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Summary

Manufacturing processes with complex routing, feedback, and varied processing times can

be modeled as multiclass queueing networks. Since a refined analysis of these networks is

generally difficult, we conduct an investigation of macroscopic properties such as stability

and capacity. In conjunction with this, we gain some insight into which scheduling rules

should be avoided in such networks. Our stability analysis involves both discrete stochastic

queueing networks and their continuous deterministic counterparts, multiclass fluid models.

The contribution of this thesis consists primarily of three parts. First we derive neces-

sary and sufficient conditions for global stability of a class of two-station fluid networks with

proportional routing. Next, we obtain necessary conditions for the global stability of mul-

ticlass queueing networks with deterministic routing and an arbitrary number of stations.

Finally, we undertake an in-depth investigation of the stability properties of a particular

three-station fluid network. We are able to obtain the the monotone global stability region

for this network and we demonstrate a number of properties which show a contrast with

the two-station case. We also discuss how these results relate to the ideas of capacity and

scheduling in such networks.

viii



Chapter 1

Introduction

With the advent in recent years of highly complex manufacturing, communication, and

computer systems has come a desire for in-depth analysis and control of such systems. In

many of these systems random influences have an important effect on system behavior and

thus engineers must rely on stochastic models to gain insight. Probably the most useful class

of models have been termed queueing networks or perhaps more appropriately stochastic

processing networks. While these stochastic models provide a better reflection of reality than

their deterministic counterparts, they suffer from the disadvantage of being very difficult

to analyze. Nonetheless, it is still possible to gain important insight by analyzing certain

macroscopic properties of these networks. Such insight can then be applied to the more

efficient design, operation and control of the real-life systems.

In this study, we are primarily motivated by semiconductor wafer fabrication processes,

which have unique characteristics and hence present unique difficulties in analysis and con-

trol. The main distinguishing features of such systems are two: the highly reentrant nature

of the processing routes through which jobs traverse the workstations and the rather varied

processing, batching, and setup requirements needed at different stages. The mathematical

models we consider, the multiclass queueing network and its corresponding fluid model,

are simplified models that take into account the reentrant nature and varied processing re-

quirements of these systems. Despite this simplification, we discover a number of surprising
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and counterintuitive properties in our analysis, which reflect on the performance of the real

systems.

Unfortunately, these multiclass queueing networks present an example of networks for

which a refined probabilistic analysis is generally difficult. With this in mind, we conduct

an investigation of what one might call the “first–order” properties of stability and capacity.

Our main focus is on the global stability of queueing and fluid networks. Roughly speaking, a

network is globally stable if it has enough resources to handle incoming work when operating

under any reasonable (non-idling) scheduling rule. A related concept is the capacity of

these systems, which is the maximum sustainable throughput under any non-idling policy.

Stability and capacity are intimately related to scheduling policies and as a result we gain

some intuition into which scheduling rules should be avoided in these networks.

Stability and capacity analysis of queueing networks was perhaps thought to be a moot

subject in the area after the pioneering work of Jackson [24] and Kelly [26] indicated that

such analysis was a relatively trivial matter which simply depended on the traffic intensity

at each station. Essentially, this simplistic analysis implies that the stability and capacity

of the network depends only on looking at the capacity of each station in the network

individually. Renewed interest in this area was sparked by primarily two factors: a series

of counterexamples demonstrating that the station traffic intensities may not be sufficient

to determine the stability region, and insight into the close relationship between discrete

queueing networks and their associated fluid models.

In the first area, Kumar and Seidman [28], Lu and Kumar [30], and Rybko and Stol-

yar [32] gave examples of queueing networks that are unstable under certain non-idling

disciplines, even if the traffic intensity is less than one at all stations. Later, Bramson [4]

and Seidman [33] demonstrated that the same phenomenon could occur in both stochas-

tic and deterministic networks under the popular first-come-first-served (FCFS) queueing
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discipline.

This work inspired further investigations into the stability regions of queueing models

under various scheduling policies and also spurred work on the relationship of such networks

with their fluid counterparts. In a remarkable series of papers, Rybko and Stolyar [32],

Dai [12, 13], and Meyn [31] demonstrated that fluid models could be an extremely powerful

tool for determining the stability region of a wide range of queueing networks. Refinements

and some extensions to this new tool were later provided in Chen [7]. Roughly speaking,

the results of Dai [12] indicate that a queueing network will be stable if its fluid model

counterpart is stable. Dai [13] and Meyn [31] provide partial converses, but recent work by

Bramson [?] indicates that a full converse may not hold.

As a consequence of this newly developed theory, a handful of results, for both the

fluid and discrete models, have been obtained concerning the stability of either specific

networks (see Botvich and Zamyatin [3] or Dumas [21]) or of certain policies (Kumar and

Kumar [29], Kumar [27], Bramson [6]). Of particular interest among researchers have been

the stability properties of networks under priority disciplines (Dai and Weiss [17] and Chen

and Zhang [11]) and the FCFS discipline (Chen and Zhang [10] and Bramson [5]). In this

study, we will be primarily interested in the global stability region, i.e. the region in which a

network with a specific (but arbitrary) topology will be stable under any non-idling policy.

In this direction, researchers have been able to develop fairly sophisticated tools, such as

Lyapunov functions, to analyze the stability region of the fluid models, and thereby resolve

the stability issue for some discrete models.

The contribution of this thesis consists primarily of three parts and we now provide

the background for each part. Perhaps the most sweeping advance in understanding the

global stability properties of queueing networks was provided in a series of papers by Dai

and VandeVate [15, 14, 16]. These papers provided exact (i.e. necessary and sufficient)
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stability conditions for all two-station fluid networks with non-branching (deterministic)

routing. In particular, the stability conditions are given explicitly in terms of the service

and arrival rates of the network. More importantly, they were able to provide an intuitive

explanation of these conditions via the phenomena of push-starts and virtual stations. A

major consequence of their results is that for the class of networks they study it turns out

that the global stability region is determined by the stability properties under a compara-

tively simple, finite set of policies known as static buffer priority disciplines. In establishing

these conditions for two-station fluid networks, they also were able to provide, in some

cases, exact stability conditions for the corresponding queueing networks. At about the

same time, Bertsimas, Gamarnik, and Tsitsiklis [2] independently developed an LP which

could sharply determine the stability region of all two-station multiclass fluid networks.

Unfortunately, this result did not provide as much insight, since the stability region could

not be expressed as an explicit function of the rates in the network.

The results of Chapter 4 attempt to narrow the gap between the results of Bertsimas

et. al. and Dai and VandeVate’s work on two-station fluid networks. Specifically, we

derive necessary and sufficient conditions for global stability of a large class of networks

with proportional (probabilistic) routing. Once again, these conditions can be explained

intuitively in terms of push-starts and virtual stations. As in Dai and VandeVate’s study,

this also establishes the importance of the static buffer priority policies for the larger class

of networks we investigate. The fluid networks we study arise from fluid approximations of

multiclass queueing networks with probabilistic routing. Thus, the conditions we derive, in

some cases, yield necessary and sufficient conditions for the global stability of the associated

stochastic networks.

Of course, the next natural question to investigate is the global stability properties of

queueing and fluid networks with more than two stations, a topic which is addressed in
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Chapters 5 and 6. In Chapter 5, we see that necessary conditions for global stability of

both queueing and fluid networks can be obtained by extending Dai and VandeVate’s idea

of virtual stations to multi-station networks. We show that these necessary conditions,

which again can be expressed explicitly in terms of the rate of the network, arise naturally

from a new phenomenon, termed pseudostations. Although the conditions we derive are

not sufficient for stability in general, they give important insight into the third major part

of our study. It should be noted that Dumas [19, 20, 21] made independent observations

along these lines and our work represents a strengthening of the conditions derived by him

via his concept of ‘unessential’ states.

In Chapter 6 we undertake an in-depth investigation of the stability properties of a par-

ticular three-station network. Although we focus on only one example, we gain considerable

information through this network. We investigate the stability regions of the possible static

buffer priority rules and their relation to the global stability region. We find that, unlike

the two-station case, the static buffer priority policies are no longer the extremal policies

in this network. That is, the worst behavior of the network does not necessarily occur

under such policies. In addition, we discover an important and surprising property of our

network, which again contrasts with the two station case. We show that the global stability

region is not monotone in terms of the mean service times, meaning that increasing the

efficiency of a station may destroy the global stability of the system. Furthermore, we go

on to obtain the exact monotone global stability region of the network. Our results also

provide counterexamples to two recent conjectures in the literature.

As noted above, an LP developed by Bertsimas, Gamarnik, and Tsitsiklis [2] can sharply

determine the stability region for two-station fluid networks. It was conjectured that this

LP would also work for multi-station networks. We are able to show that their LP does not

characterize either the global stability region or even the monotone global stability region
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of our three-station network.

The other conjecture was put forth in a paper by Chen and Zhang [11]. In that paper,

they developed an LP which yielded sufficient stability conditions for networks operating

under a static buffer priority policy and also gave the exact stability region for several such

networks. Unfortunately, our results also show that their LP method does not characterize

the stability region of our three-station network under a static buffer priority discipline.

Finally, we provide a brief outline of this dissertation. In Chapter 2 we describe the

queueing and fluid networks models which are the focus of our study. The theoretical frame-

work for stability analysis is provided in Chapter 3. New theoretical results are provided in

the next three chapters, as outlined above. Finally, we provide some further directions for

research in Chapter 7.



Chapter 2

The Queueing and Fluid Network Models

2.1 The Queueing Model

We now introduce the queueing model that will be the focus of our investigations. We

start with a general model, which is often referred to in the literature as an open multiclass

queueing network (OMQN). In some of our work, we only deal with special cases of an

OMQN and thus we define several submodels in Section 2.4. Unless otherwise stated, all

vectors should be envisioned as column vectors and any inequalities between vectors should

be interpreted componentwise.

Our queueing network consists of d single-server stations, denoted 1, 2, . . . , d and K

customer classes, labeled similarly. Each customer class k may incur exogenous arrivals

according to the process Ek = {Ek(t), t ≥ 0} where Ek(t) is a counting process indicating

the number of arrivals to class k in the interval [0, t]. We allow some of the Ek processes to

be null, in which case the corresponding classes do not incur exogenous arrivals.

Customers in class k of service require service at station σ(k) and are served according

to the service process Sk = {Sk(t), t ≥ 0}, with Sk(t) indicating the cumulative number of

services for class k customers if server σ(k) devotes t units of time to serving this class. Note

that several customer classes may be served at the same station, thus the term “multiclass”

network. When a customer completes service at a station it either leaves the network or is

routed to another station. Let Φk
` (n) denote the the number of class k customers routed to

7
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class `, from the first n class k service completions. The routing process for class k is then

given by Φk = {Φk(n), n ≥ 1}.

We will assume the arrival, service, and routing processes are defined on a probability

space and that the arrival and service processes are right continuous. We further suppose

that all three processes satisfy the following strong law of large numbers. As t → ∞ and

n →∞, with probability one:

Ek(t)
t

→ αk for k = 1, . . . ,K (2.1.1)

Sk(t)
t

→ µk for k = 1, . . . ,K (2.1.2)

Φk
` (n)
n

→ pk` for k, ` = 1, . . . ,K (2.1.3)

We assume that 0 ≤ α < ∞ and 0 < µ < ∞. The matrix P = (pk`), which is substochastic

by definition, is usually referred to as the routing matrix. In this study, we only consider

open queueing networks, and thus we impose the condition that P has spectral radius less

than one. One consequence of this assumption is that the matrix (I −P ′) is invertible with

(I − P ′)−1 = I + P + P 2 + . . .

This restriction ensures that all customers will eventually leave the network.

Assumptions (2.1.1) and (2.1.2) are rather mild and roughly speaking, hold when Ek

and Sk are renewal processes. We now make this statement more precise. Let E denote

the set of classes with non-null exogenous arrivals. Suppose each arrival process Ek, k ∈ E

is characterized by interarrival times ξk = {ξk(n), n ≥ 1} and the service processes Sk are
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characterized by service times νk = {νk(n), n ≥ 1}. Further, assume ξ1, . . . , ξK , ν1, . . . , νK

are mutually independent iid sequences with finite first moments. In this case Ek will satisfy

(2.1.1). Also, if there is an upper bound on the number of class k customers which can have

outstanding partial services, then Sk satisfies (2.1.2). We further note that assumption

(2.1.3) holds if customers are routed according to the usual Markovian routing scheme,

but in fact will hold under more general schemes. For example, consider customers who

complete service at class 1. Suppose we route the first 5 customers to class 2, the next 5

to class 3, the next 5 to class 2, and continue in this manner. This type of routing scheme

will satisfy assumption (2.1.3) with P12 = P13 = 1/2.

In later sections, we may need to consider stronger conditions on the the arrival and

service processes. Again consider the characterizations of Ek and Sk given above. The

following conditions were introduced in Dai [12].

Assumption 2.1.1. The interarrival times are unbounded and spread out if for each k ∈

E, there exists some integer jk > 0 and some function pk(x) ≥ 0 on IR+ with
∫∞
0 pk(x) dx >

0, such that

P{ξk(1) ≥ x} > 0 for any x > 0

and

P

{
a ≤

jk∑
i=1

ξk(i) ≤ b

}
≥
∫ b

a
pk(x) dx for any 0 ≤ a < b

2.2 Queueing Disciplines and Dynamics

We next consider the dynamic equations that govern the evolution of the queueing network.

We let Qk(t) be the number of customers in class k (waiting or in service) at time t and set

Q(t) = (Q1(t), . . . , QK(t)). The allocation process is T (t) = (T1(t), . . . TK(t)), where Tk(t)

is the cumulative amount of time during the interval [0, t] that server σ(k) spends serving
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class k customers. This allocation process will depend on the type of queueing discipline

employed in the network. For notational convenience we also define the idle time process

for each station i as

Ui(t) ≡ t−
∑

k:σ(k)=i

Tk(t)

.

With these definitions we are prepared to write down the following dynamical equations

for our network:

Q(t) = Q(0) + E(t) +
K∑

k=1

Φk(Sk(Tk(t)))− S(T (t)) for t ≥ 0 (2.2.1)

Q(t) ≥ 0 for t ≥ 0 (2.2.2)

T (0) = 0 and Tk(·) is nondecreasing for 1 ≤ k ≤ K (2.2.3)

Ui(·) is nondecreasing for each station i (2.2.4)

where S(T (t)) ≡ (S1(T1(t)), . . . , SK(TK(t))). Equation (2.2.1) implies that the queue length

process Q(t) will also be right continuous. The last three equations are natural assumptions

given our definitions of Q(t) and T (t).

The concept of a queueing discipline, which we turn to next, is of paramount importance

in our study. When the queueing network undergoes a change of state, i.e. a customer

arrives or completes service at a station, the server must determine which customer to work

on next. The rule that the server uses to make this decision is known as a queueing discipline

or dispatch policy. If we specify that our servers must act according to a particular policy or

class of policies, this will impose additional restrictions on the allowable allocation processes

T (t) that determine the behavior of the queue length process Q(t). When such restrictions
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apply, we will need to augment (2.2.1)–(2.2.4) with additional equations. If simultaneous

events are allowed in our model, then certain pathological behavior can occur depending

on how deadlocks are broken by the system (see Whitt [34] for example). Hence, to avoid

these pathologies, we assume that such events are treated as if they occurred sequentially,

rather than simultaneously. For example, if two customers finish service at the same time,

we assume one service is completed before the other, and at this time implement all system

logic that follows due to this completion.

We now define the set of non-idling dispatch policies to be those under which a server

must do work whenever there are customers waiting to be served. This class of policies

imposes the additional conditions:

∫ ∞

0
Zi(t) dUi(t) = 0 i = 1, . . . , d (2.2.5)

where

Zi(t) :=
∑

k:σ(k)=i

Qk(t) i = 1, . . . , d

on our dynamical equations. From now on, we will assume that our networks are operating

within the class of non-idling disciplines.

Another class of dispatch policies that we will be dealing with frequently is the class of

static buffer priority policies. At a server employing such a discipline, customers are served

according to some fixed ranking of the classes and on a first-come-first-served basis (FCFS)

within classes. This class of policies will play a pivotal role in later sections. We describe

a buffer priority policy π as a permutation of the classes 1, . . . ,K in the network. Classes

listed first in the permutation have higher priority than those listed later. For example, in

the network pictured in Figure 1, the priority policy that gives highest priority to classes

4, 2, and 6 is written as π{4,2,6,1,5,3}. Since the lowest priority classes can be dropped from
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m1 m2 m3

m4 m5 m6

α

Station 1 Station 2 Station 3

Figure 1: A simple priority network

the list without ambiguity we will write this same policy as π{4,2,6}. Furthermore, if class k

has higher priority than class `, then we write π(k) < π(`). For simplicity of exposition, we

assume that the priority disciplines described above are preempt-resume, this means that a

server can interrupt service to one customer to serve a higher priority customer and then

resume service at a later time.

In a reentrant line (see Section 2.4), the static buffer priority policy for which π(k) < π(`)

if and only if k > ` is called last-buffer-first-served (LBFS). For reentrant lines, this is

equivalent to a commonly seen policy in industry often called shortest-(expected)remaining-

processing-time-first or first-in-system-first-out (FISTFO). The static buffer priority policy

for which π(k) < π(`) if and only if k < ` is called first-buffer-first-served (FBFS).

We need to describe additional equations that the queueing network must obey if it is
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operating under a fixed static buffer priority policy π. To this end we let:

Hk = {` : σ(`) = σ(k), π(`) ≤ π(k)} (2.2.6)

T+
k (t) =

∑
`∈Hk

T`(t) (2.2.7)

U+
k (t) = t− T+

k (t) (2.2.8)

Z+
k (t) =

∑
`∈Hk

Q`(t) (2.2.9)

Now a network operating under a preempt-resume static buffer priority policy π must obey:

∫ ∞

0
Z+

k (t)dU+
k (t) = 0 for all k = 1, . . . ,K (2.2.10)

This expression ensures that a lower priority customer cannot receive service if there is

positive workload due to higher priority customers.

2.3 Fluid Models

In this section we introduce the notion of a fluid network. A fluid network is a continuous

deterministic dynamical model that is an analog to the discrete stochastic queueing

network. In the fluid network the notion of discrete customers is replaced by the notion

of fluids or customer mass. The connection between the two models will become more

apparent in Chapter 3.

We start by briefly reviewing the notion of a fluid limit, for more details, we refer the

reader to Chen and Mandelbaum [8] and Dai [12, 13]. Consider the joint process (Q(t), T (t)),
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where Q(t) = (Qi
k(t)) and T (t) = (T i

k(t)) are the vector-valued queue length and allocations

processes as previously defined. We say that this process has a fluid limit (Q̄(t), T̄ (t)) if for

some sample path ω and a sequence rn →∞:

(
Q(rnt, ω)

rn
,
T (rnt, ω)

rn

)
−→

(
Q̄(t), T̄ (t)

)
uniformly on compact sets (2.3.1)

The type of scaling in time and space used in (2.3.1) will be referred to as fluid scaling.

Under our assumptions (2.1.1)–(2.1.3) on the queueing network, it can be shown that the

fluid limits Q̄(t) and T̄ (t), if they exist, must satisfy a set of fluid equations. This set of

dynamical equations that corresponds with a queueing model will be collectively referred

to as the fluid model, which we describe below.

