, n ≥ 1} of functions fn :

[0,∞) → R is equicontinuous and the sets ∪n≥1fn(u) are bounded in R for every u ∈ [0,∞).

Then there exists a function f : [0,∞) → R which is continuous on (0,∞) and right con-

tinuous at 0 and a subsequence of {fn} which converges to f uniformly on compact sets.

Now we provide the proof of Lemma 15.

Proof of Lemma 15. Let Λ be a set of strictly increasing, continuous functions x : R+ →

R+ such that x(0) = 0 and limt→∞ x(t) = ∞. From the definition of Skorohod J-1 con-

vergence, (86) is equivalent to that for every t > 0, there exists {γr, r ≥ 0} ⊂ Λ such

that

lim
r→∞

sup
0≤u≤t

|γr(u)− u| = 0, (101)

lim
r→∞

sup
0≤u≤t

|Xr(γr(u))−X(u)| = 0. (102)

First, we show that if (98) and (99) hold for all m > 0 then (101) and (102) hold,

hence (86) holds. Consider a sample path such that (98) and (99) hold, we show that

(101) and (102) also hold for this sample path. We do not specify explicitly this sample

path throughout the rest of the proof to avoid lengthy notations. For each t > 0, from the

regularity condition of X, we know that there exists a finite m > 0 such that τm−1 ≤ t < τm.

Since (98) and (99) are true, then there exists r0 such that if r ≥ r0, then t < τ r
m and

τ r
m−1 < t + 1. We construct a continuous and strictly increasing function γr(·) ∈ Λ such

that it maps τn to τ r
n and γr(u) ∈ [τ r

n−1, τ
r
n] if u ∈ [τn−1, τn] and τn < ∞, 1 ≤ n ≤ m.

In particular, we construct such a γr(·) which increases piecewise linearly so that (101)

is satisfied. With this γr(·) and (98), we then show that (102) is also satisfied. We first

consider the case of τm <∞ and then the case of τm = ∞.
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Case 1: If τm < ∞, we define γr(·) such that it maps τn to τ r
n and is linear in the

interval [τn−1, τn] for all 1 ≤ n ≤ m. More specifically,

γr(u) =


0 u = 0,

τ r
n−1 + (τn − τn−1)−1(τ r

n − τ r
n−1)(u− τn−1), u ∈ (τn−1, τn], 1 ≤ n ≤ m,

τ r
m + (u− τm), u > τm.

Clearly, γr(·) ∈ Λ. Note that τ0 = 0 and t < τm < ∞. For n such that 1 ≤ n ≤ m,

note that the function γr(u) − u is a linear function of u in the closed interval [τn−1, τn],

therefore its extreme values (maximum and minimum) will be reached at one of the end

points of this interval, i.e. at τn−1 or τn. Hence maxu∈[τn−1,τn] |γr(u)−u| = max{|γr(τn−1)−

τn−1|, |γr(τn)− τn|}, 1 ≤ n ≤ m. Since γr(τn) = τ r
n for n = 0, 1, . . . ,m, then

sup
0≤u≤t

|γr(u)− u| ≤ max
1≤n≤m

sup
u∈[τn−1,τn]

|γr(u)− u| = max
0≤n≤m

|τ r
n − τn|.

With τn <∞ for all 0 ≤ n ≤ m, (98) and the above inequality imply that (101) holds.

We know that Xr and X are piecewise constant and are right continuous, i.e.

Xr(u) = Xr(τ r
n), for u ∈ [τ r

n, τ
r
n+1), τ

r
n <∞, n ≥ 0,

X(u) = X(τn), for u ∈ [τn, τn+1), τn <∞, n ≥ 0.

Also note that γr(u) ∈ [τ r
n−1, τ

r
n) for any u ∈ [τn−1, τn), 1 ≤ n ≤ m. Then

sup
0≤u≤t

|Xr(γr(u))−X(u)| ≤ max
1≤n≤m

sup
u∈[τn−1,τn]

|Xr(γr(u))−X(u)| = sup
0≤n≤m

|Xr(τ r
n)−X(τn)|.

This inequality and (98) imply that (102) holds.

Case 2: If τm = ∞, we define γr(·) similar to case 1, such that it maps τn to τ r
n, is

linear in the interval [τn−1, τn] for all 1 ≤ n ≤ m− 1, and increases with rate 1 after τm−1.

More specifically,

γr(u) =


0 u = 0,

τ r
n−1 + (τn − τn−1)−1(τ r

n − τ r
n−1)(u− τn−1), u ∈ (τn−1, τn], 1 ≤ n ≤ m− 1,

τ r
m−1 + (u− τm−1), u > τm−1.

Clearly γr(·) ∈ Λ. Recall that τm−1 ≤ t, we have

sup
0≤u≤t

|γr(u)− u| = ( max
1≤n≤m−1

sup
u∈[τn−1,τn]

|γr(u)− u|) ∨ ( sup
u∈[τm−1,t]

|γr(u)− u|)

= max
0≤n≤m−1

|τ r
n − τn|.
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where a ∨ b = max{a, b}. Note that τn ≤ t for all 0 ≤ n ≤ m− 1, then the above equation

and (98) imply that (101) holds.

As in case 1, γr(u) ∈ [τ r
n−1, τ

r
n] for any u ∈ [τn−1, τn] and 1 ≤ n ≤ m − 1. Recall that

Xr(·) is right continuous, we have

sup
0≤u≤t

|Xr(γr(u))−X(u)|

= ( max
1≤n≤m−1

sup
u∈[τn−1,τn]

|Xr(γr(u))−X(u)|) ∨ ( sup
u∈[τm−1,t]

|Xr(γr(u))−X(u)|)

= ( max
0≤n≤m−1

|Xr(τ r
n)−X(τn)|) ∨ ( sup

u∈[τm−1,t]
|Xr(γr(u))−X(τm−1)|). (103)

Note that τm−1 < ∞, τ r
m−1 → τm−1, and τ r

m → ∞ in R, hence we can choose r0 > 0 such

that for r > r0, |τ r
m−1 − τm−1| < 0.5 and τ r

m > t + 2. Hence if r > r0, for all u ∈ [τm−1, t],

we have τ r
m−1 ≤ γr(u) < τ r

m and Xr(u) = Xr(τ r
m−1). Now it is clear that if r > r0,

sup
u∈[τm−1,t]

|Xr(γr(u))−X(u)| = |Xr(τ r
m−1)−X(τm−1)|.

Combining this equality and (103), we have

sup
0≤u≤t

|Xr(γr(u))−X(u)| = sup
0≤n≤m−1

|Xr(τ r
n)−X(τn)|.

This equality and (98) imply that (102) holds.

The results of case 1 and case 2 show that (98) and (99) are sufficient conditions for

(86) to hold.

We next show that (98) and (99) hold for all m ≥ 1 are also necessary conditions for

(86) to hold.

If (86) holds, then there exist {γr(·), r ≥ 0} ⊂ Λ such that (101) and (102) are satisfied.

For any m ≥ 1, we first consider the case of τm <∞ and then the case of τm = ∞.

Case 1: We assume that τm <∞ in this case. For any t <∞, there exists r0(t) ∈ R+

such that as r > r0(t),

sup
u∈[0,t]

|Xr(γr(u)−X(u)| < c0.

In particular, we pick t such that τm < t < τm+1. From the assumption that elements of

I are distinguishable, i.e. the difference between any two distinct values of I is no smaller

81



than c0, we know that if r > r0,

Xr(γr(u)) = X(u) = X(τn−1) for u ∈ [τn−1, τn), 1 ≤ n ≤ m,

Xr(γr(u)) = X(u) = X(τm) for u ∈ [τm, t].

Note that since γr(·) is strictly increasing, the above equalities are equivalent to

Xr(u) = X(τn−1) for u ∈ [γr(τn−1), γr(τn)), 1 ≤ n ≤ m, (104)

Xr(u) = X(τm) for u ∈ [γr(τm), γr(t)]. (105)

From these equalities, we see that the first m + 1 environment transition times of Xr are

γr(τn), 0 ≤ n ≤ m if r > r0. That is τ r
n = γr(τn), 0 ≤ n ≤ m. Hence, from (104) and (105),

we see that if r > r0,

{Xr(τ r
n), 0 ≤ n ≤ m} = {X(τn), 0 ≤ n ≤ m}. (106)

It is clear from (101) that

{γr(τn), 0 ≤ n ≤ m} → {τn, 0 ≤ n ≤ m},

that is

{τ r
n, 0 ≤ n ≤ m} → {τn, 0 ≤ n ≤ m}. (107)

From (106 ) and (107), we conclude that (98) holds.

Case 2: We assume that τm = ∞ in this case.

Without loss of generality, we assume that m is the smallest integer such that τm = ∞,

hence τm−1 < ∞. Applying the same technique as in the proof of case 1, and choosing t

arbitrarily large such that τm−1 < t < ∞, we still have (104) and (105) by replacing m

by m − 1. From this, we know that the first m environment transition times of Xr are

τ r
n = γr(τn), 0 ≤ n ≤ m − 1 for r > r0(t), and the (m + 1)th environment transition time

τ r
m > γr(t). Note that γr satisfies (101), then we can choose r0(t) large enough such that

as r > r0(t), γr(t) > t − 1, hence τ r
m > t − 1. Since t is arbitrarily large, we know that

τ r
m →∞ in R as r →∞.
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The results in case 1 and case 2 show that (98) and (99) are necessary conditions for

(86) to be true.

Now we are ready to prove Theorem 14.

Proof of Theorem 14. We consider any sample path that satisfies (86). For notational

convenience, this sample path is not specified explicitly in the corresponding notations that

follow. We first show that for this sample path, Ir(i, t) → I(i, t) in R as r → ∞. For any

t > 0, from the regularity condition of X, we know that there exists a finite integer m ≥ 1

such that τm−2 < τm−1 ≤ t < τm. From Lemma 15, we know there exists r0(t) > 0, such

that if r > r0(t), τ r
m−2 < t < τ r

m. We define τm−2 = τ r
m−2 = 0 if m < 2. Also note that Xr

is piecewise constant and right continuous, hence Ir(i, t) can be rewritten as

Ir(i, t) =
∫ t

0
χ(Xr(s) = i)ds

=
m−2∑
n=1

∫ τr
n

τr
n−1

χ(Xr(s) = i)ds+
∫ t∧τr

m−1

τr
m−2

χ(Xr(s) = i)ds+
∫ t

t∧τr
m−1

χ(Xr(s) = i)ds

=
m−2∑
n=1

(τ r
n − τ r

n−1)χ(Xr(τ r
n−1) = i) + (t ∧ τ r

m−1 − τ r
m−2)χ(Xr(τ r

m−2) = i)

+(t− t ∧ τ r
m−1)χ(Xr(τ r

m−1) = i).

From (106) in the the proof for Lemma 15, we can choose r0(t) large enough such that as

r > r0(t), we also have

Xr(τ r
n) = X(τn), 0 ≤ n ≤ m− 1.

Hence, as r > r0(t),

χ(Xr(τ r
n) = i) = χ(X(τn) = i), i ∈ I, 0 ≤ n ≤ m− 1,

and

Ir(i, t) =
m−2∑
n=1

(τ r
n − τ r

n−1)χ(X(τn−1) = i) + (t ∧ τ r
m−1 − τ r

m−2)χ(X(τm−2) = i)

+(t− t ∧ τ r
m−1)χ(X(τm−1) = i).
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From Lemma 15, we also know that

{τ r
n, 0 ≤ n ≤ m} → {τn, 0 ≤ n ≤ m} in Rm+1.

Now it is clear that as r →∞,

Ir(i, t) →
m−2∑
n=1

(τn − τn−1)χ(X(τn−1) = i) + (t ∧ τm−1 − τm−2)χ(X(τm−2) = i)

+(t− t ∧ τm−1)χ(X(τm−1) = i)

=
∫ t

0
χ(X(s) = i)ds,

where the equality comes from the fact that X is piecewise constant and right continuous at

its transition times τn, n ≥ 0. Throughout the rest of the paper, we let I(i, t) ≡
∫ t
0 χ(X(s) =

i)ds, then I(i, t) is continuous in t and Ir(i, t) is nondecreasing in t, by Lemma 19, we see

that

Ir(i, t) → I(i, t) u.o.c as r →∞. (108)

Next, we consider the convergence of {T r
k (i, t), r ∈ R+}. It is easy to check that

{T r
k (i, t), r ∈ R+} satisfy the conditions of Ascoli-Arzela lemma, hence for any sequence

{rn}∞n=1 ⊂ {r, r ∈ R+}, there exists a subsequence {rn′}∞n′=1 and a continuous function

T (i, t) , such that as n′ →∞, it satisfies rn′ →∞ and

T rn′ (i, t) → T (i, t) u.o.c as n′ →∞. (109)

From (83), we know T (i, t) satisfies (95).

By Lemma 19 and (87),(88), (89), we have

Er
k(i, t)/r → αk(i)t u.o.c as r →∞, (110)

Sr
k(i, t)/r → µk(i)t u.o.c as r →∞, (111)

Φk
l (i, n)/n→ pkl(i) u.o.c as n→∞. (112)

Now, applying the convergence together theorem (Lemma 17) to (110) and (108), we see

that

Er
k(i, I

r(i, t))/r → αk(i)I(i, t) u.o.c as r →∞. (113)
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Again, applying Lemma 17 to (109) and (111), we see that

S
rn′
k (i, T rn′ (i, t))/rn′ → µk(i)T (i, t) u.o.c as n′ →∞. (114)

Throughout the rest of the paper we let Dk(i, t) ≡ µk(i)Tk(i, t), recall that Dr
k(i, t) =

Sr
k(i, T

r
k (i, t)), we see (114) is equivalent to

D
rn′
k (i, t)/rn′ → Dk(i, t) u.o.c as n′ →∞. (115)

If Dk(i, t) = 0, note that 0 ≤ Φk
l (D

rn′
k (i, t))/rn′ ≤ D

rn′
k (i, t)/rn′ , from the Sandwich theorem

and (115), we see Φk
l (D

rn′
k (i, t))/rn′ → 0 u.o.c. If Dk(i, t) > 0, then (115) tells us that

Drn′ (i, t) →∞ as n′ →∞. From (112) and (115), we have

Φk
l (D

rn′
k (i, t))
rn′

= (
Φk

l (D
rn′
k (i, t))

D
rn′
k (i, t)

)(
D

rn′
k (i, t)
rn′

)

→ pkl(i)Dk(i, t) u.o.c.

Combining the results for both cases of Dk(i, t) = 0 and Dk(i, t) > 0, we have

Φk
l (D

rn′
k (i, t))/rn′ → pkl(i)Dk(i, t) u.o.c as n′ →∞. (116)

Since {rn′}∞n′=1 is a subsequence of {r, r ∈ R+}, (113) also holds if we replace r by rn′ and

let n′ →∞. Without loss of generality, we can choose {rn′}∞n′=1 such that (113)-(116) hold

for all k, l = 1, . . . ,K.

From equation (80) and the results that (113) and (116) hold for all k = 1, . . .K, we

have

Arn′ (i, t)/rn′ → A(i, t) u.o.c as n′ →∞, (117)

and A(i, t) satisfies (92).

We can choose a common subsequence of {r, r ∈ R+}, still denoted as {rn′}∞n′=1 for

notational convenience, such that (108), (109), and (113 )-(117) hold for all i ∈ I and

k = 1, . . . ,K. Note that when we take sum over i ∈ I, the summands are all nonnegative

real numbers, so we can exchange the order between the limit operation and the summation.

Now from the hypothesis that Zr(0)/r → Z(0), we can see that Zrn′ (t)/rn′ → Z(t) u.o.c
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and Z(t) satisfies (97) from (80) -(82), (85), and the above results. By Lemma 18, all the

above convergence results hold in the Skorohod J-1 topology. It is also clear that (96)

follows from (84) and (109).

From the proof for Theorem 14, we have the following corollary which will be used for

our future analysis.

Corollary 22. Let {f r(·), r ≥ 0} be real valued functions defined on [0,∞). Let 1(·) be

the identity function defined on [0, ∞), i.e. 1(u) = u for all u ≥ 0. If the assumption (86)

holds, then as r →∞, f r(·) → 1(·) u.o.c implies that w.p.1,

r−1(Zr(·)− Zr(f r(·))) → 0 u.o.c. (118)

Proof of Corollary 22. We prove it by contradiction. If the result is not true, then there

exists a subset of Ω, say Ω0, such that P (Ω0) > 0 and the above result does not hold

for every ω ∈ Ω0. Hence, for every ω ∈ Ω0 (where ω is not specified in what follows for

notational convenience), there exists an ε0 > 0, a t0 ≥ 0 and a subsequence {rn, n ≥ 1}

such that rn →∞ as n→∞, and for all n ≥ 1,

sup
0≤s≤t0

r−1
n |Zrn(s)− Zrn(f rn(s))| > ε0.

Let Žr(·) = Zr(·)− Zr(0), then for all n ≥ 1, we know

sup
0≤s≤t0

r−1
n |Žrn(s)− Žrn(f rn(s))| > ε0. (119)

Since Žr(0) = 0, then from Theorem 14, we know that there exists a subsequence of

{rn, n ≥ 1}, still denoted as {rn, n ≥ 1} for notational convenience, and a continuous

function Ž(·) such that as n→∞,

r−1
n Žrn(·) → Ž(·) u.o.c (120)

Since f r(·) → 1(·) u.o.c as r →∞, then from the convergence together theorem (Lemma 17),

we know that

r−1
n Žrn(f rn(·)) → Ž(1(·)) = Ž(·) u.o.c (121)
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From (120) and (121), we see that for any finite t ≥ 0, as n→∞,

sup
0≤u≤t

r−1
n |Žrn(u)− Žrn(f rn(u)))| → 0,

which contradicts to (119). This concludes the proof.

3.4 Fluid tracking policy for queueing networks in a slowly
changing environment

In this section, we provide a method to construct an implementable scheduling policy for

the queueing network in a changing environment if a stochastic fluid model solution is given.

We assume that the stochastic fluid model solution is given as Ψ = {(Ψ(t; z, i), t ≥

0, z ≥ 0, i ∈ I} or TΨ = {TΨ(t; z, i)), t ≥ 0, z ≥ 0, i ∈ I}, where Ψ(t; z, i) and TΨ(t; z, i)

are K dimensional vectors of real numbers. For any 1 ≤ k ≤ K, the real number Ψk(t; z, i)

denotes the fluid level of class k at time t and TΨ
k (t; z, i) denotes the total time spent on

serving class k during [0, t) if the initial fluid level vector is z and the environment state is

i in the interval [0, t). Note that

Ψ(t; z, i) = z + α(i)t− (I − P (i)′)(M(i))−1TΨ(t; z, i), (122)

where I denotes the K ×K identical matrix Since (I −P (i)′) is invertible, then form either

of Ψ and TΨ, we know the other one. Note that with slight adaptation of notations, the

functions in set TΨ satisfy (95) and (96).

Now, we construct a scheduling policy for the queueing network so that we review the

queueing network periodically. At the beginning of each review period, we check the queue

length and the state of the environment, then we implement the policy as described below.

We initially set the planned review period length as l(r) such that for any n > 0 and

any δ such that 0 < δ < 1

l(r) → 0 and
r(l(r))n

rδ
→∞ as r →∞. (123)

This assumption in fact can be relaxed (see Remark 32). We also set a safety stock level

θr(i) for each state i of the environment such that θr(i) = β(i)rl(r), where β(i) is a K-

dimensional vector of real numbers and β(i) > µ(i). We use j to denote the index of the
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review period, tr(j) to denote the beginning time of the jth review period, and qr(j) to

denote the queue length vector at tr(j). Set j = 0 and tr(0) = 0 initially, then we implement

the following policy. For notational convenience, we denote Xr(tr(j)) by Xr
j .

• At the beginning of the review period tr(j), observe the environment state, say it is

i, i.e. Xr
j = i.

• If qr(j) ≥ θr(i), then we plan a policy for the next l(r) time units , referred to as the

fluid policy, according to the fluid model solution. The exact procedure is given as

follows.

First, let

q̄r(j) = (qr(j)− θr(i))+/r, (124)

xr
k(j) = TΨ

k (l(r); q̄r(j), i), 1 ≤ k ≤ K, (125)

pr
k(j) = brµk(i)xr

k(j)c, 1 ≤ k ≤ K, (126)

ur
s(j) = l(r)−

∑
k∈Cs

xr
k(j), 1 ≤ s ≤ S, (127)

where a+ = max{a, 0} and bac is the maximum integer that is smaller than or equal

to a. We use xr
k(j) to denote the planned time to spend on serving class k and ur

s(j)

the planned idle time for server s during the jth review period, which are estimated

through the stochastic fluid model solution. Based on the average service rate during

environment state i, we schedule pr
k(j) amount of class k jobs to be processed during

jth review period for each 1 ≤ k ≤ K.

Server s processes pr
k(j) jobs of class k for each k ∈ Cs, 1 ≤ s ≤ S. Let

brs(j) =
∑
k∈Cs

ιrk(i,j)+pr
k(j)∑

n=ιrk(i,j)+2

ηr
k(i, n) + η̃r

k(i, ι
r
k(i, j) + 1), (128)

where ιrk(i, j) denotes the number of class k jobs that has departed at environment

state i until tr(j) and η̃r
k(i, ι

r
k(i, j) + 1) denotes the remaining service time of the

ιrk(i, j) + 1st class k customer served at environment state i. Then brs(j) denotes the

total service time of the planned jobs for server s. After finishing the scheduled jobs,
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server s idles min{ur
s(j), (l(r)− brs(j))

+} time units and then sends the finish signal.

As soon as every server sends the finish signal or the environment changes to another

state, we start a new review period. When the environment changes its state, we say

that an environment transition happens.

Now we give the expression of the starting time of the next review period. Note that

the initial queue length is no less than the safety stock level, i.e. qr(j) ≥ θr(i), which

guarantees that qr(j) ≥ pr(j), hence each server can continuously serve the scheduled

jobs without having to wait for additional arrivals. Let

er,Fs (j) = brs(j) + min{ur
s(j), (l(r)− brs(j))

+}

=


brs(j) + ur

s(j) if brs(j) + ur
s(j) ≤ l(r),

l(r) if brs(j) ≤ l(r) < brs(j) + ur
s(j),

brs(j) if l(r) < brs(j),

(129)

which denotes the time elapsed until server s sends the finish signal if there is no

environment transition to interrupt the policy implementation. Let τ r(j) denote the

first environment transition time after tr(j), i.e. τ r(j) = min{τ r
n : τ r

n > tr(j), n ≥ 1},

where τ r
n is the nth transition time of {Xr(t), t ≥ 0}. Then the (j+1)th review period

starts at

tr(j + 1) = min{tr(j) + max
1≤s≤S

er,Fs (j), τ r(j)}, (130)

• If qr(j) 6≥ θr(i), then we implement a policy, referred to as the target idle policy,

such that the queue length of each active class is above or equal to the safety stock

level at the end of the review period if there is no environment transition during this

review period. The meaning of an active class will be clear in the next paragraph.

Though various policies can achieve this goal, we particularly choose to implement

the following one with the purpose of having a clear description of the policy and a

rigorous proof for our next result. The procedure is given as follows.

Recall that (I − P (i)) is invertible, hence there is a unique solution of λ(i) such that

λ(i) = α(i) +P (i)′λ(i), which denotes the nominal arrival rate vector in environment
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state i. For each class k such that λk(i) > 0, i.e class k has positive nominal arrival

rate at the state i of the environment, class k is called an active class.

First, at each state of the environment, say state i , we want to specify a path for

each active class k through which an exogenous job arrives at buffer k. Let o denote a

dummy node that represents the outside of the network from where all the exogenous

arrivals come. Then for each k ∈ A(i), either αk(i) > 0 or there exists 1 ≤ m ≤ K

and {k1, . . . , km} ⊂ A(i) such that αk1(i) > 0 and pk1k2(i) · · · pkmk(i) > 0. For the

first case, we say k is connected to the exogenous source o through a path (o, k) at

the state i of the environment; for the second case, we say k is connected to the

exogenous source o through a path (o, k1, . . . , km, k) at the state i of the environment.

Note that an active class may be connected to o through multiple paths. For each

k, we select only one path for it. Then the dummy node o, the active classes and

the selected paths compose a tree. If the selected path for k is of the form (o, k),

then we say k is a root class. We use R(i) to denote the set of root classes at state

i of the environment. If at the state i of the environment, the selected path for k is

of the form (o, k1, . . . , km, k), m ≥ 1, then we say k � kn for n = 1, . . . ,m; and we

say k is a immediate child class of km and km is the immediate parent class of k at

the state i of the environment. We use Ck(i) to denote the set of all immediate child

classes of class k at the state i of the environment. For each class k, we also let Tk(i)

denote the set of classes that succeed k in the preselected paths and class k itself, i.e

Tk(i) = {l : l � k} ∪ {k}, 1 ≤ k ≤ K. Then Tk(i) is a subtree of the preselected tree

with root node being k. For a class k, if among all the preselected paths, there is not

a class l such that l � k, we say k is a leaf of the preselected tree.

We implement the following policy with the preselected tree.

– All classes have two status: working or finish.

– Jobs of a class in working status are processed once the server for this class is

available. Jobs of a class in finish status are not processed.

– At the beginning of the review period, all active classes having child classes set
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their status as working, and all the other classes set their status as finish.

– A class switches status from working to finish at the time when the status of its

child classes are all finish and the queue length of its child classes are all above

or equal to their respective safety stock levels.

– A new review period starts at the time when the status of all root classes are

finish and the queue length of all root classes are above or equal to their respec-

tive safety stock levels or at the time when an environment transition happens,

whichever happens first.

Without loss of generality and for notational convenience, we assume that for every

state i ∈ I, every class k is an active class, where 1 ≤ k ≤ K.

Now we estimate the upper bound of the duration of the jth review period during

which the target idle policy is implemented. Let p̃r
k(j) denote the number of class k

service completions during the jth review period during which the target-idle policy

is implemented. Each root class k needs to wait for at most (dθr
k(i)e+ p̃r

k(j)− qr
k(j))

+

exogenous class k arrivals in order to fulfill the target idle policy. For k ∈ R(i), let

erk(j) = (dθr
k(i)e+ p̃r

k(j)− qr
k(j))

+, then the total time spent on waiting for exogenous

arrivals is at most

max
k∈R(i)

κr
k(i,j)+er

k(j)∑
n=κr

k(i,j)+2

ξr
k(i, n) + ξ̃r

k(κ
r
k(i, j) + 1),

where κr
k(i, j) is the total number of class k jobs that has arrived exogenously until

tr(j) at environment state i, and ξ̃r(i, κr(i, j) + 1) is the remaining time to wait for

the κr
k(i, j)+1st job that arrives at the environment state i after time tr(j). The total

processing time during the jth review period is at most

K∑
k=1

ιrk(i,j)+p̃r
k(j)∑

n=ιrk(i,j)+2

ηr
k(i, n) + η̃r

k(i, ι
r
k(i, j) + 1),

which is the total processing time if there is only one server for all these classes. Let

er,I(j) denote the duration of the jth review period during which the target idle policy

91



is implemented, then

er,I(j) ≤ max
k∈R(i)

κr
k(i,j)+er

k(j)∑
n=κr

k(i,j)+2

ξr
k(i, n) + ξ̃r

k(κ
r
k(i, j) + 1)

+
K∑

k=1

ιrk(i,j)+p̃r
k(j)∑

n=ιrk(i,j)+2

ηr
k(i, n) + η̃r

k(i, ι
r
k(i, j) + 1). (131)

Then the ending time of the jth review period (i.e the beginning of the j+1st review

period) satisfies

tr(j + 1) ≤ min{tr(j) + er,I(j), τ r(j)}, (132)

where τ r(j) denotes the earliest environment transition time after tr(j).

If a review period is ended due to an environment transition, then we say this review

period is an interrupted period, otherwise we say it is uninterrupted period. We refer to

an uninterrupted review period during which the fluid policy is implemented as a normal

review period.

3.5 Main result of the stochastic fluid tracking method

In this section, we will show that the method provided in Section 3.4 successfully translates

a very general stochastic fluid model solution and constructs a scheduling policy for the

original queueing network. That is, under some mild conditions the queue length of the

network in the changing environment under the constructed policy will converge to the

given stochastic fluid model solution as the network speed increases. We begin with the

notation conventions in this study.

Throughout the rest of the manuscript, we adopt the following notations. For each class

k (1 ≤ k ≤ K), and each state i of the environment (i ∈ I), we let

µ̄k = sup{µk(i) : µk(i) > 0, i ∈ I}, µ
k

= inf{µk(i) : µk(i) > 0, i ∈ I},

ᾱk = sup{αk(i) : αk(i) > 0, i ∈ I}, αk = inf{αk(i) : αk(i) > 0, i ∈ I},

β̄k = sup{βk(i) : βk(i) > 0, i ∈ I}, β
k

= inf{βk(i) : βk(i) > 0, i ∈ I},

gk(i, x) = E[(ξk(i, 1))2χ(ξk(i, 1) > x)], hk(i, x) = E[(ηk(i, 1))2χ(ηk(i, 1) > x)].
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We also let

µ̄ = max{µ̄k, 1 ≤ k ≤ K}, µ = min{µ̄k, 1 ≤ k ≤ K},

ᾱ = max{ᾱk, 1 ≤ k ≤ K}, α = min{ᾱk, 1 ≤ k ≤ K}

β̄ = max{β̄k, 1 ≤ k ≤ K}, β = min{β̄k, 1 ≤ k ≤ K}.

We also define the notation o(·) as follows.

Definition 23. For two real valued functions f1(x) and f2(x), if limx→∞ f2(x)/f1(x) = 0,

then, we say f2(x) = o(f1(x)).

Remark 24. Note that if f2(x) = o(f1(x)) and f3(x) = o(f1(x)), then f2(x) + f3(x) =

o(f1(x)).

Throughout this section, we make the following assumptions.

• For each class k, 1 ≤ k ≤ K, there exists γ > 0 such that

sup
i∈I

gk(i, x) = o(x−γ), sup
i∈I

hk(i, x) = o(x−γ). (133)

Note that since I is finite, the assumption (133) is satisfied if E[(ξk(i, 1))2+γ ] < ∞

and E[(ηk(i, 1))2+γ ] < ∞ for each i ∈ I and some γ > 0. Without loss of generality,

we assume that γ ≤ 1.

Remark 25. Assumption (133) implies that there exists c1 and c2 such that

sup
i∈I

gk(i, x) ≤
c1
xγ

and sup
i∈I

hk(i, x) ≤
c2
xγ
.

