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SUMMARY

Algorithmic trading provides systematic methods for traders to execute order

to minimize execution cost. Execution cost is measured as the difference between

the average execution price over the entire trade and some pre-specified benchmark

price. Execution cost often involves multiple market dynamic risks, which include

price volatility risk, liquidity risk due to short term supply and demand imbalance,

execution risk due to uncertainty of order completion and the risk of large deviation

between prediction and actual realization of market variables, such as volume, etc.

The major contribution of this thesis is to provide a systematic framework that

can be applied to make sequential adaptive decisions in algorithmic trading problems.

These problems often involve different market dynamic risks, and the key to solving

them is to diversify these risks over sequential decisions, which are spread in time.

This general framework solves trading problems in a discrete time setting with a

mean-variance objective, which is closely related with the common practice in the

broker-dealer industry. One of the major advantages of this framework is that it solves

mean-variance problems with different risk aversion factors all at once, which allows

the practitioners to easily plot the efficient frontier of execution costs. The other

contribution of this thesis is to apply this risk diversification framework to explicitly

formulate the joint optimization problem of the trade scheduling and optimal order

placement problems, which challenges the common practice in both academia and

industry that treat these two problems separately.

To demonstrate the advantages of the risk diversification framework, we apply

it to tackle three trading problems in this thesis to illustrate its powerfulness and

effectiveness.
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The first two problems concern trade scheduling which seeks to minimize the

execution cost by splitting a large stock-trading order into a group of separately

executed child orders. The two problems differ in how they measure the execution

cost. The first problem measures the execution cost against the arrival price. The

resulting objective, which is the mean-variance of the execution cost, requires the

trader to carefully balance the trade-offs between the liquidity risk of quick trading

and the volatility risk of slow trading. The second problem measures the execution

cost against the volume weighted average price (VWAP). The resulting objective aims

to balance the risk of volume prediction error and the risk due to price volatility. In

both cases, the adaptive strategies significantly outperform deterministic strategies.

In trading practice, the trade scheduling decisions are fed into the optimal order

placement model (OOPM) to decide how to split each child order into market or-

ders and limit orders. OOPM seeks the optimal trade-off between the liquidity risk

(namely, market impact and bid-ask spread) of using market orders and the execution

risk of using limit orders. Rather than addressing OOPM alone, our third problem

combines the trade scheduling and OOPM, in order to find the optimal trade-off

among three market dynamic risks: liquidity risk, volatility risk and execution risk.

This unified strategy outperforms both the strategy that only applies market orders

and the strategy that treats trading scheduling and OOPM separately.

All three problems share several key components of the proposed risk diversifi-

cation framework. Specifically, the execution cost is first quantified to incorporate

different market dynamic risks. Next, the traders’ objectives are modeled as a mean-

variance measure of the execution cost over a finite time horizon. Since variance is

not a time-consistent measure, the mean-variance problem can not be directly solved

through dynamic programming. Instead, it is approached by solving a family of aux-

iliary linear-quadratic problems whose solutions contain the solutions of the original

mean-variance problem. By carefully decomposing the linear-quadratic objective as

xii



a sum of cost components, the Bellman equations are derived in all problems. We in-

troduce the linear-quadratic weights as a time-varying state variable which allows us

to efficiently solve the whole family of linear-quadratic problems through one round

of backward induction.
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CHAPTER I

INTRODUCTION

Over the last three decades there has been a significant increase in the use of algorith-

mic trading in financial markets among institutional investors. Algorithmic trading

is the use of electronic platforms to enter trading orders, guided by an algorithm that

executes pre-programmed trading instructions whose variables may include timing,

price, and quantity of the order. Algorithmic trading not only allows traders to have

access to market liquidity in a quick and efficient way, it also provides traders with a

systematic approach for achieving pre-specified objectives.

Among the large uses of algorithmic trading is execution trading, where a trader

executes a larger order for an investor to buy or sell a stock, according to that in-

vestor’s pre-specified objectives. In this scenario, the pre-specified objective often

revolves around minimizing the execution cost. Execution cost is measured as the

difference between the average execution price over the entire trade and some bench-

mark price specified by the investor. Commonly used benchmark prices include the

arrival price (namely, the initial market price of the stock when the instruction for

executing an order arrives at the trading desk) and Volume-Weighted-Average-Price

(VWAP) of the stock during a specified horizon, such as one day. A positive (or,

negative) execution cost represents a loss (or, gain) compared with trading at the

benchmark price. For instance, a negative execution cost for a buy order means the

order is bought on average cheaper than the benchmark price thus representing a gain

for the investor.