In the fluid model that corresponds to the queueing network described in Section 2.1,

we once again have d single-server stations and K classes of fluids that are processed at the

various stations. Fluid of class k may arrive from the outside at rate αk > 0. Also, class

k fluid requires processing at station σ(k) and can be processed at the maximum rate of

0 < µk < ∞ if station σ(k) devotes all of its effort to processing class k fluid. The service

time for a class k fluid is mk = 1/µk, i.e. the time it takes to process one unit of fluid. As

before, multiple classes may be served at a single station. After class k fluid is processed

at a station it is routed to another station or stations according to the routing matrix P .

If pk` = 1, then all of the class k fluid is routed to class `. In the case where 0 < pk` < 1,

we have proportional routing in our network, i.e. a proportion pk` of class k fluid is routed

to class `. This proportional routing is analogous to probabilistic routing in the stochastic

network. Any fluid that is not routed to another class leaves the network.

Let us denote the amount of class k fluid in the network by Q̄k(t) and let T̄k(t) denote

the amount of time server σ(k) devotes to class k fluid in the interval [0, t]. Again, the
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allocation process T̄ (·) will depend heavily on the dispatch policy employed in the network.

In general, we will use the bar notation to denote fluid quantities. In Chapters 4 and 6 we

will be concerned only with fluid networks and thus drop this notation to avoid cluttered

formulas.

With these definitions we are ready to write down the dynamical equations for our fluid

network that are analogous to (2.2.1)–(2.2.4):

Q̄(t) = Q̄(0) + αt + (I − P ′)∆T̄ (t) for t ≥ 0 (2.3.2)

Q̄(t) ≥ 0 for t ≥ 0 (2.3.3)

T̄ (0) = 0 and T̄k(·) is nondecreasing for 1 ≤ k ≤ K (2.3.4)

Ūi(·) is nondecreasing for each station i (2.3.5)

where ∆ = diag(µ) is the diagonal matrix of the service rates and

Ūi(t) ≡ t−
∑

k:σ(k)=i

T̄k(t)

We can consider dispatch policies for the fluid network that are analogous to those in the

queueing network. Once again, a non-idling policy is one in which station i must work at

full speed whenever there is a positive fluid level at station i. We can express this constraint
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on the allowable allocation processes by

∫ ∞

0
Z̄i(t) dŪi(t) = 0 i = 1, . . . , d (2.3.6)

where

Z̄i(t) :=
∑

k:σ(k)=i

Q̄k(t) i = 1, . . . , d

The class of static buffer priority disciplines for fluid networks is analogous to those in

the queueing model. Once again, the classes at a station are assigned a fixed ranking, and

the server cannot devote any effort to processing class k fluid unless the fluid level is zero

for all classes with a higher ranking. We define fluid quantities that are analogous to those

in the discrete model:

T̄+
k (t) =

∑
`∈Hk

T̄`(t) (2.3.7)

Ū+
k (t) = t− T̄+

k (t) (2.3.8)

Z̄+
k (t) =

∑
`∈Hk

Q̄`(t) (2.3.9)

Again, a fluid network operating under a preempt-resume static buffer priority policy π

must obey: ∫ ∞

0
Z̄+

k (t)dŪ+
k (t) = 0 for all k = 1, . . . ,K (2.3.10)
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2.4 Submodels

We will find it useful in subsequent sections to deal with a number of special cases or

submodels, of an OMQN. These submodels are primarily differentiated by the type of

routing scheme or routing matrix allowed. The definitions outlined in this section apply to

both fluid and discrete networks.

The first definition is adapted from Chen and Yao [9], which studies networks with an

acyclic transfer mechanism.

Definition 2.4.1. Let

I(k) ≡ {i = 1, . . . ,K : pi`1p`1`2 · · · p`nk > 0 for some `1, . . . , `n}

i.e. I(k) is the set of classes from which k is reachable. A multiclass network is said to be

an acyclic transfer mechanism network (ACTN) iff k 6∈ I(k) for all classes k = 1, . . . ,K.

Essentially, customers or fluid in an ACTN cannot pass through any given buffer more

than once. A network that is an ACTN is depicted in Figure 2.

Definition 2.4.2. A multiclass network is a strictly branching network (SBN) if

• It is an ACTN.

• For every class k there exists at most one class `, such that p`k > 0.

• For every class k, αk > 0 iff there are no classes `, such that p`k > 0.

A simple example of a strictly branching network is pictured in Figure 3. The class of

SBN’s will be the main focus of study in Chapter 4. In that chapter, we will also draw a
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Figure 2: An acyclic transfer mechanism network

connection between the class of ACTN’s and SBN’s.

Definition 2.4.3. A multiclass network is a multi-type network (MTN) if

• It is a strictly branching network.

• p`k is 0 or 1 for every 1 ≤ `, k ≤ K.

Essentially, a discrete MTN employs deterministic routing, i.e. there are a number of

products or types of customers, each of which follows a deterministic route through the

network. A fluid MTN does not employ proportional routing. We will study the behavior

of both fluid and discrete MTN’s in Chapter 5. A simple MTN is portrayed in Figure 4.
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Figure 3: A strictly branching network

Definition 2.4.4. A multiclass network is a reentrant line if

• It is a multitype network.

• The classes 1, . . . ,K can be labeled such that pk,k+1 = 1 for all 1 ≤ k < K.

In other words, a reentrant line is a MTN with only one type of customer. Chapter 6

investigates the properties of the fluid reentrant line pictured in Figure 1.
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Chapter 3

Stability and Capacity

3.1 Stability and Capacity

As mentioned in Chapter 1, the objective of our study is to investigate the macroscopic

property of queueing and fluid networks that has been termed stability. In this chapter, we

define notions of stability for queueing and fluid networks and explain how fluid networks

can be exploited to more easily analyze the stability of their stochastic counterparts. In

Section 3.3 we discuss an approach to the stability analysis of fluid networks via Lyapunov

functions, specifically piecewise linear Lyapunov functions. This will then set the stage for

more in-depth investigations of stability in subsequent chapters.

One notion of stability that we will explore is most easily connected to the notion of

positive recurrence for Markov chains. First, consider a multiclass queueing network in

which the arrival processes Ek and the service processes Sk are Poisson. In this case, with

an appropriate state space {X(t), t ≥ 0} (which may depend on the service discipline), the

state process of the queueing network can be modeled as a Markov process with a countable

state space and stability of this process is equated with positive recurrence. For the case of

non-Poisson arrival and service processes, we may augment the state space (i.e. add residual

service and arrival times) to retain the Markov property. In fact, it can be shown that the

state process {X(t), t ≥ 0} is a strong Markov process given appropriate assumptions on

the input and service processes and a proper augmentation of the state space (see Dai [12]).

21
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For such a Markov process, we may then consider the notion of positive Harris recurrence

as a measure of stability. Thus, one sensible definition of stability is as follows:

Definition 3.1.1. A queueing network is stable if the associated state process {X(t), t ≥ 0}

is positive Harris recurrent.

More information on positive Harris recurrence can also be found in Dai [12]. We note

that in the case of a Markov chain, the notion of positive Harris recurrence coincides with

the more familiar notion of positive recurrence.

To introduce a different notion of stability for the queueing network we need to define

the concepts of effective arrival rates and traffic intensity. For each class k, the effective

arrival rate λk indicates the long-term arrival rate to class k, due to both internal and

external arrivals, that we would expect if the system is in a steady state. We present the

vector traffic equation:

λ = α + λP ′ (3.1.1)

Due to our assumption on P , equation (3.1.1) always has a unique solution. We thus define

the vector of effective arrival rates as:

λ = (I − P ′)−1α

Next, for each station i = 1, . . . , d let

ρi =
∑

k:σ(k)=i

λkmk

We will refer to ρi as the nominal workload or traffic intensity for server i. Note that for
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later purposes, the definitions for ρ and λ apply to both queueing and fluid networks.

Next we let Dk(t) = Sk(Tk(t)) be the departure process from each class k in the queueing

network, i.e. Dk(t) is the number of class k customers which have completed service in [0, t].

It is reasonable to expect that in a stable system, the long-run departure and arrival rates

are equal. We thus consider the idea of pathwise stability, a concept first introduced by

El-Taha and Stidham [22].

Definition 3.1.2. A queueing network is said to be pathwise stable if for every class k:

Dk(t)
t

−→ λk as t →∞ (3.1.2)

with probability one.

We note that the concept of pathwise stability for a queueing network is generally

speaking weaker than the notion of stability. For example, consider an M/M/1 queueing

network with arrival rate α and service rate µ. This system is both stable and pathwise

stable when α < µ and is neither when α > µ. When α = µ it is well known that the

underlying Markov process is null recurrent and thus by our definition not stable. In this

case, though, the system is pathwise stable.

For the fluid model, which is a deterministic system, we characterize stability in terms

of fluid solutions. A pair (Q̄(·), T̄ ((·)) is a fluid solution if it satisfies (2.3.2)–(2.3.5) and any

additional equations imposed by the class of disciplines under study. With this in hand, we

introduce below several stability notions related to the fluid network.

Definition 3.1.3. A fluid network is globally stable if there exists a time δ > 0 such that for

each non-idling fluid solution (Q̄(·), T̄ (·)) satisfying (2.3.2)–(2.3.6) with |Q̄(0)| = 1, Q̄(t) = 0
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for all t ≥ δ.

Definition 3.1.4. A fluid network under a static buffer priority discipline π is stable if there

exists a time δ > 0 such that for each fluid solution (Q̄(·), T̄ (·)) satisfying (2.3.2)–(2.3.6)

and (2.3.10) with |Q̄(0)| = 1, Q̄(t) = 0 for t ≥ δ.

Definition 3.1.5. A fluid solution (Q̄(·), T̄ (·)) is unstable if there is no δ > 0 such that

Q̄(t) = 0 for all t ≥ δ.

Definition 3.1.6. The fluid model under a given policy or class of policies is weakly unstable

if there exists a time δ > 0 such that Q̄(δ) 6= 0 for each fluid solution Q̄(·) with |Q̄(0)| = 0.

Definition 3.1.7. For given α = (αi) > 0, the global stability region D∞ of a fluid network

is the set of positive service times m = (mk) for which a fluid network is globally stable.

For a given α = (αi) > 0 and a static buffer priority discipline π, the stability region Dπ of

a fluid network under the discipline is the set of positive service times m = (mk) for which

the fluid network under the discipline is stable.

Definition 3.1.8. For a given arrival vector α = (αi) > 0, the monotone global stability

region M∞ of the fluid network is the set of positive service time vectors m such that the

fluid network is globally stable for all positive service time vectors m̃ ≤ m.

Note that our stability definitions require that all fluid solutions converge to zero after

some finite time, while the notion of weakly unstable requires that all fluid solutions “pop

up” uniformly at some time. Thus, the two definitions do not cover all possible behavior of

the fluid solutions.

We next focus on the concept of the capacity of a queueing or fluid network. If a given

system is stable, then we know that in the long-run the amount of customers or fluid in
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the system remains “reasonable” or at least does not diverge to infinity. This implies that

over time the rate at which customers are processed is roughly equal to the arrival rate of

these customers. In industry, this processing rate is often called throughput. One notion of

interest to a system designer may be the maximum sustainable throughput for a particular

system, which we term capacity.

For a reentrant line, there is only one arrival rate α and thus only one throughput rate

for such a system. For the case of a reentrant line we can define the capacity of the system

as follows:

Definition 3.1.9. The capacity Λπ of a reentrant line operating under the dispatch policy

π, with fixed routing and processing rate vector µ is given by

Λπ = sup{α > 0 : the network with arrival rate α is stable under π} (3.1.3)

Definition 3.1.10. The capacity Λ∞ of a reentrant line operating under the class of non-

idling dispatch policies, with fixed routing and processing rate vector µ is given by

Λ∞ = sup{α > 0 : the network with arrival rate α is globally stable} (3.1.4)

Since determining the global stability region immediately gives the capacity Λ∞ for a

fixed network, it is the global stability region of various networks, both fluid and discrete

that will be the primary object of study in this dissertation.
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3.2 Stability Analysis

It is often difficult to verify directly the stability of a discrete stochastic network. In

this section, we describe the connection between the stability of a queueing model and its

fluid analog, which will provide a powerful tool for the stability analysis of such stochastic

networks. The first result we quote is from Dai [12]:

Theorem 3.2.1. Suppose Assumption 2.1.1 holds for the service and arrival processes in the

queueing model, then the queueing model under a specified discipline or class of disciplines

is stable if the corresponding fluid model is stable.

A partial converse to the above theorem, which we will use in later sections, was provided

in Dai [13]:

Theorem 3.2.2. If the corresponding fluid model is weakly unstable, then the queueing

network is unstable in the sense that with probability one:

|Q(t)| −→ ∞ as t →∞

Remarks: The corresponding fluid model is described by (2.3.2)–(2.3.6) and any addi-

tional equations that are necessary to specify the class of queueing disciplines. We refer to

Theorem 3.2.2 as a partial converse because of the gap between the notions of stability and

weak instability discussed in Section 3.1.

It is well-known (see, for example, Chen [7]) that no fluid solutions is stable unless the
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traffic intensity or work arriving per unit time for each station is less than 1, i.e.

ρi < 1 for i = 1, . . . , d (3.2.1)

Hence these conditions are necessary for stability of the fluid model. If the conditions (3.2.1)

hold, we say that the usual traffic conditions are satisfied.

Now, if we have ρi > 1 for any station i, then in fact all fluid solutions will diverge to

infinity. By virtue of Theorem 3.2.2, any associated queueing model will be neither stable

or pathwise stable. Thus the weaker traffic conditions

ρi ≤ 1 for i = 1, . . . , d (3.2.2)

are necessary for stability of both the fluid and discrete networks. Our objective is to

investigate what other conditions may be necessary and/or sufficient for global stability of

a given class of networks.

In Chapter 4, we will derive necessary and sufficient conditions for stability of a class of

two-station fluid models. Hence, these results provide sufficient conditions for the stability

of the associated queueing models, via Theorem 3.2.1. In some cases these conditions can

also be shown to be necessary for the queueing model.

Necessary conditions for stability of multi-station queueing models are derived in Chap-

ter 5. Essentially, we show that the associated fluid model is unstable if our conditions do

not hold and thus Theorem 3.2.2 implies instability of the queueing model as well.

Finally, in Chapter 6, we undertake an in-depth investigation of the stability region of a

certain three-station fluid network. In particular, we obtain sufficient conditions for stability
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of this network and also derive the exact monotone global stability region. Unfortunately,

these results tell us little about the associated queueing model, except to also yield some

sufficient conditions, by again invoking Theorem 3.2.1.

3.3 Lyapunov Functions

More often than not, it is impossible to investigate directly the behavior of all admissible

fluid solutions in order to determine the stability of a class of fluid networks. For this reason,

we depend heavily on the concept of a potential function or Lyapunov function to analyze

the behavior of fluid solutions. Suppose we can find a function f(·) of the fluid level vector

Q̄(t) such that

• f(Q̄(t)) ≥ 0 for all t ≥ 0

• f(Q̄(t)) = 0 implies |Q̄(t)| = 0

• f(Q̄(t)) = 0 for all fluid solutions Q̄(t) and all t > δ, where δ is a fixed time greater

than zero.

Such a function f(·) is called a Lyapunov function for the fluid model. Often we will denote

f(Q̄(t)) as simply f(t). It is clear from our definition of stability that the fluid model will be

stable if a Lyapunov function exists for that network. However, this fact is not particularly

useful to establish necessary and sufficient stability conditions, since obtaining sufficient

conditions which are also necessary may require us to search over all possible functions f(·).

Instead, we will restrict our search to a particular class of Lyapunov functions, specifically

piecewise linear functions. Existence of such of a function can then establish sufficient

conditions, which in some cases, can be shown to be necessary by other means.

In order to proceed, we need to review some analytical results. We call a function g(·)

regular at t if it is differentiable at t and we will use ġ(t) to denote the derivative of g(·)
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at such a regular point. Any expressions involving ġ(t) assume that t is a regular point

of g. Also, we recall that any absolutely continuous function on [0,∞) is regular almost

everywhere with respect to the Lebesgue measure.

Now, we quote the following basic lemma from Dai and Weiss [17]:

Lemma 3.3.1. Let g be an absolutely continuous non-negative function.

1. If g(t) = 0 and t is regular, then ġ(t) = 0.

2. Suppose there exists an ε > 0 such that for every t regular g(t) > 0 implies ġ(t) ≤ −ε.

Then g(t) = 0 for all t ≥ δ, where δ = g(0)/ε. Furthermore, g(·) is nonincreasing and

hence once it reaches zero it stays there forever.

Next we note that the fluid dynamical equation (2.3.5) implies that T̄k(·) and Ūi(·) are

Lipschitz continuous and thus absolutely continuous. Then (2.3.2) gives us that Q̄k(·) is

also absolutely continuous.

In Chapters 4 and 6 we will introduce different but related Lyapunov functions to aid

in our stability analysis of certain classes of fluid networks. All of the Lyapunov functions

we will be dealing with are max-linear functions of the fluid buffer levels Q̄k(·), i.e. the

proposed functions are of the form

f(Q̄(t)) = max{f1(Q̄(t)), f2(Q̄(t)), . . . , fN (Q̄(t))}

where f1(Q̄(t)), f2(Q̄(t)), . . . , fN (Q̄(t)) are linear functions of the buffer levels and N is a

finite index. It is clear that the Lipschitz continuity of f(·) then follows from the Lipschitz

continuity of Q(·). The following proposition, which combines the above facts and lemma,

will be extremely useful throughout our analysis.
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Proposition 3.3.2. Let f(·) be a non-negative max-linear function of Q̄(·) and suppose

1. f(Q̄(t)) = 0 implies |Q̄(t)| = 0

2. There exists an ε > 0
df(Q̄(t))

dt
≤ −ε (3.3.1)

for each time t that is regular for T̄ (·) and f(Q̄(·)) with |Q̄(t)| > 0

then f(·) is absolutely continuous and is a Lyapunov function for the fluid model.



Chapter 4

Stability of Fluid Networks with Proportional Routing

4.1 Introduction

In this chapter we derive necessary and sufficient conditions for global stability of two-station

fluid networks with proportional routing. Our analysis generalizes the results obtained by

Dai and VandeVate [16] and provides more insight into the results of Bertsimas, Gamarnik,

and Tsitsklis [2]. Unfortunately, the results do not extend to the full class of two-station

OMQN’s, but rather to the class of ACTN’s defined in Chapter 2. We note that the class

of SBN’s is a subset of the class of ACTN’s. In particular, an ACTN only requires the first

condition in the definition of SBN’s. However, as we will discuss further in Section 4.7, any

ACTN can be equivalently relabeled as a SBN and thus if we obtain the global stability

region for the class of SBN’s we have obtained the stability region for the class of ACTN’s.

Our procedure for obtaining the exact global stability conditions is as follows. To prove

sufficiency we examine a certain class of piecewise linear Lyapunov functions and show

that such a Lyapunov function exists if the conditions are satisfied; then, necessity of

the conditions is shown via the intuitively appealing phenomena of “virtual stations” and

“pushstarts”, originally introduced by Dai and VandeVate [16].

In Section 4.2 we give the framework for our model. Sections 4.3 through 4.6 provide

the sufficiency arguments for our main theorem. The necessity is proven in Section 4.7,

completing the proof of our main result. Since we only deal with fluid quantities in this

31
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chapter, we will drop the “bar” notation of the previous two chapters.

4.2 Definitions and Notation

We reproduce a review of the Minimum Flow problem from Dai and VandeVate [16], since

it will play an important role in proving our sufficiency result. See Ahuja et al. [1] for

further background on network flow problems.