• There exist real valued functions ĉ1(·) > 0 and ĉ2(·) > 0 such that

sup
1≤k≤K

sup
i∈I

sup
0≤u≤t

E[ξk(i, n)|ξk(i, n) > u]− u < ĉ1(t),

sup
1≤k≤K

sup
i∈I

sup
0≤u≤t

E[ηk(i, n)|ηk(i, n) > u]− u < ĉ2(t).

If the inter-arrival times ξk(i, n), i ∈ I, k = 1, . . . ,K, are all new better than used

in expectation (NBUE) ([34], page 68), then ĉ1(t) can be a constant, e.g ĉ1(t) =

c̆1 sup1≤k≤K supi∈I E[ξk(i, n)] for any constant c̆1 > 1. The exponential random vari-

able is a special case of NBUE type of random variables. This conclusion also applies

to the service times ηk(i, n), i ∈ I, k = 1, . . . ,K.

93



Remark 26. Since ξr
k(i, n) = r−1ξk(i, n) and ηr

k(i, n) = r−1ηk(i, n), the above assump-

tion implies that for any n ≥ 1

sup
1≤k≤K

sup
i∈I

sup
0≤u≤t

E[ξr
k(i, n)|ξr

k(i, n) > u]− u < r−1ĉ1(rt), (134)

sup
1≤k≤K

sup
i∈I

sup
0≤u≤t

E[ηr
k(i, n)|ηr

k(i, n) > u]− u < r−1ĉ2(rt). (135)

• We assume that

r−1ĉn(rt) = o(l(r)) (136)

for any fixed t > 0, n = 1, 2.

Note that if the inter-arrival times ξk(i, n) and service times ηk(i, n) are all NUBE

type of random variables (e.g exponential random variables), then ĉn(rt), n = 1, 2 are

constants and the assumption (136) holds since l(r) satisfies the assumption (123).

Remark 27. This assumption can be relaxed such as there exist real valued functions

čn(t), such that r−1ĉn(rt) ≤ čn(t), n = 1, 2.

• There exists n(·) such that for any t ≥ 0,

EN r(t) ≤ n(t), (137)

whereN r(t) denotes the number of environment transitions until time t for rth system.

Note that if the transition of environment follows a poisson process with rate n̄r, then

EN r(t) = n̄rt. For this case, the assumption (137) is satisfied if {n̄r : r ≥ 0} is

bounded.

We consider a given set of functions Ψ, then it satisfies

• Initial condition:

Ψ(0; z, i) = z. (138)

• Continuity in t:

lim
s→t

Ψ(s; z, i) = Ψ(t; z, i). (139)
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Furthermore, we assume Ψ satisfies

• Consistency:

Ψ(t+ s; z, i) = Ψ(t; Ψ(s; z, i), i); (140)

• Equi-continuity in z:

|Ψ(s; z1, i)−Ψ(s; z2, i)| ≤ L(s)|z1 − z2|, (141)

where sup0≤s≤t L(s) <∞ for any t <∞.

With the assumptions above, we have the following result.

Theorem 28. Let Zr(t; Ψ) denote the queue length vector at time t of the rth system

operating under the policy constructed from the stochastic fluid model solution (Ψ, TΨ) which

has the properties listed by (138)-(141). If the assumptions (86), (133), (136) and (137)

hold, and Zr(0)/r → Z̄(0) w.p.1, then w.p.1,

Zr(t; Ψ)/r → Ψ(t; Z̄(0), X) in DRK
+

[0, ∞) as r →∞, (142)

where Ψ(t; Z̄(0), X) is defined recursively in the following way:

Ψ(0; z,X) = z, (143)

Ψ(t; z,X) = Ψ(t− τN(t); Ψ(τN(t); z,X), X(τN(t))), (144)

Ψ(τn+1; z,X) = Ψ (τn+1 − τn,Ψ(τn−1; z,X), X(τn)) , (145)

and τN(t) is the last transition time of X(·) before t.

Remark 29. Note that since (Ψ, TΨ) satisfies (122) and TΨ satisfies (95) and (96), then

we know (X,Ψ(; Z̄(0), X), TΨ) satisfies the stochastic fluid model equations (91)-(97) with

replacing Z(0) by Z̄(0) and Z(t) by Ψ(t; Z̄(0), X).

In order to prove Theorem 28, we first develop some lemmas as follow and the proof of

them is provided in Section 3.7.

We first develop the following lemma to provide a probabilistic deviation bound be-

tween random variable and its mean value. The proof is similar to that of Lemma 4.3 in

Bramson [9]. But for the sake of completeness, we also provide the proof in Section 3.7.
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Lemma 30. For any ε > 0 any i ∈ I, and any x > 0, we have

P (|
m∑

n=1

ηk(i, n)− m

µk(i)
| ≥ εx) ≤ ĥk(ε, x) for all integer 0 ≤ m ≤ x, (146)

P (|
m∑

n=1

ξk(i, n)− m

αk(i)
| ≥ εx) ≤ ĝk(ε, x) for all integer 0 ≤ m ≤ x, (147)

where

ĥk(ε, x) = x−1(28ε−4x−1/2 + 4ε−2hk(x−1/8))

ĝk(ε, x) = x−1(28ε−4x−1/2 + 4ε−2gk(x−1/8)).

Remark 31. From (133), we can see that for any fixed ε > 0,

ĥk(ε, x) = o(x−(1+γ/8)), ĝk(ε, x) = o(x−(1+γ/8)).

Remark 32. We can relax (123) such as l(r) → 0 if r →∞ and there exists 0 < ε < γ/8 such

that r(γ/8−ε)(l(r))n →∞ for 1 ≤ n ≤ 2 if r →∞. In particular, we can set ε = γ/8− γ/9.

We also provide the following lemma for later reference.

Lemma 33. For any ε > 0 any x > 0, any integer m such that 0 ≤ m ≤ x, any 1 ≤ l ≤ K,

1 ≤ k ≤ K, and any i ∈ I,

P (|Φl
k(i,m)−mplk(i)| > εx) ≤ 1

ε4x2
.

For notational convenience, we denote Xr(tr(j)) by Xr
j , then Xr

j = Xr
j+1 means that the

jth review period is not interrupted by an environment transition. We first define a filtra-

tion. For n ≥ 0, let Fn be the σ-field generated from random variables {(tr(j), qr(j), Xr
j ), j =

0, 1, . . . , n}, i.e

Fr
n = σ{tr(0), qr(0), Xr

0 , t
r(1), qr(1), Xr

1 , . . . , t
r(n), qr(n), Xr

n}. (148)

Recall that ιrk(i, j) denotes the number of class k jobs that have departed at environment

state i until tr(j). Let η̃r
k(i, n) denote the remaining service time of the nth class k customer

that is served at environment state i for every i ∈ I, 1 ≤ k ≤ K and n > 0. For every

i ∈ I and j ≥ 0, we let Υr(i, j, ε) denote the event that the remaining service time of the
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(ιrk(i, j) + 1)st class k customer served at environment state i is less than (2K)−1εl(r) for

all k, i.e

Υr(i, j, ε) = {η̃r
k(i, ι

r
k(i, j) + 1) < (2K)−1εl(r), 1 ≤ k ≤ K}. (149)

The following lemma provides a probabilistic estimation between the difference of the

actual review period length and the planned review period length if the fluid policy is imple-

mented during the review period, the review period is not interrupted by the environment

transition and the remaining service times are sufficiently short (i.e Υr(Xr
j , j, ε) happens).

For notational convenience, we let

Γr(i, j) = {Xr
j = i = Xr

j+1, q
r(j) ≥ θr(i)}

Γr(j) = {Xr
j = Xr

j+1, q
r(j) ≥ θr(Xr

j )}.

Then Γr(j) denotes that the jth review period is a normal review period and Γr(i, j) denotes

that the jth review period is a normal review period and the environment is at state i during

that period.

Lemma 34. For any ε > 0, there exists r(ε) > 0, such that if r > r(ε),

E
[
χ(|tr(j + 1)− tr(j)− l(r)| > εl(r))χ(Υr(Xr

j , j, ε))χ(Γr(j))
∣∣∣Fr

j

]
≤

K∑
k=1

ĥk(ε(4Kµ̄k)−1, bµ
k
rl(r)c)χ(qr(j) ≥ θr(Xr

j )),

where ĥk(·, ·), 1 ≤ k ≤ K is defined in Lemma 30.

The next lemma is a special case of Lemma 34, but it does not require that the remaining

service times are small. In this lemma, we provide a probabilistic lower bound for the

duration of a normal review period.

Lemma 35. For any ε > 0, there exists r(ε) > 0, such that if r > r(ε),

E
[
χ(tr(j + 1)− tr(j) < (1− ε)l(r))χ(Γr(j))

∣∣∣Fr
j

]
≤

K∑
k=1

ĥk(ε(2Kµ̄k)−1, bµ
k
rl(r)c)χ(qr(j) ≥ θr(Xr

j )),

where ĥk(·, ·), 1 ≤ k ≤ K is defined in Lemma 30.
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The next lemma is also a special case of Lemma 34, where we only provided a probabilis-

tic upper bound for the duration of a review period when the fluid policy is implemented,

but this review period might be interrupted by an environment transition.

Lemma 36. For any ε > 0, there exists r(ε) > 0, such that if r > r(ε),

E
[
χ(tr(j + 1)− tr(j) > (1 + ε)l(r))χ(Υr(Xr

j , j, ε)χ(qr(j) ≥ θr(Xr
j ))

∣∣∣Fr
j

]
≤

K∑
k=1

ĥk(ε(4Kµ̄k)−1, bµ
k
rl(r)c)χ(qr(j) ≥ θr(Xr

j )),

where ĥk(·, ·), 1 ≤ k ≤ K is defined in Lemma 30.

For the rest of the manuscript, we adopt the following conventions. For a real number

x, |x| = max{x,−x}, dxe denotes the smallest integer that is bigger than or equal to x, and

bxc denotes the largest integer that is smaller than or equal to x.

The following lemma provides a probabilistic bound between the difference of the actual

exogenous arrivals and average number of exogenous arrivals.

Lemma 37. For any x > 0, any t ≥ 0, any state i ∈ I, and any class k such that αk(i) > 0,

(i) P(Er
k(i, t)− rαk(i)t > x) ≤ ĝk(

x

αk(i)drαk(i)t+ xe
, drαk(i)t+ xe),

(ii) P(Er
k(i, t)− rαk(i)t < −x) ≤ ĝk(

x

αk(i)brαk(i)t− xc
, brαk(i)t− xc),

(iii) P (|Er
k(i, t)− rαk(i)t| > x) ≤ 2ĝk(

x

αk(i)(dαk(i)rt+ xe)
, bαk(i)rt+ xc),

where ĝk(x, y) is defined in Lemma 30.

The following lemma provides the probabilistic bound between the difference of the

actual service completions and the mean service completions.

Lemma 38. For any ε > 0, any t ≥ 0, any state i ∈ I, and any class k such that µk(i) > 0,

P (|Sr
k(i, t)− rµk(i)t| > x) ≤ 2ĥk(

x

µ̄k(dµ̄krt+ xe)
, bµ

k
rt+ xc).

Let Er
k(t) =

∑
i∈I E

r
k(i, I

r(i, t)), then Er
k(t) denotes the total number of exogenous

arrivals to class k until time t. The following lemma provides us a probabilistic bound on

the total number of external arrivals within a finite time period.
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Lemma 39. For each class k with ᾱk > 0, for any t > 0, and any ε > 0, there exists

rk(t, ε) > 0, for all r > rk(t, ε), such that

P(Er
k(t) > r(ᾱk + ε)t) ≤ ĝk(

ε

2(|I|(ᾱk)2 + ε)
, εrt/|I|).

Let Sr
k(t) =

∑
i∈I S

r
k(i, T

r
k (i, t)), then Sr

k(t) denotes the total number of service comple-

tions of class k until time t. The following lemma provides a probabilistic bound on the

total number of service completions of class k within a finite time period.

Lemma 40. For each class k with µ̄k > 0, any t > 0, and any ε > 0, there exists rk(t, ε) > 0,

for all r > rk(t, ε), such that

P(Sr
k(t) > r(µ̄k + ε)t) ≤ ĥk(

ε

2(|I|(µ̄k)2 + ε)
, εrt/|I|).

The following lemma provides a probabilistic bound on the maximum inter-arrival time

between consecutive customers who have come before time t.

Lemma 41. For each class k such that ᾱk > 0, any t > 0 and any ε > 0, there exists r(t, ε)

such that if r > r(t, ε), then

P
(

max
i∈I

max
1≤n≤Er

k(i,Ir(i,t))
ξr
k(i, n) > εl(r)

)
≤ f̂1(ε, t, r),

where

f̂1(ε, t, r) =
c1(ᾱk + ε)t
r1+γ(l(r))2

+ ĝk

( ε

2(|I|(ᾱk)2 + ε)
, εrt/|I|

)
.

Remark 42. From Remark 31, we know that f̂1(ε, t, r) = o(r−(1+γ/8)) for any fixed ε > 0

and t > 0.

The next lemma provides a probabilistic upper bound on the service time of customers

who have been served before time t.

Lemma 43. For each class k such that µ̄k > 0, any t > 0 and any ε > 0, there exists r(t, ε)

such that if r > r(t, ε), then

P
(

max
i∈I

max
1≤n≤Sr

k(i,T r(i,t))
ηr

k(i, n) > εl(r)
)

≤ f̂2(ε, t, r),

where

f̂2(ε, t, r) =
c2(µ̄k + ε)t
r1+γ(l(r))2

+ ĥk

( ε

2(|I|(µ̄k)2 + ε)
, εrt/|I|

)
.
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Remark 44. From Remark 31 and r7γ/8(l(r))2 → 0, we know that f̂2(ε, t, r) = o(r−(1+γ/8))

for any fixed ε > 0 and t > 0.

Recall that κr
k(i, j) denotes the number of class k customers that arrive at environment

state i before time tr(j), and ξ̃r
k(i, κ

r
k(i, j) + 1) denotes the remaining time until the first

class k customer arrives at environment state i after tr(j). For every i ∈ I and j ≥ 0, we let

Λr(i, j, ε) denote the event that the remaining time of the (κr
k(i, j) + 1)st class k customer

to arrive at environment state i after tr(j) is less than (2K)−1εl(r) for all k, i.e

Λr(i, j, ε) = {ξ̃r
k(i, κ

r
k(i, j) + 1) < (2K)−1εl(r), 1 ≤ k ≤ K}. (150)

At the beginning of the jth review period, if the initial queue length is above the chosen

safety stock level, we will implement the fluid policy as is mentioned in Section 3.4. Let the

planned queue length at the end of the jth review period be denoted by zr(j + 1), then it

satisfies

zr(j + 1) = Ψ(l(r); q̄r(j), Xr
j ).

The following lemma provides an estimate for the difference between the planned queue

length and the actual queue length at the end of the jth review period if the jth review

period is a normal review period (i.e the jth review period is not interrupted by a change

of the environment state and the fluid policy is implemented during this period) and the

remaining inter-arrival times for each class are sufficiently short (i.e Λr(i, j, ε) happens).

Lemma 45. For each class k, any ε > 0, there exists rk(ε), such that if r > rk(ε), we have

P({|q̄r
k(j + 1)− zr

k(j + 1)| ≥ εr−1θr
k(X

r
j )} ∩ Γr(j) ∩Υ(Xr

j , j,
εβ

k

16ᾱk
) ∩ Λ(Xr

j , j,
εβ

k

16ᾱk
)|Fr

j )

≤ f̂3(ε, r)χ(qr(j) ≥ θr(Xr
j )),

where

f̂3(ε, r) = 2ĝk((
εβ

k

32ᾱk
)(ᾱk +

εβ̄k

4
)−1, αkrl(r))

+
K∑

k=1

ĥk(
εβ

k

64Kᾱkµ̄k
, bµ

k
rl(r)c) +

(4K)4

ε4
1

(rl(r)β
k
)2
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Remark 46. From (123) and Remark 31, we know that f̂3(ε, r) = o(r−(1+γ/9)) for any fixed

ε > 0.

The next lemma provides an estimate for the queue length at the end of a normal review

period, i.e. during the review period the fluid policy is implemented without interruption.

It shows that if at the end of a normal review period the actual queue length is close to the

planned queue length, then the actual queue length will be either above the safety stock

level, or very close to the safety stock level when it is not above the safety stock level.

Lemma 47. For any ε > 0, there exists r(ε) > 0 such that if r > r(ε),

P({qr(j + 1) 6≥ (1− ε)θr(Xr
j+1)} ∩ Γr(j) ∩Υ(Xr

j , j,
εβ

16ᾱ
) ∩ Λ(Xr

j , j,
εβ

16ᾱ
)|Fr

j )

≤ f̂4(ε, r)χ(qr(j) ≥ θr(Xr
j )),

where

f̂4(ε, r) =
K∑

k=1

(
2ĝk((

εβ
k

32ᾱk
)(ᾱk +

εβ̄k

4
)−1, αkrl(r))

+ĥk(
εβ

k

64Kᾱkµ̄k
, bµ

k
rl(r)c) +

(4K)4

ε4
1

(rl(r)β
k
)2

)
.

Remark 48. From (123) and Remark 31, we know that f̂4(ε, r) = o(r−(1+γ/9)) for any fixed

ε > 0.

At the beginning of a review period, if the queue length of some class is not above its

safety stock level, we implement the target-idle policy so that each class will be above its

safety stock level. The following lemma provides us with an estimate on the duration of

such a review period during which the target-idle policy is implemented. For notational

convenience, we let

Γ̃r(j, ε) = {qr(j) 6≥ θr(Xr
j ), qr(j) ≥ (1− ε)θr(Xr

j )} (151)

Lemma 49. For any any ε > 0, we have

P
(
{tr(j + 1)− tr(j) > 2KC̃1εl(r)} ∩ Λr(Xr

j , j, ε) ∩Υr(Xr
j , j, ε) ∩ Γ̃r(j, ε)|Fr

j

)
≤ f̂5(ε, r)χ(Γ̃r(j, ε)),

101



where C̃1 is a constant which is defined in (223),

f̂5(ε, r) =
∑

1≤k≤K

ĝk(
ε

ᾱ
, µrl(r)) +

∑
1≤k≤K

ĥk(
ε

µ̄
, 2µrl(r)) +K3(

ε

2c̃max
)−4(βrl(r))−2,

and c̃max is a constant which is defined in (222).

Remark 50. From (123) and Remark 31, we know that f̂5(ε, r) = o(r−(1+γ/9)) for any fixed

ε > 0.

Next, we provide a probabilistic upper bound on the difference between the queue length

at the end of a target-idle review period and the queue length at the beginning of this review

period.

Lemma 51. For any ε > 0, there exists r(ε) > 0 such that if r > r(ε), then

P({|qr(j + 1)− qr(j)| > C̃2εrl(r)e} ∩ Λr(Xr
j , j, ε)Υ

r(Xr
j , j, ε)Γ̃

r(j, ε)|Fr
j ) ≤ f̂6(ε, r),

where C̃2 = 4KC̃1ᾱ + 2(K + 1)c̃maxβ̄. The notation e is a K dimensional vector with all

elements equal to 1 and

f̂6(ε, r) =
∑

1≤k≤K

(
ĝk(

1
4ᾱ
, 4KC̃1ᾱεrl(r)) +K2(

ε

2c̃max
)−4(βεrl(r))−2 + f̂5(ε, r)

)
.

Remark 52. From (123), Remark 31 and Remark 50, we know that f̂6(ε, r) = o(r−(1+γ/9))

for any fixed ε > 0.

The next lemma generalizes the result of Lemma 45 and provides a probabilistic upper

bound on the difference between the queue lengths at the end and at the beginning of a

review period when the fluid policy is implemented. This result applies to both interrupted

and uninterrupted review periods.

Lemma 53. For any ε > 0, there exists r(ε) > 0 such that if r > r(ε), then

P({|qr(j + 1)− qr(j)| > Ĉ0rl(r)e} ∩Υr(Xr
j , j, ε) ∩ χ(qr(j) ≥ θr(Xr

j ))|Fr
j )

≤ f̂7(ε, r)χ(qr(j) ≥ θr(Xr
j )),

where Ĉ0 = 2ᾱ(1 + ε) + (K + 1)µ̄ and

f̂7(ε, r) =
K∑

k=1

ĝk(
1
4ᾱ
, 2ᾱ(1 + ε)rl(r)) +

K∑
k=1

ĥk(ε(4Kµ̄k)−1, bµkrl(r)c).
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Remark 54. From (123), Remark 31 and Remark 50, we know that f̂7(ε, r) = o(r−(1+γ/9))

for any fixed ε > 0.

Let jr(t) denote the index of the first review period that starts after t, i.e.

jr(t) = min{j ≥ 0 : tr(j) ≥ t}. (152)

The next lemma gives us an upper bound on the expected duration of a review period before

t.

Lemma 55. There exists a real valued function f(·) defined on [0,∞) such that for every

0 ≤ j ≤ jr(t)− 1,

E[tr(j + 1)− tr(j)] < f(t, r),

where

f(t, r) = max
{

(K + 1)l(r) + r−1ĉ2(rt),(
2c̃maxK

2c3βmax

K∑
k=1

(ᾱk + µ̄k) + βmax

K∑
k=1

ᾱk

)
l(r) + 4Kr−1 + r−1ĉ1(rt) + r−1ĉ2(rt)

}
.

Remark 56. From the assumptions on ĉn(·), n = 1, 2, we know that there exists a constant

c4 > 0 such that f(r) ≤ c4l(r).

We have the following lemma which provides us an upper bound on the expected number

of review periods until t.

Lemma 57. For any ε such that 0 < ε < 1, there exists r(ε), such that if r > r(ε), we have

E[jr(t)] ≤ f̂7(ε, t, r),

where

f̂7(ε, t, r) =
2(t+ f(t, r)) + 3(1− ε)l(r)E[N r(t)]

(1− ε)2l(r)
,

and f(t, r) is defined in Lemma 55.

Remark 58. From (56) and the assumption that E[N r(t)] < n(t), we know that there exists

a real valued function f̃7(ε, t) such that f̃7(ε, t) > 0 and f̂7(ε, t, r) < f̃7(ε, t) for all r > 0.

103



For the rest of the manuscript, we adopt the following notation:

Λr(t, ε) = {max
i∈I

max
1≤n≤Er

k(i,Ir(i,t))
ξr
k(i, n) > εl(r)}c,

Υr(t, ε) = {max
i∈I

max
1≤n≤Sr

k(i,T r(i,t))
ηr

k(i, n) > εl(r)}c.

It satisfies that

Λr(t, ε) ⊂
⋂

1≤j≤jr(t)

Λ(Xr
j−1, j − 1, ε), and Υr(t, ε) ⊂

⋂
1≤j≤jr(t)

Υ(Xr
j−1, j − 1, ε).(153)

The following lemma reveals that the queue length at the end of an uninterrupted review

period will be above or will be close to the safety stock level if the network speed is large

enough. That is, the queue length at the end of a review period will not be far below the

safety stock level.

Lemma 59. For every t > 0, ε > 0, and almost every ω, there exists r(ω, t, ε), such that if

r > r(ω, t, ε), then for all 1 ≤ j ≤ jr(t),

χ(Xr
j = Xr

j−1)q
r(j) ≥ χ(Xr

j = Xr
j−1)(1− ε)θr(Xr

j ).

The following lemma estimates the duration of an uninterrupted review period during

which the fluid policy is implemented. The lemma tells us that the duration will be close

to the initially planned review period length almost surely if the network speed is large

enough.

Lemma 60. For every t > 0, ε > 0, and almost every ω, there exists r(ω, t, ε), such that if

r > r(ω, t, ε), then for all 1 ≤ j ≤ jr(t),

χ
(
Xr

j = Xr
j−1, q

r(j − 1) ≥ θr(Xr
j−1)

)
|(tr(j)− tr(j − 1))− l(r)| < εl(r).

The next lemma provides an upper bound on the duration of a review period when the

fluid policy is implemented. This bound holds almost surely compared to the probabilistic

one provided in Lemma 36.

Lemma 61. For every t > 0, ε > 0, and almost every ω, there exists r(ω, t, ε), such that if

r > r(ω, t, ε), then for all 1 ≤ j ≤ jr(t),

χ
(
qr(j − 1) ≥ θr(Xr

j−1)
)
(tr(j)− tr(j − 1)) < (1 + ε)l(r).
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The following lemma estimates the duration of an uninterrupted review period when

the target idle policy is implemented. Almost surely, the duration will be at most in the

same order of l(r) compared to the probabilistic bound provided in Lemma 49 .

Lemma 62. For every t > 0, ε > 0, and almost every ω, there exists r(ω, t, ε) and if

r > r(ω, t, ε), then for all 1 ≤ j ≤ jr(t),

χ
(
qr(j − 1) 6≥ θr(Xr

j−1), q
r(j − 1) ≥ (1− ε)θr(Xr

j−1)
)
(tr(j)− tr(j − 1)) < 2KC̃1εl(r).

The following lemma follows the results of Lemma 61 and Lemma 62 and provides an

upper bound on the duration of a review period, including those when the fluid policy is

implemented and those when the target idle policy is implemented.

Lemma 63. For every t > 0, and almost every ω, there exists r(ω, t), such that if r >

r(ω, t), then for all 1 ≤ j ≤ jr(t),

tr(j)− tr(j − 1) < 2KC̃1l(r).

The following lemma provides an upper bound on the difference between the actual

queue length and the planned queue length at the end of a normal review period, i.e an

uninterrupted review period when the fluid policy is implemented. In particular, it shows

that this upper bound holds almost surely compared to the probabilistic bound provided

by Lemma 45. This lemma reveals that the actual queue length will be almost surely close

to the planned level obtained from the stochastic fluid model solution when the network

processing speed is fast enough.

Lemma 64. For every t, ε > 0, and almost every ω, there exists r(ω, t, ε), such that if

r > r(ω, t, ε), then for all 1 ≤ j ≤ jr(t),

χ
(
Xr

j = Xr
j−1, q

r(j − 1) ≥ θr(Xr
j−1)

)
|zr(j)− q̄r(j)| ≤ εr−1θr(Xr

j−1),

where zr(j) = Ψ(l(r); q̄r(j − 1), Xr
j−1).

The following lemma provides an estimation on the difference between the queue lengths

at the beginning and at the end of a target idle review period, i.e a review period when
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the target idle policy is implemented. In particular, it shows that this difference will be at

most of the same order as rl(r) almost surely, while we have provided a probabilistic upper

bound on this difference in Lemma 51.

Lemma 65. For every t > 0, ε > 0, and almost every ω, there exists r(ω, t, ε), such that if

r > r(ω, t, ε), then for all 1 ≤ j ≤ jr(t),

χ
(
qr(j − 1) 6≥ θr(Xr

j−1), q
r(j − 1) ≥ (1− ε)θr(Xr

j−1)
)
|qr(j)− qr(j − 1)| ≤ C̃2εrl(r)e.

Remark 66. Recall that q̄r(j) = r−1(qr(j) − θr(Xr
j )) for all j ≥ 0. So if Xr

j = Xr
j+1, then

θr(Xr
j ) = θr(Xr

j+1) and q̄r(j + 1) − q̄r(j) = r−1(qr(j + 1) − qr(j)). Therefore, for every

t > 0, ε > 0, and almost every ω, there exists r(ω, t, ε), such that if r > r(ω, t, ε), for all

1 ≤ j ≤ jr(t),

χ
(
qr(j − 1) 6≥ θr(Xr

j−1), q
r(j − 1) ≥ (1− ε)θr(Xr

j−1), X
r
j = Xr

j−1

)
|q̄r(j)− q̄r(j − 1)|

≤ C̃2εl(r)e.

The following lemma provides an estimate for the difference between the queue lengths

at the end and at the beginning of a fluid review period, i.e a review period when the

fluid policy is implemented. This result applies to both interrupted and uninterrupted fluid

review periods. In particular, it shows that this difference will be at most of the same order

as rl(r) almost surely, while we have provided a probabilistic upper bound on this difference

in Lemma 53.

Lemma 67. For every t > 0, ε > 0, and almost every ω, there exists r(ω, t, ε), such that if

r > r(ω, t, ε), for all 1 ≤ j ≤ jr(t),

χ
(
qr(j − 1) ≥ θr(Xr

j−1)
)
|qr(j)− qr(j − 1)| ≤ Ĉ0rl(r)e.

Following the results of Lemma 65 and Lemma 67, we provide an upper bound on the

difference between the queue lengths at the end and at the beginning of a review period.

This upper bound holds almost surely for each review period.
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Lemma 68. For every t > 0 and almost every ω, there exists r(ω, t), such that as r >

r(ω, t), for all 1 ≤ j ≤ jr(t),

|qr(j)− qr(j − 1)| ≤ C̃3rl(r)e,

where C̃3 is a constant and C̃3 = max{C̃2, 4ᾱ+ (K + 1)µ̄}.

Remark 69. Following Lemma 68, and noting that

|q̄r)(j)− q̄r(j − 1)| ≤ r−1|qr(j)− qr(j − 1)|+ r−1(θr(Xr
j ) + θr(Xr

j−1)),

we have the following result.

For every t > 0 and almost every ω, there exists r(ω, t), such that if r > r(ω, t), then

for all 1 ≤ j ≤ jr(t),

|q̄r(j)− q̄r(j − 1)| ≤ C̃4l(r)e,

where C̃4 = C̃3 + 2β̄.

Next lemma reveals that the first review period after time s will start almost at time s

if the network speed is large enough. The proof follows the result of Lemma 63.

Lemma 70. For any t > 0, almost every ω, and every ε > 0, there exists r(ω, t, ε), such

that if r > r(ω, t, ε), then

sup
0≤s≤t

|tr(jr(s))− s| ≤ ε.

That is,

tr(jr(·)) → 1(·) u.o.c as r →∞.

The following lemma says that the fluid policy is implemented in an uninterrupted

fashion most of the time.

Lemma 71. Let nr(j, t) =
∑jr(t)−1

n=j χ(qr(n) ≥ θr(Xr
n), Xr

n+1 = Xr
n). With probability one,

nr(0, ·)l(r) → 1(·) u.o.c as r →∞.

107



Remark 72. From the definition, nr(j, t) denotes the total number of normal review periods

(uninterrupted review periods when the fluid policy is implemented) up to time t.

To make the proof of Theorem 28 more compact, we also develop the following lemma.