Over the course of execution of a large order, the price tends to move up, to the

traders disadvantage. This adverse price reaction to the trader’s own trading (often

1



called market impact) is a result of limited market liquidity. Instead of trading the

given order all at once and incurring a large execution cost, traders often split the large

order into sequentially executed smaller pieces. However, this extends the trading

duration for completing the order, which incurs the risk of have significantly worse

execution price than the arrival price due to price volatility and the prolonged trading

horizon (this is termed as the timing risk). For example, if price maintains an upward

trend, a buy order may have an average execution price being much higher than the

arrival price (i.e. higher execution cost). Therefore, a good execution strategy should

maintain a balance between the liquidity risk (including the risk of a high market

impact) of fast trading and the timing risk of slow trading. Mathematically, it means

both the expectation and the variance of the execution cost should be considered. We

will study an adaptive strategy in Chapter 2 that minimizes the weighted sum of the

mean and variance of the execution cost using arrival price as a benchmark.

The problem of how to best split a large order (i.e. parent order) into multiple

small orders (i.e. child orders) that are spread out in time is called the trade scheduling

problem. In Chapter 3, we study the trade scheduling problem with VWAP as the

benchmark price, where the goal of the trader is to define an ex-ante strategy which ex-

post leads to an average trading price as close as possible to (or even beat) the market

VWAP (an example of the market VWAP benchmark is given in the footnote below).

The VWAP benchmark encourages traders to spread their orders out over time to

avoid the risk of trading at extreme prices. If we can perfectly forsee the market

volumes in all the trading periods, then we can schedule child orders to match those

volumes precisely, and thereby reduce the execution cost to zero regardless of price

evolution1. As the market impact of the trader’s own trading appear in the calculation

1For example, consider a trading problem of buying 1000 shares within 3 minutes. The market
volumes for the three minutes are 5000 shares, 2000 shares and 3000 shares. The average prices for
the three periods are $10, $11, and $12. The market VWAP is 5000×$10+2000×$11+3000×$12

5000+2000+3000 = $10.8.
If the trader splits 1000 shares sequentially into 500, 200 and 300 shares, and if the trader can
achieve the same market average price within each period, the trader’s total average execution
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of both the market VWAP and the trader’s average execution cost, its effects on the

execution cost get canceled out when we compute the execution cost. Therefore,

market impact plays a less significant role in the VWAP scheduling problem. In

reality, we can never perfectly predict the actual market volume. As a result, the

optimal adaptive strategy needs to optimize the trade-off between the risk of volume

prediction error and the risk due to price volatility.

For both trade scheduling problems just discussed, the adaptive strategies de-

scribed in Chapter 2 and Chapter 3 significantly outperform strategies whose tra-

jectories are determined at the beginning of the order (deterministic strategies). In

the case of the arrival price benchmark, an adaptive strategy may take advantage of

price to lock in profit early in the trading horizon and reduce the risk for the remain-

ing trading horizon (for example, for a buy order where price maintains a downward

trend, the adaptive strategy will finish trading faster than a deterministic strategy to

preserve the negative execution cost he have earned in the early periods). Similarly,

the adaptive VWAP strategy may adjust allocation according to intraday volume

changes, including both volume spikes and lulls with respect to the historical average

volumes (for example, if the market volume is much higher than the predicted vol-

ume in earlier periods of trading, the adaptive strategy tends to trade faster than the

deterministic strategy to “catch up”).

Once the scheduling problem is solved, and the child order size is determined,

one needs to specify how each individual order should be placed. This optimal order

placement placement model (OOPM) decision involves the choice of an order type

(limit order or market order), and order size. If the trader is patient, he can submit a

limit order where he can specify the maximum price at which he is willing to buy or

price 500×$10+200×$11+300×$12
500+200+300 = $10.8 matches the market VWAP. The execution cost is there-

fore $10.8-$10.8=$0. Note that the price evolution does not play any role here. For exam-
ple, if the trader’s trades have market impacts on prices and drive the market prices higher to
$10.2,$11.1 and $12.3. Both the market VWAP and the trader’s average execution price will be
5000×$10.2+2000×$11.1+3000×$12.3

5000+2000+3000 = $11.01.