Consider a directed network (N,E) with node set N and edge set E. We distinguish

two vertices s, the source, and t, the sink. Given (possibly infinite) lower bounds ` = (`ij)

and upper bounds u = (uij), we wish to find a minimum flow from the source s to the sink t

subject to flow conservation constraints and edge capacity constraints. Thus, the minimum

flow problem is:

minimize v

subject to

∑
j∈N

xsj −
∑
j∈N

xjs = v (4.2.1)

∑
j∈N

xij −
∑
j∈N

xji = 0 for each node i ∈ N \ {s, t} (4.2.2)

∑
j∈N

xtj −
∑
j∈N

xjt = −v (4.2.3)

`ij ≤ xij ≤ uij for each edge (i, j) ∈ E. (4.2.4)

Suppose (x, v) satisfies (4.2.1)–(4.2.4). We refer to the vector x as a feasible flow and the

value v as the value of the flow x. A minimum flow is a feasible flow with smallest value



33

among all feasible flows.

An s, t-cut in the network (N,E) is a partition of N into two sets S and T with s ∈ S

and t ∈ T . The capacity of the cut (S, T ), denoted c(S, T ), is:

c(S, T ) =
∑

(i,j)∈E:i∈S,j∈T

`ij −
∑

(i,j)∈E:i∈T,j∈S

uij .

Note that our definition of capacity interchanges the roles of upper and lower bounds in the

usual definition as applied to the maximum flow problem. This definition is appropriate for

the minimum flow problem and is sometimes referred to as the floor of a cut. A maximum

s, t-cut is one with largest capacity among all s, t-cuts. Theorem 4.2.1 is a classic result of

network flows and can be found in Ahuja et. al. [1, Exercise 6.18, pp. 202].

Theorem 4.2.1. The value of a minimum flow equals the capacity of a maximum s, t-cut.

Next we introduce some definitions and notation required to present our analysis. In

this chapter we will deal only with the class of two-station fluid SBN’s. We will arbitrarily

label one station A and the other station B.

At times, we will need to consider the split network equivalent or SNE of a strictly

branching network. The SNE is a multitype network in which there is a type for every

possible route in the original network. The service rate for each class in the SNE is the

same as in the original network, however, the arrival rates are set to the effective arrival

rate of the exit class of each possible route in the original network. The SNE of the network

in Figure 5 is pictured in Figure 6.

The term “equivalent” may be misleading. It is tempting to think that the global

stability conditions for the SNE are the same as the original network, but this is not the

case. The relation between the SNE and the original network is discussed further in Section
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Figure 5: A strictly branching network

4.7.

With the routing restriction for a SBN, we can think of the network serving a set of I

different fluid types. After a fluid type is processed at a station, it is then proportionally

routed to any number of other stations for service. Since the routing structure does not

allow a fluid to revisit a class, we can label each type with a finite set of class labels. For

notational ease, we append a type label and speak of class (i, k) fluids. Accordingly, we also

add a type label to the service time mi
k and µi

k. Finally, define

Ai = {(i, k) : σ[(i, k)] = A}

Bi = {(i, k) : σ[(i, k)] = B}
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Figure 6: The SNE for the network of Figure 5

i.e. Ai is the set of classes of type i, served at station A.

The routing in a SBN induces a special structure on the classes in the network. Within

a type i if class (i, k) must be visited before class (i, j), then we will write (i, k) ≺ (i, j) or

in some contexts, simply k ≺ j. So, we see that the routing induces a partial order on the

classes in the network and that ≺ satisfies the usual partial order relations. Specifically,

note that within a fluid type, two arbitrary classes need not possess the trichotomy property

(k � j or k ≺ j or k = j), unlike the case in a multitype network. Also, by our definition,

the minimal element within a type is the only one that has a nonzero exogenous arrival

rate.

It will be useful to group sets of classes at a station into excursions, which are blocks of

consecutive visits to a station. The eth excursion of type i classes will be denoted by [i, e]
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and the classes in excursion [i, e] will be denoted by E[i, e]. Each set E[i, e] can be further

divided into the last class in the excursion `[i, e] and the rest of the classes f [i, e], called

first classes. When we deal with a set of excursions, we will use curly braces to indicate

this. For example, the set of possible excursions that directly follow excursion [i, e] will be

denoted by {i, e+}. Also, we let f{i, e+} denote the set of classes which are in E{i, e+} and

which are not last classes in any possible excursion.

In Figure 7, there are two possible excursions at station A, one consisting of class 1

only and one consisting of classes 7, 8, and 9. At station B there are also two possible

excursions, one consists of classes 2 and 3, which occurs if the customer leaves station B

after its service at class 3. The other possibility is an excursion which includes classes 2

through 6, which occurs if the customer remains at station B after its service at class 3. In

particular, we note that the classes 4, 5, and 6 alone do not comprise an excursion.

We need to introduce some definitions related to excursions in order to state our results

succinctly:

Definition 4.2.1. A set X of excursions such that for each type i ∈ I if [i, e] ∈ X then

{i, e+} ∩X = ∅ is said to be separating. A separating set X is called A-strictly separating

if it contains no first excursions at station A. We define B-strictly separating sets similarly.

Note that the set of excursions at station A is B-strictly separating and the set of

excursions at station B is A-strictly separating. We call these two sets trivial separating

sets.

Definition 4.2.2. Each separating set S of excursions induces a collection V (S) which is
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Figure 7: A strictly branching example

described by the following:

V (S) =
(
∪[i,e]∈SE[i, e]

)⋃(
∪[i,e]∈Ei\S f̂{i, e+}

)⋃(
∪[i,e]∈Sf{i, e+}

)

where f̂{i, e+} is the set of first classes which follow excursion [i, e] and occur at a different

station than [i, e], f{i, e+} is the set of first classes which follow excursion [i, e] and occur

at the same station as [i, e]. When S is strictly separating we refer to V (S) as a virtual

station.

Definition 4.2.3. We use the notation E to denote a collection of excursions which have
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the property that for any (i, k) and (i, j) in E and which are not contained in the same

excursion, (i, k) 6≺ (i, j). We refer to such a set of excursions E as an antichain. Next, we

let F�(E) denote the collection:

F�(E) =
⋃

[i,ei]∈E

{(i, k) : i ∈ I, k � j}.

We let F≺(E) denote the collection:

F≺(E) =
⋃

[i,ei]∈E

{(i, k) : i ∈ I, k ≺ j}.

We also adopt the notation, that for each subset of classes X:

λm(X) =
∑

(i,k)∈X

λi
km

i
k.

The primary result of this chapter is the following:

Theorem 4.2.2. A two-station fluid SBN is globally stable iff ρA < 1, ρB < 1 and for each

antichain E and each separating set S, we have

λm(VA(S) \ F�
A (E))

1− λm(F≺
A (E))

+
λm(VB(S) \ F�

B (E))
1− λm(F≺

B (E))
< 1, (4.2.5)

We will refer to these conditions as virtual workload conditions. If such a virtual con-

dition is violated for set of classes, we call this set of classes a virtual bottleneck. We will

comment on the applicability of Theorem 4.2.2 at the end of Chapter 5
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4.3 The Lyapunov function

In this section, we introduce the class of piecewise linear Lyapunov functions that we will

use to prove the sufficiency of the conditions in Theorem 4.2.2. This Lyapunov function is

a natural extension of the function used by Dai and VandeVate [16] and we will follow their

methodology closely, making appropriate alterations where needed.

First, we let Zi
k(t) denote the amount of fluid that has entered the network by time t

and will receive class (i, k) service eventually:

Zi
k(t) = Zi

k(0) + λi
kt−Di

k(t) =
∑
j�k

(
λi

k

λi
j

)
Qi

j(t)

where Di
k(t) is the amount of class (i, k) fluid that has been serviced in the interval [0, t].

Remark : In an OMQN we would define Z(t) = (I − P ′)−1Q(t). For an SBN it is possible

to label the classes such that (I −P ′)−1 is lower triangular, allowing us to write Z(t) in the

more explicit form above. In fact, most of our analysis relies on this special structure and

it is for this reason we restrict our study in this chapter to SBN’s.

Now, for a given x we define:

G(x, t) = max{GA(x, t), GB(x, t)}



40

where

GA(x, t) =
∑
i∈I

∑
k∈Ai

xi
kZ

i
k(t) (4.3.1)

GB(x, t) =
∑
i∈I

∑
k∈Bi

xi
kZ

i
k(t) (4.3.2)

If we set xi
k := mi

k for each class (i, k), then we can interpret GA(m, t) as the total workload

for station A in the system at time t. Thus, in general GA(x, t) is the total weighted

workload in the system at time t for station A.

We would like to check for which values of xi
k the G(x, t) as defined above will be a

Lyapunov function. Theorem 4.3.1, originally proven in Dai and Weiss [17], simplifies this

analysis.

Theorem 4.3.1. Suppose G(·) satisfies the following:

GA(x, t) ≤ GB(x, t) whenever
∑
i∈I

∑
k∈Ai

Qi
k(t) = 0 (4.3.3)

GB(x, t) ≤ GA(x, t) whenever
∑
i∈I

∑
k∈Bi

Qi
k(t) = 0 (4.3.4)

∂GA(x, t)
∂t

≤ −ε whenever
∑
i∈I

∑
k∈Ai

Qi
k(t) > 0 (4.3.5)

∂GB(x, t)
∂t

≤ −ε whenever
∑
i∈I

∑
k∈Bi

Qi
k(t) > 0 (4.3.6)

where the derivative conditions hold only at regular points t, then G(x, t) is a Lyapunov

function.



41

We will refer to (4.3.3)–(4.3.6) as the Dai-Weiss conditions.

4.4 A Linear Programming Formulation

Now, modifying the development in Dai and VandeVate [16] we can transform the problem

of finding weights x for which G(·) will satisfy the Dai-Weiss conditions into checking the

feasibility of a linear programming problem.

First, we note that when ∑
i∈I

∑
k∈Ai

Qi
k(t) = 0 (4.4.1)

GA reduces to:

∑
i∈I

∑
k∈Ai

xi
k

∑
j∈Bi,j≺k

(
λi

k

λi
j

)
Qi

j(t)

 =
∑
i∈I

∑
j∈Bi

Qi
j(t)

∑
k∈Ai,k�j

(
λi

k

λi
j

)
xi

k



and GB becomes:

∑
i∈I

∑
k∈Bi

xi
k

∑
j∈Bi,j�k

(
λi

k

λi
j

)
Qi

j(t)

 =
∑
i∈I

∑
j∈Bi

Qi
j(t)

∑
k∈Bi,k�j

(
λi

k

λi
j

)
xi

k



So, GA(x, t) ≤ GB(x, t) for all Q(·) ≥ 0 satisfying (4.4.1) iff:

∑
k∈Ai,k�j

(
λi

k

λi
j

)
xi

k ≤
∑

k∈Bi,k�j

(
λi

k

λi
j

)
xi

k
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for each i ∈ I and ` ∈ Bi. Multiplying through by λi
j we obtain:

∑
k∈Ai,k�j

λi
kx

i
k ≤

∑
k∈Bi,k�j

λi
kx

i
k (4.4.2)

again for each i ∈ I and j ∈ Bi. Since we only consider non-negative x, it is sufficient to

require (4.4.2) hold only for j = `[i, e] for each i ∈ I and each possible excursion [i, e] at

station B.

Similarly, enforcing (4.3.4) yields:

∑
k∈Bi,k�j

λi
kx

i
k ≤

∑
k∈Ai,k�j

λi
kx

i
k

for j = `[i, e] for each i ∈ I and for each possible excursion [i, e] at station A. Note that

above we used the fact that each possible excursion can be identified by a unique last class.

We next transform the Dai–Weiss derivative conditions (4.3.5) and (4.3.6) into inequal-

ities involving x. When ∑
i∈I

∑
k∈Ai

Qi
k(t) > 0

the non-idling conditions requires:

∑
i∈I

∑
k∈Ai

mi
kḊ

i
k(t) = 1 (4.4.3)
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We also have,

ĠA(t) =
∑
i∈I

∑
k∈Ai

xi
kŻ

i
k(t)

=
∑
i∈I

∑
k∈Ai

xi
k

(
λi

k − Ḋi
k(t)

)

=
∑
i∈I

∑
k∈Ai

λi
kx

i
k −

∑
i∈I

∑
k∈Ai

xi
kḊ

i
k(t)

So, ĠA(x, t) ≤ −ε for each D(t) satisfying (4.4.3) iff:

∑
i∈I

∑
k∈Ai

λi
kx

i
k + ε ≤ xi

j/mi
j

for each i ∈ I and ` ∈ Ai.

Similarly, (4.3.6) will be satisfied iff

∑
i∈I

∑
k∈Bi

λi
kx

i
k + ε ≤ xi

j/mi
j

for each i ∈ I and j ∈ Bi.

We now combine the four sets of inequalities derived above to yield the following LP:
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maximize ε (4.4.4)

subject to:

∑
k∈Ai,k�`[i,e]

λi
kx

i
k −

∑
k∈Bi,k�`[i,e]

λi
kx

i
k ≤ 0 each i ∈ I and [i, e] ∈ Ei

B (4.4.5)

∑
k∈Bi,k�`[i,e]

λi
kx

i
k −

∑
k∈Ai,k�`[i,e]

λi
kx

i
k ≤ 0 each i ∈ I and [i, e] ∈ Ei

A (4.4.6)

∑
i∈I

∑
k∈Ai

λi
kx

i
k − xi

j/mi
j + ε ≤ 0 for i ∈ I, j ∈ Ai (4.4.7)

∑
i∈I

∑
k∈Bi

λi
kx

i
k − xi

j/mi
j + ε ≤ 0 for i ∈ I, j ∈ Bi (4.4.8)

x, ε ≥ 0 (4.4.9)
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The LP above is easier to work with if set λi
kx

i
k = yi

k to obtain the transformed linear

program (TLP):

maximize ε (4.4.10)

subject to:

∑
k∈Ai,k�`[i,e]

yi
k −

∑
k∈Bi,k�`[i,e]

yi
k ≤ 0 each i ∈ I and excursion [i, e] ∈ Ei

B (4.4.11)

∑
k∈Bi,k�`[i,e]

yi
k −

∑
k∈Ai,k�`[i,e]

yi
k ≤ 0 each i ∈ I and excursion [i, e] ∈ Ei

A (4.4.12)

∑
i∈I

∑
k∈Ai

yi
k − yi

j/(λi
jm

i
j) + ε ≤ 0 for i ∈ I, j ∈ Ai (4.4.13)

∑
i∈I

∑
k∈Bi

yi
k − yi

j/(λi
jm

i
j) + ε ≤ 0 for i ∈ I, j ∈ Bi (4.4.14)

y, ε ≥ 0 (4.4.15)

Remark : If a strictly branching network has yield loss only (i.e. for all (i, k), p(i,k),(i,j) >

0 for only one class (i, j)) then the above TLP has the same form as the Dai-Vande Vate

LP and thus Theorem 4.2.2 follows immediately from their results.

The next proposition follows as an immediate generalization of Proposition 4.1 in Dai

and Vande Vate [16]:

Proposition 4.4.1. If the TLP given by (4.4.10)–(4.4.14) has unbounded objective values,

then G(x, t) is a Lyapunov function for each solution (x, ε) > 0.
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4.5 A Network Flows Formulation

The feasibility analysis of the TLP (4.4.10)–(4.4.14) can be achieved more easily by trans-

forming it into a parametric network flow problem. As per the Dai-Vande Vate framework,

we can assume

∑
i∈I

∑
k∈Ai

yi
k + ε = 1 (4.5.1)

∑
i∈I

∑
k∈Bi

yi
k + ε = β (4.5.2)

Then, (4.4.13) and (4.4.14) become:

yi
k ≥ λi

km
i
k for i ∈ I and k ∈ Ai (4.5.3)

yi
k ≥ βλi

km
i
k for i ∈ I and k ∈ Bi (4.5.4)

Next, we add slacks s = (si
e) and write (4.4.11)–(4.4.12) as:

∑
k∈Ai,k�`[i,e]

yi
k −

∑
k∈Bi,k�`[i,e]

yi
k + si

e = 0 each i ∈ I and excursion [i, e] ∈ Ei
B (4.5.5)

∑
k∈Bi,k�`[i,e]

yi
k −

∑
k∈Ai,k�`[i,e]

yi
k + si

e = 0 each i ∈ I and excursion [i, e] ∈ Ei
A (4.5.6)

For each possible excursion [i, e] at Station B, we take its corresponding equation of the

form of (4.5.5) and add to it all equations of the type (4.5.6) that correspond to succes-

sor excursions in {i, e+
A} and subtract all equations of the type (4.5.5) that correspond to
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successor excursions in {i, e+
B}. We then multiply by -1 to obtain:

−
∑

k∈f{i,e+
A}

yi
k +

∑
k∈f{i,e+

B}

yi
k + yi

`[i,e] − si
e +

∑
k∈{i,e+

B}

si
k −

∑
k∈{i,e+

A}

si
k = 0

Similarly, we obtain

∑
k∈f{i,e+

B}

yi
k −

∑
k∈f{i,e+

A}

yi
k − yi

`[i,e] + si
e −

∑
k∈{i,e+

A}

si
k +

∑
k∈{i,e+

B}

si
k = 0

for excursions [i, e] at station A.

These transformations give us the following network flow problem:

maximize ε (4.5.7)

subject to:

∑
k∈f{i,e+

B}

yi
k −

∑
k∈f{i,e+

A}

yi
k − yi

`[i,e] + si
e −

∑
k∈{i,e+

A}

si
k +

∑
k∈{i,e+

B}

si
k = 0 for [i, e] ∈ Ei

A(4.5.8)

−
∑

k∈f{i,e+
A}

yi
k +

∑
k∈f{i,e+

B}

yi
k + yi

`[i,e] − si
e +

∑
k∈{i,e+

B}

si
k −

∑
k∈{i,e+

A}

si
k = 0 for [i, e] ∈ Ei

B(4.5.9)
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∑
i∈I

∑
k∈Ai

yi
k + ε = 1 (4.5.10)

−
∑
i∈I

∑
k∈Bi

yi
k − ε = −β (4.5.11)

yi
k ≥ λi

km
i
k for i ∈ I and k ∈ Ai (4.5.12)

yi
k ≥ βλi

km
i
k for i ∈ I and k ∈ Bi (4.5.13)

y, s, ε ≥ 0 (4.5.14)

The network flow problem above can be characterized as follows. It has:

• A node for each possible excursion [i, e] corresponding to (4.5.8) and (4.5.9).

• A node for station A and station B corresponding to (4.5.10) and (4.5.11).

• A node called the root corresponding to the redundant constraint

∑
i∈I

 ∑
k∈Bi∩f [1,i]

yi
k −

∑
k∈Ai∩f [1,i]

yi
k

+
∑

i∈I:`[1,i]∈Bi

si
1 −

∑
i∈I:`[1,i]∈Ai

si
1 = β − 1

obtained by adding (4.5.8)–(4.5.11) and multiplying by -1.

The edges in the network are the following:

1. An edge from the node for station A to the node for possible excursion [i, e] at station

A. This corresponds to the variable yi
`[i,e] and has lower bound λi

`[i,e]m
i
`[i,e].

2. An edge from the node for possible excursion [i, e] at station B to the node for station

B. This corresponds to the variable yi
`[i,e] and has lower bound βλi

`[i,e]m
i
`[i,e].