Lemma 73. Let jr(s) denote the index of the first review period after s for s ≥ 0. For

every t > 0, ε > 0 and almost all ω, there exists r(ω, t, ε), such that if r > r(ω, t, ε),

sup
0≤s≤t

|r−1Zr(s)− q̄r(jr(s))| ≤ ε,

where

q̄r(j) = r−1(qr(j)− θr(Xr
j ))+, for all j ≥ 0.

In other words, with probability one,

lim
r→∞

sup
0≤s≤t

|r−1Zr(s)− q̄r(jr(s))| = 0.

The proof of Theorem 28 is as follows.

Proof of Theorem 28. For each fixed time t0 ≥ 0, we consider a sample path ω such that

for any ε > 0, there exists r(ω, t0, ε) > 0 and if r > r(ω, t0, ε), the results in Lemma 59

to Lemma 71 hold. Note that such sample paths exist almost surely. Throughout the rest

of the proof, we consider this sample path ω though it is not spelled out explicitly for

notational convenience.

For every fixed t0 ≥ 0, we let γr(·) be defined as in the proof of Lemma 15 such that

(101) is satisfied, then we want to show that

lim
r→∞

sup
0≤s≤t0

|r−1Zr(γr(s))−Ψ(s; Z̄(0), X)| = 0, (154)

where Ψ(·; Z̄(0), X) is defined through (143)-(145). We will prove it through induction.

Since X(·) satisfies the regularity condition, we know that for fixed t0 ≥ 0, there exists

a finite m ≥ 0, such that

τm ≤ t0 < τm+1. (155)
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We use induction. First, we want to show that for any finite t ∈ [0, τ1],

lim
r→∞

sup
0≤s≤t

|r−1Zr(γr(s))−Ψ(s; Z̄(0), X)| = 0. (156)

Then, assuming that for any finite t ∈ [0, τn],

lim
r→∞

sup
0≤s≤t

|r−1Zr(γr(s))−Ψ(s; Z̄(0), X)| = 0, (157)

we will show that for any finite t ∈ [0, τn+1],

lim
r→∞

sup
0≤s≤t

|r−1Zr(γr(s))−Ψ(s; Z̄(0), X)| = 0. (158)

This will conclude the proof.

We first show that (156) holds. Consider any finite t such that t ∈ [0, τ1]. First, following

the convergence together theorem (Lemma 17), Lemma 73 and (101) imply that

lim
r→∞

sup
0≤s≤t

|r−1Zr(γr(s))− q̄r(jr(γr(s)))| = 0. (159)

Next, we compare the difference between q̄r(jr(γr(s))) and Ψ(nr(0, γr(s))l(r); q̄r(0), X) for

all s such that 0 ≤ s ≤ t. Note that q̄r(jr(γr(s))) is the scaled actual queue length at

the end of the last review period by γr(s), Ψ(nr(0, γr(s))l(r); q̄r(0), X) is from the given

stochastic fluid model solution with the initial fluid level being q̄r(0); and nr(0, ·) is defined

in Lemma 71. We will find out how far the actual queue length is from the planned level

by analyzing their difference. We first illustrate the idea of characterizing the difference

inductively. Then we give a complete representation of the difference. Recall the definition

of zr(j) given in Lemma 64. Generally, zr(j) denotes the planned fluid level at the end of

the (j − 1)th review period if the fluid level at the beginning of the (j − 1)th review period

is q̄r(j − 1), i.e

zr(j) = Ψ(l(r); q̄r(j − 1), Xr
j−1).

To illustrate the idea, without loss of generality, we assume Xr
j−1 = Xr

j−2 = i. Note that Ψ

satisfies the initial condition. Thus,

q̄r(j) = Ψ(0; q̄r(j), i)

= Ψ(0; q̄r(j), i)−Ψ(0; zr(j), i) + Ψ(0; zr(j), i)

= Ψ(0; q̄r(j), i)−Ψ(0; zr(j), i) + zr(j). (160)
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From the definition of zr(j) and the assumption that Xr
j−1 = i, we have

zr(j) = Ψ(l(r); q̄r(j − 1), i)

= (Ψ(l(r); q̄r(j − 1), i)−Ψ(l(r); zr(j − 1), i)) + Ψ(l(r); zr(j − 1), i). (161)

From the assumption that Xr
j−2 = i and the definition that of zr(·), we know zr(j − 1) =

Ψ(l(r); q̄r(j − 2), i). Recall that the stochastic fluid model solution Ψ also satisfies the

consistency condition. That is

Ψ(l(r); z̄r(j − 1), i) = Ψ(2l(r); q̄r(j − 2), i). (162)

Now, from (160), (161), and (162), we get

q̄r(j)−Ψ(2l(r); q̄r(j − 2), i)

=
(
Ψ(0; q̄r(j), i)−Ψ(0; zr(j), i)

)
+

(
Ψ(l(r); q̄r(j − 1), i)−Ψ(l(r); zr(j − 1), i)

)
.(163)

With this idea, we can characterize the difference between the scaled actual queue length

and the fluid trajectory inductively. We characterize this difference as follows.

For any s such that 0 ≤ s ≤ t (t ≤ τ1), we characterize the difference between

q̄r(jr(γr(s))) and Ψ(nr(0, γr(s))l(r); q̄r(0), i0). Note that nr(0, γr(s)) counts the total num-

ber of normal review periods until time γr(s) and l(r) is the planned review period length.

Thus, nr(0, γr(s))l(r) estimates the total time during which the fluid policy is implemented.

(At the beginning of a review period, if the queue length is above the safety stock level,

then the fluid policy is implemented during this review period. If this review period is

not interrupted by the environment transition, then we call such a review period a normal

review period.)

From the proof of Lemma 15, we know that there exists r1(ω, t) > 0, such that if

r > r1(ω, t), for all s ∈ [τn, τn+1) and 0 ≤ n ≤ m

γr(s) ∈ [τ r
n, τ

r
n+1), γr(τn) = τ r

n, Xr(γr(s)) = X(s) = in. (164)

Recall that jr(s) denotes the index of the first review period that starts after or at time s

and tr(j) denotes the beginning time of jth review period. Thus, tr(jr(γr(s))− 1) < γr(s).
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Hence for any s ∈ [0, t] (t ≤ τ1), and any j such that 0 ≤ j ≤ jr(γr(s))− 1, Xr
j = i0, i.e the

state of the environment is the same as the initial state i0 until γr(s). Therefore, for any

s ∈ [0, t] (t ≤ τ1), from the consistency assumption on Ψ, with the same idea as (163), we

have

q̄r(jr(γr(s)))−Ψ(nr(0, γr(s))l(r); q̄r(0), i0) (165)

= q̄r(jr(γr(s)))− q̄r(jr(γr(s))− 1)

+
jr(γr(s))−1∑

j=1

χ(qr(j − 1) ≥ θr(i0))IIr1(i0, j, s) (166)

+
jr(γr(s))−1∑

j=1

χ(qr(j − 1) ≥ θr(i0))IIr2(i0, j, s),

where

IIr1(i0, j, s) =
(
Ψ(nr(j, γr(s))l(r); q̄r(j), i0)−Ψ(nr(j, γr(s))l(r); zr(j), i0)

)
IIr2(i0, j, s) =

(
Ψ(nr(j, γr(s))l(r); q̄r(j), i0)−Ψ(nr(j, γr(s))l(r); q̄r(j − 1), i0)

)
.

From the assumption that Ψ satisfies the equi-continuity condition, we have

|IIr1(i0, j, s)| ≤ L(i, nr(j, γr(s))l(r))|q̄r(j)− zr(j)|,

|IIr2(i0, j, s)| ≤ L(i, nr(j, γr(s))l(r))|q̄r(j)− q̄r(j − 1)|.

Therefore,

|q̄r(jr(γr(s)))−Ψ(nr(0, γr(s))l(r); q̄r(0), i0)|

≤ |q̄r(jr(γr(s)))− q̄r(jr(γr(s))− 1)|

+
jr(γr(s))−1∑

j=1

χ(qr(j − 1) ≥ θr(i0))L(i0, nr(j, γr(s))l(r))|q̄r(j)− zr(j)| (167)

+
jr(γr(s))−1∑

j=1

χ(qr(j − 1) 6≥ θr(i0))L(i0, nr(j, γr(s))l(r))|q̄r(j)− q̄r(j − 1)|.

From Lemma 71, we know that

lim
r→∞

sup
0≤s≤t

|nr(0, γr(s))l(r)− s| = 0. (168)
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Therefore, there exists r2(ω, t, ε) > 0 such that if r > r2(ω, t, ε),

0 ≤ sup
0≤s≤t

nr(0, γr(s))l(r) ≤ t+ ε.

The definition of nr(j, s) (given in Lemma 71) implies that it is decreasing in j, therefore

nr(j, γr(s)) ≤ nr(0, γr(s)) for all s ≥ 0. Hence, for all 0 ≤ j ≤ jr(γr(s)),

0 ≤ sup
0≤s≤t

nr(j, γr(s))l(r) ≤ sup
0≤s≤t

nr(0, γr(s))l(r) ≤ t+ ε, (169)

and

L(i, nr(j, γr(s))l(r)) ≤ sup
0≤u≤t+ε

L(i, u). (170)

Inequalities (167), (170) imply that if r > max{r(ω, t, ε), r1(ω, t), r2(ω, t, ε)}, for any s ∈ [0, t]

(t ≤ τ1),

|q̄r(jr(γr(s)))−Ψ(nr(0, γr(s))l(r); q̄r(0), i0)|

≤ |q̄r(jr(γr(s)))− q̄r(jr(γr(s))− 1)|

+ sup
0≤u≤t+ε

L(i, u)
( jr(γr(s))−1∑

j=1

χ(qr(j − 1) ≥ θr(i0))|q̄r(j)− zr(j)| (171)

+
jr(γr(s))−1∑

j=1

χ(qr(j − 1) 6≥ θr(i0))|q̄r(j)− q̄r(j − 1)|
)
.

Note that for all s ∈ [0, t] (t ≤ τ1) and for all 1 ≤ j ≤ jr(γr(s)) − 1, Xr
j = Xr

j−1 = i0,

therefore

jr(γr(s))−1∑
j=1

χ(qr(j − 1) ≥ θr(i0))|q̄r(j)− zr(j)|

=
jr(γr(s))−1∑

j=1

χ(qr(j − 1) ≥ θr(i0), Xr
j = Xr

j−1 = i0)|q̄r(j)− zr(j)|,

and

jr(γr(s))−1∑
j=2

χ(qr(j − 1) 6≥ θr(i0))|q̄r(j)− q̄r(j − 1)|

=
jr(γr(s))−1∑

j=2

χ(qr(j − 1) 6≥ θr(i0), Xr
j−2 = Xr

j−1 = i0)|q̄r(j)− q̄r(j − 1)|.
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First,

jr(γr(s))−1∑
j=1

χ(qr(j − 1) ≥ θr(i0), Xr
j = Xr

j−1 = i0)|q̄r(j)− zr(j)|

≤
jr(γr(s))−1∑

j=1

χ(qr(j − 1) ≥ θr(i0), Xr
j = Xr

j−1 = i0)εr−1θr(i0)

= εβ(i0)l(r)
jr(γr(s))−1∑

j=1

χ(qr(j − 1) ≥ θr(i0), Xr
j = Xr

j−1 = i0)

≤ εβ(i0)l(r)nr(0, γr(s)), (172)

where the first inequality is from Lemma 64, the equality is from the definition of θr(i),

i ∈ I, and the last equality is from the definition of nr(0, ·) given in Lemma 71.

From Lemma 59, we know that for 2 ≤ j ≤ jr(γr(s))− 1,

χ(Xr
j−2 = Xr

j−1 = i0) = χ
(
Xr

j−2 = Xr
j−1 = i0, q

r(j − 1) ≥ (1− ε)θr(i0)
)
.

Therefore,

jr(γr(s))−1∑
j=1

χ(qr(j − 1) 6≥ θr(i0), Xr
j−2 = Xr

j−1 = i0)|q̄r(j)− q̄r(j − 1)|

=
jr(γr(s))−1∑

j=2

χ(Γ̃r(j − 1, ε))χ(Xr
j−2 = Xr

j−1 = i0)|q̄r(j)− q̄r(j − 1)|

+χ(qr(0) 6≥ θr(i0), Xr
1 = Xr

0 = i0)|q̄r(1)− q̄r(0)|

≤
jr(γr(s))−1∑

j=2

χ(qr(j − 1) 6≥ θr(i0), Xr
j−2 = Xr

j−1 = i0)C̃2εl(r)e + |q̄r(1)− q̄r(0)|

≤
jr(γr(s))−1∑

j=2

χ(qr(j − 2) ≥ θr(i0), Xr
j−2 = Xr

j−1 = i0)C̃2εl(r)e + |q̄r(1)− q̄r(0)|

≤ nr(0, γr(s))C̃2εl(r)e + |q̄r(1)− q̄r(0)| (173)

where the first inequality is from Remak 66, and the third inequality is from the definition of

nr(0, ·). Note that from the designed policy, the queue length at the end of an uninterrupted

review period is below safety stock level implies that the fluid policy was implemented during

this review period, i.e the queue length at the beginning of this review period is above the

safety stock. This implies the second inequality above.
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Combining (171), (172), and (173), we have

|q̄r(jr(γr(s)))−Ψ(nr(0, γr(s))l(r); q̄r(0), i0)|

≤ |q̄r(jr(γr(s)))− q̄r(jr(γr(s))− 1)|+ sup
0≤u≤t+ε

L(i, u)
(
|q̄r(1)− q̄r(0)|

+εβ(i0)l(r)nr(0, γr(s)) + nr(0, γr(s))C̃2εl(r)e
)
. (174)

From Remark 69, we have

|q̄r(jr(γr(s)))− q̄r(jr(γr(s))− 1)| ≤ C̃4l(r)e, |q̄r(1)− q̄r(0)| ≤ C̃4l(r)e.

Note that C̃2 > β̄ ≥ β(i0), therefore we have,

|q̄r(jr(γr(s)))−Ψ(nr(0, γr(s))l(r); q̄r(0), i0)|

≤ max{1, sup
0≤u≤t+ε

L(i0, u)}
(
2C̃4l(r)e + 2C̃2εl(r)nr(0, γr(s)e)

)
≤ max{1, sup

0≤u≤t+ε
L(i0, u)}

(
2C̃4l(r) + 2C̃2ε(t+ ε)

)
e, (175)

where the second inequality is from (169). We choose r(ω, t, ε) large enough, such that if

r > r(ω, t, ε), then l(r) < ε, therefore (175) reduces to

|q̄r(jr(γr(s)))−Ψ(nr(0, γr(s))l(r); q̄r(0), i0)|

≤ ε
(

max{1, sup
0≤u≤t+ε

L(i0, u)}(2C̃4 + 2C̃2(t+ ε))
)
e. (176)

Since ε is chosen arbitrarily, sup0≤u≤t+ε L(i0, u)} < ∞ and the above inequality holds for

all s ∈ [0, t] (t ≤ τ1), we see that

lim
r→∞

sup
0≤s≤t

|q̄r(jr(γr(s)))−Ψ(nr(0, γr(s))l(r); q̄r(0), i0)| = 0. (177)

For any s ∈ [0, t] (t ≤ τ1), from the assumption that Ψ satisfies equi-continuity,

|Ψ(nr(0, γr(s))l(r); q̄r(0), i0)−Ψ(nr(0, γr(s))l(r); Z̄(0), i0)|

≤ L(i0, nr(0, γr(s))l(r))|q̄r(0)− Z̄(0)|

≤ sup
0≤s≤t+ε

L(i0, s)|q̄r(0)− Z̄(0)|,

where the second inequality is from (169). From the hypothesis that |q̄r(0)− Z̄(0)| → 0 as

r →∞ and sup0≤s≤t+ε L(i0, s) <∞, we have

lim
r→∞

sup
0≤s≤t

|Ψ(nr(0, γr(s))l(r); q̄r(0), i0)−Ψ(nr(0, γr(s))l(r); Z̄(0), i0)| = 0. (178)
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The result of (168), the assumption that Φ(·; z, i) is continuous (hence Φ(·; z, i) is uni-

formly continuous on compact sets) for any fixed z, i and the convergence together theorem

(Lemma 17) imply that

lim
r→∞

sup
0≤s≤t

|Ψ(nr(0, γr(s))l(r); Z̄(0), i0)−Ψ(s; Z̄(0), i0)| = 0. (179)

The triangular inequality, (159), (177), (178), and (179) imply (156).

Now assuming (157) holds and we show (158) holds. We consider any finite t ∈ [τn, τn+1].

We go through the same procedure as the proof of (156). We first compare the difference

between the scaled queue length and the estimated fluid level, i.e the difference between

q̄r(jr(γr(s))) and Ψ(nr(jr(γr(τn)), γr(s))l(r); q̄r(jr(τn)), in), for all s ∈ [τn, t].

From (164), for all s ∈ [τn, t], and any j such that jr(γr(τn)) ≤ j ≤ jr(γr(s)) − 1,

Xr
j = in. Similar to (166),

q̄r(jr(γr(s)))−Ψ(nr(jr(γr(τn)), γr(s))l(r); q̄r(jr(γr(τn))), in)

= q̄r(jr(γr(s)))− q̄r(jr(γr(s))− 1)

+
jr(γr(s))−1∑
j=jr(γr(τn))

χ(qr(j − 1) ≥ θr(in))IIr1(in, j, s)

+
jr(γr(s))−1∑
j=jr(γr(τn))

χ(qr(j − 1) 6≥ θr(in))IIr2(in, j, s),

where

IIr1(in, j, s) = Ψ(nr(j, γr(s))l(r); q̄r(j), in)−Ψ(nr(j, γr(s))l(r); zr(j), in)

IIr2(in, j, s) = Ψ(nr(j, γr(s))l(r); q̄r(j), in)−Ψ(nr(j, γr(s))l(r); q̄r(j − 1), in)

Going through the same procedure as in the proof of (171), (172), (173), (174), (175),

and (176) we have rn > 0 such that if r > rn, then for any s ∈ [τn, t],

|q̄r(jr(γr(s)))−Ψ(nr(jr(τ r
n), γr(s))l(r); q̄r(jr(τ r

n), in)|

≤ ε
(

max{1, sup
0≤u≤t+ε

L(i0, u)}(2C̃4 + 2C̃2(t+ ε))
)
e.

Since ε is arbitrarily chosen, we have

lim
r→∞

sup
τn≤s≤t

|q̄r(jr(γr(s)))−Ψ(nr(jr(τ r
n), γr(s))l(r); q̄r(jr(τ r

n), in)| = 0. (180)
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From (159) and the induction hypothesis (157), we have

lim
r→∞

q̄r(jr(γr(τn))) = lim
r→∞

r−1Zr(γr(τn)) = Ψ(τn; Z̄(0), X).

Note that τ r
n = γr(τn). Hence,

lim
r→∞

q̄r(jr(τ r
n)) = Ψ(τn; Z̄(0), X). (181)

From the equi-continuity assumption on Ψ, for all s ∈ [0, t], we have

|Ψ(nr(jr(τ r
n), γr(s))l(r); q̄r(jr(τ r

n), in)−Ψ(nr(jr(τ r
n), γr(s))l(r);Ψ(τn; Z̄(0), X), in)|

≤ L(in, nr(jr(τ r
n), γr(s))l(r))|q̄r(jr(τ r

n))−Ψ(τn; Z̄(0), X)|

≤ sup
0≤u≤t+ε

L(in, u)|q̄r(jr(τ r
n))−Ψ(τn; Z̄(0), X)|,

where the second inequality follows from the fact that nr(jr(τ r
n), γr(s)) ≤ nr(0, γr(s)) and

inequality (169). From (181), sup0≤u≤t+ε L(in, u) <∞, and the fact that the above inequal-

ity holds for all s ∈ [τn, t] (t ≤ τn+1), if r →∞, then we have

sup
τn≤s≤t

|Ψ(nr(jr(τ r
n), γr(s))l(r); q̄r(jr(τ r

n), in)−Ψ(nr(jr(τ r
n), γr(s))l(r);Ψ(τn; Z̄(0), X), in)|

→ 0. (182)

From the definition of nr(j, s) given in Lemma 71, for any s such that γr(s) ≥ τ r
n,

nr(jr(τ r
n), γr(s)) =

jr(γr(s))−1∑
j=jr(τr

n)

χ(qr
j ≥ θr, Xr

j+1 = Xr
j )

=
jr(γr(s))−1∑

j=0

χ(qr
j ≥ θr, Xr

j+1 = Xr
j )−

jr(τr
n)−1∑

j=0

χ(qr
j ≥ θr, Xr

j+1 = Xr
j )

= nr(0, γr(s))− nr(0, τ r
n).

From (164), we know that τ r
n = γr(τn) and that γr(s) ≥ τ r

n is equivalent to s ≥ τn. Hence

for any s ≥ τn, we have nr(jr(τ r
n), γr(s)) = nr(0, γr(s))− nr(0, γr(τn)). With the result of

(168), we have

lim
r→∞

sup
τn≤s≤t

|(nr(0, γr(s))− nr(0, γr(τn)))l(r)− (s− τn)| = 0.

That is

lim
r→∞

sup
τn≤s≤t

|nr(jr(τ r
n), γr(s))l(r)− (s− τn)| = 0. (183)
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As in the the proof of (179), the continuity of Ψ(·; z, i) (thus uniformly continuous on

compact set) for each fixed z and i, (183) and the convergence together theorem (Lemma 17)

imply that if r →∞ then

sup
τn≤s≤t

|Ψ(nr(jr(τ r
n), γr(s))l(r);Ψ(τn; Z̄(0), X), in)−Ψ(s− τn; Ψ(τn; Z̄(0), X), in)| → 0.(184)

Note that the stochastic fluid model solution Ψ satisfies that Ψ(s−τn; Ψ(τn; Z̄(0), X), in) =

Ψ(s; Z̄(0), X) for all s ∈ [τn, t] (t ∈ [tn, τn+1]). The result of (184) is the same as

lim
r→∞

sup
τn≤s≤t

|Ψ(nr(jr(τ r
n), γr(s))l(r);Ψ(τn; Z̄(0), X), in)−Ψ(s; Z̄(0), X)| = 0. (185)

Using the triangular inequality, (180), (182), and (185), we have

lim
r→∞

sup
τn≤s≤t

|q̄r(jr(γr(s)))−Ψ(s; Z̄(0), X)| = 0.

With this result and the induction hypothesis (157), we obtain (158).

3.6 Fluid scale asymptotic optimality of the tracking policy

In this section, we show that the tracking method provided in Section 3.4 produces fluid

scale asymptotically optimal scheduling policies for queueing networks in a slowly changing

environment whenever the given stochastic fluid model solution is optimal.

Let Z(t) denote the K dimensional queue length vector of the queueing network in a

slowly changing environment. For a given cost function g(x) ≥ 0 for any x ≥ 0, a natural

objective is to find a non-anticipating scheduling policy that minimizes the average total

cost

E
∫ T0

0
g(Z(t))dt, (186)

where T0 > 0 is a constant. Note that since we allow the network to be overloaded at some

environment states, we consider only a finite time horizon problem. Moreover, we assume

that g(·) is continuous.

In this study, we restrict our attention to non-anticipating head-of-line policies, and plan

to show that the tracking method provided in Section 3.4 produces a fluid scale asymptoti-

cally optimal policy. We focus on the objective (186) and define the asymptotic optimality

with respect to this criteria.
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To define the asymptotic optimality, we consider a sequence of speeded networks as we

have done in the earlier sections. Let πr denote a scheduling policy for the rth network and

Zr(t;πr) denote the K dimensional queue length vector of the rth network at time t under

the πr policy. Let Z̄r(t;πr) = r−1Zr(t;πr). We define the fluid scale asymptotic optimality

as follows.

Definition 74 (Fluid scale asymptotic optimality). For a given cost function g(·), a

sequence of scheduling policies {πr
∗, r > 0} possesses the fluid scale asymptotic optimality if

lim sup
r→∞

E
∫ T0

0
g(Z̄r(t;πr

∗)) ≤ lim inf
r→∞

E
∫ T0

0
g(Z̄r(t;πr)) (187)

for any other sequence of non-anticipating head-of-line scheduling policies {πr, r > 0}.

To produce a sequence of fluid scale asymptotically optimal policy, we consider the

optimization problem of the stochastic fluid model, i.e

min
{T̄ (i,t), t≥0, i∈I}

E
∫ T0

0
g(Z̄(t))dt, (188)

where {T̄ (i, t), Z̄(t), t ≥ 0, i ∈ I} satisfies (90)-(95) with slight adaptation of notations. As-

sume that the optimal solution is given in the form of Ψ∗ or TΨ∗ , as discussed in Section 3.4.

Then the optimal fluid level at time t is Z̄∗(t) and Z̄∗(t) = Ψ∗(t; Z̄(0), X) as defined through

(143)-(145).

Remark 75. Note that we assume I is finite, and since the fluid level of the stochastic fluid

model changes continuously and T0 is a finite constant, we know that E
∫ T0

0 g(Z̄(t))dt is

finite for any fluid trajectory {Z̄(t), t ≥ 0} if E[Z̄(0)] is finite.

For any continuous cost function g(·), let {πr
∗, r > 0} denote the discrete review policies

produced by applying the tracking method provided in Section 3.4 to the optimal stochastic

fluid model solution Ψ∗, then we have the following theorem.

Theorem 76. Assume the conditions of Theorem 28, if Ψ∗ satisfies (140) and (141), then

{πr
∗, r > 0} possesses the fluid scale asymptotic optimality, i.e (187) is satisfied.

Proof of Theorem 76. The proof follows from Theorem 28, Fatou’s Lemma, and the

continuity of g(·). In particular, since Ψ∗ and TΨ∗ satisfy (122), the constraints of (95) and
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(96) are satisfied by TΨ∗ , then all the functions in Ψ∗ satisfy (138) and (139), therefore

Theorem 28 holds, i.e Z̄r(t;πr
∗) → Z̄∗(t).

Without loss of generality, we assume that E[Z̄(0)] <∞, then

lim sup
r→∞

E
∫ T0

0
g(Z̄r(t;πr

∗)), dt ≤ E
∫ T0

0
lim sup

r→∞
g(Z̄r(t;πr

∗)) dt = E
∫ T0

0
g(Z̄∗(t)) dt,

where the first inequality is from Remark 75 and Fatou’s lemma. From Theorem 28, we

know that Z̄r(t;πr
∗) → Z̄∗(t) with probability one, and the continuity of g(·) implies the

above equality.

For any sequence of non-anticipating head-of-line policies {πr, r > 0}, from Theorem 14,

we know that lim infr→∞ Z̄r(t;πr) = Z̄(t) for some Z̄(t) such that Z̄(t) satisfies (90)-(95).

From Fatou’s Lemma, since g(·) is nonnegative,

lim inf
r→∞

E
∫ T0

0
g(Z̄r(t;πr)) dt ≥ E

∫ T0

0
lim inf
r→∞

g(Z̄r(t;πr)) dt = E
∫ T0

0
g(Z̄(t)) dt,

where the equality is from the continuity of g(·).

The desired result follows from the fact that Z̄∗ is the optimal fluid trajectory.

3.7 Proof of the lemmas

In this section, we provide the proof of the lemmas that appear in Section 3.5.

Proof of Lemma 30. We only provide the proof of (146). The proof of (147) will be

similar.

Let η̂k(i, n) = ηk(i, n)χ(ηk(i, n) ≤ y) and η̃k(i, n) = ηk(i, n)χ(ηk(i, n) < y), then

ηk(i, n) = η̂k(i, n) + η̃k(i, n). Applying Chebyshev’s inequality, we have

P(|
m∑

n=1

η̂k(i, n)−E[η̂k(i, n)]| ≥ εx

2
) ≤ (

εx

2
)−4E[(

m∑
n=1

η̂k(i, n)−E[η̂k(i, n)])4]

≤ (
εx

2
)−4m2(2y)4 ≤ 28ε−4x−2y4 (189)

where the third inequality is from m ≤ x. Since {η̂k(i, n)−E[η̂k(i, n)], n ≥ 1} is a sequence

of independent and identically distributed random variables with mean value being 0 and

the summands are bounded by y, we have the second inequality in the above result.
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On the other hand, Var(η̃k(i, n)) ≤ E[(η̃k(i, n))2] = hk(i, y). Applying Chebyshev’s

inequality, we have

P(|
m∑

n=1

η̃k(i, n)−E[η̃k(i, n)]| ≥ εx

2
) ≤ (

εx

2
)−2Var(η̃k(i, n)) ≤ 4ε−2x−2hk(i, y).(190)

Setting y = x1/8 and combining (189) and (190), we have the desired result.

Proof of Lemma 33. Note that Φl
k(i,m) =

∑m
u=1 φ

l
k(i, u) and {φl

k(i, u), u ≥ 1} is a se-

quence of independent and identical Bernoulli random variables with mean value being

plk(i). From Chebyshev’s inequality,

P(|Φl
k(i,m)−mplk(i)| > εn)

≤ E[
( m∑

u=1

(φl
k(i, u)− plk(i))

)4
]/(ε4x4)

= 2
∑

1≤u<u′≤m

(
E(φl

k(i, u)− plk(i))2(φl
k(i, u

′)− plk(i))2
)
/(ε4x4)

+
m∑

u=1

E(φl
k(i, u)− plk(i))4/(ε4x4)

Note that for any u,

E((φl
k(i, u)− plk(i))2) = plk(i)(1− plk(i)) ≤ 1,

and

E((φl
k(i, u)− plk(i))4) = (1− plk(i))4plk(i) + plk(i)4(1− plk(i))

≤ plk(i)(1− plk(i))((1− plk(i))3 + plk(i)3) ≤ 1.

Thus, for any m ≤ x,

P(|Φl
k(i,m)−mplk(i)| > εn) ≤ m2/(ε4x4) ≤ 1/(ε4x2).

This concludes the proof.

Proof of Lemma 34. In this lemma, we estimate the duration of a review period during

which the fluid policy is implemented. Without loss of generality, we consider jth review
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period and assume that the state of the environment is i. If the queue length at the

beginning of the jth review period is above the safety stock level, i.e qr(j) ≥ θr(i), then

the fluid policy is implemented. According to the fluid policy, we schedule a number of jobs

for each class to process, where the number is calculated through the given stochastic fluid

model solution (124)-(127). These jobs are intended to be processed within l(r) amount

of time. If the state of the environment is still i after the fluid policy is completed during

this review period, then we refer to this review period as a normal review period. For the

rest of the proof, we assume that the jth review period is a normal review period. We will

compare the actual duration of a normal review period, tr(j + 1)− tr(j), with the planned

duration, l(r). Therefore, we consider sample paths that satisfy

Xr
j = i = Xr

j+1, qr(j) ≥ θr(i). (191)

For these sample paths, from (130), we know that the actual duration of the jth review

period is

tr(j + 1)− tr(j) = max
1≤s≤S

er,Fs (j), (192)

where er,Fs (j) is the fluid policy implementation time of server s and it is defined in (129).

Recall that brs(j) (defined in (128)) denotes the actual busy time of server s during jth

review period and ur
s(j) (defined in (127)) denotes the planned idle time for server s during

the jth review period. From (129), we know that

{|er,Fs (j)− l(r)| > εl(r)} = {|brs(j) + ur
s(j)− l(r)| > εl(r), brs(j) + ur

s(j) ≤ l(r)}

∪{|l(r)− l(r)| > εl(r), brs(j) ≤ l(r) < brs(j) + ur
s(j)}

∪{|brs(j)− l(r)| > εl(r), l(r) < brs(j)}

= {l(r)− (brs(j) + ur
s(j)) > εl(r), brs(j) + ur

s(j) ≤ l(r)}

∪{brs(j)− l(r) > εl(r), l(r) < brs(j)}

⊂ {l(r)− (brs(j) + ur
s(j)) > εl(r), brs(j) + ur

s(j) ≤ l(r)}

∪{brs(j) + ur
s(j)− l(r) > εl(r), l(r) < brs(j)}

⊂ {l(r)− (brs(j) + ur
s(j)) > εl(r), brs(j) + ur

s(j) ≤ l(r)}
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∪{brs(j) + ur
s(j)− l(r) > εl(r), l(r) < brs(j) + ur

s(j)}

= {|brs(j) + ur
s(j)− l(r)| > εl(r)}. (193)

From (127) and (128), we have

{|brs(j) + ur
s(j)− l(r)| > εl(r)}

= {|brs(j)−
∑
k∈Cs

xr
k(j)| > εl(r)}

= {|
∑
k∈Cs

( ιrk(i,j)+pr
k(j)∑

n=ιrk(i,j)+2

ηr
k(i, n) + η̃r

k(i, ι
r
k(i, j) + 1)

)
−

∑
k∈Cs

xr
k(j)| > εl(r)}

= {|
∑
k∈Cs

( ιrk(i,j)+pr
k(j)∑

n=ιrk(i,j)+2

ηr
k(i, n) + η̃r

k(i, ι
r
k(i, j) + 1)− xr

k(j)
)
| > εl(r)}

⊂
⋃

k∈Cs

{η̃r
k(i, ι

r
k(i, j) + 1) ≥ (2K)−1εl(r)}

⋃

{|
∑
k∈Cs

( ιrk(i,j)+pr
k(j)∑

n=ιrk(i,j)+2

(ηr
k(i, n)− 1

rµk(i)
) + (

pr
k(j)− 1
rµk(i)

− xr
k(j))

)
| > ε

2
l(r)}

⊂
⋃

k∈Cs

(
{η̃r

k(i, ι
r
k(i, j) + 1) ≥ (2K)−1εl(r)} ∪

{|
ιrk(i,j)+pr

k(j)∑
n=ιrk(i,j)+2

(ηr
k(i, n)− 1

rµk(i)
) + (

pr
k(j)− 1
rµk(i)

− xr
k(j))| >

ε

2K
l(r)}

)
.

From the definition of pr
k(j) given in (126), we know that∣∣∣pr

k(j)− 1
rµk(i)

− xr
k(j)

∣∣∣ ≤ 2
rµk(i)

≤ 2
µ

k
r

Note that rl(r) → ∞ and µ
k
> 0, hence there exists r(ε), such that if r > r(ε) then

2(µ
k
r)−1 < (4K)−1εl(r) for all 1 ≤ k ≤ K. For all r > r(ε), since there are no more than

K classes at each station, then∑
k∈Cs

∣∣∣pr
k(j)− 1
rµk(i)

− xr
k(j)

∣∣∣ ≤ εl(r)
4

.

Therefore, if r > r(ε), then

{|brs(j) + ur
s(j)− l(r)| > εl(r)}

⊂
⋃

k∈Cs

(
{η̃r

k(i, ι
r
k(i, j) + 1) ≥ εl(r)

2K
} ∪ {|

ιrk(i,j)+pr
k(j)∑

n=ιrk(i,j)+2

(ηr
k(i, n)− 1

rµk(i)
)| > ε

4K
l(r)}

)
. (194)
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From (192), we have

{|tr(j + 1)− tr(j)− l(r)| > εl(r)} = {| max
1≤s≤S

er,Fs (j)− l(r)| > εl(r)}

⊂ { max
1≤s≤S

|er,Fs (j)− l(r)| > εl(r)}

⊂
⋃

1≤s≤S

{|er,Fs (j)− l(r)| > εl(r)}.

Combining this result with (193) and (194 ), we have

{|tr(j + 1)− tr(j)− l(r)| > εl(r)}

⊂
⋃

1≤s≤S

⋃
k∈Cs

(
{η̃r

k(i, ι
r
k(i, j) + 1) ≥ εl(r)

2K
} ∪ {|

ιrk(i,j)+pr
k(j)∑

n=ιrk(i,j)+2

(ηr
k(i, n)− 1

rµk(i)
)| > εl(r)

4K
}
)

=
⋃

1≤k≤K

(
{η̃r

k(i, ι
r
k(i, j) + 1) ≥ εl(r)

2K
} ∪ {|

ιrk(i,j)+pr
k(j)∑

n=ιrk(i,j)+2

(ηr
k(i, n)− 1

rµk(i)
)| > εl(r)

4K
}
)
. (195)

Considering only the sample paths such that all the remaining service times are less than

(2K)−1l(r), from (195) we have

{|tr(j + 1)− tr(j)− l(r)| > εl(r)} ∩Υr(i, j)

⊂
⋃

1≤k≤K

{|
ιrk(i,j)+pr

k(j)∑
n=ιrk(i,j)+2

(ηr
k(i, n)− 1

rµk(i)
)| > εl(r)

4K
},

which is based on the assumption in (191). Using the indicator function and presenting the

result in a self-contained form, we have

χ(|tr(j + 1)− tr(j)− l(r)| > εl(r))χ(Υr(i, j))χ(Xr
j = i = Xr

j+1, q
r(j) ≥ θr(i))

≤
K∑

k=1

χ(
∣∣∣ ιrk(i,j)+pr

k(j)∑
n=ιrk(i,j)+2

(ηr
k(i, n)− 1

rµk(i)
)
∣∣∣ > εl(r)

4K
)χ(Xr

j = i = Xr
j+1, q

r(j) ≥ θr(i)).

Therefore, noting that Γr(j) = {Xr
j = Xr

j+1, q
r(j) ≥ θr(Xr

j )} and Γr(i, j) = {Xr
j = i =

Xr
j+1, q

r(j) ≥ θr(i)}, we have

E
[
χ(|tr(j + 1)− tr(j)− l(r)| > εl(r))χ(Υr(Xr

j , j))χ(Γr(j))
∣∣∣Fr

j , X
r
j = i

]
= E

[
χ(|tr(j + 1)− tr(j)− l(r)| > εl(r))χ(Υr(i, j))χ(Γr(i, j))

∣∣∣Fr
j , X

r
j = i

]
≤ E

[ K∑
k=1

χ(|
ιrk(i,j)+pr

k(j)∑
n=ιrk(i,j)+2

(ηr
k(i, n)− 1

rµk(i)
)| > εl(r)

4K
)
∣∣∣Fr

j , X
r
j = i

]
χ(qr(j) ≥ θr(i))
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= E
[ K∑

k=1

χ(|
ιrk(i,j)+brµk(i)xr

k(j)c∑
n=ιrk(i,j)+2

(ηr
k(i, n)− 1

rµk(i)
)| > εl(r)

4K
)
∣∣∣Fr

j , X
r
j = i

]
χ(qr(j) ≥ θr(i))

=
K∑

k=1

E
[
χ(|

ιrk(i,j)+brµk(i)xr
k(j)c∑

n=ιrk(i,j)+2

(ηk(i, n)− 1
µk(i)

)| > εrl(r)
4K

)
∣∣∣Fr

j , X
r
j = i

]
χ(qr(j) ≥ θr(i))

≤
K∑

k=1

ĥk((4Kµk(i))−1ε, bµk(i)rl(r)c)χ(qr(j) ≥ θr(i)), (196)

where the second equality is from the definition of pr
k(j) given in (126) and xr

k(j) is defined

in (125), the third equality follows from the fact that ηr(i, n) = r−1η(i, n), and the last in-

equality follows from the fact that the service times that happen after tr(j) are independent

from Fr
j and from Lemma 30 since xr

k(j) ≤ l(r). Note that ĥk(x, y) is decreasing in x and

y for all 1 ≤ k ≤ K. Thus,
K∑

k=1

ĥk((4Kµk(i))−1ε, bµk(i)rl(r)c)χ(qr(j) ≥ θr(i))

≤
K∑

k=1

ĥk((4Kµ̄k)−1ε, bµ
k
rl(r)c)χ(qr(j) ≥ θr(i)).

Combining this result with the last one, and from the properties of conditional expectation,

we have

E
[
χ(|tr(j + 1)− tr(j)− l(r)| > εl(r))χ(Υr(Xr

j , j))χ(Xr
j = Xr

j+1, q
r(j) ≥ θr(Xr

j ))
∣∣∣Fr

j

]
≤

K∑
k=1

ĥk(ε(4Kµ̄k)−1, bµ
k
rl(r)c)χ(qr(j) ≥ θr(Xr

j )).

This concludes the proof.

Proof of Lemma 35. Going through the same procedure as we prove (193) and (194) in

the proof of Lemma 34, we can choose r(ε) > 0 such that if r > r(ε), then∑
k∈Cs

∣∣∣pr
k(j)− 1
rµk(i)

− xr
k(j)

∣∣∣ ≤ εl(r)
2

.

and

{er,Fs (j)− l(r) < −εl(r)} = {brs(j) + ur
s(j)− l(r) < −εl(r)}

⊂
⋃

k∈Cs

{
ιrk(i,j)+pr

k(j)∑
n=ιrk(i,j)+2

(ηr
k(i, n)− 1

rµk(i)
) < − ε

2K
l(r)}.
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From (192),

{tr(j + 1)− tr(j) < (1− ε)l(r)} ∩ Γr(j)

⊂
⋂

1≤s≤S

⋃
k∈Cs

{
ιrk(i,j)+pr

k(j)∑
n=ιrk(i,j)+2

(ηr
k(i, n)− 1

rµk(i)
) < − ε

2K
l(r)}.

Similar to the proof of (196), we have

E[χ(tr(j + 1)− tr(j) < (1− ε)l(r))χ(Γr(j))|Fr
j , X

r
j = i]

≤
∑

1≤k≤K

E[
ιrk(i,j)+pr

k(j)∑
n=ιrk(i,j)+2

(ηr
k(i, n)− 1

rµk(i)
) < − ε

2K
l(r)|Fr

j , X
r
j = i]χ(qr(j) ≥ θr(i))

≤
K∑

k=1

ĥk((2Kµk(i))−1ε, bµk(i)rl(r)c)χ(qr(j) ≥ θr(i)),

From that ĥk(x, y) is decreasing in x and y for all 1 ≤ k ≤ K, we have the conclusion of

the lemma.

Proof of Lemma 36. This proof is the same as that of Lemma 34, except that that the

actual duration of the jth review period satisfies that

tr(j + 1)− tr(j) ≤ max
1≤s≤S

er,Fs (j),

instead of (192) since we do not assume Xr
j+1 = Xr

j .

Proof of Lemma 37. Since Er
k(i, t) attains only nonnegative integer values, then

{Er
k(i, t)− rαk(i)t > x} = {Er

k(i, t) ≥ drαk(i)t+ xe}. (197)

Recall that for each environment state i ∈ I and each class k such that αk(i) > 0,

Er
k(i, t) = max{n :

n∑
m=1

ξr
k(i,m) ≤ t} = max{n :

n∑
m=1

ξk(i,m) ≤ rt}.

Therefore,

{Er
k(i, t) ≥ drαk(i)t+ xe} = {

drαk(i)t+xe∑
m=1

ξr
k(i,m) ≤ t}

= {
drαk(i)t+xe∑

m=1

ξk(i,m) ≤ rt}
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= {
drαk(i)t+xe∑

m=1

ξk(i,m)− drαk(i)t+ xe
αk(i)

≤ rt− drαk(i)t+ xe
αk(i)

}

⊂ {
drαk(i)t+xe∑

m=1

ξk(i,m)− drαk(i)t+ xe
αk(i)

≤ − x

αk(i)
}

⊂ {
∣∣∣ drαk(i)t+xe∑

m=1

ξk(i,m)− drαk(i)t+ xe
αk(i)

∣∣∣ ≥ x

αk(i)
}. (198)

From Lemma 30, we have

P(
∣∣∣ drαk(i)t+xe∑

m=1

ξk(i,m)− drαk(i)t+ xe
αk(i)

∣∣∣ ≥ x

αk(i)
)

≤ ĝ(
x

αk(i)drαk(i)t+ xe
, drαk(i)t+ xe). (199)

Combining the results of (197)-(199), we have

P(Er
k(i, t)− rαk(i)t > x) ≤ ĝ(

x

αk(i)drαk(i)t+ xe
, drαk(i)t+ xe),

which concludes the proof of (i).

Note that since

{Er
k(i, t)− rαk(i)t < −x} = {Er

k(i, t) ≤ brαk(i)t− xc},

using the procedure above, we get (ii). Combining (i) and (ii), and using the fact that

ĝ(x, y) is decreasing in both x and y, we have (iii).

Proof of Lemma 38. The proof is the same as that of Lemma 37 except that the arrival

rate is replaced by the service rate.

Proof of Lemma 39. Note that
∑

i∈I I
r(i, t) = t and ᾱk ≥ αk(i). For any i ∈ I, we have

{Er
k(t) > r(ᾱk + ε)t} = {

∑
i∈I

Er
k(i, I

r(i, t)) >
∑
i∈I

rᾱkI
r(i, t) + εrt}

⊂
⋃
i∈I
{Er

k(i, I
r(i, t)) > rαk(i)Ir(i, t) +

εrt

|I|
}

=
⋃
i∈I
{Er

k(i, I
r(i, t))− rαk(i)Ir(i, t) >

εrt

|I|
}.
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Applying Lemma 37, we have

P(Er
k(t) > r(ᾱk + ε)t) ≤

∑
i∈I

P(Er
k(i, I

r(i, t))− rαk(i)Ir(i, t) >
εrt

|I|
)

≤
∑
i∈I

ĝk(
εrt/|I|

αk(i)drαk(i)Ir(i, t) + εrt/|I|e
, drαk(i)Ir(i, t) + εrt/|I|e).

Since Ir(i, t) ≤ t, we have

εrt/|I|
αk(i)drαk(i)Ir(i, t) + εrt/|I|e

≥ εrt/|I|
ᾱkdrᾱkt+ εrt/|I|e

.

Choose rk(ε, t) large enough such that if r > rk(ε, t), then

εrt/|I|
ᾱkdrᾱkt+ εrt/|I|e

≥ ε

2(|I|(ᾱk)2 + ε)
.

Note that drαk(i)Ir(i, t) + εrt/|I|e ≥ εrt/|I| and ĝk(x, y) is decreasing in x and y, then for

r > rk(ε, t), we have

ĝk(
εrt/|I|

αk(i)drαk(i)Ir(i, t) + εrt/|I|e
, drαk(i)Ir(i, t) + εrt/|I|e) ≤ ĝk(

ε

2(|I|(ᾱk)2 + ε)
, εrt/|I|).

Combining the above inequalities, we get the conclusion of the lemma.

Proof of Lemma 40. Using the same analysis as in the proof of Lemma 39 and noting

that T r
k (i, t) ≤ Ir(i, t) ≤ t, we obtain the desired result.

Proof of Lemma 41. For each i ∈ I and any n ≥ 1, applying techniques similar to those

used in the proof of Chebyshev’s inequality, we have

P(ξr
k(i, n) > εl(r)) = P(ξk(i, n) > rl(r))

≤ E((ξk(i, n))2χ(ξk(i, n) > rl(r)))
(rl(r))2

≤ gk(i, rl(r))
(rl(r))2

≤ c1
r2+γ(l(r))2

, (200)

where the last inequality is from Remark 25.

Recall that we let Er
k(t) denote the total number of external arrivals to class k until

time t and it satisfies Er
k(t) =

∑
i∈I E

r(i, Ir(i, t)), then

P(max
i∈I

max
1≤n≤Er

k(i,Ir(i,t))
ξr
k(i, n) > εl(r))
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≤ P(max
i∈I

max
1≤n≤Er

k(i,Ir(i,t))
ξr
k(i, n) > εl(r),

∑
i∈I

Er
k(i, I

r(i, t)) ≤ r(ᾱk + ε)t)

+P
( ∑

i∈I
Er

k(i, I
r(i, t)) > r(ᾱk + ε)t

)
≤ r(ᾱk + ε)tP(ξr

k(i, n) > εl(r)) + P(Er
k(t) > r(ᾱk + ε)t)

≤ r(ᾱk + ε)tc1
r2+γ(l(r))2

+ ĝk(
ε

2(|I|(ᾱk)2 + ε)
, εrt/|I|),

where the last inequality is from (200) and Lemma 39. Simplifying the last expression, we

get the desired result.

Proof of Lemma 43. The proof is the same as that of Lemma 41 except that the arrival

rate is replaced by the service rate.

Proof of Lemma 45. Without loss of generality, we assume that at the beginning of the

jth review period the environment is at state i and the queue length is above the selected

safety stock level. That is

Xr
j = i, qr(j) ≥ θr(i). (201)

So we will implement the fluid policy characterized by (124)-(127) in Section 3.4. The

targeted fluid level vector at the end of this review period is from the given stochastic fluid

model solution, and it satisfies that

zr(j + 1) = Ψ(l(r); q̄r(j), i) = q̄r(j) + α(i)l(r)− (I − P ′(i))M−1(i)xr(j).

Thus, for each class k, we have

zr
k(j + 1) = q̄r

k(j) + αk(i)l(r)− µk(i)xr
k(j) +

K∑
l=1

plk(i)µl(i)xr
l (j).

We assume that the fluid policy is completely implemented during this review period, i.e

there is no environment transition to interrupt the review period. This assumption and

(201) imply (191). We assume (191), then the actual queue length of class k at the end of

the jth review period is

qr
k(j + 1) = qr

k(j) + (Er
k(t

r(j + 1))− Er
k(t

r(j)))− pr
k(j)

+
K∑

l=1

(Φl
k(i, ι

r
l (i, j) + pr

l (j))− Φl
k(i, ι

r
l (i, j))),
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where ιrl (i, j) denotes the number of class l jobs that have departed at environment state i

until tr(j) and it is defined in Section 3.4. Recall that q̄r
k(j) = r−1(qr

k(j) − θr
k(X

r
j )) for all

j ≥ 0. From assumption (191), Xr
j+1 = Xr

j = i, then

q̄r
k(j + 1) = q̄r

k(j) + r−1
(
Er

k(t
r(j + 1))− Er

k(t
r(j))− pr

k(j)

+
K∑

l=1

(Φl
k(i, ι

r
l (i, j) + pr

l (j))− Φl
k(i, ι

r
l (i, j)))

)
.

Comparing the difference between zr
k(j + 1) and q̄r

k(j + 1), we have

|q̄r
k(j + 1)− zr

k(j + 1)|

≤ r−1
(
|Er

k(t
r(j + 1))− Er

k(t
r(j))− αk(i)rl(r)|+ |pr

k(j)− rµk(i)xr
k(j)|

+
K∑

l=1

|Φl
k(i, ι

r
l (i, j) + pr

l (j))− Φl
k(i, ι

r
l (i, j))− plk(i)rµl(i)xr

l (j)|
)

≤ |Er
k(t

r(j + 1))− Er
k(t

r(j))− αk(i)rl(r)|+ |pr
k(j)− rµk(i)xr

k(j)|

+
K∑

l=1

|Φl
k(i, ι

r
l (i, j) + pr

l (j))− Φl
k(i, ι

r
l (i, j))− plk(i)pr

l (j)|

+
K∑

l=1

plk(i)|pr
l (j)− rµl(i)xr

l (j)|.

From (126), we know that |pr
l (j)− rµl(i)xr

l (j)| < 1. Note that
∑K

l=1 plk(i) ≤ 1 and

|q̄r
k(j + 1)− zr

k(j + 1)| ≤ r−1
(
|Er

k(t
r(j + 1))− Er

k(t
r(j))− αk(i)rl(r)|

+
K∑

l=1

|Φl
k(i, ι

r
l (i, j) + pr

l (j))− Φl
k(i, ι

r
l (i, j))− plk(i)pr

l (j)|+ 2
)
.

Since θr
k(i) = βk(i)rl(r), βk

= infi∈I βk > 0, and rl(r) → ∞ as r → ∞, there exists

rk(ε) > 0, such that if r > rk(ε), 2r−1 ≤ εβ
k
l(r)/2 ≤ εβk(i)l(r)/2 ≤ εr−1θr

k(i)/2. This

implies that if r > rk(ε), then

{|q̄r
k(j + 1)− zr

k(j + 1)| ≥ εr−1θr
k(i)}

⊂ {|Er
k(t

r(j + 1))− Er
k(t

r(j))− αk(i)rl(r)| ≥ 4−1εθr
k(i)}

∪{
K∑

l=1

|Φl
k(i, ι

r
l (i, j) + pr

l (j))− Φl
k(i, ι

r
l (i, j))− plk(i)pr

l (j)| ≥ 4−1εθr
k(i)}

⊂ {|Er
k(t

r(j + 1))− Er
k(t

r(j))− αk(i)rl(r)| ≥ 4−1εθr
k(i)}

∪K
l=1{|Φl

k(i, ι
r
l (i, j) + pr

l (j))− Φl
k(i, ι

r
l (i, j))− plk(i)pr

l (j)| ≥ (4K)−1εθr
k(i)}.
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Note that the above result holds under the assumption (191). In other words,

{|q̄r
k(j + 1)− zr

k(j + 1)| ≥ εr−1θr
k(i)} ∩ Γr(i, j)

⊂
(
∪K

l=1 {|Φl
k(i, ι

r
l (i, j) + pr

l (j))− Φl
k(i, ι

r
l (i, j))− plk(i)pr

l (j)| ≥ (4K)−1εθr
k(i)}

∪{|Er
k(t

r(j + 1))− Er
k(t

r(j))− αk(i)rl(r)| ≥ 4−1εθr
k(i)}

)
∩ Γr(i, j).

Therefore, for any ε̃ > 0,

{|q̄r
k(j + 1)− zr

k(j + 1)| ≥ εr−1θr
k(i)} ∩ Γr(i, j) ∩Υ(i, j, ε̃) ∩ Λ(i, j, ε̃)

⊂
(
∪K

l=1 {|Φl
k(i, ι

r
l (i, j) + pr

l (j))− Φl
k(i, ι

r
l (i, j))− plk(i)pr

l (j)| ≥ (4K)−1εθr
k(i)}

∪{|Er
k(t

r(j + 1))− Er
k(t

r(j))− αk(i)rl(r)| ≥ 4−1εθr
k(i)}

)
∩Γr(i, j) ∩Υ(i, j, ε̃) ∩ Λ(i, j, ε̃). (202)

We first provide a probabilistic bound on the difference between the actual number of

customers that are routed from l to k and its expected value. Then we derive a probabilistic

bound on the difference between the actual number of external arrivals to class k during

the jth review period and its expected value.

From assumption (201), we have pr
l (j) ≤ brl(r)βk(i)c ≤ θr

k(i). Note that φl
k(ι

r
l (i, j) +n)

is independent of Fr
j for n ≥ 1, then from Lemma 33,

P(|Φl
k(i, ι

r
l (i, j) + pr

l (j))− Φl
k(i, ι

r
l (i, j))− plk(i)pr

l (j)| ≥ (4K)−1εθr
k(i)

∣∣∣Fr
j , X

r
j = i)

= P(|
ιrl (i,j)+pr

l (j)∑
n=ιrl (i,j)+1

(φl
k(i, n)− plk(i))| ≥ (4K)−1εθr

k(i) |Fr
j , X

r
j = i)

≤ (4K)4

ε4
1

(rl(r)βk(i))2
≤ (4K)4

ε4
1

(rl(r)β
k
)2
.

Note that {qr(j) ≥ θr(Xr
j )} ∈ Fr

j , we have

P(|Φl
k(i, ι

r
l (i, j) + pr

l (j))− Φl
k(i, ι

r
l (i, j))− plk(i)pr

l (j)| ≥
ε

4K
θr
k(i), q

r(j) ≥ θr(i)
∣∣∣Fr

j , X
r
j = i)

≤ (4K)4

ε4
1

(rl(r)β
k
)2
χ(qr(j) ≥ θr(i)). (203)

Now we estimate the exogenous arrivals during this review period. We consider class

k with αk(i) > 0. Recall that κr
k(i, j) denotes the total number of class k jobs that have
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arrived until tr(j) at the environment state i. Let ξ̃r
k(i, κ

r
k(i, j) + 1) denote the remaining

inter-arrival time of the first customer that arrives after tr(j). Then

{|Er
k(t

r(j + 1))− Er
k(t

r(j))− αk(i)rl(r)| ≥ 4−1εθr
k(i)}Λr(i, j, ε̃)Υ(i, j, ε̃)

= {Er
k(t

r(j + 1))− Er
k(t

r(j)) ≥ dαk(i)rl(r) + εθr
k(i)/4e}Λr(i, j, ε̃)Υ(i, j, ε̃)

∪{Er
k(t

r(j + 1))− Er
k(t

r(j)) ≤ bαk(i)rl(r)− εθr
k(i)/4c}Λr(i, j, ε̃)Υ(i, j, ε̃)

= {
κr

k(i,j)+dαk(i)rl(r)+εθr
k(i)/4e∑

n=κr
k(i,j)+2

ξr
k(i, n) + ξ̃r

k(i, κ
r
k(i, j) + 1) ≤ tr(j + 1)− tr(j)}Λr(i, j, ε̃)Υ(i, j, ε̃)

∪{
κr

k(i,j)+bαk(i)rl(r)−εθr
k(i)/4c∑

n=κr
k(i,j)+2

ξr
k(i, n) + ξ̃r

k(i, κ
r
k(i, j) + 1) > tr(j + 1)− tr(j)}Λr(i, j, ε̃)Υ(i, j, ε̃).

Since ξ̃r
k(i, κ

r
k(i, j) + 1) ≥ 0, then

{
κr

k(i,j)+dαk(i)rl(r)+εθr
k(i)/4e∑

n=κr
k(i,j)+2

ξr
k(i, n) + ξ̃r

k(i, κ
r
k(i, j) + 1) ≤ tr(j + 1)− tr(j)}Λr(i, j, ε̃)Υ(i, j, ε̃)

⊂ {
κr

k(i,j)+dαk(i)rl(r)+εθr
k(i)/4e∑

n=κr
k(i,j)+2

ξr
k(i, n) ≤ tr(j + 1)− tr(j)}Υ(i, j, ε̃)

⊂ {
κr

k(i,j)+dαk(i)rl(r)+εθr
k(i)/4e∑

n=κr
k(i,j)+2

ξr
k(i, n) ≤ (1 + ε̃)l(r)}

∪{|tr(j + 1)− tr(j)− l(r)| > ε̃l(r)}Υ(i, j, ε̃).

From the definition of Υ(i, j, ε̃), we have

{
κr

k(i,j)+bαk(i)rl(r)−εθr
k(i)/4c∑

n=κr
k(i,j)+2

ξr
k(i, n) + ξ̃r

k(i, κ
r
k(i, j) + 1) > tr(j + 1)− tr(j)}Λr(i, j, ε̃)Υ(i, j, ε̃)

⊂ {
κr

k(i,j)+bαk(i)rl(r)−εθr
k(i)/4c∑

n=κr
k(i,j)+2

ξr
k(i, n) > tr(j + 1)− tr(j)− ε̃l(r)

2K
}Υ(i, j, ε̃)

⊂
(
{

κr
k(i,j)+bαk(i)rl(r)−εθr

k(i)/4c∑
n=κr

k(i,j)+2

ξr
k(i, n) > (1− ε̃)l(r)− ε̃l(r)

2K
}Υ(i, j, ε̃)

)
∪

(
{|tr(j + 1)− tr(j)− l(r)| ≥ ε̃l(r)}Υ(i, j, ε̃)

)
⊂ {

κr
k(i,j)+bαk(i)rl(r)−εθr

k(i)/4c∑
n=κr

k(i,j)+2

ξr
k(i, n) > (1− 2ε̃)l(r)}

∪
(
{|tr(j + 1)− tr(j)− l(r)| ≥ ε̃l(r)}Υ(i, j, ε̃)

)
.
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Therefore,

{|Er
k(t

r(j + 1))− Er
k(t

r(j))− αk(i)rl(r)| ≥ 4−1εθr
k(i)}Λr(i, j, ε̃)Υ(i, j, ε̃)

⊂ {
κr

k(i,j)+dαk(i)rl(r)+εθr
k(i)/4e∑

n=κr
k(i,j)+2

ξr
k(i, n) ≤ (1 + ε̃)l(r)}

∪{
κr

k(i,j)+bαk(i)rl(r)−εθr
k(i)/4c∑

n=κr
k(i,j)+2

ξr
k(i, n) > (1− 2ε̃)l(r)}

∪({|tr(j + 1)− tr(j)− l(r)| > ε̃l(r)}Υ(i, j, ε̃)).