49

3. An edge from the node for station A to the node for possible excursion [i, e] at station

B for each class (i, k) in f{i, e+
A}. These edges correspond to the variables yi

k for the

classes in f{i, e+
A}. The edge for class (i, k) has lower bound λi

km
i
k.

4. An edge into the node for station B from the node for possible excursion [i, e] at

station B for each class (i, k) in f{i, e+
B}. These edges correspond to the variables yi

k

for the classes in f{i, e+
B}. The edge for class (i, k) has lower bound βλi

km
i
k.

5. An edge from the node for possible excursion [i, e] at station A to the node for station

B for each class (i, k) in f{i, e+
B}. These edges correspond to the variables yi

k for the

classes in f{i, e+
B}. The edge for class (i, k) has lower bound βλi

km
i
k.

6. An edge into the node for possible excursion [i, e] at station A from the node for

station A for each class (i, k) in f{i, e+
A}. These edges correspond to the variables yi

k

for the classes in f{i, e+
A}. The edge for class (i, k) has lower bound λi

km
i
k.

7. An edge from the node for station A to the root for each class (i, k) in f [1, i] served at

station A. These edges correspond to the variables yi
k for the classes in f [1, i] served

at station A. The edge for class (i, k) has lower bound λi
km

i
k.

8. An edge from the root to the node for station B for each class (i, k) in f [1, i] served at

station B. These edges correspond to the variables yi
k for the classes in f [1, i] served

at station B. The edge for class (i, k) has lower bound βλi
km

i
k.

9. An edge from the node for excursion [1, i] at station A to the root. This edge corre-

sponds to the variable si
1 and has lower bound 0.

10. An edge from the root to the node for excursion [1, i] at station B. This edge corre-

sponds to the variable si
1 and has lower bound 0.



50

11. An edge from the node for each possible excursion [i, e] at station A to the node for

the preceding excursion (which is unique) at station B (if [i, e−1] ∈ Bi). These edges

correspond to the variables si
e and have lower bounds 0.

12. An edge from the node for each possible excursion [i, e] at station A to the node for

the preceding excursion (which is unique) at station A (if [i, e−1] ∈ Ai). These edges

correspond to the variables si
e and have lower bounds 0.

13. An edge to the node for each possible excursion [i, e] at station B from the node for

the preceding excursion (which is unique) at station A (if [i, e−1] ∈ Ai). These edges

correspond to the variables si
e and have lower bounds 0.

14. An edge to the node for each possible excursion [i, e] at station B from the node for

the preceding excursion (which is unique) at station B (if [i, e−1] ∈ Bi). These edges

correspond to the variables si
e and have lower bounds 0.

15. An edge from the node for station A to the node for station B. This edge corresponds

to the variable ε and has lower bound 0.

As in Dai–Vande Vate, we convert our problem into a Minimum Flow Problem. We

retain some other Dai–Vande Vate conventions. Given an A,B-cut (L,R), we let LA denote

the excursions in L that are served at Station A and LB denote those served at Station B.

Similarly, we let RA denote the excursions in R served at Station A and RB denote those

at Station B.

We refer to an A,B-cut with the root in L as an L-cut. An A,B-cut with the root in R

is a R-cut. Note that since the upper bound on each edge is infinite, an A,B-cut (L,R) in

this network has finite capacity if and only if no edge extends from a node in R to a node

in L, i.e., if and only if (L,R) satisfies:

1. If [i, e] ∈ LA, then possible excursions {i, e+
A} are in LA,
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2. If [i, e] ∈ RB, then possible excursions {i, e+
B} are in RB,

3. If [i, e] ∈ LB, then possible excursions {i, e+
A} are in LA,

4. If [i, e] ∈ RA, then possible excursions {i, e+
B} are in RB,

5. If (L,R) is an R-cut, then [i, 1] ∩ LB = ∅ for each type i, and

6. If (L,R) is an L-cut, then [i, 1] ∩RA = ∅ for each type i.

Otherwise, the capacity of the cut is −∞. Thus, we have the following lemma, which allows

us to speak in terms of separating sets rather than cuts.

Lemma 4.5.1. An L-cut (L,R) has finite capacity only if LB ∪ RA is an A-strictly sep-

arating set. Similarly, an R-cut (L,R) has finite capacity only if LB ∪ RA is a B-strictly

separating set.

We can proceed as in Dai and Vande Vate to obtain the theorem below, which expresses

the stability of the network in terms of the “cut conditions.”

Theorem 4.5.2. A two-station fluid network with service times m and effective arrival

rates λ = (λk)k∈K satisfying the nominal workload conditions is globally stable if for each

non-trivial A-strictly separating set S′ and non-trivial B-strictly separating set S,

λm(VA(S′))
1− λm(VB(S′))

<
1− λm(VA(S))

λm(VB(S))
. (4.5.15)

We call the conditions in (4.5.15) the cut conditions.
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4.6 Equivalence

In this section we endeavor to prove the following lemma that, in conjunction with Theorem

4.5.2, proves the sufficiency part of Theorem 4.2.2.

Lemma 4.6.1. If the arrival rates and service times satisfy the virtual workload conditions,

then they also satisfy the cut conditions.

Proof. Each cut condition is defined by a pair of non-trivial separating sets, S and S′. We

show that the cut conditions induced by the pair (S, S′) is implied by a pair of virtual

workload conditions.

We first need to chose an antichain E , which is induced by the pair (S, S′). For each

type i, we choose a set E i that will usually contain several elements, due to the branching

nature of our networks. In the multitype case, E i contains only one element for each i ∈ I.

We now specify how the set E i is chosen. For each type, consider the SNE. Any class

that is in S or S′ in the original network remains in these sets in the SNE. For each type

in the SNE, we now have a number of sub-types, one for each possible route in the original

network. For each sub-type j we chose an index êi
j according to the Dai-Vande Vate rules,

i.e. we let êi
j ≥ 1 be the largest index r such that

1. {[i, e] ∈ Ei
A : e � r} ∩ S′ = ∅,

2. {[i, e] ∈ Ei
B : e ≺ r} ⊆ S′ and

3. [i, r] 6∈ S′.

We chose ei
j similarly, letting ei

j be the largest index r such that

4. {[i, e] ∈ Ei
A : e ≺ r} ⊆ S,

5. {[i, e] ∈ Ei
B : e � r} ∩ S = ∅ and
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6. [i, r] 6∈ S.

Now, for each (i, j), we set ri
j = min{êi

j , e
i
j}. We then let E i = ∪jr

i
j . Note that the ri

j ’s

need not be distinct. We set E = ∪i∈IE i.

We note that the set E is an antichain and has the following properties:

a) E ∩ (S ∪ S′) = ∅

b)
( ⋃

r∈E
{[i, e] ∈ Ei

A : i ∈ I, e � r}
)
∩ S′ = ∅

c)
⋃

r∈E
{[i, e] ∈ Ei

B : i ∈ I, e ≺ r} ⊆ S′

d)
( ⋃

r∈E
{[i, e] ∈ Ei

B : i ∈ I, e � r}
)
∩ S = ∅

e)
⋃

r∈E
{[i, e] ∈ Ei

A : i ∈ I, e ≺ r} ⊆ S

These properties allow us to go through analogous algebra to Dai and Vande Vate to

obtain the cut condition from the virtual workload conditions. The antichain E and the

separating set S′ induce the virtual workload condition:

λm(VA(S′) \ F�
A (E))

1− λm(F≺
A (E))

+
λm(VB(S′) \ F�

B (E))
1− λm(F≺

B (E))
< 1. (4.6.1)

Similarly, E and the separating set S induce the virtual workload condition:

λm(VA(S) \ F�
A (E))

1− λm(F≺
A (E))

+
λm(VB(S) \ F�

B (E))
1− λm(F≺

B (E))
< 1. (4.6.2)

We show that (4.6.1) and (4.6.2) imply the cut condition for the pair (S′, S).
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From (4.6.1) we have that

λm(VA(S′) \ F�
A (E))

1− λm(F≺
B (E))− λm(VB(S′) \ F�

B (E))
<

1− λm(F≺
A (E))

1− λm(F≺
B (E))

and from (4.6.2) we have that

1− λm(F≺
A (E))− λm(VA(S) \ F�

A (E))

λm(VB(S) \ F�
B (E))

>
1− λm(F≺

A (E))
1− λm(F≺

B (E))
.

Thus,

1− λm(F≺
A (E))− λm(VA(S) \ F�

A (E))

λm(VB(S) \ F�
B (E))

>
λm(VA(S′) \ F�

A (E))

1− λm(F≺
B (E))− λm(VB(S′) \ F�

B (E))
. (4.6.3)

Now, (a) implies

λm(VA(S) \ F�
A (E)) + λm(F≺

A (E)) ≥ λm(VA(S)).

Next we note that we have the following

1.
(
∪[i,e]∈SE[i, e]

)
∩ F�

B (E) = ∅, directly from (d)

2.
(
∪[i,e]∈Ei\S f̂{i, e}

)
∩ F�

B (E) = ∅, directly from (e)

3.
(
∪[i,e]∈Sf{i, e}

)
∩ F�

B (E) = ∅, from 1.
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Recalling the definition of V (S), the above imply that

VB(S) ∩ F�
B (E) = ∅

Thus, we have

λm(VB(S) \ F�
B (E)) = λm(VB(S)).

Once again from (a) we have

λm(VB(S′) \ F�
B (E)) + λm(F≺

B (E)) ≥ λm(VB(S′)).

Using a similar argument as before, we have that (b) and (c) imply,

λm(VA(S′) \ F�
A (E)) = λm(VA(S′)).

Thus, (4.6.3) implies that

1− λm(VA(S))
λm(VB(S))

>
λm(VA(S′))

1− λm(VB(S′))
,

which is exactly the cut condition for the pair S′ and S.

4.7 Necessity

We first claim that any ACTN can be equivalently relabeled as an SBN by adding a finite

number of class labels. For example, if more than one class feeds a particular buffer, we
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simply divide the incoming fluid into different buffers, depending on the buffer in which the

fluid was last processed. Once the network has been relabeled, we note that any allocation

process that was feasible in the original network is feasible in the relabeled network and

vice versa. The main point to note here is that in the ACTN, the set of non-idling policies

include those which determine processing priority at a buffer based on the processing history

of the fluids in that buffer. Thus any allocation policy implemented in the SBN can also

be implemented in the ACTN. In terms of global stability, the ACTN and corresponding

SBN are equivalent. Hence, Theorem 4.2.2 provides necessary and sufficient conditions for

global stability of any ACTN, after performing the appropriate transformation to an SBN.

The sufficiency of the conditions in Theorem 4.2.2 was proved in the last several sections.

We now turn our attention to proving the necessity via the next few lemmas. The necessity

essentially follows from Dai and VandeVate’s arguments with minor adjustments.

The first lemma we need is Lemma 7.1 from Dai and Vande Vate [16]:

Lemma 4.7.1. Let C be a set of classes such that

λm(C) ≥ 1.

Each non-idling fluid solution (Q(·), T (·)) satisfying

∑
(i,k)∈C

Ṫ (t) ≤ 1 (4.7.1)

for each regular point t is unstable.

Proof. The proof for the class of networks we consider is analogous to that given in Dai and
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Vande Vate.

The set C in Lemma 4.7.1 represents classes that form a virtual station. Under an

appropriate static buffer priority policy, only one of the classes in C may be served at any

time.

Next, we adapt another lemma from Dai and Vande Vate [16] to networks with propor-

tional routing. This lemma enables us to consider the effect of “push-starting” some set

classes that occur early in the route of a fluid type.

We consider a collection of excursions E that partitions the classes into those of F≺(E)

and the remainder that we denote as R(E).

Let

m̃i
k = mi

k/
(
1− λm(F≺

A (E))
)

for (i, k) ∈ RA(E), (4.7.2)

m̃i
k = mi

k/
(
1− λm(F≺

B (E))
)

for (i, k) ∈ RB(E). (4.7.3)
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Consider the induced fluid model on the classes of R(E):

Qi
k(t) = Qi

k(0) + µ̃i
k−1T

i
k−1(t)− µ̃i

kT
i
k(t) ≥ 0, t ≥ 0, (i, k) ∈ R(E), (4.7.4)

T i
k(0) = 0 and T i

k(·) is nondecreasing, (i, k) ∈ R(E), (4.7.5)

t−
∑

(i,k)∈RA(E)

T i
k(t) is nondecreasing, (4.7.6)

t−
∑

(i,k)∈RB(E)

T i
k(t) is nondecreasing, (4.7.7)

∑
(i,k)∈RA(E)

Ṫ i
k(t) = 1 whenever

∑
(i,k)∈RA(E)

Qi
k(t) > 0 and t is regular, (4.7.8)

∑
(i,k)∈RB(E)

Ṫ i
k(t) = 1 whenever

∑
(i,k)∈RB(E)

Qi
k(t) > 0 and t is regular, (4.7.9)

where, µ̃i
k = 1/m̃i

k for (i, k) ∈ R(E). For each type i ∈ I, we let µ̃i
`[i,ei−1] = λi and

T i
`[i,ei−1](t) = t to model the arrivals to the induced fluid network. Note that in the induced

network the effective arrival rates to the remaining classes are the same as in the original

network.

Lemma 4.7.2. If the fluid model (4.7.4)–(4.7.9) is unstable, then the fluid model for the

full fluid network is unstable.

Proof. The proof of this lemma is again analogous to the proof of Lemma 7.2 in Dai and

Vande Vate [16].

Necessity Proof of Theorem 4.2.2. With Lemma 4.7.2 in hand, it is sufficient to show that
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if the virtual station V (S) corresponding to some strictly separating set S satisfies

λm(V (S)) ≥ 1, (4.7.10)

then there is an unstable fluid solution. The set of classes V (S) is a pseudostation in any

corresponding queueing network and so there exists a static buffer priority policy under

which no two classes in V (S) can be served simultaneously. A description of pseudostations

and details on the construction of such a priority policy are described in the next chapter.

Thus, if we examine fluid limits (Q(·), T (·)) of the type defined in Dai [13], we see that they

are fluid solutions which satisfy (4.7.1). By Lemma 4.7.1, the fluid network is not globally

stable. This completes our necessity proof and thus the proof of Theorem 4.2.2.

Of course, the next natural step is to examine networks with three or more stations. In

the next chapter we will see that the virtual station conditions can be shown to be necessary

for multi-station networks. In Chapter 6 we will examine the global stability region of a

three-station network in great depth.



Chapter 5

Necessary Conditions for Global Stability

5.1 Introduction

In this chapter we derive necessary conditions for global stability of multi-station stochastic

MTN’s. The conditions are given explicitly in terms of the average service and arrival rates

of the network. We show that if the conditions are not satisfied, then all fluid solutions of

the corresponding fluid network are positive for all t > 0. This implies that the fluid model

and the queueing model are unstable and yields a partial extension of the results obtained

in Chapter 4.

Since we are dealing only with MTN’s we will make slight alterations in our notation

to simplify expressions. We recall that in an MTN, we can think of the network as serving

a set I = {1, . . . , N} of N different types of customers. In an MTN, the route for a given

customer is deterministic but arbitrary, that is each customer type may follow a different

route. The visits a customer of type i makes are numbered from 1 to ci. As in the previous

chapter, we refer to type i customers during visit k (either waiting or being served) as class

(i, k) customers and we let A denote the set of all classes in the queueing network. For

a subset C of A, the class of C-priority disciplines consists of the preempt-resume static

buffer priority policies that give highest priority to classes in C and lower priority to the

remainder of the classes. In examples in which there is only one type of customer in the

network, we will often refer to a class only by its second index k.

60
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- - -

- - - -

Station 1 Station 2 Station 3

m1

m4 m5

m2 m3

m6

α = 1

Figure 8: A six-class network

We let Ai
j = {k : σ(i, k) = j}, i.e. Ai

j is the set of visits a type i customer makes to

station j. For example, in the network pictured in Figure 8, which has one type of customer

and six classes of customers, we have σ(1, 3) = σ(1, 6) = 3, so A1
3 = {(1, 3), (1, 6)}, which

for our reentrant line we write as A1
3 = {3, 6}.

For clarity, we will append a type designation i to the service processes S(·), i.e. Si
k =

{Si
k(t), t ≥ 0}, with Si

k(t) being the cumulative number of service completions for class (i, k)

if t units of time are dedicated to serving this class. We now label the exogenous arrival

process for class k Si
0 = {Si

0(t), t ≥ 0}, where Si
0(t) is the cumulative number of exogenous

arrivals by time t.
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5.2 Pseudostations

Harrison and Nguyen [23] and Dumas [21] first observed that under some static priority

queueing disciplines, certain classes in two-station queueing networks may not receive ser-

vice at the same time, even though they may be served at different stations. Dai and

VandeVate [15] termed such groups of classes virtual stations. They demonstrate how this

phenomenon can be used to obtain necessary and sufficient conditions for the global stabil-

ity of many two-station networks. In this chapter, we show how their idea of virtual stations

can be extended to obtain necessary conditions for d-stations networks.

In a d-station network, we shall see that under some static buffer priority disciplines,

certain sets of classes form pseudostations. We will show that the classes in such a pseudo-

station cannot all receive service at the same time, even though they may be served at

different stations.

The following proposition characterizes which sets of classes form pseudostations, al-

though we will give a more restrictive definition of pseudostations later on.

Proposition 5.2.1. Let C be a set of classes in an initially empty d-station open multitype

queueing network and suppose C satisfies:

1. For each type i, class (i, 1) 6∈ C,

2. If class (i, k) ∈ C and σ(i, k − 1) = σ(i, k), then class (i, k − 1) ∈ C

3. If class (i, k) ∈ C and σ(i, k − 1) 6= σ(i, k), then class (i, k − 1) 6∈ C and σ(i, k − 1) ∈

σ(C)

Let Cj be the classes of C served at station j. Under any preempt-resume static buffer
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priority queueing discipline that gives higher priority at station j to the classes of Cj,

∏
j∈σ(C)

 ∑
(i,k)∈Cj

Qi
k(t)

 = 0 (5.2.1)

for all t ≥ 0. Where we define,

σ(C) = {j : σ(i, k) = j for some (i, k) ∈ C}

that is σ(C) is the set of stations that serve at least one class in C.

Proof. Proceeding by contradiction, we suppose that there is a time t > 0 such that

∏
j∈σ(C)

 ∑
(i,k)∈Cj

Qi
k(t)

 > 0

and let τ be the first such time t. Then τ must coincide with the time of an event. Note

that for each j ∈ σ(C) there must then exist a class (i∗j , k
∗
j ) ∈ Cj , such that Q

i∗j
k∗j

(τ) > 0.

Recall from Section 2.1 that the queue length process is right continuous, so that τ = τn

coincides with the time of the nth event. This implies that the system does not undergo a

state change during the time interval (τn−1, τn) and so

∏
j∈σ(C)

 ∑
(i,k)∈Cj

Qi
k(τn−1)

 > 0.

By definition of τn, since there are no simultaneous events at τn, it must then be the case
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that

∑
(i,k)∈Cm

Qi
k(τn−1) = 0 for some m ∈ σ(C) and (5.2.2)

∑
(i,k)∈Cj

Qi
k(τn−1) > 0 ∀j ∈ σ(C), j 6= m (5.2.3)

We see that (5.2.2) implies that Q
i∗m
k∗m

(τn−1) = 0, thus the event that occurs at time τn must

be an arrival to class (i∗m, k∗m) from class (i∗m, k∗m − 1). Therefore, Q
i∗m
k∗m−1(τn−1) > 0, which

means that class (i∗m, k∗m − 1) /∈ Cm and hence σ(i∗m, k∗m − 1) 6= m.