Recall that we assume (201). Then

{|Er
k(t

r(j + 1))− Er
k(t

r(j))− αk(i)rl(r)| ≥ 4−1εθr
k(i)} ∩ Λr(i, j, ε̃) ∩Υ(i, j, ε̃) ∩ Γr(i, j)

⊂
(
{

κr
k(i,j)+dαk(i)rl(r)+εθr

k(i)/4e∑
n=κr

k(i,j)+2

ξr
k(i, n) ≤ (1 + ε̃)l(r)} (204)

∪{
κr

k(i,j)+bαk(i)rl(r)−εθr
k(i)/4c∑

n=κr
k(i,j)+2

ξr
k(i, n) > (1− 2ε̃)l(r)}

∪({|tr(j + 1)− tr(j)− l(r)| > ε̃l(r)} ∩Υ(i, j, ε̃))
)
∩ Γr(i, j). (205)

We will provide a probabilistic bound on each component separately. First,

P
( dαk(i)rl(r)+εθr

k(i)/4e∑
n=2

ξr
k(i, n) ≤ (1 + ε̃)l(r)

)

= P
( dαk(i)rl(r)+εθr

k(i)/4e∑
n=2

ξk(i, n) ≤ (1 + ε̃)rl(r)
)

≤ P
( dαk(i)rl(r)+εθr

k(i)/4e∑
n=2

ξk(i, n)−
dαk(i)rl(r) + εθr

k(i)/4e − 1
αk(i)

≤ (1 + ε̃)rl(r)−
dαk(i)rl(r) + εθr

k(i)/4e − 1
αk(i)

)
≤ P

( dαk(i)rl(r)+εθr
k(i)/4e∑

n=2

ξk(i, n)−
dαk(i)rl(r) + εθr

k(i)/4e − 1
αk(i)

(206)

≤ (ε̃− εβk(i)
4αk(i)

)rl(r) +
1

αk(i)

)
. (207)

For any ε > 0, choose ε̃ such that ε̃ ≤ εβ
k
/(16ᾱk). Hence, ε̃ − εβk(i)/(4αk(i)) < 0. Since

rl(r) →∞ if r →∞, we can choose rk(ε) > 0 large enough such that if r > rk(ε), then

1
αk(i)

≤ 1
αk

≤ 1
2
(
εβk

4ᾱ
− ε̃)rl(r) ≤ 1

2
(
εβk(i)
4αk(i)

− ε̃)rl(r).
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Hence, for all r > rk(ε),

(ε̃− εβk(i)
4αk(i)

)rl(r) +
1

αk(i)
≤ 1

2
(ε̃− εβk(i)

4αk(i)
)rl(r) ≤ 0.

Therefore,

P
( dαk(i)rl(r)+εθr

k(i)/4e∑
n=2

ξk(i, n)−
dαk(i)rl(r) + εθr

k(i)/4e − 1
αk(i)

≤ (ε̃− εβk(i)
4αk(i)

)rl(r) +
1

αk(i)

)

≤ P
(∣∣∣ dαk(i)rl(r)+εθr

k(i)/4e∑
n=2

ξk(i, n)−
dαk(i)rl(r) + εθr

k(i)/4e − 1
αk(i)

∣∣∣ ≥ 1
2
(
εβk(i)
4αk(i)

− ε̃)rl(r)
)

= P
(∣∣∣ dαk(i)rl(r)+εθr

k(i)/4e−1∑
n=1

ξk(i, n)−
dαk(i)rl(r) + εθr

k(i)/4e − 1
αk(i)

∣∣∣ ≥ 1
2
(
εβk(i)
4αk(i)

− ε̃)rl(r)
)

≤ ĝk(
1
2
(
εβk(i)
4αk(i)

− ε̃)(αk(i) +
εβk(i)

4
)−1, (αk(i) +

εβk(i)
4

)rl(r))

≤ ĝk((
εβ

k

32ᾱk
)(ᾱk +

εβ̄k

4
)−1, αkrl(r)), (208)

where the second inequality follows from Lemma 30 and the last inequality is from the fact

that ĝk(x, y) is decreasing in x and y.

Second, using the analysis above, we have

P
( bαk(i)rl(r)−εθr

k(i)/4c∑
n=2

ξr
k(i, n) ≥ (1− 2ε̃)l(r)

)

≤ P
( bαk(i)rl(r)−εθr

k(i)/4c∑
n=2

ξk(i, n)−
bαk(i)rl(r)− εθr

k(i)/4c − 1
αk(i)

≥ (
εβk(i)
4αk(i)

− 2ε̃)rl(r) +
2

αk(i)

)

≤ P
( bαk(i)rl(r)−εθr

k(i)/4c∑
n=2

ξk(i, n)−
bαk(i)rl(r)− εθr

k(i)/4c − 1
αk(i)

≥ (
εβk(i)
4αk(i)

− 2ε̃)rl(r)
)
. (209)

Note that ε̃ ≤ εβ
k
/(16ᾱk), hence ((εβk(i))(4αk(i))−1 − 2ε̃)rl(r) ≥ 0. Therefore,

P
( bαk(i)rl(r)−εθr

k(i)/4c∑
n=2

ξk(i, n)−
bαk(i)rl(r)− εθr

k(i)/4c − 1
αk(i)

≥ (
εβk(i)
4αk(i)

− 2ε̃)rl(r)
)

≤ P
(∣∣∣ bαk(i)rl(r)−εθr

k(i)/4c∑
n=2

ξk(i, n)−
bαk(i)rl(r)− εθr

k(i)/4c − 1
αk(i)

∣∣∣ ≥ (
εβk(i)
4αk(i)

− 2ε̃)rl(r)
)

= P
(∣∣∣ bαk(i)rl(r)−εθr

k(i)/4c−1∑
n=1

ξk(i, n)−
bαk(i)rl(r)− εθr

k(i)/4c − 1
αk(i)

∣∣∣ ≥ (
εβk(i)
4αk(i)

− 2ε̃)rl(r)
)

≤ ĝk((
εβk(i)
4αk(i)

− 2ε̃)(αk(i))−1, αk(i)rl(r))

≤ ĝk((
εβ

k

32ᾱk
)(ᾱk +

εβ̄k

4
)−1, αkrl(r)) (210)
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where the second inequality is from Lemma 30, and the last inequality is from the fact that

ĝk(x, y) is decreasing in x and y.

From Lemma 34, we have

P({|tr(j + 1)− tr(j)− l(r)| > ε̃l(r)} ∩ Γr(i, j) ∩Υ(i, j, ε̃) |Fr
j , X

r
j = i)

≤
K∑

k=1

ĥk(ε̃(4Kµ̄k)−1, bµ
k
rl(r)c)χ(qr(j) ≥ θr(i)).

Note that {ξr(i, κr(i, j) + n), n ≥ 2} is independent of Fr
j and χ(qr(j) ≥ θr(Xr

j )) is

measurable with respect to Fr
j . Combining this inequality with (205)-(210) and letting

Ẽr
k(j) = Er

k(t
r(j + 1))− Er

k(t
r(j)), we have

P({|Ẽr
k(j)− αk(i)rl(r)| ≥

ε

4
θr
k(i)} ∩ Λr(i, j, ε̃) ∩Υ(i, j, ε̃) ∩ Γr(i, j)|Fr

j , X
r
j = i)

≤
(
2ĝk((

εβ
k

32ᾱk
)(ᾱk +

εβ̄k

4
)−1, αkrl(r)) +

K∑
k=1

ĥk(
ε̃

4Kµ̄k
, bµ

k
rl(r)c)

)
χ(qr(j) ≥ θr(i)). (211)

Combining (211) with (202) and (203), we have

P({|q̄r
k(j + 1)− zr

k(j + 1)| ≥ εr−1θr
k(i)} ∩ Γr(i, j) ∩Υ(i, j, ε̃) ∩ Λ(i, j, ε̃)|Fr

j , X
r
j = i)

≤
(
2ĝk((

εβ
k

32ᾱk
)(ᾱk +

εβ̄k

4
)−1, αkrl(r)) +

K∑
k=1

ĥk(
ε̃

4Kµ̄k
, bµ

k
rl(r)c)

+
(4K)4

ε4
1

(rl(r)β
k
)2

)
χ(qr(j) ≥ θr(i)).

The above inequality holds for every i ∈ I. Therefore,

P({|q̄r
k(j + 1)− zr

k(j + 1)| ≥ εr−1θr
k(X

r
j )} ∩ Γr(j) ∩Υ(Xr

j , j, ε̃) ∩ Λ(Xr
j , j, ε̃)|Fr

j )

≤
(
2ĝk((

εβ
k

32ᾱk
)(ᾱk +

εβ̄k

4
)−1, αkrl(r)) +

K∑
k=1

ĥk(
ε̃

4Kµ̄k
, bµ

k
rl(r)c)

+
(4K)4

ε4
1

(rl(r)β
k
)2

)
χ(qr(j) ≥ θr(Xr

j )).

Setting ε̃ = εβ
k
/(16ᾱk), we have the desired result.

Proof of Lemma 47. Note that zr(j + 1) ≥ 0 and q̄r
k(j) = r−1(qr

k(j)− θr
k(j)), then

{qr(j + 1) 6≥ (1− ε)θr(Xr
j+1)} ⊂ ∪1≤k≤K{|q̄r

k(j + 1)− zr
k(j + 1)| ≥ εr−1θr

k(X
r
j+1)}.
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Therefore,

{qr(j + 1) 6≥ (1− ε)θr(Xr
j+1)} ∩ Γr(j) ∩Υ(Xr

j , j,
εβ

16ᾱ
) ∩ Λ(Xr

j , j,
εβ

16ᾱ
)

⊂
⋃

1≤k≤K

(
{|q̄r

k(j + 1)− zr
k(j + 1)| ≥

εθr
k(X

r
j+1)
r

} ∩ Γr(j) ∩Υ(Xr
j , j,

εβ
k

16ᾱk
) ∩ Λ(Xr

j , j,
εβ

k

16ᾱk
)
)
.

Applying Lemma 45 with slight adaptation, we get the desired result.

Proof of Lemma 49. We consider a review period during which the target idle policy

is implemented, i.e we assume Γ̃r(j, ε). Without loss of generality, we choose ε such that

0 < ε ≤ 1.

Without loss of generality, we assume that Xr
j = i. Recall that we have provided an

upper bound on the total duration of each target idle review period by (131) and (132) in

Section 3.4. That is, if the target idle policy is implemented during the jth review period

and Xr
j = i, we have

tr(j + 1)− tr(j) ≤ max
k∈R(i)

κr
k(i,j)+er

k(j)∑
n=κr

k(i,j)+2

ξr
k(i, n) + ξ̃r

k(κ
r
k(i, j) + 1)

+
K∑

k=1

ιrk(i,j)+p̃r
k(j)∑

n=ιrk(i,j)+2

ηr
k(i, n) + η̃r

k(i, ι
r
k(i, j) + 1).

Next, we will provide a probabilistic upper bound on tr(j + 1) − tr(j) based on the

inequality above. Recall that we preselected a directed tree T (i) in order to avoid ambiguity

in the description of the policy, and we have also defined Ck(i) to be the set of child classes

of class k at the environment state i. We also define a set of constants for each class k and

each environment state i, 1 ≤ k ≤ K, i ∈ I as follows. Throughout the rest of the proof,

we make the convention that the maximum over an empty set is 0. Let

c̃k(i) = max{1 + c̃l(i)
pkl(i)

: ∀l ∈ Ck(i)}, 1 ≤ k ≤ K,

C̃(i) = 1 + 2 max
k

βk(i)
(

max{max
l∈R(i)

{1 + 2c̃l(i)
αl(i)

}, max
1≤k≤K

{2c̃k(i)
µk(i)

}}
)
,

where we let c̃k(i) = 1 if Ck(i) = ∅.

Assuming Γ̃r(j, ε), Xr
j = i, Λr(Xr

j , j, ε), and Υr(Xr
j , j, ε), then we have

{tr(j + 1)− tr(j) > 2KC̃(i)εl(r)} ∩ Λr(Xr
j , j, ε) ∩Υr(Xr

j , j, ε) ∩ Γ̃r(j, ε) ∩ {Xr
j = i}
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⊂ ({ max
k∈R(i)

(
κr

k(i,j)+er
k(j)∑

n=κr
k(i,j)+2

ξr
k(i, n) + ξ̃r

k(κ
r
k(i, j) + 1)) > KC̃(i)εl(r)} ∩ Λr(i, j, ε) ∩ Γ̃r(j, ε))

∪({
K∑

k=1

(
ιrk(i,j)+p̃r

k(j)∑
n=ιrk(i,j)+2

ηr
k(i, n) + η̃r

k(i, ι
r
k(i, j) + 1)) > KC̃(i)εl(r)} ∩Υr(i, j, ε) ∩ Γ̃r(j, ε))

⊂
⋃

k∈R(i)

({
κr

k(i,j)+er
k(j)∑

n=κr
k(i,j)+2

ξr
k(i, n) > (C̃(i)− (2K)−1)εl(r)} ∩ Γ̃r(j, ε))

K⋃
k=1

({
ιrk(i,j)+p̃r

k(j)∑
n=ιrk(i,j)+2

ηr
k(i, n) > (C̃(i)− (2K)−1)εl(r)} ∩ Γ̃r(j, ε)). (212)

Let θ̄r(i) = max1≤k≤K θr
k(i). From the definition of erk(j) given in Section 3.4 and noting

that Xr
j = i, we have

erk(j) ≤ εθr
k(i) + p̃r

k(j) ≤ εθ̄r(i) + p̃r
k(j). (213)

Since ξr
k(i, n) ≥ 0 for all n ≥ 1, we have

{
κr

k(i,j)+er
k(j)∑

n=κr
k(i,j)+2

ξr
k(i, n) > (C̃(i)− 1

2K
)εl(r)} ∩ Γ̃r(j, ε)

⊂ {
κr

k(i,j)+εθ̄r(i)+p̃r
k(j)∑

n=κr
k(i,j)+2

ξr
k(i, n) > (C̃(i)− 1

2K
)εl(r)} ∩ Γ̃r(j, ε)

⊂ {
κr

k(i,j)+εθ̄r(i)+p̃r
k(j)∑

n=κr
k(i,j)+2

ξr
k(i, n) > (C̃(i)− 1

2K
)εl(r), p̃r

k(j) ≤ 2c̃k(i)εθ̄r(i)}

∪({p̃r
k(j) > 2c̃k(i)εθ̄r(i)} ∩ Γ̃r(j, ε))

⊂ {
κr

k(i,j)+εθ̄r(i)(1+2c̃k(i))∑
n=κr

k(i,j)+2

ξr
k(i, n) > (C̃(i)− 1

2K
)εl(r)}

∪({p̃r
k(j) > 2c̃k(i)εθ̄r(i)} ∩ Γ̃r(j, ε)). (214)

Similarly, we have

{
ιrk(i,j)+p̃r

k(j)∑
n=ιrk(i,j)+2

ηr
k(i, n) > (C̃(i)− 1

2K
)εl(r)} ∩ Γ̃r(j, ε)

⊂ {
ιrk(i,j)+p̃r

k(j)∑
n=ιrk(i,j)+2

ηr
k(i, n) > (C̃(i)− 1

2K
)εl(r), p̃r

k(j) ≤ 2c̃k(i)εθ̄r(i)}

∪({p̃r
k(j) > 2c̃k(i)εθ̄r(i)} ∩ Γ̃r(j, ε))
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⊂ {
ιrk(i,j)+2c̃k(i)εθ̄r(i)∑

n=ιrk(i,j)+2

ηr
k(i, n) > (C̃(i)− 1

2K
)εl(r)}

∪({p̃r
k(j) > 2c̃k(i)εθ̄r(i)} ∩ Γ̃r(j, ε)). (215)

Combining the result of (212)-(215), we have

{tr(j + 1)− tr(j) > 2KC̃(i)εl(r)} ∩ Λr(Xr
j , j, ε) ∩Υr(Xr

j , j, ε) ∩ Γ̃r(j, ε) ∩ {Xr
j = i}

⊂
(
∪k∈R(i) {

κr
k(i,j)+εθ̄r(i)(1+2c̃k(i))∑

n=κr
k(i,j)+2

ξr
k(i, n) > (C̃(i)− (2K)−1)εl(r)}

)

∪
(
∪1≤k≤K {

ιrk(i,j)+2c̃k(i)εθ̄r(i)∑
n=ιrk(i,j)+2

ηr
k(i, n) > (C̃(i)− (2K)−1)εl(r)}

)
∪

(
∪1≤k≤K {p̃r

k(j) > 2c̃k(i)εθ̄r(i)} ∩ Γ̃r(j, ε)
)
. (216)

Next, we provide a probabilistic upper bound on the number of jobs processed during the

target-idle review period, i.e p̃r
k(j) for each k, 1 ≤ k ≤ K. Recall that Ck(i) denotes the

classes that succeed class k immediately, Tk(i) denotes all the nodes that succeed class k

and k itself, i.e the subtree with root node being k, and they are defined in Section 3.4.

Note p̃r
k(j) > 2c̃k(i)θ̄r(i) means that we have to see more than 2c̃k(i)θ̄r(i) number of class k

completions during the target-idle period in order to fulfill the policy. So if only 2c̃k(i)θ̄r(i)

number of class k jobs are processed, there exists a child node of class k, say l, such that

it can not reach its safety stock level after processing p̃r
l (j) number of jobs or there are less

than p̃r
l (j) number of jobs for it to process, i.e

{p̃r
k(j) > 2c̃k(i)εθ̄r(i)} ∩ Γ̃r(j, ε)

⊂
(
{∃l ∈ Ck(i),Φk

l (ι
r
k(i, j) + 2c̃k(i)εθ̄r(i)) + qr

l (j)− p̃r
l (j) < θr

l (i)}

∪{Φk
l (ι

r
k(i, j) + 2c̃k(i)εθ̄r(i)) + qr

l (j) < p̃r
l (j)}

)
∩ Γ̃r(j, ε)

⊂ {∃l ∈ Ck(i),Φk
l (ι

r
k(i, j) + 2c̃k(i)εθ̄r(i)) + qr

l (j)− p̃r
l (j) < θr

l (i)} ∩ Γ̃r(j, ε)

⊂ (∪l∈Ck(i){Φk
l (ι

r
k(i, j) + 2c̃k(i)εθ̄r(i))− p̃r

l (j) < εθ̄r(i)}) ∩ Γ̃r(j, ε)

where the last ⊂ follows from the fact that qr(j) ≥ (1− ε)θr(i) when Γ̃r(j, ε) holds. We also

have

{Φk
l (ι

r
k(i, j) + 2c̃k(i)εθ̄r(i))− p̃r

l (j) < εθ̄r(i)} ∩ Γ̃r(j, ε)
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⊂ {Φk
l (ι

r
k(i, j) + 2c̃k(i)εθ̄r(i))− p̃r

l (j) < εθ̄r(i), p̃r
l (j) ≤ 2c̃k(i)εθ̄r(i)}

∪({p̃r
l (j) > 2c̃k(i)εθ̄r(i)} ∩ Γ̃r(j, ε))

⊂ {Φk
l (ι

r
k(i, j) + 2c̃k(i)εθ̄r(i)) < ε(1 + 2c̃k(i))θ̄r(i)} ∪ ({p̃r

l (j) > 2c̃k(i)εθ̄r(i)} ∩ Γ̃r(j, ε)).

Combining these two results, we have

{p̃r
k(j) > 2c̃k(i)εθ̄r(i)} ∩ Γ̃r(j, ε)

⊂
⋃

l∈Ck(i)

(
{Φk

l (ι
r
k(i, j) + 2c̃k(i)εθ̄r(i)) < ε(1 + 2c̃k(i))θ̄r(i)} ∪ ({p̃r

l (j) > 2c̃k(i)εθ̄r(i)} ∩ Γ̃r(j, ε))
)
.

Going through the same procedure as above for all the nodes that succeed class k, we have

{p̃r
k(j) > 2c̃k(i)εθ̄r(i)} ∩ Γ̃r(j, ε)

⊂
⋃

l∈Tk(i)

⋃
l′∈Cl(i)

{Φl
l′(ι

r
l (i, j) + 2c̃l(i)εθ̄r(i)) < ε(1 + 2c̃l′(i))θ̄r(i)}, (217)

where we let ∪l′∈Cl(i){Φ
l
l′(ι

r
l (i, j) + 2c̃l(i)εθ̄r(i)) < ε(1 + 2c̃l′(i))θ̄r(i)} = ∅ if Cl(i) = ∅, i.e

when l is a leaf.

Combining (216) and (217), we have

{tr(j + 1)− tr(j) > 2KC̃(i)εl(r)} ∩ Λr(Xr
j , j, ε) ∩Υr(Xr

j , j, ε) ∩ Γ̃r(j, ε) ∩ {Xr
j = i}

⊂
( ⋃

k∈R(i)

{
κr

k(i,j)+εθ̄r(i)(1+2c̃k(i))∑
n=κr

k(i,j)+2

ξr
k(i, n) > (C̃(i)− (2K)−1)εl(r)}

)

∪
( ⋃

1≤k≤K

{
ιrk(i,j)+2c̃k(i)εθ̄r(i)∑

n=ιrk(i,j)+2

ηr
k(i, n) > (C̃(i)− (2K)−1)εl(r)}

)
∪

( ⋃
1≤k≤K

⋃
l∈Tk(i)

⋃
l′∈Cl(i)

{Φl
l′(ι

r
l (i, j) + 2c̃l(i)εθ̄r(i)) < ε(1 + 2c̃l′(i))θ̄r(i)}

)
.

Therefore,

P
(
{tr(j + 1)− tr(j) > 2KC̃(i)εl(r)} ∩ Λr(Xr

j , j, ε) ∩Υr(Xr
j , j, ε) ∩ Γ̃r(j, ε)|Fr

j , X
r
j = i

)
≤ χ(Γ̃r(j, ε))

( ∑
k∈R(i)

P
( κr

k(i,j)+εθ̄r(i)(1+2c̃k(i))∑
n=κr

k(i,j)+2

ξr
k(i, n) > (C̃(i)− (2K)−1)εl(r)|Fr

j , X
r
j = i

)

+
∑

1≤k≤K

P
( ιrk(i,j)+2c̃k(i)εθ̄r(i)∑

n=ιrk(i,j)+2

ηr
k(i, n) > (C̃(i)− (2K)−1)εl(r)|Fr

j , X
r
j = i

)
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+
∑

1≤k≤K

∑
l∈Tk(i)

∑
l′∈Cl(i)

P
(
Φl

l′(ι
r
l (i, j) + 2c̃l(i)εθ̄r(i)) < ε(1 + 2c̃l′(i))θ̄r(i)|Fr

j , X
r
j = i

))

= χ(Γ̃r(j, ε))
( ∑

k∈R(i)

P
( εθ̄r(i)(1+2c̃k(i))−1∑

n=1

ξr
k(i, n) > (C̃(i)− (2K)−1)εl(r)

)

+
∑

1≤k≤K

P
( 2c̃k(i)εθ̄r(i)−1∑

n=1

ηr
k(i, n) > (C̃(i)− (2K)−1)εl(r)

)
+

∑
1≤k≤K

∑
l∈Tk(i)

∑
l′∈Cl(i)

P
(
Φl

l′(2c̃l(i)εθ̄
r(i)) < ε(1 + 2c̃l′(i))θ̄r(i)

))
. (218)

Note that for all k ∈ R(i),

C̃(i)− 1
2K

≥ 2βk(i)
1 + 2c̃k(i)
αk(i)

and θr
k(i) = βk(i)rl(r), θ̄r(i) = max1≤k≤K βk(i)rl(r). Thus we have

∑
k∈R(i)

P
( εθ̄r(i)(1+2c̃k(i))−1∑

n=1

ξr
k(i, n) > (C̃(i)− (2K)−1)εl(r)

)

=
∑

k∈R(i)

P
( εθ̄r(i)(1+2c̃k(i))−1∑

n=1

(ξk(i, n)− 1
αk(i)

) > (C̃(i)− 1
2K

)εrl(r)− εθ̄r(i)(1 + 2c̃k(i))− 1
αk(i)

)

≤
∑

k∈R(i)

P
( εθ̄r(i)(1+2c̃k(i))−1∑

n=1

(ξk(i, n)− 1
αk(i)

) >
εθ̄r(i)(1 + 2c̃k(i))

αk(i)

)
≤

∑
k∈R(i)

ĝk(
ε

αk(i)
, θ̄r(i)(1 + 2c̃k(i)))

≤
∑

k∈R(i)

ĝk(
ε

ᾱk
, µ

k
rl(r))

≤
∑

1≤k≤K

ĝk(
ε

ᾱ
, µrl(r)), (219)

where the last two inequalities are from Lemma 30 and that ĝk(x, y) is decreasing in x and

y.

Similarly, we have

∑
1≤k≤K

P
( 2c̃k(i)εθ̄r(i)−1∑

n=1

ηr
k(i, n) > (C̃(i)− (2K)−1)εl(r)

)

=
∑

1≤k≤K

P
( 2c̃k(i)εθ̄r(i)−1∑

n=1

(ηk(i, n)− 1
µk(i)

) > (C̃(i)− 1
2K

)εrl(r)− 2c̃k(i)εθ̄r(i)− 1
µk(i)

)

≤
∑

1≤k≤K

P
( 2c̃k(i)εθ̄r(i)−1∑

n=1

(ηk(i, n)− 1
µk(i)

) >
2c̃k(i)εθ̄r(i)

µk(i)

)
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≤
∑

1≤k≤K

ĥk(
ε

µk(i)
, 2c̃k(i)βk(i)rl(r))

≤
∑

1≤k≤K

ĥk(
ε

µ̄
, 2µrl(r)), (220)

where the last two inequalities are from Lemma 30 and the fact that ĥk(x, y) is decreasing

in x and y.

From Lemma 33 and 2c̃l(i)pll′ ≥ 2+2c̃l′(i) for all l′ ∈ Cl(i) and θ̄r(i) = max1≤k βk(i)rl(r),

we have

∑
1≤k≤K

∑
l∈Tk(i)

∑
l′∈Cl(i)

P
(
Φl

l′(2c̃l(i)εθ̄
r(i)) < ε(1 + 2c̃l′(i))θ̄r(i)

)

=
∑

1≤k≤K

∑
l∈Tk(i)

∑
l′∈Cl(i)

P
( 2c̃l(i)εθ̄

r(i)∑
n=1

(φl
l′(n)− pll′(i)) < ε(1 + 2c̃l′(i))θ̄r(i)− 2c̃l(i)εθ̄r(i)pll′(i)

)

≤
∑

1≤k≤K

∑
l∈Tk(i)

∑
l′∈Cl(i)

P
( 2c̃l(i)εθ̄

r(i)∑
n=1

(φl
l′(n)− pll′(i)) < −εθ̄r(i)

)
≤

∑
1≤k≤K

∑
l∈Tk(i)

∑
l′∈Cl(i)

(
ε

2c̃l(i)
)−4(θ̄r(i))−2

≤ K3(
ε

2c̃max
)−4(βrl(r))−2, (221)

where

c̃max = max
i∈I

max
1≤k≤K

c̃k(i). (222)

Combining (218)-(221), we have

P
(
{tr(j + 1)− tr(j) > 2KC̃(i)εl(r)}Λr(Xr

j , j, ε)Υ
r(Xr

j , j, ε)Γ̃
r(j, ε)|Fr

j , X
r
j = i

)
≤ χ(Γ̃r(j, ε))

( ∑
1≤k≤K

ĝk(
ε

ᾱ
, µrl(r)) +

∑
1≤k≤K

ĥk(
ε

µ̄
, 2µrl(r)) +K3(

ε

2c̃max
)−4(βrl(r))−2

)
.

Since the above bound holds for any i such that Xr
j = i, we have

P
(
{tr(j + 1)− tr(j) > 2KC̃(i)εl(r)} ∩ Λr(Xr

j , j, ε) ∩Υr(Xr
j , j, ε) ∩ Γ̃r(j, ε)|Fr

j

)
≤ χ(Γ̃r(j, ε))

( ∑
1≤k≤K

ĝk(
ε

ᾱ
, µrl(r)) +

∑
1≤k≤K

ĥk(
ε

µ̄
, 2µrl(r)) +K3(

ε

2c̃max
)−4(βrl(r))−2

)
.

Letting

C̃1 = max
i∈I

C̃(i), (223)
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and replacing C̃(i) by C̃1 in the above inequality, we have the desired result.

Proof of Lemma 51. Suppose that the jth review period is a target-idle review period (i.e

during this review period, the target-idle policy is implemented). Without loss of generality,

we assume that Xr
j = i and qr(j) 6≥ θr(i). Recall that p̃r

k(j) denotes the number of class

k service completions during the jth review period. Throughout the rest of the proof, we

let Ẽr
k(j) = Er

k(t
r(j + 1)) − Er

k(t
r(j)), i.e the exogenous arrivals to class k during the jth

review period. The queue length of class k at the end of the jth review period is

qr
k(j + 1) = qr

k(j) + Ẽr
k(j)− p̃r

k(j) +
∑

1≤l≤K

(Φ(ιrl (i, j) + p̃r
l (j))− Φ(ιrl (i, j))).

Note that Φ(ιrl (i, j) + p̃r
l (j))− Φ(ιrl (i, j)) ≤ p̃r

l (j) for all l = 1, . . . ,K, thus

|qr
k(j + 1)− qr

k(j)| ≤ Er
k(t

r(j + 1))− Er
k(t

r(j)) + p̃r
k(j) +

K∑
l=1

p̃r
l (j). (224)

For k such that αk(i) > 0, we have

P({Ẽr
k(j) > 4KC̃1αk(i)εrl(r)} ∩ Λr(Xr

j , j, ε)Υ
r(Xr

j , j, ε)Γ̃
r(j, ε)|Fr

j , X
r
j = i)

≤ P({
κr(i,j)+d4KC̃1αk(i)εrl(r)e∑

n=κr(i,j)+2

ξr
k(i, n) + ξ̃r

k(i, κ
r(i, j) + 1) ≤ 2KC̃1εl(r)}|Fr

j , X
r
j = i)

+P({tr(j + 1)− tr(j) > 2KC̃1εl(r)} ∩ Λr(Xr
j , j, ε) ∩Υr(Xr

j , j, ε) ∩ Γ̃r(j, ε)|Fr
j , X

r
j = i)

≤ P({
d4KC̃1αk(i)εrl(r)e−1∑

n=1

ξr
k(i, n) ≤ 2KC̃1εl(r)}) + f̂5(ε, r) (225)

where the last inequality is from Lemma 49, the fact that ξ̃r(i, n) ≥ 0 for any n ≥ 1 and

any i ∈ I, and the fact that ξr(κr(i, j) + n) is independent from Fr
j for n ≥ 2.

Similar to the proof of (211), choose r(ε) > 0 large enough, such that if r > r(ε), then

−2KC̃1εrl(r) + α−1 ≤ −KC̃1εrl(r). Thus, we have

P(
d4KC̃1αk(i)εrl(r)e−1∑

n=1

ξr
k(i, n) ≤ 2KC̃1εl(r))

= P(
d4KC̃1αk(i)εrl(r)e−1∑

n=1

(ξk(i, n)− 1
αk(i)

) ≤ 2KC̃1εrl(r)−
d4KC̃1αk(i)εrl(r)e − 1

αk(i)
)
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≤ P(
d4KC̃1αk(i)εrl(r)e−1∑

n=1

(ξk(i, n)− 1
αk(i)

) ≤ −2KC̃1εrl(r) +
1

αk(i)
)

≤ P(
d4KC̃1αk(i)εrl(r)e−1∑

n=1

(ξk(i, n)− 1
αk(i)

) ≤ −KC̃1εrl(r))

≤ ĝk(
1
4ᾱ
, 4KC̃1ᾱεrl(r)), (226)

where the last inequality is from Lemma 30.