Now note that we have class (i∗m, k∗m) ∈ C with σ(i∗m, k∗m) 6= σ(i∗m, k∗m − 1) and thus

condition 3 in Proposition 5.2.1, indicates that class (i∗m, k∗m − 1) /∈ C and there exists

l ∈ σ(C), l 6= m such that σ(i∗m, k∗m − 1) ∈ Cl. However, from (5.2.3) we have that

∑
(i,k)∈Cl

Qi
k(τn−1) > 0

so there is a class (i∗l , k
∗
l ) at station l with Q

i∗l
k∗l

(τn−1) > 0 which has higher priority than

class (i∗m, k∗m − 1). Hence, server l cannot service customers in class (i∗m, k∗m − 1) during

(τn−1, τn). This contradicts our earlier conclusion that the event that occurs at time τn is

an arrival to class (i∗m, k∗m).

Classes in a pseudostation do not behave exactly like Dai and VandeVate’s virtual

stations, since several of the classes may be serviced at the same time (if |σ(C)| = 2 then

C acts like the virtual stations described in Dai and VandeVate [15]). However, not all the

classes in a pseudostation may be served at the same time, so these sets of classes have a

hidden effect on the capacity of the queueing system.
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Figure 8 shows perhaps the simplest example of a pseudostation in a 3-station network.

In this case, classes 2, 4 and 6 form a pseudostation. Under the static buffer priority policy

that gives classes 2,4, and 6 the highest priority, a maximum of two of these classes may be

serviced simultaneously if the network starts with zero customers at time zero.

It will be seen later that many of the choices for C in Proposition 5.2.1 give redundant

necessary conditions. Unfortunately, not all of these redundancies can be eliminated by

adding simple restrictions on the admissible sets C. We can, however, eliminate some by

adapting the Dai-VandeVate virtual station definition to suit our purposes.

We now give a more precise description of classes that form pseudostations.

Definition 5.2.1. A set of classes C forms a pseudostation if it satisfies the following:

• No class contained in a first excursion is in C.

• If the last visit of an excursion is in C, then all the visits of that excursion are in C.

• If any first visit of an excursion is in C, then all of the first visits of that excursion

are also in C.

• If any class of an excursion is in C, then the last visit of the previous excursion is not

in C and the previous excursion’s server is in σ(C).

To see that it is sufficient to consider only pseudostations in obtaining necessary condi-

tions, we introduce the concept of a vertical subset. A set C ′ is a vertical subset of another

set C if, C ′ ⊆ C and σ(C) = σ(C ′).

Now we note that any set C satisfying the conditions in Proposition 5.2.1 is a vertical

subset of a pseudostation. An examination of Theorem 5.3.1 shows that the necessary

conditions generated by any pseudostation will imply those generated by a vertical subset,

thus we need focus only on pseudostations.
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Station 1 Station 2 Station 3

m1 m2 m3

Station 4

m4

m5 m6 m7 m8

m9 m10 m11

α = 1

Figure 9: An eleven-class network

However, even if we restrict the sets C in Proposition 5.2.1 to those sets which form

pseudostations, we may still have redundant conditions. In Figure 9, classes 7, 9, and 11

form a pseudostation, as do classes 5, 7, 9 and 11, but neither is a vertical subset of the

other. From Theorem 5.3.1, classes 7, 9, and 11 give the condition

m7 + m9 + m11 ≤ 2 (5.2.4)
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and classes 5, 7, 9, and 11 give

m5 + m7 + m9 + m11 ≤ 3 (5.2.5)

Now, the usual traffic condition ρ1 < 1 implies that m5 < 1 so (5.2.4) is stronger than

(5.2.5). Thus, in this case it is the smaller set that generates the stronger condition. It is

difficult to concisely expand the definition of pseudostations to further restrict the classes

C under consideration to avoid such redundant conditions.

5.3 Necessary Conditions for Stability

We now present our main result. As before, we use C to denote a subset of classes, and A

to denote the set of all classes. We define |x| =
∑
|xk| for a vector x ∈ IRK and for a set C,

|C| indicates the cardinality of C. Also, for a given set X we let

1X(s) =

 1 if s ∈ X

0 otherwise

Theorem 5.3.1. In a d-station open multitype queueing network, if for any set of classes

C satisfying:

1. For each type i, class (i, 1) 6∈ C,

2. If class (i, k) ∈ C and σ(i, k − 1) = σ(i, k), then class (i, k − 1) ∈ C

3. If class (i, k) ∈ C and σ(i, k − 1) 6= σ(i, k), then class (i, k − 1) 6∈ C and σ(i, k − 1) ∈

σ(C)
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∑
j∈σ(C)

∑
(i,k)∈Cj

λi
km

i
k > |σ(C)| − 1, (5.3.1)

where Cj the set of classes of C served at station j, then with probability one,

|Q(t)| → ∞ as t →∞, (5.3.2)

if the network operates under a C-priority discipline.

Proof. Consider then a set C which satisfies 1–3 in Theorem 5.3.1 and for which (5.3.1)

holds. We will show that the number of customers diverges to infinity almost surely under

a C-priority discipline.

First, from the definition of T i
k(t), we have for each j ∈ σ(C) that

∑
(i,k)∈Cj

T i
k(t) ≤

∫ t

0
1{τ :
P

(i,k)∈Cj
Qi

k(τ)>0}(s) ds (5.3.3)

Since (5.3.3) consists of |σ(C)| equations (one for each station j that contains classes in

C), upon summing we obtain,

∑
j∈σ(C)

∑
(i,k)∈Cj

T i
k(t) ≤

∫ t

0

∑
j∈σ(C)

1{τ :
P

(i,k)∈Cj
Qi

k(τ)>0}(s) ds (5.3.4)

Now, under the queueing discipline we have imposed on the network, Proposition 5.2.1

implies

∑
j∈σ(C)

1{τ :
P

(i,k)∈Cj
Qi

k(τ)>0}(s) ≤ |σ(C)| − 1 for all s ≥ 0
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This and (5.3.4) yield ∑
j∈σ(C)

∑
(i,k)∈Cj

T i
k(t) ≤ (|σ(C)| − 1) · t (5.3.5)

Taking the fluid limit (5.3.5) becomes:

∑
j∈σ(C)

∑
(i,k)∈Cj

T̄ i
k(t) ≤ (|σ(C)| − 1) · t (5.3.6)

where (Q̄(t), T̄ (t)) is a fluid limit as defined in Section 2.3. If we let Z̄(t) = (I −P ′)−1Q̄(t),

then the fluid dynamical equations give

∆−1Z̄(t) = ∆−1(I − P ′)−1αt− T̄ (t) = ∆−1λt− T̄ (t)

. This yields,

∑
j∈σ(C)

∑
(i,k)∈Cj

mi
kZ̄

i
k(t) =

 ∑
j∈σ(C)

∑
(i,k)∈Cj

λi
km

i
k

 · t−

 ∑
j∈σ(C)

∑
(i,k)∈Cj

T̄ i
k(t)



≥

 ∑
j∈σ(C)

∑
(i,k)∈Cj

λi
km

i
k

 · t− (|σ(C)| − 1) · t

=

 ∑
j∈σ(C)

∑
(i,k)∈Cj

λi
km

i
k − (|σ(C)| − 1)

 · t

Note that we used (5.3.6) to obtain the inequality. For t > 0, the last expression is strictly
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greater than zero by assumption, so

∑
j∈σ(C)

∑
(i,k)∈Cj

mi
kZ̄(t) > 0 for all t > 0

Thus |Q̄(t)| > 0 for all t > 0 and the fluid model is weakly unstable. Invoking Theorem

3.2.2 gives us the desired result.

The classes C that satisfy Theorem 5.3.1 may generate redundant conditions. As seen

in Section 5.2, we can eliminate some redundancies by restricting the admissible sets C to

pseudostations. However, even with redundancies eliminated, it seems that the number of

necessary conditions in a d-station network will grow quickly, perhaps exponentially, with

the number of classes.

With this in mind, make some brief comments about the applicability of Theorem 5.3.1,

which also apply to Theorem 4.2.2. First, we note that although a full model of a typical

wafer fabrication facility or other complex system may contain scores of stations and hun-

dereds of classes, the full model is generally not needed to accurately represent the real life

system, at least with regard to stability and capacity issues. Often, only five or six machine

groups are highly to moderately utilized and it may be that only these groups are necessary

for an accurate stability analysis.

Now, even in a reduced system, there may be a large number of groups of classes

which form virtual stations. Since each such virtual station (possibly paired with the

antichain E) has a corresponding virtual workload condition, the time required to check all

such conditions could grow rapidly with the size of the network, even with an automated

procedure to check such conditions. However, in systems with more than a handful of

stations and classes, classes with short processing times can often be safely ignored when
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checking for virtual bottelnecks. Moreover, condition (4.2.5) is easily checked for any set

of classes which come under suspicion as a source of trouble in the system. With these

considerations, we believe that it is quite reasonable to implement efficient computational

procedures to aid in the evaluation of stability and capacity issues for these systems.

5.4 A Capacity Example

In this section, we present an example of how the phenomenon of pseudostations can affect

capacity calculations in a multiclass network. We again consider the reentrant line pictured

in Figure 8. Now, suppose the service time vector is fixed at:

m = (0.1, 0.7, 0.1, 0.7, 0.1, 0.7).

The usual method to evaluate the capacity of this network is to check the usual traffic

conditions and find the maximum sustainable input rate α. In industry, this is commonly

referred to as bottleneck analysis. The usual traffic conditions for this network are:

α (m1 + m4) < 1

α (m2 + m5) < 1

α (m3 + m6) < 1

So, an upper bound on the global capacity Λ∞, as defined in (3.1.4) would then be given

by:

Λ∞ ≤ min
(

1
m1 + m4

,
1

m2 + m5
,

1
m3 + m6

)
= 1.25
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Essentially, this calculation considers each station individually and the capacity of the

system depends upon the capacity of the slowest machine. Unfortunately, the potential

effect of pseudostations may constrain the system more than the slowest machine. Theorem

5.3.1 indicates that necessary conditions for global stability are in fact:

α (m1 + m4) < 1

α (m2 + m5) < 1

α (m3 + m6) < 1

α (m2 + m4 + m6) < 2

Hence, a revised capacity calculation incorporating the pseudostation condition yields

Λ∞ ≤ min
(

1
m1 + m4

,
1

m2 + m5
,

1
m3 + m6

,
2

m2 + m4 + m6

)

≈ 0.9524

We see that the original capacity calculation is off by at least 30 percent. In fact, the global

stability region of this network is unknown and so the actual capacity may be even smaller

than 0.9524. In the next chapter we further investigate the stability of the network in this

example.



Chapter 6

Stability of a Three-station Fluid Network

6.1 The Fluid Network and Its Stability

In this chapter, we investigate the stability of a particular three-station fluid network.

We recall that in Chapter 4 we were able to derive necessary and sufficient conditions for

stability of the class of two-station fluid ACTN’s. In Chapter 5, we were able to extend the

necessity arguments to fluid (and discrete) networks with an arbitrary number of stations.

In our analysis of the three-station network we extend the sufficiency arguments of Chapter

4 in an attempt to find necessary and sufficient stability conditions.

The three-station fluid network under consideration is depicted in Figure 10. Unless

otherwise noted, all comments about fluid networks are specific to this three-station network.

Also, as in Chapter 4, we again drop the “bar” notation, since all quantities in this chapter

will be fluid quantities. Fluid comes to this network at the rate of α units per unit of time

and is served at each station in turn starting with station 1. After processing at station 3,

fluid returns to station 1 and is again served by each station in turn before it leaves the

system. Thus, each unit of fluid is processed six times, twice at each station, before it leaves

the system. Note that in this example λk = α for all six classes and thus from now on we

drop the subscript and deal with the single effective arrival rate λ = α. If we set T0(t) = t

73
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m1 m2 m3

m4 m5 m6

α

Station 1 Station 2 Station 3

Figure 10: A three-station fluid network

and µ0 = α then the fluid dynamical equations (2.3.2)–(2.3.5) for this network simplify to:

Qk(t) = Qk(0) + µk−1Tk−1(t)− µkTk(t), t ≥ 0, k = 1, 2, . . . , 6, (6.1.1)

Qk(t) ≥ 0, t ≥ 0, k = 1, 2, . . . , 6, (6.1.2)

Tk(·) is nondecreasing, k = 1, 2, . . . , 6, (6.1.3)

Ui(·) is nondecreasing, i = 1, 2, 3, (6.1.4)

Once again, the static buffer priority disciplines will play an important role. We note

that there are eight static buffer priority disciplines associated with our three-station fluid

network. They are: π{1,2,3}, π{1,2,6}, π{1,5,3}, π{1,5,6}, π{4,2,3}, π{4,2,6}, π{4,5,3}, and π{4,5,6}.

For this network, we can also express the dynamical equations (2.3.10) that describe

these policies in a simpler form. We let π(i) denote the high priority class at station i under



75

the static buffer priority discipline π. With this notation, our three-station fluid network

under the static buffer priority discipline π requires the additional equations:

Ṫπ(i)(t) = 1 if Qπ(i)(t) > 0, i = 1, 2, 3 (6.1.5)

for each regular point t of T (·). These conditions simply stipulate that if fluid has accu-

mulated in a station’s higher priority buffer, the station must allocate all its effort to that

buffer. Any solution (Q(·), T (·)) to (6.1.1)–(6.1.5) is a fluid solution under the discipline π.

In this chapter we will investigate the stability properties of the three-station network in

Figure 10. In Section 3.2 we introduced the global stability region D∞, the stability region

Dπ and the monotone global stability region M∞. Before we present the theorems that will

be proven in this chapter, we remark on the relationship between some of these regions.

First, for our three-station network, the region in which the usual traffic conditions hold

is given by

D0 ≡ {m ∈ IR6
+ : m > 0, λ(m1 + m4) < 1, λ(m2 + m5) < 1, λ(m3 + m6) < 1}

Since these conditions are necessary for stability, we have the following relationship

D∞ ⊆ Dπ ⊆ D0

Clearly, the monotone global stability region is contained in the global stability region.

Thus,

M∞ ⊆ D∞ ⊆ ∩πDπ ⊆ D0, (6.1.6)
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where, hereafter, the intersection above is over all eight static buffer priority disciplines.

We will show that the global stability region of the network depicted in Figure 10 is not

monotone. Thus, the network can be globally stable under one vector m of service times,

but not be globally stable when some of the service times are reduced, i.e., not be globally

stable under a service time vector m̃ ≤ m.

6.2 Results for the Three-station Network

To state our first theorem, we define the following system of linear constraints, which as

we show in Section 6.4 is closely related to a piecewise linear Lyapunov function for our
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three-station fluid network:

λ(x1 + x4) < x1µ1, (6.2.1)

λ(x1 + x4) < x4µ4, (6.2.2)

λ(x2 + x5) < x2µ2, (6.2.3)

λ(x2 + x5) < x5µ5, (6.2.4)

λ(x3 + x6) < x3µ3, (6.2.5)

λ(x3 + x6) < x6µ6, (6.2.6)

x4 ≤ x3 + x6, (6.2.7)

x5 ≤ x4, (6.2.8)

x2 + x5 ≤ x1 + x4, (6.2.9)

x3 + x6 ≤ x2 + x5, (6.2.10)

x6 ≤ x5. (6.2.11)

Theorem 6.2.1. The global stability region of the fluid network in Figure 10 is not

monotone, i.e., M∞ 6= D∞. Furthermore, for a positive service time vector m, the fol-

lowing are equivalent.

1. The vector m is in the monotone global stability region M∞.
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2. There exists x = (x1, . . . , x6) > 0 satisfying (6.2.1)–(6.2.11).

3. The vector m belongs to

D0 ∩
{
m ∈ R6

+ : λm2 + λ2m4m6 < 1
}

.

We leave the proof of Theorem 6.2.1 to Section 6.4.

The system of linear constraints (6.2.1)–(6.2.11) derived from our piecewise linear Lya-

punov function provides conditions sufficient to ensure that a service time vector m is in

the global stability region. In fact we show that, together with the usual traffic conditions,

the single additional condition:

λm2 + λ2m4m6 < 1 (6.2.12)

is sufficient to ensure global stability.

To obtain conditions necessary for global stability, we construct unstable fluid solutions.

The next theorem shows that when m4 > m3, the additional condition (6.2.12) is also

necessary to ensure global stability. When m4 ≤ m3, however, new conditions arise. First,

condition (6.2.17) ensures that work will arrive at station 1 at least as quickly as the station

processes it. Otherwise, station 1 will eventually empty and thereafter remain empty, essen-

tially reducing the system to a two-station network. The proof of Theorem 6.2.2, given in

Section 6.3, involves the construction of unstable fluid solutions under dynamic disciplines

that give different sets of buffers higher priority at different times. When m4 ≤ m3, con-

dition (6.2.16), the strongest necessary condition we could obtain from these disciplines, is

weaker than our sufficient condition (6.2.12). It is unclear whether or not the fluid network
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is globally stable when the mean service time vector m satisfies, m ∈ D0, m4 ≤ m3 and

(
λm1m3 + m4 −m3

m1 + m4 −m3

)
λm6

1− λm2
< 1 ≤ λm4

λm6

1− λm2
.

Theorem 6.2.2. If the service time vector of the fluid network in Figure 10 satisfies

m4 > m3, and (6.2.13)

λm2 + λ2m4m6 ≥ 1, (6.2.14)

or if it satisfies

m4 ≤ m3, (6.2.15)

(
λm1m3 + m4 −m3

m1 + m4 −m3

)
λm6

1− λm2
≥ 1, and (6.2.16)

λm1 +
m4

m3
≥ 1 (6.2.17)

there is an unstable (non-idling) fluid solution.

Bertsimas, Gamarnik and Tsitisklis [2] developed an LP for testing the global stability

of a fluid network. For two-station fluid networks, their LP has optimal objective value 0 if

and only if the network is globally stable with the given arrival and service rates. For the

three-station network in Figure 10, their LP is:
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max τ1 + τ2 + τ3 (6.2.18)

subject to

λτ1 − µ1τ11 ≤ 0, (6.2.19)

µk−1τk−1,σ(k) − µkτk,σ(k) ≤ 0 k = 2, 3, . . . , 6, (6.2.20)

∑
k:σ(k)=i

τki = τi i = 1, 2, 3, (6.2.21)

∑
k:σ(k)=j

τki ≤ τi j, i ∈ {1, 2, 3} (6.2.22)

j 6= i,

λ(τ1 + τ2 + τ3)− µ1(τ11 + τ12 + τ13) = 0, (6.2.23)

µk−1(τk−1,1 + τk−1,2 + τk−1,3)− µk(τk1 + τk2 + τk3) = 0 k = 2, 3, . . . , 6, (6.2.24)

τi, τji ≥ 0 i = 1, 2, 3 (6.2.25)

j = 1, . . . , 6

Theorem 6.2.3. The LP of Bertsimas, Gamarnik and Tsitisklis [2] does not provide a

sharp characterization of (monotone) global stability for networks with more than two sta-

tions.
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We prove this theorem in Section 6.5 by demonstrating a service time vector m in the

monotone global stability region M∞ (with arrival rate α = 1) for which the LP (6.2.18)–

(6.2.26) of Bertsimas, Gamarnik and Tsitisklis [2] has unbounded objective value.

Theorem 6.2.4, which is proved in Section 6.6, shows that the stability regions of all

but one of the static buffer priority disciplines are defined by the usual traffic conditions.