Combining (225) and (226) and noting that ᾱ ≥ αk(i), we have

P({Ẽr
k(j) > 4KC̃1ᾱεrl(r)} ∩ Λr(Xr

j , j, ε)Υ
r(Xr

j , j, ε)Γ̃
r(j, ε)|Fr

j )

≤ ĝk(
1
4ᾱ
, 4KC̃1ᾱrl(r)) + f̂5(ε, r). (227)

From (217) and (221), we have

P({p̃r
k(j) > 2c̃k(i)θ̄r(i)} ∩ Γ̃r(j, 1)|Fr

j , X
r
j = i) ≤ K2(

ε

2c̃max
)−4(βεrl(r))−2.

Since c̃max ≥ c̃k(i), we can replace c̃k(i) by c̃max in the above inequality and have

P({p̃r
k(j) > 2c̃maxβ̄εrl(r)} ∩ Γ̃r(j, 1)|Fr

j ) ≤ K2(
ε

2c̃max
)−4(βεrl(r))−2. (228)

Let C̃2 = 4KC̃1ᾱ+ 2(K + 1)c̃maxβ̄. Combining the results of (224), (227) and (228), we

have

P({|qr
k(j + 1)− qr

k(j)| > C̃2εrl(r)} ∩ Λr(Xr
j , j, ε)Υ

r(Xr
j , j, ε)Γ̃

r(j, ε)|Fr
j )

≤ ĝk(
1
4ᾱ
, 4KC̃1ᾱεrl(r)) +K2(

ε

2c̃max
)−4(βεrl(r))−2 + f̂5(ε, r).

Since the above result holds for all k ∈ {1, . . . ,K}, the proof is completed.

Proof of Lemma 53. Suppose that the jth review period is a fluid period, i.e during this

period the fluid policy is implemented. Thus, it satisfies

qr(j) ≥ θr(Xr
j ).

Without loss of generality, we assume thatXr
j = i. If the jth review period is not interrupted

by an environment transition, then the number of jobs of each class processed during this
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period is the same as defined by (126). If the jth review period is interrupted by an

environment transition, then the actual number of jobs of each class processed during this

review period may be less than the value designated by (126). Let p̂r
k(j) denote the actual

number of class k jobs processed during the jth review period, then

p̂r
k(j) ≤ pr

k(j) ≤ rµk(i)l(r). (229)

For the rest of the proof, we let Ẽr
k(j) = Er

k(t
r(j + 1))− Er

k(t
r(j)). Then the queue length

of class k at the end of the jth review period is qr
k(j + 1) and it satisfies

qr
k(j + 1) = qr

k(j) + Ẽr
k(j)− p̂r

k(j) +
K∑

l=1

(Φl
k(i, ι

r
l (i, j) + p̂r

l (j))− Φl
k(i, ι

r
l (i, j))),

where ιrl (i, j) is the number of jobs that has been completed at the environment state i

before tr(j). Note that 0 ≤ Φl
k(i, ι

r
l (i, j) + p̂r

l (j))− Φl
k(i, ι

r
l (i, j)) ≤ p̂r

l (j), therefore,

|qr
k(j + 1)− qr

k(j)| ≤ Ẽr
k(j) + p̂r

k(j) +
K∑

l=1

p̂r
l (j) ≤ Ẽr

k(j) + (K + 1)µ̄rl(r), (230)

where the second inequality is from (229). Following the procedure used in the proof of

(225), (226), and (227), except we use Lemma 36 instead of Lemma 49, we know that there

exists r(ε) > 0 such that if r > r(ε), then

P({Ẽr
k(j) > 2ᾱ(1 + ε)rl(r)} ∩Υr(Xr

j , j, ε)χ(qr(j) ≥ θr(Xr
j ))|Fr

j )

≤ ĝk(
1
4ᾱ
, 2ᾱ(1 + ε)rl(r)) +

K∑
k=1

ĥk(ε(4Kµ̄k)−1, bµkrl(r)c). (231)

Combining the result of (230) and (231), and extending it to the vector form, we have the

desired result.

Proof of Lemma 55. From the definition of tr(j), tr(j + 1)− tr(j) is the duration of the

jth review period. The duration of a review period depends on the policy implemented

during this review period. If the queue length at the beginning of a review period is above

its threshold level (i.e qr(j) ≥ θr(Xr
j )), then the fluid policy is implemented during this

review period; otherwise, the target-idle policy is implemented during this review period.

We will consider both of these two cases respectively. Without loss of generality, we assume
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that the network is staying at the state i of the environment at the beginning of the jth

review period, i.e Xr
j = i.

First, we consider the case that the fluid policy is implemented during the jth review

period, which means that the queue length at the beginning of this review period is above

its threshold level, i.e qr(j) ≥ θr(Xr
j ). Then from (130), we have

(tr(j + 1)− tr(j))χ(qr(j) ≥ θr(Xr
j )) ≤ ( max

1≤s≤S
er,Fs (j)),

where er,Fs (j) is defined in (129). From (129), we also see that

er,Fs (j) ≤ max{brs(j), l(r)} ≤ brs(j) + l(r),

where brs(j) is defined in (128). Combining these two inequalities, we have

(tr(j + 1)− tr(j))χ(qr(j) ≥ θr(Xr
j )) ≤ max

1≤s≤S
{brs(j) + l(r)} ≤

∑
1≤s≤S

brs(j) + l(r). (232)

From (126) and (128), we have

brs(j) ≤
∑
k∈Cs

ιrk(i,j)+brµk(i)l(r)c∑
n=ιrk(i,j)+2

ηr
k(i, n) + η̃r

k(i, ι
r
k(i, j) + 1).

Therefore,

E[E[brs(j)|Fr
j , X

r
j = i]]

≤
∑
k∈Cs

E[E[
ιrk(i,j)+brµk(i)l(r)c∑

n=ιrk(i,j)+2

ηr
k(i, n) + η̃r

k(i, ι
r
k(i, j) + 1)|Fr

j , X
r
j = i]]

=
∑
k∈Cs

E[
brµk(i)l(r)c∑

n=2

ηr
k(i, n)] + E[E[η̃r

k(i, ι
r
k(i, j) + 1)|Fr

j , X
r
j = i]]

≤
∑
k∈Cs

rµk(i)l(r)(rµk(i))−1 + r−1ĉ2(rt)

=
∑
k∈Cs

l(r) + r−1ĉ2(rt),

where the second equality is from the fact that ηr
k(ι

r
k(i, j) + n) is independent from Fr

j for

n ≥ 2, and the second inequality is from Remark 26 and the fact that tr(j) ≤ t.

The above inequality holds for any i ∈ I, hence

E[brs(j)] = E[E[brs(j)|Fr
j ]] ≤

∑
k∈Cs

l(r) + r−1ĉ2(rt). (233)
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Combining (232) and (233) and noting that
∑

1≤s≤S

∑
k∈Cs

1 = K, we have

E[(tr(j + 1)− tr(j))χ(qr(j) ≥ θr(Xr
j ))] ≤ (K + 1)l(r) + r−1ĉ2(rt). (234)

Second, we consider the case that the jth review period is a target-idle review period,

i.e the target-idle policy is implemented during this review period. The jth review period is

a target-idle period if and only if the queueing length at the beginning of this review period

is not above the safety stock level, i.e qr(j) 6≥ θr(Xr
j ). Then from (132),

(tr(j + 1)− tr(j))χ(qr(j) 6≥ θr(Xr
j )) ≤ max

1≤s≤S
er,Is (j) ≤

∑
1≤s≤S

er,Is (j).

From (131), we have

E[(tr(j + 1)− tr(j))χ(qr(j) 6≥ θr(Xr
j ))]

≤
K∑

k=1

E[E[
κr

k(Xr
j ,j)+er

k(j)∑
n=κr

k(Xr
j ,j)+2

ξr
k(X

r
j , n) + ξ̃r

k(κ
r
k(X

r
j , j) + 1)|Fr

j ]]

+
K∑

k=1

E[E[
ιrk(Xr

j ,j)+p̃r
k(j)∑

n=ιrk(Xr
j ,j)+2

ηr
k(X

r
j , n) + η̃r

k(X
r
j , ι

r
k(X

r
j , j) + 1)|Fr

j ]]

≤
K∑

k=1

E[E[
κr

k(Xr
j ,j)+er

k(j)∑
n=κr

k(Xr
j ,j)+2

ξr
k(X

r
j , n)|Fr

j ]] + r−1ĉ1(rt)

+
K∑

k=1

E[E[
ιrk(Xr

j ,j)+p̃r
k(j)∑

n=ιrk(Xr
j ,j)+2

ηr
k(X

r
j , n)|Fr

j ]] + r−1ĉ2(rt), (235)

where the second inequality is from Remark 26 and the fact that tr(j) ≤ t.

From the target-idle policy, we know that the number of jobs for each class to process

or wait for only depends on the queue length at the beginning of the review period and the

routing process. Therefore, {erk(j), k ∈ R(i)} and {p̃r
k(j), 1 ≤ k ≤ K} are independent of

{ξr
k(κ

r
k(i, j)+n), ηr

k(i, ι
r
k(i, j)+n), n ≥ 2}. Also note that {ηr

k(ι
r
k(i, j)+n), ξr

k(ι
r
k(i, j)+n), n ≥

2} is independent of Fr
j . From Wald’s equality, we have

E[E[
κr

k(i,j)+er
k(j)∑

n=κr
k(i,j)+2

ξr
k(i, n)|Fr

j , X
r
j = i]] = E[ξr

k(i, n)]E[E[erk(j)|Fr
j , X

r
j = i]]

= r−1αk(i)E[E[erk(j)|Fr
j , X

r
j = i]]
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≤ r−1ᾱkE[E[erk(j)|Fr
j , X

r
j = i]],

E[E[
ιrk(i,j)+p̃r

k(j)∑
n=ιrk(i,j)+2

ηr
k(i, n)|Fr

j , X
r
j = i]] = E[ηr

k(i, 1)]E[E[p̃r
k(j)|Fr

j , X
r
j = i]]

= r−1µk(i)E[E[p̃r
k(j)|Fr

j , X
r
j = i]]

≤ r−1µ̄kE[E[p̃r
k(j)|Fr

j , X
r
j = i]].

Therefore,

E[E[
κr

k(Xr
j ,j)+er

k(j)∑
n=κr

k(Xr
j ,j)+2

ξr
k(X

r
j , n)|Fr

j ]] ≤ r−1ᾱkE[E[erk(j)|Fr
j ]], (236)

E[E[
ιrk(Xr

j ,j)+p̃r
k(j)∑

n=ιrk(Xr
j ,j)+2

ηr
k(X

r
j , n)|Fr

j ]] ≤ r−1µ̄kE[E[p̃r
k(j)|Fr

j ]]. (237)

Note that Γ̃r(j, 1) = {qr(j) 6≥ θr(Xr
j )}, then going through the same procedure used in

the proof of (217), we have

{p̃r
k(j) > 2c̃k(i)x} ∩ Γ̃r(j, 1) ⊂

⋃
l∈Tk(i)

⋃
l′∈Cl(i)

{Φl
l′(ι

r
l (i, j) + 2c̃l(i)x) < 2c̃l′(i)x+ θ̄r(i)}. (238)

Note that c̃l(i)pll′(i) > c̃l′(i) for all l and l′ ∈ Cl(i), 1 ≤ l ≤ K. Hence, there exists c3 > 0

and 0 < c4 < 1 such that if x ≥ c3θ̄
r(i), then 2c4c̃l(i)pll′(i)x ≥ 2c̃l′(i)x+ θ̄r(i) for all i ∈ I,

1 ≤ l ≤ K and all l′ ∈ Cl(i). Hence, for all x ≥ c3θ̄
r(i),

P(Φl
l′(ι

r
l (i, j) + 2c̃l(i)x) < 2c̃l′(i)x+ θ̄r(i)|Fr

j , X
r
j = i)

= P(Φl
l′(2c̃l(i)x) < 2c̃l′(i)x+ θ̄r(i))

≤ P(Φl
l′(2c̃l(i)x) < 2c4c̃l(i)pll′(i)x)

≤ P(|Φl
l′(2c̃l(i)x)− 2c̃l(i)pll′(i)x| > 2(1− c4)c̃l(i)pll′(i)x)

≤ 1
((1− c4)pll′(i))4(2c̃l(i)x)2

, (239)

where the last inequality is from Lemma 33.

Let βmax = max{βk(i) : 1 ≤ k ≤ K, i ∈ I}, βmin = min{βk(i) : 1 ≤ k ≤ K, i ∈ I},

and pmin = min{pkl(i) : pkl(i) > 0, 1 ≤ k, l ≤ K, i ∈ I}. From (238), (239) and θ̄r(i) =

max1≤k≤K βk(i)rl(r), we have

E[E[p̃r
k(j)|Fr

j , X
r
j = i]]
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≤ E[1 +
∫ ∞

0
P(p̃r

k(j) > y|Fr
j , X

r
j = i) dy]

= 1 + E[
∫ ∞

0
2c̃k(i)P(p̃r

k(j) > 2c̃k(i)x|Fr
j , X

r
j = i) dx]

≤ 1 + 2c̃maxE[
∑

l∈Tk(i)

∑
l′∈Cl(i)

∫ ∞

0
P(Φl

l′(ι
r
l (i, j) + 2c̃l(i)x) < 2c̃l′(i)x+ θ̄r(i)|Fr

j , X
r
j = i) dx]

≤ 1 + 2c̃maxE[
∑

l∈Tk(i)

∑
l′∈Cl(i)

(
c3θ̄

r(i) +
∫ ∞

c3θ̄r(i)

1
((1− c4)pll′(i))4(2c̃l(i)x)2

dx
)
]

≤ 1 + 2c̃maxE[
∑

l∈Tk(i)

∑
l′∈Cl(i)

(
c3θ̄

r(i) +
1

((1− c4)pll′(i))4(2c̃l(i))2c3θ̄r(i)

)
]

≤ 1 + 2c̃maxK
2
(
c3βmaxrl(r) +

1
4((1− c4)pmin)4c3βminrl(r)

)
,

where the last inequality is from the fact that c̃k(i) ≥ 1 for all k = 1, . . .K. Note that

rl(r) → ∞ as r → ∞. We choose r1 large enough so that if r > r1, then (4((1 −

c4)pmin)4c3βminrl(r))−1 ≤ 1. Let

f1(r) = 2 + 2c̃maxK
2c3βmaxrl(r),

then the above inequality implies that for any i ∈ I and r > r1,

E[E[p̃r
k(j)|Fr

j , X
r
j = i]] ≤ f1(r).

Therefore,

E[E[p̃r
k(j)|Fr

j ]] ≤ f1(r).

Note that we are considering the case that the event Γ̃(1, j) happens. Taking ε = 1,

then from (213) we have erk(j) ≤ θ̄r(Xr
j ) + p̃r

k(j) and

E[E[erk(j)|Fr
j ]] ≤ βmaxrl(r) + f1(r). (240)

Combining the results of (235), (236), (237), (240), and (240), we have

E[(tr(j + 1)− tr(j))χ(qr(j) 6≥ θr(Xr
j ))]

≤
K∑

k=1

r−1ᾱk(βmaxrl(r) + f1(r)) + r−1ĉ1(rt) +
K∑

k=1

r−1µ̄kf1(r)) + r−1ĉ2(rt).

Denote the right hand side of the above inequality as f2(r), and combining this result with

(234), we have

E(tr(j + 1)− tr(j)) ≤ max{(K + 1)l(r) + r−1ĉ2(rt), f2(r)}
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for any 0 ≤ j ≤ jr(t)− 1. Let f(r) denote the right hand side of the above inequality and

simplify its expression, we have the conclusion of the lemma.

Proof of Lemma 57. From the definition of jr(t), we know that

jr(t)∑
j=1

(tr(j)− tr(j − 1)) ≤ t+ (tr(jr(t))− tr(jr(t)− 1)). (241)

Let Xr
0 = 0 and Xr

n =
∑n

j=1 ((tr(j)− tr(j − 1))−E(tr(j)− tr(j − 1)|Fr
j−1)), for n > 0.

From Lemma 55, E|Xr
n| ≤ 2nf(r) < ∞. Note that Xr

n ∈ Fr
n and E[Xn+1|Fn] = Xn.

Therefore, {Xr
n,Fr

n, n ≥ 1} is a martingale. Note that jr(t) is optional relative to the

filtration {Fr
n, n ≥ 1}, and E[Xr

n] = 0. By the optional sampling theorem, we know that

E[Xr
jr(t)∧n] = 0, i.e

E
[ jr(t)∧n∑

j=1

((tr(j)− tr(j − 1))−E(tr(j)− tr(j − 1)|Fr
j−1))

]
= 0. (242)

Recall that Γr(j) = {Xr
j+1 = Xr

j , q
r
j ≥ θr(Xr

j )} and note that χ(qr(j − 1) ≥ θr(Xr
j−1)) is

measurable with respect to Fr
j−1, then

E[
jr(t)∧n∑

j=1

(tr(j)− tr(j − 1))] = E[
jr(t)∧n∑

j=1

E[tr(j)− tr(j − 1)|Fr
j−1]]

≥ (1− ε)l(r)E[
jr(t)∧n∑

j=1

E[χ(tr(j)− tr(j − 1) > (1− ε)l(r))χ(Γr(j − 1))|Fr
j−1]]

= (1− ε)l(r)E
[ jr(t)∧n∑

j=1

χ(qr(j − 1) ≥ θr(Xr
j−1))

(
1−E[χ(Xr

j 6= Xr
j−1)|Fr

j−1]

−E[χ(tr(j)− tr(j − 1) < (1− ε)l(r))χ(Xr
j = Xr

j−1)|Fr
j−1]

)]
.(243)

Applying the same technique as we use to prove (242), we have

E[
jr(t)∧n∑

j=1

χ(qr(j − 1) ≥ θr(Xr
j−1))E[χ(Xr

j 6= Xr
j−1)|Fr

j−1]]

≤ E[
jr(t)∧n∑

j=1

E[χ(Xr
j 6= Xr

j−1)|Fr
j−1]]

= E[
jr(t)∧n∑

j=1

χ(Xr
j 6= Xr

j−1)] ≤ E[N r(t)]. (244)
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Let t̃r(j − 1) = tr(j)− tr(j − 1) for the rest of the proof. Since χ(qr(j − 1) ≥ θr(Xr
j−1))

is measurable with respect to Fr
j−1, we have

E[
jr(t)∧n∑

j=1

χ(qr(j − 1) ≥ θr(Xr
j−1))E[χ(t̃r(j − 1) < (1− ε)l(r))χ(Xr

j = Xr
j−1)|Fr

j−1]]

= E[
jr(t)∧n∑

j=1

E[χ(t̃r(j − 1) < (1− ε)l(r))χ(qr(j − 1) ≥ θr(Xr
j−1))χ(Xr

j = Xr
j−1)|Fr

j−1]]

≤ E[
jr(t)∧n∑

j=1

K∑
k=1

ĥk(ε(2Kµ̄k)−1, bµ
k
rl(r)c)χ(qr(j − 1) ≥ θr(Xr

j−1))]

≤
K∑

k=1

ĥk(ε(2Kµ̄k)−1, bµ
k
rl(r)c)E[

jr(t)∧n∑
j=1

χ(qr(j − 1) ≥ θr(Xr
j−1))],

where the first inequality is from Lemma 35 and it holds if > r1(ε) for some r1(ε) > 0. Note

that ĥk(x, y) → 0 if y →∞. Since rl(r) →∞ if r →∞, then there exists r2(ε) > r1(ε) such

that if r > r2(ε), then
∑K

k=1 ĥk(ε(2Kµ̄k)−1, bµ
k
rl(r)c) ≤ ε. Therefore, if r > r2(ε), then the

above inequality implies

E[
jr(t)∧n∑

j=1

χ(qr(j − 1) ≥ θr(Xr
j−1))E[χ(t̃r(j − 1) < (1− ε)l(r))χ(Xr

j = Xr
j−1)|Fr

j−1]]

≤ εE[
jr(t)∧n∑

j=1

χ(qr(j − 1) ≥ θr(Xr
j−1))]. (245)

Combining (243), (244), and (245), for r > r2(ε), we have

E[
jr(t)∧n∑

j=1

t̃r(j − 1)] ≥ (1− ε)l(r)
(
E[

jr(t)∧n∑
j=1

χ(qr(j − 1) ≥ θr(Xr
j−1))(1− ε)−E[N r(t)]

)
.

Note that the target idle policy ensures that the queue length of each class is above the

safety stock level at the end of this target idle period. Therefore, there will be at least half

of the review periods (except those initiated by an environment transition) such that the

queue length at the beginning of this review period is above the chosen safety stock level.

That is,

jr(t)∧n∑
j=1

χ(qr(j − 1) ≥ θr(Xr
j−1)) ≥

1
2
(jr(t) ∧ n−N r(t)).
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Combining this result with the last inequality and noting that t̃r(j − 1) = tr(j)− tr(j − 1),

we have

E[
jr(t)∧n∑

j=1

(tr(j)− tr(j − 1))] ≥ (1− ε)l(r)
((1− ε)E[jr(t) ∧ n]

2
− 3E[N r(t)]

2

)
.

Let n go to infinity at both sides of the above inequality. Then from the monotone

convergence theorem, we have

E[
jr(t)∑
j=1

(tr(j)− tr(j − 1))] ≥ (1− ε)l(r)
((1− ε)E[jr(t)]

2
− 3E[N r(t)]

2

)
.

From (241) and Lemma 55, we have

E[
jr(t)∑
j=1

(tr(j)− tr(j − 1))] ≤ t+ f(r).

Therefore,

(1− ε)2l(r)
E[jr(t)]

2
− 3

2
(1− ε)l(r)E[N r(t)] ≤ t+ f(r),

which implies the conclusion of the lemma.

Proof of Lemma 59. Let

Br(t, ε) = ∪1≤j≤jr(t){Xr
j = Xr

j−1, q
r(j) 6≥ (1− ε)θr(Xr

j )}.

Then

Br(t, ε) ⊂
(
Br(t, ε) ∩ Λr(t,

εβ

32Kᾱ
) ∩Υr(t,

εβ

32Kᾱ
)
)
∪

(
(Λr(t,

εβ

32Kᾱ
))c ∪ (Υr(t,

εβ

32Kᾱ
))c

)
.

Let

B̃r(j, t, ε) = {Xr
j = Xr

j−1, q
r(j) 6≥ (1− ε)θr(Xr

j )}Λ(Xr
j−1, j − 1,

εβ

16ᾱ
)Υ(Xr

j−1, j − 1,
εβ

16ᾱ
),

then from (153), we have

Br(t, ε) ⊂
(
∪1≤j≤jr(t) B̃

r(j, t, ε)
)
∪

(
(Λr(t,

εβ

32Kᾱ
))c ∪ (Υr(t,

εβ

32Kᾱ
))c

)
.

Therefore, the indicator function satisfies

χ(Br(t, ε)) ≤
jr(t)∑
j=1

χ(B̃r(j, t, ε)) + χ((Λr(t,
εβ

32Kᾱ
))c) + χ(Υr(t,

εβ

32Kᾱ
))c)
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hence,

P(Br(t, ε)) ≤ E[
jr(t)∑
j=1

χ(B̃r(j, t, ε))] + P((Λr(t,
εβ

32Kᾱ
))c) + P((Υr(t,

εβ

32Kᾱ
))c). (246)

From Lemma 41 and Lemma 43, we have

P((Λr(t,
εβ

32Kᾱ
))c) ≤ f̂1(

εβ

32Kᾱ
, t, r), P((Υr(t,

εβ

32Kᾱ
))c) ≤ f̂2(

εβ

32Kᾱ
, t, r). (247)

To estimate the first term of the right hand side of the inequality (246), we construct a

martingale. Let

Y r
n =

n∑
j=1

(
χ(B̃r(j, t, ε))−E[χ(B̃r(j, t, ε))|Fr

j−1]
)
,

then Y r
n is measurable with respect to Fr

n, E|Y r
n | ≤ 2n and E[Y r

n+1|Fr
n] = Y r

n . Therefore,

{Y r
n , n ≥ 1} is a martingale with respect to the filtration {Fr

n, n ≥ 1}. Note that jr(t)

is a stopping time with respect to the filtration {Fr
n, n ≥ 1}. From the optional stopping

theorem and from the fact that E[Y r
n ] = 0, we have E[Y r

jr(t)∧n] = 0. Therefore,

E[
jr(t)∧n∑

j=1

χ(B̃r(j, t, ε))]

= E[
jr(t)∧n∑

j=1

E[χ(B̃r(j, t, ε))|Fr
j−1]]

= E[
jr(t)∧n∑

j=1

E[χ(B̃r(j, t, ε))χ(qr(j − 1) ≥ θr(Xr
j−1))|Fr

j−1]] (248)

≤ E[
jr(t)∧n∑

j=1

f̂4(ε, r)]. (249)

Note that if qr(j − 1) 6≥ θr(Xr
j−1), then we implement the target-idle policy such that

qr(j) ≥ θr(Xr
j ) if the (j−1)th review period is not interrupted by an environment transition,

i.e Xr
j = Xr

j−1. Therefore (248) holds. The inequality (249) is from Lemma 47. Let n→∞.

From the monotone convergence theorem, we have

E[
jr(t)∑
j=1

χ(B̃r(j, t, ε))] ≤ E[
jr(t)∑
j=1

f̂4(ε, r)] = f̂4(ε, r)E[jr(t)]. (250)

Combining the result of (246), (247) and (250), we have

P(Br(t, ε)) ≤ f̂1(
εβ

32Kᾱ
, t, r) + f̂2(

εβ

32Kᾱ
, t, r) + f̂4(ε, r)E[jr(t)].
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From Remark 58, for any fixed t > 0 and ε > 0, we know that E[jr(t)] ≤ f̃7(ε, t) < ∞.

From Remark 42 and Remark 44, for any fixed ε > 0 (w.l.o.g, ε < 1) and t > 0, we have

f̂n(ε, t, r) = O(r−(1+γ′)) for n = 1, 2. From Remark 48, we know that f̂4(ε, r) = o(r−(1+γ/9)).

Therefore, for any fixed t > 0 and ε > 0, P(Br(t, ε)) = o(r−(1+γ/9)). Therefore, for any

sequence {rn, n ≥ 1} such that rn →∞ if n→∞, we have

∞∑
n=1

P(Brn(t, ε)) <∞.

Applying the Broel-Cantelli Lemma, we know that

P(∩m≥1 ∪n≥m Brn(t, ε)) = 0,

which implies the conclusion of Lemma 59 since it holds for any sequence {rn, n ≥ 1}.

Proof of Lemma 60. The proof is similar to that of Lemma 59. We let

Br(t, ε) =
⋃

1≤j≤jr(t)

({Xr
j = Xr

j−1, q
r(j − 1) ≥ θr(Xr

j−1)} ∩ {|(tr(j)− tr(j − 1))− l(r)| ≥ εl(r)}).

Then

Br(t, ε) ⊂ (Br(t, ε) ∩Υr(t, ε)) ∪ (Υr(t, ε))c.

Recall that Γr(i, j) = {Xr
j = Xr

j+1, q
r(j) ≥ θr(i)}. Let t̃r(j − 1) = tr(j)− tr(j − 1), then

Br(t, ε) ⊂
( ⋃
1≤j≤jr(t)

({|t̃r(j − 1)− l(r)| ≥ εl(r)} ∩ Γr(j − 1) ∩Υr(t, ε))
)
∪ (Υr(t, ε))c

⊂
( ⋃
1≤j≤jr(t)

({|t̃r(j − 1)− l(r)| ≥ εl(r)} ∩ Γr(j − 1) ∩Υr(Xr
j , j, ε))

)
∪ (Υr(t, ε))c.

The rest of the proof is similar to that of Lemma 59, except that we apply the result of

Lemma 34 instead of Lemma 47 in a similar inequality to (249). This concludes the proof

of Lemma 60.

Proof of Lemma 61. The proof is similar to that of Lemma 60 except that we apply the

result of Lemma 36 instead of Lemma 34.

Proof of Lemma 62. The proof is similar to that of Lemma 59 except that we apply the

result of Lemma 49 instead of Lemma 47.
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Proof of Lemma 63. Taking ε = 1 in Lemmas 61 and 62, and noting that KC̃1 ≥ 1, we

have the result of Lemma 63.

Proof of Lemma 64. The proof is similar to that of Lemma 59 except that we apply the

result of Lemma 45 instead of Lemma 47 to prove an inequality similar to (249).

Proof of Lemma 65. The proof is similar to that of Lemma 59 except that we apply the

result of Lemma 51 instead of Lemma 47 to prove an inequality similar to (249).

Proof of Lemma 67. The rest of the proof is similar to that of Lemma 59, except that

we apply the result of Lemma 53 instead of Lemma 47 to obtain an inequality similar to

(249).

Proof of Lemma 68. Take ε = 1, then the result of Lemma 68 follows immediately from

that of Lemma 65 and Lemma 67.

Proof of Lemma 70. For any s ≥ 0, recall that jr(s)th is the index of the first review

period after s, hence

tr(jr(s)− 1) ≤ s ≤ tr(jr(s)).

From Lemma 63, we know that for any 0 ≤ s ≤ t,

|tr(jr(s))− s| ≤ |tr(jr(s))− tr(jr(s)− 1)| ≤ 2KC̃1l(r).

Note that l(r) → 0 as r →∞. Thus, we have

lim
r→∞

sup
0≤s≤t

|tr(jr(s))− s| = 0

which concludes the proof of the lemma.

Proof of Lemma 71. We consider t > 0 and s ∈ [0, t], then from the definition of nr(·, ·),

nr(0, s)l(r)− tr(jr(s))
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=
jr(s)−1∑

j=0

(
χ(qr(j) ≥ θr(Xr

j ), Xr
j+1 = Xr

j )l(r)− (tr(j + 1)− tr(j))
)

=
jr(s)−1∑

j=0

χ(qr(j) ≥ θr(Xr
j ), Xr

j+1 = Xr
j )

(
l(r)− (tr(j + 1)− tr(j))

)

−
jr(s)−1∑

j=0

χ(qr(j) 6≥ θr(Xr
j ), Xr

j+1 = Xr
j )(tr(j + 1)− tr(j))

−
jr(s)−1∑

j=0

χ(Xr
j+1 6= Xr

j )(tr(j + 1)− tr(j)).

Therefore,

|nr(0, s)l(r)− tr(jr(s))|

≤
jr(s)−1∑

j=0

χ(qr(j) ≥ θr(Xr
j ), Xr

j+1 = Xr
j )|tr(j + 1)− tr(j)− l(r)|

+
jr(s)−1∑

j=0

χ(qr(j) 6≥ θr(Xr
j ), Xr

j+1 = Xr
j )(tr(j + 1)− tr(j)) (251)

+
jr(s)−1∑

j=0

χ(Xr
j+1 6= Xr

j )(tr(j + 1)− tr(j)).

From Lemma 60, for any ε > 0 and t > 0 and almost any sample path ω, there exists

r(ω, t, ε) > 0 such that for all 0 ≤ j ≤ jr(t), if r > r(ω, t, ε),

χ(qr(j) ≥ θr(Xr
j ), Xr

j+1 = Xr
j )|tr(j + 1)− tr(j)− l(r)|

≤ χ(qr(j) ≥ θr(Xr
j ), Xr

j+1 = Xr
j )εl(r). (252)

For the second term of the right hand side of the above inequality, we have

jr(s)−1∑
j=0

χ(qr(j) 6≥ θr(Xr
j ), Xr

j+1 = Xr
j )(tr(j + 1)− tr(j))

≤
jr(s)−1∑

j=1

χ(qr(j) 6≥ θr(Xr
j ), Xr

j+1 = Xr
j , X

r
j = Xr

j−1)(t
r(j + 1)− tr(j)) (253)

+
jr(s)−1∑

j=1

χ(Xr
j 6= Xr

j−1)(t
r(j + 1)− tr(j)) + (tr(1) + tr(0)).

From Lemma 59, for any ε > 0, there exists r(ω, t, ε) > 0 such that if r > r(ω, t, ε), then for

all 1 ≤ j ≤ jr(t), we have {Xr
j = Xr

j−1} = {Xr
j = Xr

j−1, q
r(j) ≥ (1 − ε)θr(Xr

j )}. Without
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loss of generality, we assume 0 < ε < 1 and we assume r > r(ω, t, ε) for the rest of the proof.

Then,

jr(s)−1∑
j=1

χ(qr(j) 6≥ θr(Xr
j ), Xr

j+1 = Xr
j , X

r
j = Xr

j−1)(t
r(j + 1)− tr(j))

=
jr(s)−1∑

j=1

χ(qr(j) 6≥ θr(Xr
j ), Xr

j+1 = Xr
j = Xr

j−1, q
r(j) ≥ (1− ε)θr(Xr

j ))(tr(j + 1)− tr(j))

≤
jr(s)−1∑

j=1

χ(qr(j) 6≥ θr(Xr
j ), qr(j) ≥ (1− ε)θr(Xr

j ), Xr
j+1 = Xr

j , X
r
j = Xr

j−1)2KC̃1εl(r)

≤
jr(s)−1∑

j=1

χ(qr(j − 1) ≥ θr(Xr
j−1), X

r
j−1 = Xr

j )2KC̃1εl(r), (254)

where the first inequality is from Lemma 62. Note that from the designated policy, the

queue length at the end of an uninterrupted target-idle period will be above the safety

stock level, i.e {qr(j) 6≥ θr(Xr
j ), Xr

j−1 = Xr
j } ⊂ {qr(j − 1) ≥ θr(Xr

j−1)X
r
j−1 = Xr

j }. This

implies the second inequality above.

Combining (251)-(254), we have

|nr(0, s)l(r)− tr(jr(s))| ≤
jr(s)−1∑

j=0

χ(qr(j) ≥ θr(Xr
j ), Xr

j+1 = Xr
j )(1 + 2KC̃1)εl(r) (255)

+2
jr(s)−1∑

j=0

χ(Xr
j+1 6= Xr

j )(tr(j + 1)− tr(j)) + (tr(1)− tr(0)).

From Lemma 60, we have

χ(qr(j) ≥ θr(Xr
j ), Xr

j+1 = Xr
j )l(r) ≤ χ(qr(j) ≥ θr(Xr

j ), Xr
j+1 = Xr

j )
(tr(j + 1)− tr(j))

1− ε

Therefore,

jr(s)−1∑
j=0

χ(qr(j) ≥ θr(Xr
j ), Xr

j+1 = Xr
j )(1 + 2KC̃1)εl(r)

≤
jr(s)−1∑

j=0

χ(qr(j) ≥ θr(Xr
j ), Xr

j+1 = Xr
j )(1 + 2KC̃1)ε

(tr(j + 1)− tr(j))
1− ε

≤ (1 + 2KC̃1)ε
1− ε

(s+ tr(jr(s))− tr(jr(s)− 1))

≤ (1 + 2KC̃1)ε
1− ε

(s+ 2KC̃1l(r)), (256)
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where the last inequality is from Lemma 63. And from Lemma 63, we also have

2
jr(s)−1∑

j=0

χ(Xr
j+1 6= Xr

j )(tr(j + 1)− tr(j)) + (tr(1)− tr(0))

≤ 2
jr(s)−1∑

j=0

χ(Xr
j+1 6= Xr

j )2KC̃1l(r)

= 4KC̃1(N r(s) + 1)l(r), (257)

where N r(s) denotes the number of environment transitions until time s. Without loss of

generality, we choose 0 < ε < 2−1, then combining the results of (255)-(257), we have

|nr(0, s)l(r)− tr(jr(s))| ≤ 2(1 + 2KC̃1)εs+ 2KC̃1(2N r(s) + 2KC̃1 + 3)l(r)

≤ 2(1 + 2KC̃1)εt+ 2KC̃1(2N r(t) + 2KC̃1 + 3)l(r).

From Lemma 15, we know that there exists r2(ω, t, ε) > 0, such that N r(t) = N(t) if r >

r2(ω, t, ε). Since l(r) → 0 when r →∞, we can choose r(ω, t, ε) > max{r1(ω, t, ε), r2(ω, t, ε)}

such that if r > r(ω, t, ε), then 2KC̃1(2N r(t) + 2KC̃1 + 3)l(r)l(r) < ε and thus

|nr(0, s)l(r)− tr(jr(s))| ≤ (2(1 + 2KC̃1)t+ 1)ε

for all s ∈ [0, t]. Combining this result and Lemma 70, we have the conclusion of Lemma 71.

Proof of Lemma 73. First, since X(·) satisfies the regularity condition, we know that for

fixed t ≥ 0, there exists a finite m ≥ 0 and ε0 > 0, such that τm ≤ t < t+ ε0 < τm+1. From

Lemma 15, there exists r1 > 0 such that if r > r1, Xr(τ r
n) = X(τn) for all n = 1, . . . ,m,

and τ r
m+1 > t+ ε0. Let in = X(τn), n = 0, . . . ,m, if r > r1, then for all s ∈ [0, t+ ε0],

Xr(s) ∈ {i0, . . . , im}. (258)

Throughout the rest of the proof, we consider only those r such that r > r1. Hence, up to

time t there are only finite environment transitions for all networks. From Lemma 70, we

know that

tr(jr(·)) → 1(·) u.o.c as r →∞.
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From Corollary 22,

lim
r→∞

sup
0≤s≤t

|r−1Zr(s)− Zr(tr(jr(s)))/r| = 0.

Note that Zr(tr(jr(t))) is also denoted by qr(jr(t)), we see that

lim
r→∞

sup
0≤s≤t

|r−1Zr(s)− qr(jr(s))/r| = 0. (259)

From the definition of q̄r(j), for any 0 ≤ s ≤ t,

|q̄r(jr(s))− qr(jr(s))/r| ≤ θr(Xr
jr(s))/r.

From Lemma 70, there exists r2 > 0 such that if r > r2, for all 0 ≤ s ≤ t,

tr(jr(s)) ≤ t+ ε0.

Note Xr
jr(s) = Xr(tr(jr(s))), from (258), and recall the definition of θr(i), i ∈ I, we know

that for all 0 ≤ s ≤ t, if r > max{r1, r2},

|q̄r(jr(s))− qr(jr(s))/r| ≤ max{θr(in)/r : 0 ≤ n ≤ m} = max{β(in)l(r) : 0 ≤ n ≤ m}.

Since l(r) → 0 as r →∞, we have

lim
r→∞

sup
0≤s≤t

|q̄r(jr(s))− qr(jr(s))/r| = 0. (260)

From (259) and (260), we see that the conclusion of Lemma 73 holds.

3.8 Summary

In this chapter, we presented a study of the dynamic scheduling of computer communica-

tion networks with time varying characteristics. In particular, we model such networks as

multiclass queueing networks in a slowly changing environment and we provided a hierarchy

decision frame work for such networks.

We consider that the network is operating in slowly changing environment. The changing

environment is modelled as a general stochastic process which takes only discrete values,

where each value represent an environment state or a network operating state. The arrival

processes, service processes and routing matrices are marked renewal processes for each
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environment state. Our focus in this chapter is to establish a frame work to facilitate the

searching for a nearly optimal scheduling policy for such networks.

We first show that a general mutliclass open queueing network in a slowly changing

environment can be approximated by a stochastic fluid model when the dynamics of the

network tend to change much more frequently than the environment changes states. Next

we provide a general method to derive a scheduling policy from any given solution of the

stochastic fluid model. We also show that if implementing the derived policy, the dynamics

of the network captures the fluid level evolution of the given stochastic fluid model solution.

This result holds under very general conditions.

Through this study, we have established a general approach to searching for an nearly

optimal scheduling policy for multiclass queueing networks in a slowly changing environ-

ment. This is a three step approach. The first step is to approximate the queueing network

by a stochastic fluid model; the second step is to solve the stochastic fluid model which

is much more tractable than the original queueing network; the third step is to derive a

scheduling policy for the original network through the method we provided in this study. If

the solution of the stochastic fluid model is optimal, then the derived scheduling policy is

asymptotically optimal in the fluid scale.
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CHAPTER 4

SUMMARY AND CONCLUSIONS

In this study, we investigate the dynamic scheduling of computer communication networks

that can be periodically overloaded. We model such networks as mutliclass queueing net-

works in a slowly changing environment. We establish a hierarchical framework to search

for a suitable scheduling policy for such networks through its connection with stochastic

fluid models. We first study the dynamic scheduling of a multiclass stochastic fluid model

where the server is under the quality of service contract. Then, we unveil a relationship

between the scheduling of stochastic fluid models and that of the queueing networks in a

changing environment.

In the multiclass stochastic fluid model that we study, we focus on a system with two

fluid classes and a single server whose capacity can be shared arbitrarily among these two

classes. The server is under a quality of service contract which is indicated by a threshold

value of each class. Whenever the fluid level of a certain class is above the designated

threshold value, penalty cost is incurred to the server. We also allow that the server may

be overloaded transiently. We specify the optimal and asymptotically optimal resource

allocation policies for such a stochastic fluid model.

Afterwards, we relate the problem of optimizing the queueing network to that of opti-

mizing the stochastic fluid model. We connect them by providing a general and successful

interpretation of the fluid model solution in order to construct a scheduling policy of the

queueing network. The connection we establish facilitates the process of searching for a

nearly optimal scheduling policy for the queueing network.

To establish the connection between the queueing networks in a changing environment

and the stochastic fluid models, we take a two step approach. The first step is to approx-

imate such networks by their corresponding stochastic fluid models with a proper scaling

method. The second step is to provide a general scheme to interpret the stochastic fluid
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model solution and construct a suitable policy for the queueing network.

In the first step, we scale the space and the rate of arrival and service processes in a

similar fashion as the scaling method of the law of large numbers. With this scaling method

and assuming that the changing environment can be captured by a limiting stochastic

process as the scaler increases, we prove that all the limiting points of queueing processes

satisfy a stochastic fluid model. The stochastic fluid model captures the stochastic pattern

of the operating environment of the network, but replaces the discrete events that changes

highly frequently by their average values. In other words, in a stochastic fluid model,

the operating environment of network still randomly transits from one state to another

state. However, at each state of the environment, the discrete customers of the network are

replaced by fluid units; and the dynamics of the network at each particular environment

state is deterministic, which is determined by the associated arrival rates, service rates, and

routing proportions matrices.

The stochastic fluid model has a much simpler structure than the queueing network

model and is easier to study than the original queueing network model. Assuming that the

fluid trajectory, i.e the evolution of the fluid levels, of the stochastic fluid model is given, we

provide a method to construct a scheduling policy for the original queueing network. With

the derived scheduling policy, the dynamics of the queueing network tracks the fluid level

evolution of the given stochastic fluid solution almost surely. Therefore, if the optimal fluid

trajectory of the stochastic fluid model is given, then the original network is controlled in

a nearly optimal way.

This two step approach provides us with a general hierarchical scheme to search for an

asymptotically optimal scheduling policy for the queueing networks in a slowly changing

environment. It is important to note that although our research is motivated by the com-

puter computing paradigms for Internet services, it also applies to other type of networks

with similar characteristics.
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APPENDIX A

HOLDING COST EXPRESSIONS

In this section, we provide expressions for the holding cost under various policies when the

length of the high period is H and the length of the low period is L. These expressions are

used extensively in Section 2.6. We only consider the cases given in Section 2.4, i.e., we

assume ρh
1 > 1 and ρl

1 + ρ2 < 1.

We know from Corollary 2 that for Case 1 and Case 3, specified in (20) and (22)

respectively, FP1 policy is optimal. Hence, we focus only on Cases 2 and 4 given in (21) and

(23) respectively. In order to see the performance of the policies considered in Section 2.6,

we first provide the holding cost expressions under the optimal policy. These expressions

serve as the lower bound for all the other policies. Then we also provide the holding cost

expressions under FP1 policy for Cases 2 and 4. In addition, we also provide the holding

cost expressions under FP2-FP1 policy for Case 2, and the holding cost expressions under

πa1 policy for Case 4. These expressions help evaluate the performance of these two policies

when ρ2 + ρl
1 → 1.

When H and L are known, the optimal policy is given in Section 3.1. In order to

compute the holding cost expression under a given policy, we observe the evolution of the

fluid levels of both classes under this policy. Given the fluid levels, holding cost incurred by

class 1 and class 2 can be computed easily. For example, for Case 2, when H and L satisfy

the conditions of Case 2.6 (in Section 2.4.1), i.e., H > a2, H+L > ψ1(1−η)−1, the optimal

policy is to set s1 = s2 = 0 which is equivalent to the FP1 policy. We know that fluid levels

of both classes will increase, and at t1 = ψ1, class 1 fluid reaches its threshold from below

and starts to incur cost. Fluid levels of both classes continue to increase linearly until the

beginning of the low period. In the low period, fluid level of class 1 begins to decrease

and class 2 fluid continues to increase until class 1 fluid decreases to its threshold, which

happens at t2. After t2, class 1 fluid is kept at its threshold and class 2 fluid begins to
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decrease and reaches its threshold at t̃2. We know that after t̃2, both classes will be kept

below their thresholds. Note that when H > a2, under the optimal policy, L ≥ t̃2 −H is

equivalent to L ≥ γ4(H − a1) (which is OPT:1 below) and H ≥ a2, L ≥ γ4(H − a1) imply

that the conditions of Case 2.6, i.e., H ≥ a2, H +L > ψ1(1− η)−1 are satisfied. So, we can

compute the holding cost when H ≥ a2 and L ≥ γ4(H − a1). We obtain the holding cost

expressions for the other cases in a similar way.

Next, we provide the lower bound of the holding cost, i.e th holding cost under the

optimal policy for each sample path (H,L) in Section A.1. The cost expressions under the

FP1 policy is provided in Section A.2, that of πa1 policy is provided in Section A.3, and

that of FP2-FP1 policy is provided in Section A.4.

A.1 Cost under the optimal policy

While computing the holding cost under the optimal policy, we combine Cases 2 and 4

whenever ψ−2 = 0 (in Case 4), where a− = max{−a, 0}. However, we have to divide each

case into several subcases in order to obtain closed form expressions for the holding cost. As

a result, we have 17 subcases labeled (OPT:1) to (OPT:17). Recall that t1 is the time that

class 1 increases to its threshold from below in the high period, and t2 is the time that class

1 decreases to its threshold from above in the low period if the low period is long enough,

and t̃2 is the time that class 2 decreases to its threshold from above if the low period is long

enough. Also, recall that ψ̃1 ≥ ψ̃2 is equivalent to B ≥ a1 ≥ ψ̃1 ≥ ψ̃2.

1. Assume that the conditions of Case 2.6 (or Case 4.4) are satisfied and L ≥ t̃2. In

Case 2.6 (and Case 4.4), the optimal policy sets s1 = s2 = 0, i.e. implements the FP1

policy. If L ≥ t̃2 is also satisfied, then the low period is long enough so that the fluid

levels of both classes reach their thresholds. This is equivalent to

(OPT:1) H ≥ a2, L ≥ γ4(H − a1),

where γ4 is given in the proof of Proposition 5 in Section 2.6, and the holding cost is

c(H,L) =
1
2
h2µ2

{
(ρh

1 − 1)(ρh
1 − ρl

1)
η(1− ρl

1)
(H − ψ1)2 −

(ρh
1 − 1)
η

(ψ−1 )2 − ρ2(ψ−2 )2
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+
(1− ρ2 − ρl

1)
2

ρ2

[ρh
1 + ρ2 − 1

1− ρl
1 − ρ2

(H − a1)−
(ρh

1 − 1)
(1− ρl

1)
(H − ψ1)

]2

+(1− ρl
1 − ρ2)

[ρh
1 + ρ2 − 1

1− ρl
1 − ρ2

(H − a1)−
(ρh

1 − 1)
(1− ρl

1)
(H − ψ1)

]2
}
.

2. Assume that the conditions of Case 2.6 (or Case 4.4) are satisfied and t2 ≤ L ≤ t̃2.

As mentioned above, in Case 2.6 (and Case 4.4), the optimal policy implements the

FP1 policy. If t2 ≤ L ≤ t̃2, then the low period is long enough such that class 1 fluid

level reaches its threshold, but class 2 fluid is still above its threshold when the low

period is over. This is equivalent to

(OPT:2) H ≥ a2, γ3(H − ψ1) ≤ L ≤ γ4(H − a1),

and the holding cost is

c(H,L) =
1
2
h2µ2

{
(ρh

1 − 1)(ρh
1 − ρl

1)
η(1− ρl

1)
(H − ψ1)2 −

(ρh
1 − 1)
η

(ψ−1 )2 − ρ2(ψ−2 )2

+
(1− ρ2 − ρl

1)
2

ρ2

[ρh
1 + ρ2 − 1

1− ρl
1 − ρ2

(H − a1)−
(ρh

1 − 1)
(1− ρl

1)
(H − ψ1)

]2

+(1− ρl
1 − ρ2)

[ρh
1 + ρ2 − 1

1− ρl
1 − ρ2

(H − a1)−
(ρh

1 − 1)
(1− ρl

1)
(H − ψ1)

]2
}

−1
2
h2µ2(1− ρ2 − ρl

1)
[(ρh

1 + ρ2 − 1)
(1− ρ2 − ρl

1)
(H − a1)− L

]2
.

3. Assume that the conditions of Case 2.6 (or Case 4.4) are satisfied and L ≤ t2. The

optimal policy sets s1 = s2 = 0, i.e. implements the FP1 policy. Since L ≤ t2, at the

end of the low period, both classes will be above their thresholds. This is equivalent

to

(OPT:3) H ≥ a2, L ≤ γ3(H − ψ1), H + L ≥ ψ+
1 +

η

1− η
(ψ+

1 − ψ+
2 ),

and the optimal cost is

c(H,L) =
1
2
h2µ2

{
(ρh

1 − 1)(ρh
1 − ρl

1)
η(1− ρl

1)
(H − ψ1)2 + ρ2(H + L− ψ2)2

−1− ρl
1

η

[ρh
1 − 1

1− ρl
1

(H − ψ1)− L
]2
− (ρh

1 − 1)
η

(ψ−1 )2 − ρ2(ψ−2 )2
}
.

4. Assume that the conditions of Case 2.3 are satisfied and L ≥ t̃2 − H. In Case 2.3

optimal policy sets s1 = s2. Let s1 = s2 = s. Note that L ≥ t̃2 −H is equivalent to
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L > γ4(H − a1), which means that the low period is long enough so that fluid levels

of both classes reach their thresholds. Thus, if

(OPT:4) max(ψ̃1, B) ≤ H ≤ a2, L ≥ γ4(H − a1),

then the holding cost is

c(H,L) =
1
2
h2µ2

{
(1− ρl

1)(ρ
h
1 − ρl

1)
η(ρh

1 − 1)
(t2 −H)2 + ρ2(t2 − s)2

+(1− ρ2)(2ψ̃2 − s)s+ 2(1− ρ2)(ψ̃2 − s)(t2 − s)

+(1− ρ2 − ρl
1)

[ρh
1 + ρ2 − 1

1− ρ2 − ρl
1

(H − a1)− (t2 −H)
]2

}
,

where

s =
d1/µ1 − (ρh

1 − 1)(1− η)t2
1 + η(ρh

1 − 1)
,

t1 =
(1− η)t2 + ηd1/µ1

1 + η(ρh
1 − 1)

,

t2 =
(ρh

1 − ρl
1)H − η(ρh

1 − 1)d1(µ1(1 + η(ρh
1 − 1)))−1

(1− ρl
1) + (1− η)(ρh

1 − 1)(1 + η(ρh
1 − 1))−1

,

5. Assume that the conditions of Case 2.3 are satisfied and L ≤ t̃2 −H. When H and

L satisfy the conditions of Case 2.3, it implies that L ≥ t2, i.e., the low period is

long enough so that class 1 reaches its threshold. However, since L ≤ t̃2 − H, the

low period is not long enough for class 2 to reach its threshold. At the end of the

low period, class 2 fluid is still above its threshold, but class 1 is below its threshold.

Hence, if

(OPT:5) max(ψ̃1, B) ≤ H ≤ a2, γ2(H − ψ̃1) ≤ L ≤ γ4(H − a1)

then the holding cost is

c(H,L) =
1
2
h2µ2

{
(1− ρl

1)(ρ
h
1 − ρl

1)
η(ρh

1 − 1)
(t2 −H)2 + ρ2(t2 − s)2

+(1− ρ2)(2ψ̃2 − s)s+ 2(1− ρ2)(ψ̃2 − s)(t2 − s)

+(1− ρ2 − ρl
1)

[ρh
1 + ρ2 − 1

1− ρ2 − ρl
1

(H − a1)− (t2 −H)
]2

}
−1

2
h2µ2(1− ρ2 − ρl

1)
[(ρh

1 + ρ2 − 1)
(1− ρ2 − ρl

1)
(H − a1)− L

]2
,

where t2, t1, s are the same as in the previous case.
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6. Assume that the conditions of Case 2.4 are satisfied. In Case 2.4, the optimal policy

sets s1 = s2 = s and t2 = H + L. In this case, at the end of the low period the fluid

levels of both classes are above their thresholds. Thus, if

(OPT:6) L ≤ γ2(H − ψ̃1),

max{ψ̃1, ψ̃1 +
1 + η(ρh

1 − 1)
(1− η)(ρh

1 − 1)
(ψ̃1 − ψ̃2)} ≤ H + L ≤ ψ1

1− η
,

then the holding cost is

c(H,L) =
1
2
h2µ2

{
(ρh

1 − 1)(ρh
1 − ρl

1)
η(1− ρl

1)
(H − t1)2 + (1− ρ2)(2ψ̃2 − s)s

+2(1− ρ2)(ψ̃2 − s)(H + L− s) + ρ2(H + L− s)2

−(1− ρl
1)

η

[(ρh
1 − 1)

(1− ρl
1)

(H − t1)− L
]2

}
,

where

s =
d1/µ1 − (1− η)(ρh

1 − 1)(H + L)
1 + η(ρh

1 − 1)
,

t1 =
ηd1/µ1 + (1− η)(H + L)

1 + η(ρh
1 − 1)

.

7. Assume that the conditions of Case 2.5 are satisfied, ψ̃1 ≤ ψ̃2, class 2 decreases to its

threshold before class 1 increases to its threshold, and the low period is long enough to

decrease class 2 fluid to its threshold. When conditions of Case 2.5 are satisfied, and

ψ̃1 ≤ ψ̃2, we have H ≤ ψ̃1 ≤ ψ̃2 and the optimal policy sets s1 = s2 = H. In the high

period, class 2 has higher priority and in the low period, class 2 has higher priority

until class 1 fluid increases to its threshold or class 2 fluid decreases to its threshold.

Under this policy, let t′1 be the time that class 1 fluid increases to its threshold in

the low period if the low period is long enough. Then, t′1 = H + ρh
1/ρ

l
1(ψ̃1 −H). If

ψ̃2 ≤ t′1, then class 2 fluid decreases to its threshold in the low period, at ψ̃2, before

class 1 fluid increases to its threshold. In this case, after ψ̃2, no class will incur cost

under the Low-period-policy. Hence, if

(OPT:7) H ≤ ψ̃1 ≤ ψ̃2 ≤
ρh
1

ρl
1

(ψ̃1 −H) +H, H + L > ψ̃2,
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then the holding cost is

c(H,L) =
1
2
h2µ2(1− ρ2)ψ̃2

2.

8. Assume that the conditions of Case 2.5 are satisfied, ψ̃1 ≤ ψ̃2, class 2 fluid decreases

to its threshold before class 1 fluid increases to its threshold, but the low period is

not long enough for class 2 fluid to reach its threshold. Hence, H + L ≤ ψ̃2. If

(OPT:8) H ≤ ψ̃1 ≤ ψ̃2 ≤
ρh
1

ρl
1

(ψ̃1 −H) +H, H + L ≤> ψ̃2,

then the holding cost is

c(H,L) =
1
2
h2µ2(1− ρ2)(2ψ̃2 −H − L)(H + L).

9. Assume that the conditions of Case 2.5 are satisfied, ψ̃1 ≤ ψ̃2, class 1 fluid level

increases to its threshold before class 2 fluid level decreases to its threshold, and the

low period is long enough for class 2 fluid to reach its threshold. Since the conditions

of Case 2.5 are satisfied and ψ̃1 ≤ ψ̃2, we have H ≤ ψ̃1 ≤ ψ̃2. Following the optimal

policy, we set s1 = s2 = H. Class 2 has higher priority in the high period and also

in the low period before class 1 fluid reaches its threshold at t′1. So, if ψ̃2 ≥ t′1, it

means that class 2 is still above its threshold when class 1 increases to its threshold

in the low period. Based on the Low-period-policy after t′1, server will spend just

enough effort (u1 = ρl
1) to keep class 1 at its threshold, and use the remaining effort

(u2 = 1−ρl
1 > ρ2) to serve class 2. Let t̃2 be the time that class 2 fluid level decreases

to its threshold, then L+H ≥ t̃2, which is equivalent to L ≥ γ4(H − a1). So, if

(OPT:9) H ≤ ψ̃1 ≤
ρh
1

ρl
1

(ψ̃1 −H) +H ≤ ψ̃2, L ≥ γ4(H − a1),

then the holding cost is

c(H,L) =
1
2
h2µ2

{
(1− ρ2)

[
2ψ̃2 −

ρh
1

ρl
1

(ψ̃1 −H)−H
][ρh

1

ρl
1

(ψ̃1 −H) +H
]

+(1− ρ2 − ρl
1)

[ρh
1 + ρ2 − 1

1− ρ2 − ρl
1

(H − a1)−
ρh
1

ρl
1

(ψ̃1 −H)
]2

}
.
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10. Assume that the conditions of Case 2.5 are satisfied, ψ̃1 ≤ ψ̃2, class 1 fluid level

increases to its threshold before class 2 fluid level decreases to its threshold, and the

low period is not long enough for class 2 fluid to reach its threshold, but long enough

for class 1 fluid to reach its threshold. Hence, H + L ≥ t′1, which is equivalent to

L ≥ ρh
1/ρ

l
1(ψ̃1 −H). If

(OPT:10) H ≤ ψ̃1 ≤
ρh
1

ρl
1

(ψ̃1 −H) +H ≤ ψ̃2,
ρh
1

ρl
1

(ψ̃1 −H) ≤ L ≤ γ4(H − a1),

then the holding cost is

c(H,L) =
1
2
h2µ2

{
(1− ρ2)

[
2ψ̃2 −

ρh
1

ρl
1

(ψ̃1 −H)−H
][ρh

1

ρl
1

(ψ̃1 −H) +H
]

+(1− ρ2 − ρl
1)

[ρh
1 + ρ2 − 1

1− ρ2 − ρl
1

(H − a1)−
ρh
1

ρl
1

(ψ̃1 −H)
]2

}
−1

2
h2µ2(1− ρ2 − ρl

1)
[ρh

1 + ρ2 − 1
1− ρ2 − ρl

1

(H − a1)− L
]2
.

11. Assume that the conditions of Case 2.5 are satisfied, ψ̃1 ≤ ψ̃2, the low period is neither

long enough for class 1 fluid to increase to its threshold nor long enough for class 2

fluid to decrease to its threshold. However, if the low period were long enough class

1 fluid would increase to its threshold before class 2 would decrease to its threshold.

Hence, H + L ≤ t′1. If

(OPT:11) H ≤ ψ̃1 ≤
ρh
1

ρl
1

(ψ̃1 −H) +H ≤ ψ̃2, L ≤ ρh
1

ρl
1

(ψ̃1 −H),

then the holding cost is

c(H,L) =
1
2
h2µ2(1− ρ2)(2ψ̃2 −H − L)(H + L).

12. Assume that the conditions of Case 2.1 (or Case 4.1) are satisfied and the low period is

long enough for class 2 fluid to decrease to its threshold. Recall that when conditions

of Case 2.1 (or Case 4.1) are satisfied, we denote the time that class 2 decreases to

its threshold as ψ̃2. Moreover, H + L ≥ ψ̃2 is equivalent to L > γ4(H − a1) which

implies that L ≥ γ1(H − a1). In this case, at the end of the low period, fluid levels of

both classes will be below their thresholds. Notice that a1 ≤ B implies that ψ̃2 < ψ̃1.
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Hence, if

(OPT:12) a1 ≤ H ≤ B, L ≥ γ4(H − a1), for Case 2

a1 ≤ H ≤ a2, L ≥ γ4(H − a1), for Case 4

then the holding cost is

c(H,L) =
1
2
h2µ2

{
(1− ρl

1)(ρ
h
1 − ρl

1)
η(ρh

1 − 1)
(t2 −H)2 + (1− ρ2)s21 + ρ2(t2 − s2)2

+ (1− ρ2 − ρl
1)

[ρh
1 + ρ2 − 1

1− ρ2 − ρl
1

(H − a1)− (t2 −H)
]2

}
,

where

s1 = ψ̃+
2 ,

s2 =
(d1/µ1 + d2/µ2)− (ρh

1 − 1)(1− η)t2
ρ2 + η(ρh

1 − 1)
,

t1 =
η(d1/µ1 + d2/µ2) + ρ2(1− η)t2

ρ2 + η(ρh
1 − 1)

,

t2 =
(ρh

1 − ρl
1)H − (ρh

1 − 1)η(d1/µ1 + d2/µ2)(ρ2 + η(ρh
1 − 1))−1

(1− ρl
1) + (ρh

1 − 1)(1− η)ρ2(ρ2 + η(ρh
1 − 1))−1

.