The stability region of one static buffer priority discipline, π{4,2,6} involves conditions more

restrictive than the usual traffic conditions, but strictly contains the global stability region.

Theorem 6.2.4. (a) For any static buffer priority discipline π 6= π{4,2,6}, Dπ = D0.

(b) Dπ{4,2,6} 6= D0.

(c) Dπ{4,2,6} 6= D∞.

An immediate consequence of Theorem 6.2.4 is the following corollary. Unlike their

two-station counterparts the global stability regions of fluid networks with more than two

stations need not be defined by the static buffer priority disciplines.

Corollary 6.2.5. D∞ 6= ∩πDπ.

Chen and Zhang [11] employed linear Lyapunov functions to study the stability of a

fluid network under static buffer priority disciplines. They introduced a linear program,

described in Lemma 6.6.1, that is related to the linear Lyapunov functions and showed that

if this LP has strictly positive objective value, the fluid network is stable under the given

discipline. Theorem 6.2.6 shows that the converse is not true.

Theorem 6.2.6. The LP of Chen and Zhang [11] need not provide a sharp characterization

of stability for fluid networks under static buffer priority disciplines.

We prove this theorem in Section 6.6 by demonstrating a service time vector m in the



82

global stability region M∞ (with arrival rate α = 1), for which the LP of Chen and Zhang

has optimal objective value 0.

6.3 Instability of the Fluid Network

To obtain conditions necessary to ensure global stability, we describe disciplines and con-

struct unstable fluid solutions for a broad range of service times. These unstable fluid

solutions explicitly demonstrate that the system is unstable over the range of service times.

We offer two closely related disciplines. The first, given in Part (a) of the proof, demon-

strates conditions under which the fluid network is not globally stable when m4 > m3.

The second, given in Part (b) of the proof, provides similar conditions for the case when

m4 ≤ m3.

Proof of Theorem 6.2.2. Part (a): We assume that the mean service vector m > 0 sat-

isfies (6.2.13)–(6.2.14). We further assume that the usual traffic conditions (3.2.1) hold.

Otherwise, any non-idling solution is unstable.

For each subset S ⊆ {1, 2, . . . , 6} we define:

QS(t) =
∑
i∈S

Qi(t).

We construct an unstable fluid solution using a discipline under which the priorities

among the classes at each station may change depending on the levels of fluid in the buffers.

We set s0 = 0 and let [si−1, si], i = 1, 2, . . . be intervals in which the buffer priorities are

constant. We use ti to denote the length of the ith interval, so ti = si − si−1. We also let

dk denote the departure rate from buffer k during a given interval.
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We first note that the usual traffic conditions, along with (6.2.14) imply that

µ5 > max{µ4, µ6} and (6.3.1)

µ2 < min{µ1, µ3}. (6.3.2)

We start at initial time s0 and assume Q{1,2,3}(s0) = 0, Q{4,5}(s0) > 0 and Q6(s0) ≥ 0.

Step 1. We begin by giving classes 1, 5, and 6 higher priority. We set s1 = min{t ≥

s0 : Q5(t) = 0, Q6(t) = Q6(s0)}. If Q5(s0) = 0 then s1 = s0 and we go directly to Step 2.

Otherwise, since µ6 < µ5, buffer 6 begins to accumulate fluid and thus d6 = µ6 in [s0, s1].

This implies that d3 = 0 during this interval. We note further that Q1(s1) = 0 because

buffer 1 has priority. So, we have that

Q̇{1,2,3}(t) = λ and Q̇{4,5,6}(t) = −µ6 for s0 ≤ t ≤ s1.

The above imply

Q̇{1,2,3}(t) + λm6Q̇{4,5,6}(t) = 0 for s0 ≤ t ≤ s1,

hence

Q{2,3}(s1) + λm6Q4(s1) = λm6Q{4,5}(s0). (6.3.3)

Step 2. In the next period we give buffers 3, 4, and 5 higher priority. We set s2 =

min{t ≥ s1 : Q3(t) + Q4(t) = 0}. If Q3(s1) + Q4(s1) = 0 then s2 = s1 and we go directly to

Step 3. Otherwise, since µ4 < µ3, buffer 3 will empty before buffer 4. So, by our priority
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scheme in [s1, s2], we must have d4 = µ4 and d1 = 0 in [s1, s2]. Also, Q5(s2) = 0 since buffer

5 has priority and µ4 < µ5. Thus,

Q̇1(t) = λ and Q̇{2,3,4}(t) = −µ4 for s1 ≤ t ≤ s2.

The above imply

Q̇1(t) + λm4Q̇{2,3,4}(t) = 0 for s1 ≤ t ≤ s2,

hence

Q1(s2) + λm4Q2(s2) = λm4Q{2,3,4}(s1). (6.3.4)

Step 3. In the final period, we let buffers 1, 2, and 3 have higher priority. We set

s3 = min{t ≥ s2 : Q2(t) = 0}. Notice that buffer 1 will empty before buffer 2 since µ2 < µ1.

So we will have d2 = µ2 and d5 = 0 in [s2, s3]. Further, Q3(s3) = 0 since buffer 3 has high

priority and µ2 < µ3. Thus,

Q̇{1,2}(t) = λ− µ2Q̇{3,4,5}(t) = µ2 for s2 ≤ t ≤ s3.

The above imply

Q̇{3,4,5}(t) + Q̇{1,2}(t)/(1− λm2) = 0 for s2 ≤ t ≤ s3,

hence

Q{4,5}(s3) =
Q{1,2}(s2)
1− λm2

. (6.3.5)

Step 4. Now from equations (6.3.3)–(6.3.5) and the fact that λmi < 1 from the usual
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traffic conditions we have

Q{4,5}(s3) =
Q{1,2}(s2)
1− λm2

=
Q1(s2) + Q2(s2)

1− λm2

≥ Q1(s2) + λm4Q2(s2)
1− λm2

=
λm4Q{2,3,4}(s1)

1− λm2

=
λm4(Q{2,3}(s1) + Q4(s1))

1− λm2

≥
λm4(Q{2,3}(s1) + λm6Q4(s1))

1− λm2

=
λ2m4m6

1− λm2
Q{4,5}(s0).

We remark that if either interval 1 or 2 is “null”, the result still holds, by a similar

(simpler) chain of inequalities.

Now, by condition (6.2.14) we conclude

Q{4,5}(s3) ≥ Q{4,5}(s0).

Recalling that Q{1,2,3}(s3) = 0 under our policy, the above implies that the fluid solutions

constructed under our discipline are unstable, proving that the network is not globally

stable.
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Part (b): Next we assume that the mean service time vector m > 0 satisfies (6.2.15)–

(6.2.17). We begin by noting that (6.3.1) and (6.3.2) still hold under (6.2.15)–(6.2.17). We

only need alter Steps 2 and 4 in the proof of Part (a). In particular, equations (6.3.3) and

(6.3.5) continue to hold. We present the revised Steps 2’ and 4’ below.

Step 2′. In this period we give buffers 3, 4 and 5 higher priority. We again set

s2 = min{t ≥ s1 : Q3(t) + Q4(t) = 0}. Without loss of generality, we suppose that buffer 4

drains before buffer 3, otherwise we may employ the proof used in Part (a). Also, as before,

if Q3(s1) + Q4(s1) = 0, then s2 = s1 and we go directly to Step 3.

Let us denote the time at which buffer 4 empties as r (with s1 ≤ r ≤ s2). As before, we

must have d4 = µ4 and d1 = 0 in [s1, r]. Thus

Q̇1(t) = λ and Q̇{2,3,4}(t) = −µ4 for s1 ≤ t ≤ r. (6.3.6)

The above imply

Q̇1(t) = −λm4Q̇{2,3,4}(t) for s1 ≤ t ≤ r

and this yields

Q1(r) + λm4Q{2,3,4}(r)− λm4Q{2,3,4}(s1) = 0. (6.3.7)

Now during [r, s2], we have that d4 = d3 = µ3 and by work conservation d1 = d̂1 :=

1
m1

(1− µ3m4). Note that d̂1 ≤ λ by (6.2.17). Thus, for this part of the interval, we have

Q̇1(t) = λ− d̂1 and Q̇{2,3,4}(t) = d̂1 − µ3 for r ≤ t ≤ s2.

The above imply

Q̇1(t) +
λ− d̂1

µ3 − d̂1

Q̇{2,3,4}(t) = 0 for r ≤ t ≤ s2
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and this gives

Q1(s2)−Q1(r) + κQ2(s2)− κQ{2,3,4}(r) = 0 (6.3.8)

where we have set

κ =
λ− d̂1

µ3 − d̂1

=
λm1m3 + m4 −m3

m1 + m4 −m3
.

Now, adding (6.3.7) and (6.3.8) and rearranging:

Q1(s2) + κQ2(s2) = κQ{2,3,4}(s1) + (λm4 − κ)[Q{2,3,4}(s1)−Q{2,3,4}(r)].

A little algebra shows that κ ≤ λm4 and Q{2,3,4}(s1) ≥ Q{2,3,4}(r) by virtue of (6.3.6).

Thus, we have

Q1(s2) + κQ2(s2) ≥ κQ{2,3,4}(s1).

Step 4′.

Q{4,5}(s3) =
Q{1,2}(s2)
1− λm2

=
Q1(s2) + Q2(s2)

1− λm2

≥ Q1(s2) + κQ2(s2)
1− λm2

≥
κQ{2,3,4}(s1)

1− λm2

=
κ(Q{2,3}(s1) + Q4(s1))

1− λm2

≥
κ(Q{2,3}(s1) + λm6Q4(s1))

1− λm2

=
κλm6

1− λm2
Q{4,5}(s0).
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By our assumptions we can conclude

Q{4,5}(s3) ≥ Q{4,5}(s0),

which again implies the instability of our fluid solution.

6.4 Piecewise Linear Lyapunov Functions

In this section we prove Theorem 6.2.1 showing that the global stability region of our three-

station network is not monotone and characterizing its monotone global stability region.

We first introduce the piecewise linear Lyapunov functions we use to establish conditions

sufficient to ensure global stability. Given x = (xk) > 0 and a fluid solution Q(·), let

fi(x,Q(t)) =
∑

σ(k)=i

xkQ
+
k (t), i = 1, 2, 3,

where Q+
k (t) =

∑k
`=1 Q`(t). Further, let

f(x,Q(t)) = max{f1(x,Q(t)), f2(x,Q(t)), f3(x,Q(t))}.

We often write f(Q(t)) in place of the more cumbersome f(x,Q(t)). Clearly, f(Q(t)) is a

piecewise linear function of Q(t) = (Qk(t)).
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The next lemma suggests a way in which to construct piecewise linear Lyapunov func-

tions. This type of construction was introduced by Botvich and Zamyatim [3] for a two-

station network. It was independently generalized by Dai and Weiss [17] and Down and

Meyn [18].

Lemma 6.4.1. Suppose there exists x = (xk) > 0, t0 ≥ 0 and ε > 0 such that for each

non-idling fluid solution (Q(·), T (·)) and each regular point t > t0 of T (·), the following hold

for each i = 1, 2, 3:

dfi(x,Q(t))
dt

≤ −ε whenever Zi(t) > 0, (6.4.1)

fi(x,Q(t)) ≤ max{fj(x, Q(t)) : j ∈ {1, 2, 3}, j 6= i} whenever Zi(t) = 0, (6.4.2)

max{fj(Q(t)) : j ∈ {1, 2, 3}, j 6= i} ≤ fi(Q(t)) whenever
∑
j 6=i

Zj(t) = 0. (6.4.3)

Then f is a piecewise linear Lyapunov function.

Proof. Let t be a regular point of f and T with Q(t) 6= 0. We show that (3.3.1) holds.

Because Q(t) 6= 0 and (6.4.2)–(6.4.3) hold, there exists an index i ∈ {1, 2, 3} such that

fi(Q(t)) = f(Q(t)) and Zi(t) > 0. From the proof of Lemma 3.2 of Dai and Weiss [17], we

have
df(Q(t))

dt
=

dfi(Q(t))
dt

.

Then the conditions in Proposition 3.3.2 follows from (6.4.1) and the definition of f and

the conclusion follows.

Lemma 6.4.2. If there is x = (xk) > 0 satisfying the linear constraints (6.2.1)–(6.2.11),

then there exists ε > 0 such that (6.4.1)–(6.4.3) hold and hence, f is a piecewise linear
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Lyapunov function.

Proof. Let t0 = 0 and let x = (xk) > 0 satisfy (6.2.1)–(6.2.11). Define ε to be the minimum

of the following 6 terms:

x1µ1 − λ(x1 + x4), x4µ4 − λ(x1 + x4),

x2µ2 − λ(x2 + x5), x5µ5 − λ(x2 + x5),

x3µ3 − λ(x3 + x6), x6µ6 − λ(x3 + x6).

Clearly, ε > 0. Let Q+
k (t) =

∑k
`=1 Q`(t) and consider a non-idling fluid solution (Q(·), T (·))

and a time t > 0 that is regular for T (·). Observe that the amount of fluid in buffers 1

through k is

Q+
k (t) = Q+

k (0) + λt− µkTk(t).

Hence

f1(Q(t)) = f1(0) + (x1 + x4)λt− x1µ1T1(t)− x4µ4T4(t)

and
df1(Q(t))

dt
= λ(x1 + x4)− x1µ1Ṫ1(t)− x4µ4Ṫ4.

If Z1(t) > 0, it follows from (6.4.2) that since (Q(·), T (·)) is non-idling, U̇1(t) = 0 or

Ṫ1(t) + Ṫ4(t) = 1. Thus, by the definition of ε,

ḟ1(t) ≤ −ε when Z1(t) > 0.

Similar analysis for i = 2 and i = 3 shows that (6.4.1) holds.
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We next establish (6.4.2). When Z1(t) = 0,

f1(Q(t)) = x4(Q2(t) + Q3(t)) and

f3(Q(t)) = x3(Q2(t) + Q3(t)) + x6(Q2(t) + Q3(t) + Q5(t) + Q6(t)),

and Equation (6.2.7) ensures that f1(Q(t)) ≤ f3(Q(t)). When Z2(t) = 0,

f2(Q(t)) = x2Q1(t) + x5(Q1(t) + Q3(t) + Q4(t)),

f1(Q(t)) = x1Q1(t) + x4(Q1(t) + Q3(t) + Q4(t))

and Equations (6.2.8)–(6.2.9) ensure that f2(Q2(t)) ≤ f1(Q(t)). When Z3(t) = 0,

f3(Q(t)) = x3(Q1(t) + Q2(t)) + x6(Q1(t) + Q2(t) + Q4(t) + Q5(t)),

f2(Q(t)) = x2(Q1(t) + Q2(t)) + x5(Q1(t) + Q2(t) + Q4(t) + Q5(t))

and Equations (6.2.10)–(6.2.11) ensure that f3(Q(t)) ≤ f2(Q(t)).

Finally, we establish (6.4.3). When Z1(t) = 0 and Z2(t) = 0,

f1(Q(t)) = x4Q3(t),

f2(Q(t)) = x5Q3(t),

f3(Q(t)) = x3Q3(t) + x6(Q3(t) + Q6(t)).
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Equation (6.2.7) ensures that f1(Q(t)) ≤ f3(Q(t)) and Equations (6.2.7) and (6.2.8) ensure

that f2(Q(t)) ≤ f3(Q(t)). The remaining cases of (6.4.3) can be verified similarly.

Remark 6.4.1. (a) In general, condition (6.4.2) generates non-linear constraints on x = (xk).

However, for our network, the linear constraints arising from (6.4.3) imply condition (6.4.2)

and so we have the set of linear constraints (6.2.1)–(6.2.11) associated with our piecewise

linear Lyapunov function.

(b) For a d-station generalization of our fluid network in which fluid repeatedly visits

all of the stations in a fixed order, there is an analogous natural set of linear constraints

associated with a piecewise linear Lyapunov function. Further, it is not difficult to obtain

explicit conditions in terms of the service times and arrival rate characterizing exactly when

the linear constraints admit a solution x.

(c) The existence of a solution x to the system of linear constraints (6.2.1)–(6.2.11)

ensures the existence of a piecewise linear Lyapunov function satisfying conditions (6.4.1)–

(6.4.3). The converse, however, does not hold; see Lemma 6.4.4.

Lemma 6.4.3. The linear constraints (6.2.1)–(6.2.11) admit a feasible solution x = (xk) >

0 if and only if

λ(m1 + m4) < 1, (6.4.4)

λ(m2 + m5) < 1, (6.4.5)

λ(m3 + m6) < 1, (6.4.6)

λm2 + λ2m4m6 < 1. (6.4.7)
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Proof. Given (x1, . . . , x6) > 0, let

y1 =
x4

x1 + x4
, y2 =

x5

x2 + x5
, y3 =

x6

x3 + x6
.

Then (x1, . . . , x6) > 0 satisfies (6.2.1)–(6.2.11) if and only if (y1, y2, y3, x4, x5, x6) > 0 satis-

fies

λm1 < 1− y1, (6.4.8)

λm4 < y1, (6.4.9)

λm2 < 1− y2, (6.4.10)

λm5 < y2, (6.4.11)

λm3 < 1− y3, (6.4.12)

λm6 < y3, (6.4.13)

y3x4 ≤ x6, (6.4.14)

x5 ≤ x4, (6.4.15)

x5y1 ≤ x4y2, (6.4.16)

x6y2 ≤ x5y3, (6.4.17)

x6 ≤ x5. (6.4.18)



94

The vector (y1, y2, y3, x4, x5, x6) > 0 satisfies (6.4.8)–(6.4.18) if and only if

α(y1, y2, y3, x4, x5, x6) satisfies (6.4.8)–(6.4.18) for each positive scalar α. Choosing α =

1/x4, we see that there is a strictly positive solution to (6.4.8)–(6.4.18) if and only if there

is (y1, y2, y3, x5, x6) > 0 satisfying

λm4 < y1 < 1− λm1, (6.4.19)

λm5 < y2 < 1− λm2, (6.4.20)

λm6 < y3 < 1− λm3, (6.4.21)

y3 ≤ x6, (6.4.22)

x5 ≤ 1 (6.4.23)

x5 ≤
y2

y1
, (6.4.24)

x6 ≤ x5
y3

y2
, (6.4.25)

x6 ≤ x5. (6.4.26)
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The existence of (y1, y2, y3, x5, x6) > 0 satisfying (6.4.19)–(6.4.26) is equivalent to the exis-

tence of (y1, y2, y3, x5) > 0 satisfying

λm4 < y1 < 1− λm1, (6.4.27)

λm5 < y2 < 1− λm2, (6.4.28)

λm6 < y3 < 1− λm3, (6.4.29)

x5 ≤ 1 (6.4.30)

x5 ≤
y2

y1
, (6.4.31)

y2 ≤ x5, (6.4.32)

y3 ≤ x5, (6.4.33)

which is equivalent to the existence of (y1, y2, y3) satisfying

λm4 < y1 < 1− λm1, (6.4.34)

λm5 < y2 < 1− λm2, (6.4.35)

λm6 < y3 < 1− λm3, (6.4.36)

y1y3 ≤ y2. (6.4.37)
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Finally, the existence of (y1, y2, y3) satisfying (6.4.34)–(6.4.37) is equivalent to (6.4.4)–

(6.4.7).

The following lemma establishes an alternate set of conditions sufficient to ensure global

stability in our three-station fluid network.

Lemma 6.4.4. If

λm1 + m4/m3 < 1, (6.4.38)

λ(m2 + m5) < 1, (6.4.39)

λ(m3 + m6) < 1, (6.4.40)

the fluid network of Figure 10 is globally stable.

Proof. Assume that (6.4.38) holds. We first show that there is t0 > 0 such that for all non-

idling fluid solutions (Q(·), T (·)) with |Q(0)| = 1, Z1(t) = 0 for each time t ≥ t0. We then

separately show that there is t1 > t0 such that for all non-idling fluid solutions (Q(·), T (·))

with |Q(0)| = 1, Z2(t) + Z3(t) = 0 for each time t ≥ t1 and hence that the network is

globally stable.

Let (Q(·), T (·)) be any non-idling fluid solution with |Q(0)| = 1. Let

g(t) = m1Q1(t) + m4Q4(t).
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From (6.1.1)–(6.1.4),

g(t) = g(0) + λm1t− T1(t) + m4µ3T3(t)− T4(t).

Therefore, for any regular t with g(t) > 0,

ġ(t) = λm1 + m4µ3Ṫ3(t)− (Ṫ1(t) + Ṫ4(t)) ≤ λm1 + m4µ3 − 1 < 0.

Therefore g(t) = 0 for all t ≥ g(0)/(1− λm1 −m4µ3). Since g(0) ≤ max{m1,m4}, we have

Z1(t) = 0 for t ≥ t0, where

t0 =
max{m1,m4}

1− λm1 −m4µ3
.

To show that buffers at stations 2 and 3 eventually empty, we consider times t ≥ t0 and

specialize the proof of Lemma 6.4.1 to the case where Z1(t) = 0 and Q̇1(t) = Q̇4(t) = 0.

First, observe that since Z1(t) = 0 for t ≥ t0, (6.4.1) is vacuously satisfied for i = 1.

Similarly, (6.4.3) is trivially satisfied for i = 1. Then arguments analogous to those used in

the proof of Lemma 6.4.2 show that (6.4.1)–(6.4.3) hold if there exists (x2, x3, x5, x6) > 0
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satisfying

λ(x2 + x5) < µ2x2, (6.4.41)

λ(x2 + x5) < µ5x5, (6.4.42)

λ(x3 + x6) < µ3x3, (6.4.43)

λ(x3 + x6) < µ6x6, (6.4.44)

x5 ≤ x3 + x6, (6.4.45)

x3 + x6 ≤ x2 + x5, (6.4.46)

x6 ≤ x5. (6.4.47)

Finally, arguments similar to those used in the proof of Lemma 6.4.3 show that there exists

x > 0 satisfying (6.4.41)–(6.4.47) if and only if the usual traffic conditions (6.4.39)–(6.4.40)

at stations 2 and 3 hold. Therefore, the lemma follows from Lemma 6.4.1.

Remark 6.4.2. For two-station networks, there is x > 0 satisfying the linear constraints

arising from our piecewise linear Lyapunov functions if and only if the fluid network is

globally stable. This is not the case for networks with more than two stations and Lemma

6.4.4 illustrates one way in which the network can be globally stable even when the linear

system (6.2.1)–(6.2.11) admits no positive solution.

We are now prepared to prove our main result, Theorem 6.2.1, showing that the global

stability region of our three-station network is not monotone in the service times and char-

acterizing its monotone global stability region both in terms of the solvability of the linear
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system (6.2.1)–(6.2.11) and in terms of explicit constraints on the service times and arrival

rate.

Proof of Theorem 6.2.1. We first show that (b), the existence of a solution x > 0 to the

linear system (6.2.1)–(6.2.11), implies (a), that m ∈M∞. We proved the equivalence of (b)

and (c) in Lemma 6.4.3. Then we show that (a) implies (c), thus proving the equivalence

of (a), (b) and (c).

Suppose that m > 0 is a service time vector for which there exists an x = (xk) > 0

satisfying (6.2.1)–(6.2.11). By Lemma 6.4.2, f is a piecewise linear Lyapunov function

proving that m is in the global stability region. To see that m is in the monotone global

stability region, observe that for each 0 < m̃ ≤ m, µ̃ = (1/m̃k) ≥ µ and x satisfies (6.2.1)–

(6.2.11) with µ replaced by µ̃. Thus, f(x,Q(·)) is also a piecewise linear Lyapunov function

proving that m̃ is in the global stability region as well.

Consider a service time vector m > 0 such that

m 6∈ D0 ∩ {m ∈ Rd
+ : λm2 + λ2m4m6 < 1}.

To show that (a) implies (c), it is enough to show that m 6∈ M∞. If m 6∈ D0, then m is

clearly not in the global stability region and hence not in M∞. So, suppose that m is in

D0 and λm2 + λ2m4m6 ≥ 1. If m4 > m3, then it follows from Theorem 6.2.2 that m is

not in the global stability region and hence not in the monotone global stability region. If

m4 ≤ m3, let

m̃ = (m1,m2, m̃3,m4,m5,m6)

where 0 < m̃3 < m4 ≤ m3. Clearly, m̃ ≤ m and, by Theorem 6.2.2, m̃ is not in the global

stability region. Therefore, m is not in the monotone global stability region of the fluid
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network.

Finally, we show that the global stability region D∞ is not monotone. Let α = 1 and

consider the service times

m = (0.1, 0.85, 0.5, 0.4, 0.1, 0.4).

Since λm1+m4/m3 = 0.9 < 1, it follows from Lemma 6.4.4 that the fluid network is globally

stable. Now, suppose that server 3 works faster on class 3 fluids and so the service time m3

is reduced to m̃3 = 0.1, for example. The other service times remain unchanged. That is,

m̃ = (0.1, 0.85, 0.1, 0.4, 0.1, 0.4).

Since m̃4 > m̃3 and λm̃2 + λ2m̃4m̃6 = 1.01 > 1, it follows from Theorem 6.2.2 that the

network is not globally stable when the service time vector is m̃.

6.5 The Power of the LP by Bertsimas, Gamarnik and Tsit-

siklis

Based on a path decomposition approach, Bertsimas, Gamarnik and Tsitsiklis [2] proposed

a linear program (LP) to determine whether a particular service time vector m is in the

global stability region. They proved that for two-station networks, the LP has bounded

objective value if and only if the network is globally stable. They further conjectured that

the same would be true for general networks.

In this section we prove that their LP does not provide a sharp characterization of

the global stability region or the monotone global stability region of the fluid network in
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Figure 10.

Proof of Theorem 6.2.3. When α = 1 the service time vector

m = (0.5, 0.5, 0.5, 0.4, 0.01, 0.4)

is in M∞. Therefore, the fluid network with these service times and arrival rate α = 1 is

globally stable. However, for the service time vector m, a non-zero feasible solution to the

LP (6.2.18)–(6.2.26) is given by

τ1 = τ2 = τ3 = 10

τ11 = 5 τ21 = 5 τ31 = 6.25

τ12 = 7 τ22 = 10 τ32 = 7

τ13 = 3 τ23 = 0 τ33 = 1.75

τ41 = 5 τ51 = 0.3 τ61 = 3.75

τ42 = 0 τ52 = 0 τ62 = 0

τ43 = 7 τ53 = 0 τ63 = 8.25.

Thus, the LP of Bertsimas, Gamarnik and Tsitsiklis [2] has unbounded objective value.

6.6 Static Buffer Priority Disciplines

Chen and Zhang [11] employed linear Lyapunov functions to study the stability of fluid

networks under static buffer priority disciplines. They showed that if an LP related to

their linear Lyapunov function has positive objective value, the fluid network is stable

under the discipline. In this section, we show that the converse is not true. Namely, we

demonstrate service times m in Dπ{4,2,6} , the stability region of our three-station network

under the discipline that gives higher priorities to classes 2, 4 and 6, for which the LP of
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Chen and Zhang has maximum objective value 0. Thus, their LP does not provide a sharp

characterization of the stability of a priority fluid network.

For each x = (xk) > 0 and fluid solution (Q(·), T (·)) under the priority discipline π{4,2,6}

define

f(x, Q(t)) =
6∑

k=1

xkQk(t).

Clearly, for fixed x, f is a linear function of Q(t). We often write f(Q(t)) in place of the

more cumbersome f(x,Q(t)).

If, for each fluid solution (Q(·), T (·)) under the discipline π{4,2,6} and regular point t

such that Q(t) 6= 0,
df(Q(t))

dt
≤ −ε < 0, (6.6.1)

then f(Q(t)) = 0, and hence Q(t) = 0, for all t ≥ f(Q(0))/ε. In this case, f is a linear

Lyapunov function proving that the network is stable under the discipline π{4,2,6}.

For each regular point t of the fluid solution (Q(·), T (·))

df(Q(t))
dt

=
6∑

k=1

xkQ̇k(t) =
6∑

k=1

xk(dk−1 − dk),

where dk = µkṪk(t) for k = 1, 2, . . ., 6 and d0 = λ. To ensure (6.6.1), we impose the linear

constraint
6∑

k=1

xk(dk−1 − dk) + ε ≤ 0 (6.6.2)

on x for each feasible choice of (d1, d2, . . . , d6).

The feasible values of (d1, d2, . . . , d6) ≥ 0 depend on the fluid state Q(t) in the following



103

ways:

dk = dk−1 if Qk(t) = 0, k = 1, 2, . . . , 6, (6.6.3)

d1 = 0 if Q4(t) > 0, (6.6.4)

d5 = 0 if Q2(t) > 0, (6.6.5)

d3 = 0 if Q6(t) > 0, (6.6.6)

d1m1 + d4m4 = 1 if Z1(t) > 0, (6.6.7)

d2m2 + d5m5 = 1 if Z2(t) > 0, (6.6.8)

d3m3 + d6m6 = 1 if Z3(t) > 0. (6.6.9)

Equation (6.6.3) follows from Proposition 4.2 of Dai and Weiss [17]. Equations (6.6.4)-

(6.6.6) follow from (6.1.5). Finally, equations (6.6.7)-(6.6.9) follow from (2.3.6). We refer to

the set of all non-negative vectors d = (d1, d2, . . . , d6) that satisfy (6.6.3)–(6.6.9) for some

Q(t) ≥ 0 as Tπ{4,2,6} .

Lemma 6.6.1 is an immediate consequence of (6.6.2), it specializes the LP criterion of

Chen and Zhang [11] to our three-station network.
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Lemma 6.6.1. If the following LP has positive objective value:

max ε (6.6.10)

subject to:

6∑
k=1

xk ≤ 1, (6.6.11)

6∑
k=1

xk(ds
k−1 − ds

k) + ε ≤ 0 for each ds ∈ Tπ{4,2,6} , (6.6.12)

x = (xk) ≥ 0, (6.6.13)

then the fluid network is stable under the static buffer priority discipline π{4,2,6} and so

m ∈ Dπ{4,2,6}.

We next show that the converse of Lemma 6.6.1 is not true and hence that the LP of

Chen and Zhang does not provide a sharp characterization of stability under static priority

disciplines.

Proof of Theorem 6.2.6. Let λ = 1 and let

m = (0.001, 0.18, 0.001, 0.9, 0.001, 0.9)

be the service time vector. Clearly, m satisfies the usual traffic conditions (3.2.1). Since

m2 + m4m6 = 0.99 < 1,
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by Theorem 6.2.1, m is in the monotone global stability region, and hence in Dπ{4,2,6} .

To show that there is no solution to the LP (6.6.10)–(6.6.13) with positive objective

value, we demonstrate a feasible solution to the dual problem with objective value 0. The

dual of (6.6.10)–(6.6.13) is:

minβ (6.6.14)

subject to:

∑
s∈Tπ{4,2,6}

ys = 1, (6.6.15)

∑
s∈Tπ{4,2,6}

ys(ds
k−1 − ds

k) + β ≥ 0 for each k = 1, 2, . . . , 6, (6.6.16)

y = (ys) ≥ 0 (6.6.17)

Our solution involves the seven states described in Table 1.

case state departure rates
1 Q2(t) > 0, Q4(t) > 0, Q6(t) > 0 d1 = d3 = d5 = 0, d2 = µ2, d4 = µ4, d6 = µ6

2 Q2(t) > 0, Q3(t) > 0, Q4(t) > 0 d1 = d5 = d6 = 0, d2 = µ2, d3 = µ3, d4 = µ4

3 Q2(t) > 0, Q4(t) > 0 d1 = d5 = d6 = 0, d2 = d3 = µ2, d4 = µ4

4 Q4(t) > 0, Q5(t) > 0, Q6(t) > 0 d1 = d2 = d3 = 0, d4 = µ4, d5 = µ5, d6 = µ6

5 Q4(t) > 0 d1 = d2 = d3 = 0, d4 = d5 = d6 = µ4

6 Q1(t) > 0, Q2(t) > 0, Q6(t) > 0 d3 = d4 = d5 = 0, d1 = µ1, d2 = µ2, d6 = µ6

7 Q6(t) > 0 d3 = d4 = d5 = 0, d1 = d2 = 1, d6 = µ6

Table 1: Departure rates for the seven states used in our dual solution. Note that the state
only lists the highest priority class at each station with positive buffer level.
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Tedious algebra establishes that

y6 =
m1m4

1−m1
≈ 0.00090 (6.6.18)

y7 =
1−m1 −m4

1−m1
≈ 0.09910 (6.6.19)

y2 =
µ6(1−m2) + m4µ5(m1 −m2)/(m1 − 1)− 1

µ6(1−m2µ3) + m4µ5(µ5 − µ4)
≈ 0.00018 (6.6.20)

y3 = m2 −m2µ3y2 ≈ 0.14772 (6.6.21)

y4 =
m1 −m2

1−m1
m4 + m4µ5y2 ≈ 0.00013 (6.6.22)

y5 = m4 −m4µ5y2 ≈ 0.73861 (6.6.23)

y1 =
m2 −m1

1−m1
m4 −m2 − (1−m2µ3)π2 ≈ 0.01336 (6.6.24)

and ys = 0 otherwise describes a feasible solution to the dual problem (6.6.14)–(6.6.17) with

β = 0 proving that there is no solution to the LP (6.6.10)–(6.6.13) with positive objective

value.

Nevertheless, linear Lyapunov functions remain a powerful tool for establishing the

global stability of priority networks. In fact, we rely on this tool to prove that the stability

regions of the static buffer priority disciplines to not characterize the global stability region

of a network with more than two stations.

Dai and Vande Vate [16] showed that the global stability region of a two-station fluid

network is determined by static buffer priority disciplines. We show that this is not the

case for fluid networks with more than two stations. This helps explain why we required

the dynamic disciplines used in the proof of Theorem 6.2.1 to characterize the monotone
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global stability region of our three-station network.

We first show that the stability region of the network under all but one of the static

buffer priority disciplines is determined by the usual traffic conditions at each station. Thus,

stability under the remaining static buffer priority discipline π{4,2,6} implies stability under

all static buffer priority disciplines. We then demonstrate a service time vector m that is

not in the global stability region, but is in the stability region under the discipline π{4,2,6}.

This shows that the global stability region of a fluid network with more than two stations is

determined by a richer family of disciplines than simply the static buffer priority disciplines.

We show that every fluid solution under a discipline that gives priority to class 1 over

class 4 reduces to a fluid solution in the five-class network in Figure 11 obtained by deleting

class 1. Similarly, every fluid solution under a discipline that gives priority to class 3 over

class 6 eventually reduces to a fluid solution in the five-class network in Figure 12 obtained

by deleting class 6.

We start by showing that the global stability regions of these two five-class subnetworks

are defined by the usual traffic conditions at each station.

Lemma 6.6.2. The five-class three-station fluid network in Figure 11 is globally stable so

long as the traffic intensity at each station is less than one.

Proof. Consider the fluid network in Figure 11. For a given x = (x1, . . . , x5)′ > 0, let

f1(x, Q(t)) = x3Q
+
3 (t),

f2(x,Q(t)) = x1Q
+
1 (t) + x4Q

+
4 (t),

f3(x,Q(t)) = x2Q
+
2 (t) + x5Q

+
5 (t),



108

-

- - --

-

Station 1 Station 2 Station 3

α m1 m2

m3 m4 m5

Figure 11: The five-class network obtained by deleting class 1 from the six-class fluid
network

- - -

-- -

m1 m2 m3

m4 m5

α

Station 1 Station 2 Station 3

Figure 12: The five-class network obtained by deleting class 6 from the six-class fluid
network
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where, as before, Q+
k (t) =

∑k
`=1 Q`(t). If, for each non-idling fluid solution (Q(·), T (·)) of

the network, f1, f2 and f3 satisfy conditions (6.4.1)–(6.4.3), it follows from the proof of

Lemma 6.4.1 that the fluid network in Figure 11 is globally stable.

Mimicking the proof of Lemma 6.4.2, (6.4.1)–(6.4.3) hold if there is x = (x1, . . . , x5) > 0

satisfying

λ(x1 + x4) < x1µ1, (6.6.25)

λ(x1 + x4) < x4µ4, (6.6.26)

λ(x2 + x5) < x2µ2, (6.6.27)

λ(x2 + x5) < x5µ5, (6.6.28)

λx3 < x3µ3, (6.6.29)

x4 ≤ x3, (6.6.30)

x5 ≤ x4, (6.6.31)

x2 + x5 ≤ x1 + x4, (6.6.32)

x3 ≤ x2 + x5. (6.6.33)

Employing the techniques used in the proof of Lemma 6.4.3, we conclude that there is x > 0
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satisfying (6.6.25)–(6.6.33) if and only if

λ(m1 + m4) < 1,

λ(m2 + m5) < 1,

λm3 < 1.

This proves the lemma for the network in Figure 11.

The corresponding result for the network in Figure 12 follows immediately from re-

numbering the stations.

Corollary 6.6.3. The five-class three-station fluid network in Figures 12 is globally stable

so long as the traffic intensity at each station is less than one.

Lemma 6.6.4. The stability region for any non-idling discipline that gives priority to class

3 over class 6 is D0.

Proof. Consider m ∈ D0. Any fluid solution (Q(·), T (·)) under the priority discipline satisfies

(6.1.1)–(2.3.6). In addition, (Q(·), T (·)) satisfies Ṫ3(t) = 1 for each regular point t such that

Q3(t) > 0. Therefore, (Q1(t), . . . , Q5(t)) together with (T1(t), . . . , T5(t)) is a fluid solution

to the five-class fluid network in Figure 12 and, by Corollary 6.6.3, there exists δ > 0 such

that (Q1(t), . . . , Q5(t)) = 0 for t ≥ δ. After δ, the input rate to buffer 6 is λ. If Q6(t) > 0

for a regular point t > δ, the departure rate d6 from buffer 6 satisfies λm3 + d6m6 = 1.

Thus, d6 = µ6(1−λm3), which is faster than the input rate λ. Hence buffer 6 will be empty
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by
Q6(0) + δ

µ6(1− λm3)− λ
.

Therefore, m is in the stability region.

Lemma 6.6.5. The stability region for any non-idling discipline that gives priority to class

1 over class 4 is D0.

Proof. Consider m ∈ D0. Any fluid solution (Q(·), T (·)) under the priority discipline sat-

isfies (6.1.1)–(2.3.6). In addition, (Q(·), T (·)) satisfies Ṫ1(t) = 1 for each regular point t

such that Q1(t) > 0. Because λm1 < 1, Q1(t) = 0 for t ≥ δ0 = Q1(0)/(µ1 − λ). For

notational convenience, we assume Q1(0) = 0 and hence δ0 = 0. From (6.1.1)–(6.1.4), we

have µ1T1(t) = λt and hence

Q2(t) = Q2(0) + λt− µ2T2(t),

Q3(t) = Q3(0) + µ2T2(t)− µ3T3(t),

Q4(t) = Q4(0) + µ3T3(t)− µ4T4(t),

Q5(t) = Q5(0) + µ4T4(t)− µ5T5(t),

Q6(t) = Q6(0) + µ5T5(t)− µ6T6(t),
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and

Ṫ2(t) + Ṫ5(t) = 1 if Q2(t) + Q5(t) > 0,

Ṫ3(t) + Ṫ6(t) = 1 if Q3(t) + Q6(t) > 0,

λm1 + Ṫ4(t) = 1 if Q4(t) > 0.