13. Assume that the conditions of Case 2.1 (or Case 4.1) are satisfied but the low period is

not long enough for class 2 fluid to decrease to its threshold. Hence, L ≤ γ4(H − a1).

At the end of the low period, class 2 is still above its threshold but class 1 is below

its threshold. Hence, if

(OPT:13) a1 ≤ H ≤ B, γ1(H − a1) ≤ L ≤ γ4(H − a1), for Case 2

a1 ≤ H ≤ a2, γ1(H − a1) ≤ L ≤ γ4(H − a1), for Case 4

then

c(H,L) =
1
2
h2µ2

{
(1− ρl

1)(ρ
h
1 − ρl

1)
η(ρh

1 − 1)
(t2 −H)2 + (1− ρ2)s21 + ρ2(t2 − s2)2

+ (1− ρ2 − ρl
1)

[ρh
1 + ρ2 − 1

1− ρ2 − ρl
1

(H − a1)− (t2 −H)
]2

}
− 1

2
h2µ2(1− ρ2 − ρl

1)
[ρh

1 + ρ2 − 1
1− ρ2 − ρl

1

(H − a1)− L
]2

where s1, s2, t1, t2 are the same as given in Case 2.1 (Case 4.1).
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14. Assume that conditions of Case 2.2 (or Case 4.2) are satisfied. Note that

ψ̃1 + (1 + η(ρh
1 − 1))((1− η)(ψ̃1 − ψ̃+

2 )(ρh
1 − 1))−1 ≥ a1

implies that ψ̃1 ≥ ψ̃2. Since the low period is not long enough for class 1 fluid to

decrease to its threshold, t2 = H + L. With some algebra we have

(OPT:14) a1 ≤ H, L ≤ γ1(H − a1),

H + L ≤ ψ̃1 +
1 + η(ρh

1 − 1)
(1− η)(ρh

1 − 1)
(ψ̃1 − ψ̃+

2 )− η

1− η
ψ+,

and the holding cost is

c(H,L) =
{

(ρh
1 − 1)(ρh

1 − ρl
1)

η(1− ρl
1)

(H − t1)2 + (1− ρ2)s21

+ρ2(H + L− s2)2 −
(1− ρl

1)
η

[ρh
1 − 1

1− ρl
1

(H − t1)− L
]2

}
where

s1 = ψ̃+
2 ,

s2 =
(d1/µ1 + d2/µ2)− (ρh

1 − 1)(1− η)t2
ρ2 + η(ρh

1 − 1)
,

t1 =
η(d1/µ1 + d2/µ2) + ρ2(1− η)t2

ρ2 + η(ρh
1 − 1)

,

t2 = H + L.

15. Assume that conditions of Case 2.5 are satisfied, ψ̃2 ≤ ψ̃1 and class 2 reaches its

threshold from below in the high period or conditions of Case 4.3 are satisfied. Recall

that ψ̃2 ≤ ψ̃1 implies that ψ̃2 ≤ ψ̃1 ≤ a1. Since conditions of Case 2.5 and ψ̃2 ≤ ψ̃1

are satisfied, we have H ≤ a1. According to the optimal policy, class 2 has higher

priority in the high period as long as its fluid level is above its threshold, and class 2

fluid reaches its threshold at ψ̃2. After ψ̃2, server will allocate enough capacity to keep

class 2 fluid level below its threshold and the remaining capacity will be allocated to

class 1. In this case, class 1 fluid will never reach its threshold in the high period.
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Similarly, for Case 4.3, under the optimal policy class 1 and class 2 fluids will stay

below their thresholds in the high period. Hence, if

(OPT:15) ψ̃2 ≤ ψ̃1, ψ̃2 ≤ H ≤ a1,

then the holding cost is

c(H,L) =
1
2
h2µ2(1− ρ2)s21.

16. Assume that conditions of Case 2.5 are satisfied, ψ̃2 ≤ ψ̃1, and class 2 fluid does not

reach its threshold in the high period, but it reaches its threshold in the low period.

If

(OPT:16) ψ̃2 ≤ ψ̃1, H ≤ ψ̃2 ≤ H + L,

then the holding cost is

c(H,L) =
1
2
h2µ2(1− ρ2)ψ̃2

2.

17. Assume that conditions of Case 2.5 are satisfied ψ̃2 ≤ ψ̃1, and class 2 fluid does not

reach its threshold in the low period. Hence, if

(OPT:17) ψ̃2 ≤ ψ̃1, H + L ≤ ψ̃2, (261)

then the holding cost is

c(H,L) =
1
2
h2µ2(2ψ̃2 −H − L)(H + L).

A.2 Cost under the FP1 policy for Case 2 and Case 4

Note that when ψ2 < ψ1, under the FP1 policy, class 2 fluid increases to its threshold before

class 1 fluid increases to its threshold in the high period if the high period is long enough,

i.e. if H ≥ ψ2. In order to compute the holding cost under the FP1 policy, we consider 9

different cases labeled (FP1:1) to (FP1:9).
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1. Assume that class 1 fluid increases to its threshold in the high period and decreases

to its threshold in the low period and class 2 fluid also decreases to its threshold in

the low period. Hence, if

(FP1:1) H ≥ ψ1, L ≥ γ4(H − a1)

then the holding cost under FP1 policy is

cFP1(H,L) =
1
2
h2µ2

{
(ρh

1 − 1)(ρh
1 − ρl

1)
η(1− ρl

1)
(H − ψ1)2 −

(ρh
1 − 1)
η

(ψ−1 )2 − ρ2(ψ−2 )2

+
(1− ρ2 − ρl

1)
2

ρ2

[ρh
1 + ρ2 − 1

1− ρl
1 − ρ2

(H − a1)−
(ρh

1 − 1)
(1− ρl

1)
(H − ψ1)

]2

+(1− ρl
1 − ρ2)

[ρh
1 + ρ2 − 1

1− ρl
1 − ρ2

(H − a1)−
(ρh

1 − 1)
(1− ρl

1)
(H − ψ1)

]2
}
.

2. Assume that class 1 fluid increases to its threshold in the high period and decreases

to its threshold in the low period but class 2 fluid does not decrease to its threshold

at the end of the low period. Hence, if

(FP1:2) H ≥ ψ1, γ3(H − ψ1) ≤ L ≤ γ4(H − a1)

the holding cost under FP1 policy is

cFP1(H,L) =
1
2
h2µ2

{
(ρh

1 − 1)(ρh
1 − ρl

1)
η(1− ρl

1)
(H − ψ1)2 −

(ρh
1 − 1)
η

(ψ−1 )2 − ρ2(ψ−2 )2

+
(1− ρ2 − ρl

1)
2

ρ2

[ρh
1 + ρ2 − 1

1− ρl
1 − ρ2

(H − a1)−
(ρh

1 − 1)
(1− ρl

1)
(H − ψ1)

]2

+(1− ρl
1 − ρ2)

[ρh
1 + ρ2 − 1

1− ρl
1 − ρ2

(H − a1)−
(ρh

1 − 1)
(1− ρl

1)
(H − ψ1)

]2
}

−1
2
h2µ2(1− ρ2 − ρl

1)
[(ρh

1 + ρ2 − 1)
(1− ρ2 − ρl

1)
(H − a1)− L

]2
.

3. Assume that class 1 fluid increases to its threshold in the high period but does not

decrease to its threshold in the low period. Hence, if

(FP1:3) H ≥ ψ1, L ≤ γ3(H − ψ1), (262)

then the holding cost under FP1 policy is

cFP1(H,L) =
1
2
h2µ2

{
(ρh

1 − 1)(ρh
1 − ρl

1)
η(1− ρl

1)
(H − ψ1)2 + ρ2(H + L− ψ2)2

−(ρh
1 − 1)
η

(ψ−1 )2 − ρ2(ψ−2 )2 − 1− ρl
1

η

[ρh
1 − 1

1− ρl
1

(H − ψ1)− L
]2

}
.
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4. Assume that class 1 fluid does not increase to its threshold in the high period, but

class 2 fluid increases to its threshold in the high period. In the low period, before

class 2 fluid decreases to its threshold, class 1 fluid increases to its threshold, and the

server allocates enough capacity to maintain class 1 fluid at its threshold until class

2 fluid decreases to its threshold. The low period is long enough for class 2 fluid to

decrease to its threshold. At the end of the low period, fluid levels of both classes are

below their thresholds. Hence, if

(FP1:4) ψ̂ ≤ H ≤ ψ1, L ≤ γ4(H − a1)

where

ψ̂ =
(ρh

1 − 1)(1− ρ2)
ρ2ρl

1 + (ρh
1 − 1)(1− ρ2)

ψ1 +
ρ2ρ

l
1

ρ2ρl
1 + (ρh

1 − 1)(1− ρ2)
ψ2,

then the holding cost under FP1 policy is

cFP1(H,L) =
1
2
h2µ2

{
−ρ2(ψ−2 )2 +

ρ2(1− ρl
1)

1− ρl
1 − ρ2

(H − ψ2)2

+
2ρ2(ρh

1 − 1)
1− ρ2 − ρl

1

(H − ψ1)(H − ψ2)

+
(1− ρ2)(ρh

1 − 1)2

ρl
1(1− ρ2 − ρl

1)
(H − ψ1)2

}
.

5. Assume that class 1 fluid does not increase to its threshold in the high period, but

class 2 fluid increases to its threshold in the high period. In the low period, before

class 2 fluid decreases to its threshold, class 1 fluid increases to its threshold, and the

server allocates just enough capacity to maintain class 1 fluid at its threshold until

class 2 fluid decreases to its threshold. The low period is not long enough for class 2

fluid to decrease to its threshold. At the end of the low period, class 1 fluid is below

its threshold and class 2 fluid is still above its threshold. Hence, if

(FP1:5) ψ̂ ≤ H ≤ ψ1, −γ5(ψ1 −H) ≤ L ≤ γ4(H − a1)

where γ5 = −(ρh
1 − 1)(ρl

1)
−1 then the holding cost under FP1 policy is

cFP1(H,L) =
1
2
h2µ2

{
−ρ2(ψ−2 )2 +

ρ2(1− ρl
1)

1− ρl
1 − ρ2

(H − ψ2)2
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+
2ρ2(ρh

1 − 1)
1− ρ2 − ρl

1

(H − ψ1)(H − ψ2)

+
(1− ρ2)(ρh

1 − 1)2

ρl
1(1− ρ2 − ρl

1)
(H − ψ1)2

}
−1

2
h2µ2(1− ρ2 − ρl

1)
[ρh

1 + ρ2 − 1
1− ρ2 − ρl

1

(H − a1)− L
]2
.

6. Assume that class 1 does not increase to its threshold in the high period, but class 2

increases to its threshold in the high period. If the low period were long enough, class

1 fluid would increase to its threshold before class 2 fluid decreases to its threshold.

However, the low period is not long enough and class 1 fluid is still below its threshold

and class 2 is above its threshold at the end of the low period. Hence, if

(FP1:6) ψ̂ ≤ H ≤ ψ1, L ≤ −γ5(ψ1 −H)

then the holding cost under FP1 policy is

cFP1(H,L) =
1
2
h2µ2

{
ρ2

1− ρ2
(H − ψ2)2 − ρ2(ψ−2 )2

}
−1

2
h2µ2(1− ρ2)

[ ρ2

1− ρ2
(H − ψ2)− L

]2
.

7. Assume that class 1 fluid does not increase to its threshold in the high period, but

class 2 fluid increases to its threshold in the high period. In the low period, class 2

fluid decreases to its threshold before class 1 fluid increases to its threshold. The low

period is long enough such that at the end of the low period, both class 1 and class 2

fluids are below their thresholds. Hence, if

(FP1:7) ψ2 ≤ H ≤ ψ̂, L ≥ γ6(H − ψ2),

where γ6 = ρ2(1− ρ2)−1 then the holding cost under FP1 policy is

cFP1(H,L) =
1
2
h2µ2

{ ρ2

1− ρ2
(H − ψ2)2 − ρ2(ψ−2 )2

}
.

8. Assume that class 1 fluid does not increase to its threshold in the high period, but

class 2 fluid increases to its threshold in the high period. If the low period were long

enough, class 2 fluid would decrease to its threshold before class 1 fluid increases to
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its threshold. However, the low period is not long enough. So, at the end of the low

period, class 2 fluid is still above its threshold and class 1 fluid is below its threshold.

Hence, if

(FP1:8) ψ2 ≤ H ≤ ψ̂, L ≤ γ6(H − ψ2),

then the holding cost under FP1 policy is

cFP1(H,L) =
1
2
h2µ2

{
ρ2

1− ρ2
(H − ψ2)2 − ρ2(ψ−2 )2

}
−1

2
h2µ2(1− ρ2)

[ ρ2

1− ρ2
(H − ψ2)− L

]2
.

9. Assume that neither class 1 fluid nor class 2 fluid reaches its threshold in the high

period. Hence, if

(FP1:9) H ≤ ψ2,

then the cost under FP1 policy is

cFP1(H,L) = 0.

A.3 Cost under the pi-a1 policy for Case 4

Note that in this case if the high period is long enough (i.e. if H ≥ a1), under the πa1

policy, class 1 and class 2 fluids reach their thresholds at the same time, namely, at a1. In

order to compute the holding cost under the πa1 policy, we consider 4 different cases labeled

(a1:1) to (a1:4).

1. Assume that fluid levels of both classes increase to their thresholds at the same time

in the high period, and the low period is long enough to decrease fluid levels of both

classes below their thresholds. Thus, at the end of the low period, both class 1 and

class 2 fluids are below their thresholds. Hence, if

(a1:1) H ≥ a1, L ≥ γ4(H − a1),

then the holding cost under πa1 policy is

ca1(H,L) =
1
2
h2µ2

(
(ρh

1 − 1)(ρh
1 − ρl

1)
η(1− ρl

1)
+

ρ2(ρh
1 − ρl

1)
2

(1− ρl
1)(1− ρl

1 − ρ2)

)
(H − a1)2.
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2. Assume that both classes increase to their thresholds at the same time in the high

period but the low period is not long enough for class 2 fluid to decrease to its

threshold. At the end of the low period, class 1 fluid is below its threshold but

class 2 fluid is still above its threshold. Hence, if

(a1:2) H ≥ a1, γ3(H − a1) ≤ L ≤ γ4(H − a1),

then the holding cost under πa1 policy is

ca1(H,L) =
1
2
h2µ2

(
(ρh

1 − 1)(ρh
1 − ρl

1)
η(1− ρl

1)
+

ρ2(ρh
1 − ρl

1)
2

(1− ρl
1)(1− ρl

1 − ρ2)

)
(H − a1)2

−1
2
h2µ2(1− ρ2 − ρl

1)
[
ρh
1 + ρ2 − 1

1− ρ2 − ρl
1

(H − a1)− L

]2

.

3. Assume that fluid levels of both classes increase to their thresholds at the same time

in the high period but the low period is not long enough for either class 1 or class 2

fluid to decrease to its threshold. At the end of the low period, both class 1 and class

2 fluids are above their thresholds. Hence, if

(a1:3) H ≥ a1, L ≤ γ3(H − a1),

then the cost under πa1 policy is

ca1(H,L) =
1
2
h2µ2

{
(ρh

1 − 1)(ρh
1 − ρl

1)
η(1− ρl

1)
(H − a1)2 + ρ2(H + L− a1)2

−(1− ρl
1)

η

[ρh
1 − 1

1− ρl
1

(H − a1)− L
]2

}
.

4. Assume that fluid levels of both classes are still below their thresholds at the end of

the high period. Hence, if

(a1:4) H ≤ a1,

then the holding cost under πa1 policy is

ca1(H,L) = 0.
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A.4 Cost under the FP2-FP1 policy for Case 2

Case 2 has two subcases: ψ̃1 ≤ ψ̃2 and ψ̃1 ≥ ψ̃2. Recall that ψ̃1 (ψ̃2) is the time that

class 1 fluid increases (class 2 fluid decreases) to its threshold from below (from above) in

the high period if class 2 has higher priority and if the high period is long enough. So, if

ψ̃1 ≤ ψ̃2 ≤ H, class 1 fluid increases to its threshold before class 2 fluid decreases to its

threshold. However, if ψ̃2 ≤ ψ̃1 ≤ H, then class 1 fluid is still below its threshold when

class 2 fluid reaches its threshold in the high period.

1. Assume that in the high period class 1 fluid increases to its threshold (at ψ̃1) before

class 2 fluid decreases to its threshold, after ψ̃1, class 1 has higher priority in the high

period. Suppose that the low period is long enough to reduce fluid levels of both

classes below their thresholds. Thus, at the end of the low period, fluid levels of both

classes are below their thresholds. Hence, if

(FP2-FP1:1) ψ̃1 ≤ ψ̃2, H ≥ ψ̃1, L ≥ γ4(H − a1),

then the holding cost under FP2-FP1 policy is

cFP2−FP1(H,L) =
1
2
h2µ2

{
(ρh

1 − 1)(ρh
1 − ρl

1)
η(1− ρl

1)
(H − ψ̃1)2 + (1− ρ2)(2ψ̃2 − ψ̃1)ψ̃1

+2
(1− ρ2)(ρh

1 − ρl
1)

1− ρl
1

(ψ̃2 − ψ̃1)(H − ψ̃1) + ρ2

[ρh
1 − ρl

1

1− ρl
1

(H − ψ̃1)
]2

+(1− ρ2 − ρl
1)

[ρh
1 + ρ2 − 1

1− ρ2 − ρl
1

(H − a1)−
ρh
1 − 1

1− ρl
1

(H − ψ̃1)
]2

}
.

2. Assume that in the high period class 1 fluid increases to its threshold (at ψ̃1) before

class 2 fluid decreases to its threshold, after ψ̃1, class 1 has higher priority in the high

period. Suppose that the low period is long enough for class 1 fluid to decrease below

its threshold, but not long enough for class 2 fluid to decrease to its threshold. Thus,

at the end of the low period, class 1 fluid level is at its threshold but class 2 fluid is

still above its threshold. Hence, if

(FP2-FP1:2) ψ̃1 ≤ ψ̃2, H ≥ ψ̃1, γ3(H − ψ̃1) ≤ L ≤ γ4(H − a1),
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then the holding cost under FP2-FP1 policy is

cFP2−FP1(H,L) =
1
2
h2µ2

{
(ρh

1 − 1)(ρh
1 − ρl

1)
η(1− ρl

1)
(H − ψ̃1)2 + (1− ρ2)(2ψ̃2 − ψ̃1)ψ̃1

+2
(1− ρ2)(ρh

1 − ρl
1)

1− ρl
1

(ψ̃2 − ψ̃1)(H − ψ̃1) + ρ2

[ρh
1 − ρl

1

1− ρl
1

(H − ψ̃1)
]2

+(1− ρ2 − ρl
1)

[ρh
1 + ρ2 − 1

1− ρ2 − ρl
1

(H − a1)−
ρh
1 − 1

1− ρl
1

(H − ψ̃1)
]2

}
−1

2
h2µ2(1− ρ2 − ρl

1)
[ρh

1 + ρ2 − 1
1− ρ2 − ρl

1

(H − a1)− L
]2
.

3. Assume that in the high period class 1 fluid increases to its threshold (at ψ̃1) before

class 2 fluid decreases to its threshold, after ψ̃1, class 1 has higher priority in the high

period. Suppose that low period is not long enough for class 1 or class 2 fluid to reach

its threshold. Thus, at the end of the low period, both class 1 and class 2 fluid levels

are above their thresholds. Hence, if

(FP2-FP1:3) ψ̃1 ≤ ψ̃2, H ≥ ψ̃1, L ≤ γ3(H − ψ̃1),

then the holding cost under FP2-FP1 policy is

cFP2−FP1(H,L) =
1
2
h2µ2

{
(ρh

1 − 1)(ρh
1 − ρl

1)
η(1− ρl

1)
(H − ψ̃1)2 + (1− ρ2)(2ψ̃2 − ψ̃1)ψ̃1

+ρ2(H + L− ψ̃1)2 + 2(1− ρ2)(ψ̃2 − ψ̃1)(H + L− ψ̃1)

−1− ρl
1

η

[ρh
1 − 1

1− ρl
1

(H − ψ̃1)− L
]2

}
.

4. Assume that if the high period were long enough, class 1 fluid would increase to its

threshold (at ψ̃1) before class 2 fluid decreases to its threshold. However, the length

of the high period is shorter than ψ̃1. Thus, at the end of the high period, class

2 fluid is above its threshold but class 1 fluid is still below its threshold. In the

low period, according to FP2-FP1 policy, class 1 fluid increases to its threshold at

ρh
1(ψ̃1 − H)(ρl

1)
−1 + H. Suppose that this happens before class 2 fluid decreases to

its threshold. Then the server allocates enough capacity to class 1 to maintain class 1

fluid it at its threshold level and the remaining capacity is allocated to serving class

2. Moreover, assume that L ≥ γ4(H − a1), i.e. the low period is long enough for class
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2 fluid to reach its threshold. Hence, if

(FP2-FP1:4) H ≤ ψ̃1 ≤
ρh
1

ρl
1

(ψ̃1 −H) +H ≤ ψ̃2, L ≥ γ4(H − a1),

then the holding cost under FP2-FP1 policy is

cFP2−FP1(H,L) =
1
2
h2µ2

{
(1− ρ2)

[
2ψ̃2 −

ρh
1

ρl
1

(ψ̃1 −H)−H
][ρh

1

ρl
1

(ψ̃1 −H) +H
]

+(1− ρ2 − ρl
1)

[ρh
1 + ρ2 − 1

1− ρ2 − ρl
1

(H − a1)−
ρh
1

ρl
1

(ψ̃1 −H)
]2

}
.

5. Assume that all the assumptions of (FP2-FP1:4) hold except L ≤ γ4(H−a1), i.e. the

low period is not long enough for class 2 fluid to reach its threshold. Thus, at the

end of the low period, class 1 fluid is at its threshold and class 2 fluid is still above its

threshold. Hence, if

(FP2-FP1:5) H ≤ ψ̃1 ≤
ρh
1

ρl
1

(ψ̃1 −H) +H ≤ ψ̃2,
ρh
1

ρl
1

(ψ̃1 −H) ≤ L ≤ γ4(H − a1),

then the holding cost under FP2-FP1 policy is

cFP2−FP1(H,L) =
1
2
h2µ2

{
(1− ρ2)

[
2ψ̃2 −

ρh
1

ρl
1

(ψ̃1 −H)−H
][ρh

1

ρl
1

(ψ̃1 −H) +H
]

+(1− ρ2 − ρl
1)

[ρh
1 + ρ2 − 1

1− ρ2 − ρl
1

(H − a1)−
ρh
1

ρl
1

(ψ̃1 −H)
]2

}
−1

2
h2µ2(1− ρ2 − ρl

1)
[ρh

1 + ρ2 − 1
1− ρ2 − ρl

1

(H − a1)− L
]2
.

6. Assume that the assumptions of (FP2-FP1:5) hold except the low period is not long

enough for either class 1 fluid or class 2 fluid to reach its threshold. Thus, at the

end of the low period, class 1 fluid is below its threshold and class 2 fluid is above its

threshold. Hence, if

(FP2-FP1:6) H ≤ ψ̃1 ≤
ρh
1

ρl
1

(ψ̃1 −H) +H ≤ ψ̃2, L ≤ ρh
1

ρl
1

(ψ̃1 −H),

then the cost under FP2-FP1 policy is

cFP2−FP1(H,L) =
1
2
h2µ2(1− ρ2)(2ψ̃2 −H − L)(H + L).
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7. Assume that if the high period were long enough, class 1 fluid would increase to its

threshold before class 2 fluid decreases to its threshold. However, the high period is

not long enough for class 1 fluid to increase to its threshold. Suppose that at the end

of the high period, class 1 fluid is still below its threshold, and class 2 fluid is still

above its threshold. Moreover, assume that the low period is long enough for class 2

fluid to decrease to its threshold and in the low period, class 2 fluid decreases to its

threshold earlier than class 1 fluid increases to its threshold. Hence, if

(FP2-FP1:7) H ≤ ψ̃1 ≤ ψ̃2 ≤
ρh
1

ρl
1

(ψ̃1 −H) +H, L+H ≥ ψ̃2,

then the holding cost under FP2-FP1 policy is

cFP2−FP1(H,L) =
1
2
h2µ2(1− ρ2)ψ̃2

2.

8. Assume that all the assumptions of (FP2-FP1:7) hold except that the low period is

not long enough for class 2 fluid to decrease to its threshold. Hence, if

(FP2-FP1:8) H ≤ ψ̃1 ≤ ψ̃2 ≤
ρh
1

ρl
1

(ψ̃1 −H) +H, L+H ≤ ψ̃2

then the holding cost under FP2-FP1 policy is

cFP2−FP1(H,L) =
1
2
h2µ2(1− ρ2)(2ψ̃2 −H − L)(H + L).

9. Assume that class 2 fluid decreases to its threshold before class 1 fluid increases to

its threshold. Hence, ψ̃1 ≥ ψ̃2. After ψ̃2, the server allocates just enough capacity to

keep class 2 fluid at its threshold, i.e. u2 = ρ2, and the remaining capacity is allocated

to class 1, i.e u1 = 1− ρ2. If H ≥ a1, then class 1 fluid reaches its threshold at a1 and

after a1, class 1 has higher priority until class 1 fluid decreases to its threshold again

in the low period. After class 1 fluid decreases to its threshold in the low period, we

have u1 = ρl
1 and u2 = 1− ρl

1. Moreover, assume that L ≥ γ4(H − a1). Thus, at the

end of the low period, fluid levels of both classes are below their thresholds. Hence, if

(FP2-FP1:9) ψ̃1 ≥ ψ̃2, H ≥ a1, L ≥ γ4(H − a1),
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then the holding cost under FP2-FP1 policy is

cFP2−FP1(H,L)

=
1
2
h2µ2

{
(ρh

1 − 1)(ρh
1 − ρl

1)
η(1− ρl

1)
(H − a1)2 + ρ2

[ρh
1 − ρl

1

1− ρl
1

(H − a1)
]2

+(1− ρ2)ψ̃2
2 + (1− ρ2 − ρl

1)
[ρh

1 + ρ2 − 1
1− ρ2 − ρl

1

(H − a1)−
ρh
1 − 1

1− ρl
1

(H − a1)
]2

}
.

10. Assume that all the assumptions of (FP2-FP1:9) hold except L ≤ γ4(H − a1). Thus,

at the end of the low period, class 1 fluid is below its threshold, but class 2 fluid is

above its threshold. Hence, if

(FP2-FP1:10) ψ̃1 ≥ ψ̃2, H ≥ a1, γ3(H − a1) ≤ L ≤ γ4(H − a1),

then the holding cost under FP2-FP1 policy is

cFP2−FP1(H,L)

=
1
2
h2µ2

{
(ρh

1 − 1)(ρh
1 − ρl

1)
η(1− ρl

1)
(H − a1)2 + ρ2

[ρh
1 − ρl

1

1− ρl
1

(H − a1)
]2

+(1− ρ2)ψ̃2
2 + (1− ρ2 − ρl

1)
[ρh

1 + ρ2 − 1
1− ρ2 − ρl

1

(H − a1)−
ρh
1 − 1

1− ρl
1

(H − a1)
]2

}
−1

2
h2µ2(1− ρ2 − ρl

1)
[ρh

1 + ρ2 − 1
1− ρ2 − ρl

1

(H − a1)− L
]2
.

11. Assume that all the assumptions of (FP2-FP1:10) hold except that the low period is

not long enough for class 1 fluid to decrease to its threshold, i.e. L ≤ γ3(H − a1) .

Thus, at the end of the low period, class 1 and class 2 fluids are above their thresholds.

Hence, if

(FP2-FP1:11) ψ̃1 ≥ ψ̃2, H ≥ a1, L ≤ γ3(H − a1),

then the holding cost under FP2-FP1 policy is

cFP2−FP1(H,L) =
1
2
h2µ2

{
(ρh

1 − 1)(ρh
1 − ρl

1)
η(1− ρl

1)
(H − a1)2 + ρ2(H + L− a1)2

+(1− ρ2)ψ̃2
2 −

1− ρl
1

η

[ρh
1 − 1

1− ρl
1

(H − a1)− L
]2

}
.
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12. Assume that all the assumptions of (FP2-FP1:9) hold except H ≤ a1, i.e. high period

is not long enough for class 1 fluid to increase to its threshold. Thus, at the end of

the high period, class 2 and class 1 fluids are below their thresholds. Hence, if

(FP2-FP1:12) ψ̃1 ≥ ψ̃2, ψ̃2 ≤ H ≤ a1,

then the holding cost under FP2-FP1 policy is

cFP2−FP1(H,L) =
1
2
h2µ2(1− ρ2)ψ̃2

2.

13. Assume that class 2 fluid decreases to its threshold before class 1 fluid increases to

its threshold but H ≤ ψ̃2. Then, at the end of the high period, class 2 fluid is above

its threshold and class 1 fluid is below its threshold. Suppose that in the low period

class 2 has higher priority and class 2 fluid decreases to its threshold at ψ̃2 and class

1 fluid remains below its threshold. Thus, at the end of the low period both classes

are below their thresholds. Hence, if

(FP2-FP1:13) ψ̃1 ≥ ψ̃2, H ≤ ψ̃2, H + L ≥ ψ̃2,

then the holding cost under FP2-FP1 policy is

cFP2−FP1(H,L) =
1
2
h2µ2(1− ρ2)ψ̃2

2.

14. Assume that all assumptions of (FP2-FP1:13) hold except that the low period is not

long enough for class 2 fluid to decrease to its threshold. Hence, if

(FP2-FP1:14) ψ̃1 ≥ ψ̃2, H ≤ ψ̃2, H + L ≤ ψ̃2,

then the holding cost under the FP2-FP1 policy is

cFP2−FP1(H,L) =
1
2
h2µ2(1− ρ2)(2ψ̃2 −H − L)(H + L).
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