Let T̃4 = T4(t)/(1− λm1), m̃4 = m4/(1− λm1) and µ̃4 = 1/m̃4. Then, we have

Q2(t) = Q2(0) + λt− µ2T2(t),

Q3(t) = Q3(0) + µ2T2(t)− µ3T3(t),

Q4(t) = Q4(0) + µ3T3(t)− µ̃4T̃4(t),

Q5(t) = Q5(0) + µ̃4T̃4(t)− µ5T5(t),

Q6(t) = Q6(0) + µ5T5(t)− µ6T6(t),

and

Ṫ2(t) + Ṫ5(t) = 1 if Q2(t) + Q5(t) > 0,

Ṫ3(t) + Ṫ6(t) = 1 if Q3(t) + Q6(t) > 0,

˙̃T4(t) = 1 if Q4(t) > 0.
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Therefore (Q2(t), . . . Q6(t)) together with (T2(t), T3(t), T̃4(t), T5(t), T6(t)) is a fluid solution

to the five-class fluid network in Figure 11 with service times (m2,m3, m̃4,m5,m6). Since

m ∈ D0, we have

λm̃4 < 1,

λ(m2 + m5) < 1,

λ(m3 + m6) < 1.

It follows from Lemma 6.6.2 that (Q2(t), . . . , Q6(t)) = 0 for t > δ for some δ > 0.

Proof of Theorem 6.2.4. Part (a): By Lemma 6.6.4, Dπ = D0 for π =

π{1,2,3}, π{1,5,3}, π{4,2,3}, π{4,5,3}. By Lemma 6.6.5, Dπ = D0 for π = π{1,2,6}, π{1,5,6}. The

static buffer priority discipline π{4,5,6} corresponds to the last-buffer-first-served priority

discipline, whose stability region Dai and Weiss [17] showed to be D0.

Part (b): Let λ = 1. In Chapter 5 we proved that under the preemptive-resume priority

discipline π{4,2,6} in the corresponding queueing network, classes 2, 4 and 6 constitute a

pseudostation, in which at most two classes of jobs can be processed simultaneously. As

a consequence, if m2 + m4 + m6 > 2, then the total number of jobs in the system grows

linearly with time. Furthermore, any fluid limit as taken in Dai [13] grows linearly with

time. Because such a fluid limit is a fluid solution to equations (6.1.1)–(2.3.6), the fluid

model is unstable under the discipline. The service time vector,

m = (0.1, 0.8, 0.1, 0.8, 0.1, 0.8),
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for example, is in D0, but since m2 + m4 + m6 = 2.4 > 2, m 6∈ Dπ.

Part (c): Let λ = 1 and consider the service time vector

m = (0.1, 0.8, 0.1, 0.45, 0.1, 0.45).

It is easy to check that

m4 > m3,

λm2 + λ2m4m6 = 1.0025 > 1.

and so, by Theorem 6.2.2, m is not in the global stability region.

We now proceed to show that

x = (139, 139, 59, 63, 27, 27)

satisfies the linear constraints in (6.6.10)–(6.6.13) with ε = 1. Hence, m ∈ Dπ{4,2,6} , thus

completing the proof.

Recall that to generate the vectors ds ∈ Tπ{4,2,6} , we solve (6.6.3)–(6.6.9) for each of the

possible cases. These cases reduce to the following three at each station:

1. The higher priority buffer has positive fluid level,

2. Only the lower priority buffer has positive fluid level,

3. Both buffers are empty.
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These three cases at each of the three stations lead to the 26 cases listed in Table 2 (there

is no need to consider the case in which all the buffers are empty).

Case Station A Station B Station C
1 None None 3
2 None None 6
3 None 5 None
4 None 5 3
5 None 5 6
6 None 2 None
7 None 2 3
8 None 2 6
9 1 None None
10 1 None 3
11 1 None 6
12 1 5 None
13 1 5 3
14 1 5 6
15 1 2 None
16 1 2 3
17 1 2 6
18 4 None None
19 4 None 3
20 4 None 6
21 4 5 None
22 4 5 3
23 4 5 6
24 4 2 None
25 4 2 3
26 4 2 6

Table 2: Enumeration of 26 states: each state corresponds to a different set of highest
priority non-empty buffers.
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If the solution d for a case (and the solution is unique for each case) does not satisfy

d1m1 + d4m4 ≤ 1, (.34)

d2m2 + d5m5 ≤ 1, (.35)

d3m3 + d6m6 ≤ 1, and (.36)

di ≥ 0 for i = 1, 2, . . . , 6 (.37)

then the corresponding state is not feasible and hence not in Tπ{4,2,6} . Otherwise, we include

d in Tπ{4,2,6} . Table 3 shows the departure rates d in each case and Table 4 shows the

departure rates for the service times m = (0.1, 0.8, 0.1, 0.45, 0.1, 0.45) used in Part (c) of the

proof of Theorem 6.2.4. Table 5 shows both the rates of change in the buffer levels Q̇ and

the value of

df(x, Q(t))/dt =
6∑

k=1

Q̇kxk,

where x = (139, 139, 59, 63, 27, 27), for each regular state. This demonstrates that f(x,Q(t))

is a linear Lyapunov function proving the network is stable under the static buffer priority

discipline π{4,2,6}.
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Case Departure Rate
1 d2 = d1, d4 = d3, d6 = d5, d1 = λ, d5 = 1/(m3 + m6), d3 = d5

2 d3 = d4 = 0, d2 = d1, d6 = µ6, d1 = λ, d5 = 0,
3 d2 = d1, d4 = d3, d6 = d5, d1 = λ, d3 = λ, d5 = µ5(1− λm2)
4 d2 = d1, d4 = d3, d6 = d5, d1 = λ, d5 = µ5(1− λm2),
5 d3 = d4 = 0, d2 = d1, d6 = µ6, d1 = λ, d5 = µ5(1− λm2)
6 d5 = d6 = 0, d2 = µ2, d4 = d3, d3 = µ2, d1 = λ,
7 d5 = d6 = 0, d2 = µ2, d4 = d3, d3 = µ3, d1 = λ
8 d3 = d4 = d5 = 0, d2 = µ2, d6 = µ6, d1 = λ
9 d2 = d1, d4 = d3, d6 = d5, d1 = 1/(m1 + m4), d3 = d1, d5 = d1

10 d2 = d1, d4 = d3, d6 = d5, d3 = 1/(m3 + m6), d5 = d4, d1 = µ1(1− d3m4)
11 d3 = d4 = 0, d2 = d1, d6 = µ6, d1 = µ1, d5 = 0
12 d2 = d1, d4 = d3, d6 = d5, d1 = 1/(m1 + m4), d3 = d1, d5 = µ5(1− d1m2)
13 d1m1 + d3m4 = 1, d1m2 + d5m5 = 1, d3m3 + d5m6 = 1, d2 = d1, d4 = d3, d6 = d5

14 d3 = d4 = 0, d2 = d1, d6 = µ6, d1 = µ1, d5 = µ5(1− µ1m2)
15 d5 = d6 = 0, d2 = µ2, d4 = d3, d3 = µ2, d1 = µ1(1− µ2m4)
16 d5 = d6 = 0, d2 = µ2, d4 = d3, d3 = µ3, d1 = µ1(1− µ3m4)
17 d3 = d4 = d5 = 0, d2 = µ2, d6 = µ6, d1 = µ1

18 d1 = d2 = 0, d4 = µ4, d6 = d5, d5 = µ4, d3 = 0,
19 d1 = d2 = 0, d4 = µ4, d6 = d5, d5 = µ4, d3 = µ3(1− µ4m6)
20 d1 = d2 = d3 = 0, d4 = µ4, d6 = µ6, d5 = µ4

21 d1 = d2 = 0, d4 = µ4, d6 = d5, d5 = µ5, d3 = 0
22 d1 = d2 = 0, d4 = µ4, d6 = d5, d5 = µ5, d3 = µ3(1− µ5m6)
23 d1 = d2 = d3 = 0, d4 = µ4, d6 = µ6, d5 = µ5

24 d1 = d5 = d6 = 0, d2 = µ2, d4 = µ4, d3 = µ2

25 d1 = d5 = d6 = 0, d2 = µ2, d4 = µ4, d3 = µ3

26 d1 = d3 = d5 = 0, d2 = µ2, d4 = µ4, d6 = µ6

Table 3: The departure rates for all 6 classes in all the states of the three-station fluid
network under the static priority discipline π{4,2,6}. Each state is characterized by giving
the highest priority non-empty buffer (if any) at each station as indicated in Table 2.
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Departure Rate Busy Fraction
Case d1 d2 d3 d4 d5 d6 A B C feasible?
1 1.00 1.00 1.82 1.82 1.82 1.82 0.92 0.98 1.00 yes
2 1.00 1.00 0.00 0.00 0.00 2.22 0.10 0.80 1.00 yes
3 1.00 1.00 1.00 1.00 2.00 2.00 0.55 1.00 1.00 yes
4 1.00 1.00 1.00 1.00 2.00 2.00 0.55 1.00 1.00 yes
5 1.00 1.00 0.00 0.00 2.00 2.22 0.10 1.00 1.00 yes
6 1.00 1.25 1.25 1.25 0.00 0.00 0.66 1.00 0.13 yes
7 1.00 1.25 10.00 10.00 0.00 0.00 4.60 1.00 1.00 no
8 1.00 1.25 0.00 0.00 0.00 2.22 0.10 1.00 1.00 yes
9 1.82 1.82 1.82 1.82 1.82 1.82 1.00 1.64 1.00 no
10 1.82 1.82 1.82 1.82 1.82 1.82 1.00 1.64 1.00 no
11 10.00 10.00 0.00 0.00 0.00 2.22 1.00 8.00 1.00 no
12 1.82 1.82 1.82 1.82 -4.55 -4.55 1.00 1.00 -1.86 no
13 1.03 1.03 1.99 1.99 1.78 1.78 1.00 1.00 1.00 yes
14 10.00 10.00 0.00 0.00 -70.00 2.22 1.00 1.00 1.00 no
15 4.38 1.25 1.25 1.25 0.00 0.00 1.00 1.00 0.13 yes
16 -35.00 1.25 10.00 10.00 0.00 0.00 1.00 1.00 1.00 no
17 10.00 1.25 0.00 0.00 0.00 2.22 1.00 1.00 1.00 yes
18 0.00 0.00 0.00 2.22 2.22 2.22 1.00 0.22 1.00 yes
19 0.00 0.00 0.00 2.22 2.22 2.22 1.00 0.22 1.00 yes
20 0.00 0.00 0.00 2.22 2.22 2.22 1.00 0.22 1.00 yes
21 0.00 0.00 0.00 2.22 10.00 10.00 1.00 1.00 4.50 no
22 0.00 0.00 -35.00 2.22 10.00 10.00 1.00 1.00 1.00 no
23 0.00 0.00 0.00 2.22 10.00 2.22 1.00 1.00 1.00 yes
24 0.00 1.25 1.25 2.22 0.00 0.00 1.00 1.00 0.13 yes
25 0.00 1.25 10.00 2.22 0.00 0.00 1.00 1.00 1.00 yes
26 0.00 1.25 0.00 2.22 0.00 2.22 1.00 1.00 1.00 yes

Table 4: The departure rates for all 6 classes in all the states of the three-station fluid
network with processing times m = (0.1, 0.8.0.1, 0.45, 0.1, 0.45) under the static priority
discipline π{4,2,6}. Each state is characterized by giving the highest priority non-empty
buffer (if any) at each station as indicated in Table 2. A state is feasible if the departure
rates are non-negative and at most 100% of each server’s time is allocated. Values preventing
states from being feasible are indicated with boldfaced type.
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Case Q̇1 Q̇2 Q̇3 Q̇4 Q̇5 Q̇6
∑

k xkQ̇k

1 0.00 0.00 -0.82 0.00 0.00 0.00 -48.27
2 0.00 0.00 1.00 0.00 0.00 -2.22 -1.00
3 0.00 0.00 0.00 0.00 -1.00 0.00 -27.00
4 0.00 0.00 0.00 0.00 -1.00 0.00 -27.00
5 0.00 0.00 1.00 0.00 -2.00 -0.22 -1.00
6 0.00 -0.25 0.00 0.00 1.25 0.00 -1.00
8 0.00 -0.25 1.25 0.00 0.00 -2.22 -21.00
13 -0.03 0.00 -0.97 0.00 0.21 0.00 -55.05
15 -3.38 3.13 0.00 0.00 1.25 0.00 -1.00
17 -9.00 8.75 1.25 0.00 0.00 -2.22 -21.00
18 1.00 0.00 0.00 -2.22 0.00 0.00 -1.00
19 1.00 0.00 0.00 -2.22 0.00 0.00 -1.00
20 1.00 0.00 0.00 -2.22 0.00 0.00 -1.00
23 1.00 0.00 0.00 -2.22 -7.78 7.78 -1.00
24 1.00 -1.25 0.00 -0.97 2.22 0.00 -36.00
25 1.00 -1.25 -8.75 7.78 2.22 0.00 -1.00
26 1.00 -1.25 1.25 -2.22 2.22 -2.22 -101.00

Table 5: Rates of change in the buffer levels for the 17 feasible states in the three-station fluid
network with processing times m = (0.1, 0.8.0.1, 0.45, 0.1, 0.45) under the static priority dis-
cipline π{4,2,6} . The last column computes

∑6
k=1 Q̇kxk where x = (139, 139, 59, 63, 27, 27).

This shows that the network is stable under the discipline π{4,2,6}.
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Conclusions

While we expect that the results presented in the last few chapters will shed some light

on the stability properties of complex multiclass queueing networks and the control and

analysis of associated real-world systems, there is clearly much more to be done to gain a

full understanding of this area. We now review some questions and directions for further

research that arise from our investigations in the previous chapters. Certainly this is not

meant to be a comprehensive review all the open issues related to stability, capacity, and

scheduling. Our presentation somewhat follows the chronology of the main chapters in this

dissertation.

In Chapter 4 we derived necessary and sufficient stability conditions for two-station fluid

networks, provided that these networks were restricted to a class called acyclic transfer

mechanism networks (ACTN’s), essentially a class of networks that does not allow revisits

to a class. In fact, our results could actually be extended to any fluid network which

allows only a finite number revisits to a station, since such a network could be equivalently

relabeled as an ACTN. Practically speaking, this should be a perfectly satisfactory class of

networks to model real-life situations (since jobs rarely make an infinite number of revisits

in the factory). However, this still leaves one with a theoretical yearning to extend the

theory to the full class of two-station fluid OMQN’s.

Unfortunately, the methods of Chapter 4 cannot be directly extended to this class of

120
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networks. Although hidden in the analysis, our ability to transform the LP of Section 4.4

into a network flow problem relies on the fact that in any SBN, the classes can be labeled

such that the routing matrix P is upper triangular. One possible way to overcome this

difficulty is to model the OMQN as a SBN with an infinite number of classes. In this case,

we can again write down a similar LP and transform it into a network flow problem with

an infinite number of nodes. Of course, the problem then lies in showing that the capacity

of this network is determined by only a finite number of cut conditions. While this route

seems promising, it appears difficult to carry out. If this analysis were successful, it would

essentially complete our understanding of the global stability properties of two-station fluid

networks and fully complement the results of Bertsimas, et. al. [2].

A further point to be noted is that the results of Chapter 4 are valid only for fluid net-

works. For the corresponding class of queueing networks, our knowledge is still lacking. Dai

and VandeVate’s [15] results imply that our conditions are in fact necessary and sufficient

for a discrete two-station ACTN if the stability conditions involve virtual stations only (no

“pushstart conditions”). In this respect, the full connection between the stability of the

stochastic and fluid models needs yet to be explored.

Chapter 5 provides necessary conditions for multi-station queueing and fluid MTN’s

to be globally stable. Actually, with some modifications of the notation and proofs, these

results should easily carry through to the full class of OMQN’s. Unfortunately, the results

of Chapter 6, specifically Section 6.3, imply that the conditions we derived in general are

not sufficient for stability. Despite this shortfall, it should be noted that it seems apparent

that classes that form a pseudostation are important in determining the stability properties

of multi-station networks, as is evidenced in the analysis of the three-station network of

Chapter 6.

We can view the results of Chapter 6 as both a success and a discouragement. As such,
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our analysis there has numerous implications for further study. Our course, one primary

disappointment is that the techniques of Chapter 4, which work so well to analyze two-

station networks, do not directly carry over to three-station networks in that the piecewise

linear Lyapunov function we used is no longer able to sharply determine the global stability

region for larger networks. However, as we saw in that chapter, the same Lyapunov function

is able to sharply determine the monotone global stability region for our network. A question

that now arises is whether or not such a Lyapunov function can yield the monotone global

stability region for a class of multi-station networks. We have undertaken a preliminary

investigation of this issue for d-station networks with a similar routing structure to the

network in Chapter 6. However, it is disappointing that in fact we were not able to obtain the

actual stability region of our three-station example. It appears that new techniques, perhaps

new classes of Lyapunov functions, will be needed to investigate this matter. Initially, it was

hoped that the new class of linear Lyapunov functions, suggested by Chen and Zhang [11]

would at least be useful for determining the static buffer priority stability regions for larger

networks. Our analysis of Chapter 6 indicates that the linear constraints arising from such

Lyapunov functions are not sharp in determining the priority stability region and thus it is

unclear if this class of Lyapunov functions will be useful in further stability analyses.

We recall from the results of Chapter 4 that it is the static buffer priority policies

that essentially determine the global stability behavior of two-station fluid networks. The

analysis in Chapter 6 indicates that this is no longer so for three-station networks. This

now begs the question as to which “extremal” policies determine stability characteristics

for three-station fluid networks. The instability proofs of Section 6.3 indicate that a new

type of policy, which could be viewed as a piecewise static buffer priority policy (i.e. a

policy which is static between emptying times of the buffers) plays an important role in the

stability behavior for multi-station networks. Even if we could define such a class of policies



that affect stability, it is no longer clear (as is the case with static buffer priority policies)

what the discrete analog of such policies would be. Furthermore, we must consider whether

global stability is a useful concept for multi-station networks if it is determined by policies

too complex to be likely used in practice.

Of course the directions suggested above are only the beginning. Greater understanding

in general of the connection between the fluid model and the discrete model is definitely

needed. In fact, Bramson [?] recently provided an example of a network with exponential

service and interarrival times that is stable, but whose corresponding fluid network is unsta-

ble. So, even in the “simplest” stochastic networks, the stability issues appear to be quite

complex. Another important area of active research is adding setup and batching consid-

erations to the basic OMQN model. Certainly, in semiconductor wafer fabs, setup times

between classes and the choice of a good switching policy have a large influence on system

performance. As a result, it appears that the stability and efficiency of networks with setup

considerations is a ripe area for research (see Dai and Jennings [25] for example). Naturally

adding other features to the model, further analyzing dispatch policies, and continuing the

investigation into the fluid/discrete connection all would provide enough opportunities to

keep researchers in this area busy for a long time to come.
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