3



the minimum price at which he is willing to sell. If his price is inferior to prevailing

market quotes (too low for a buy order or too high for a sell order), his limit orders

may not be filled. On the other hand, if the trader is impatient and he is willing to

trade at whatever price is necessary to complete the order, he can submit the market

order to demand all liquidity available to him. For a buy order, OOPM seeks the

optimal trade-off between liquidity risk and execution risk. Liquidity risk refers to

the higher execution price paid when using market orders, which includes the market

impact and the bid-ask spread. Execution risk refers to the uncertainty of order

completion when using limit orders.

Currently, both industry and academia treat scheduling and OOPM as two sep-

arate problems. Each child order is assumed to be completed within its own time

period in the scheduling problem. This is realized in OOPM by submitting all re-

maining shares as market orders at the end of each time period to guarantee child

order completion. As a result of this separation, market orders may be submitted

exactly when liquidity is scarce and execution cost is likely to be high. As a quick

remedy, rather than submitting remaining shares through a market order, traders

sometimes postpone these shares till the next period for better price opportunities.

This remedy, however, breaks the assumption in the scheduling problem where all

child orders are expected to be completely executed.

To address the lack of communication between scheduling and OOPM, Chapter 4

combines the two problems together and provides a unified approach2. Rather than

deciding the child order size for each period, the unified approach determines the

order sizes of both limit and market orders in each period. The benchmark price

used in Chapter 4 is the arrival price. By combining scheduling and OOPM together,

the unified approach optimizes the trade-offs among three market dynamic risks:

2To our best knowledge, besides [24], there are no papers that address scheduling and OOPM
together for the optimal execution problem in the case of a risk-averse trader.
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liquidity risk of market orders, execution risk of limit orders and timing risk due to

price volatility.

We compare this unified adaptive strategy with two other adaptive strategies.

Both of these strategies follow the optimal adaptive trading schedule, which mini-

mizes the mean-variance of the execution cost with respect to the arrival price. The

first benchmark strategy submits each child order as a market order. The second

benchmark strategy submits both market and limit orders, but it separates trade

scheduling and OOPM into two sequential steps, as in the common practice in the

broker-dealer industry. Out-of-sample tests based on actual market data reveal that

the unified approach consistently outperforms both benchmark strategies under a

variety of settings.

The major contribution of this thesis is to provide a systematic framework that

can be applied to make sequential adaptive decisions in algorithmic trading problems.

In fact, all three problems from Chapter 2 - Chapter 4 are solved based on this

framework. These problems often involve different market dynamic risks3 and the

key to solving them is to diversify these risks over sequential decisions, which are

spread in time. Unlike traditional portfolio theory where the risk can be managed by

diversifying over different investment assets (“Don’t put all your eggs in one basket.”),

3The term “risk” in this thesis is more general than just the standard deviation of a random
variable. It includes various uncertainties in market dynamics. In this thesis, four types of market
dynamic risks are referred:

1. timing risk: risk associated with price volatility;

2. liquidity risk: risk associated with short term supply and demand imbalance, which includes
market impact, bid-ask spread, etc. It is often associated with market order submission;

3. execution risk: risk associated with incomplete order transaction, which is often associated
with limit order submission;

4. prediction risk: risk associated with the difference between the prediction of a market variable
and its actual realization.

Note that these market dynamic risks often play conflicting roles in different problems and an
algorithmic trading problem often aims to achieve the optimal trade-offs among these risks. For
example, Chapter 2 tries to balance the liquidity risk of fast trading against the timing risk of slow
trading. Chapter 3 tries to balance volume prediction risk against timing risk. Chapter 4 considers
the best trade-offs among liquidity risk, execution risk and timing risk.
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risk management in algorithmic trading stresses diversifying risk over (sequential

decision) time (“It’s ok to put all your eggs in one basket, if you do it one at a

time.”).

This risk diversification framework can be applied to solve discrete time decision

problems with mean-variance objectives:

MV(κ): minE[I] + κVar[I].

where I is the execution cost and κ > 0 is the risk aversion factor with larger value of

κ implying higher risk aversion. Since variance is not a time-consistent measure, the

mean-variance problem MV(κ) can not be solved through dynamic programming.

We circumvent this difficulty with a two step process. First, we solve a family of

auxiliary linear-quadratic problems

LQ(r0): min
Π

E[r0I + I2] for r0 ∈ R

through dynamic programming where the linear-quadratic weights r0 span all real

values R4; Second, by proving the solutions of the mean-variance problem also solves

a particular linear-quadratic problem, the search for the solution of MV(κ) shrinks

to the search for the appropriate linear-quadratic weight r∗0(κ). The key of this two

steps process is to solve the linear quadratic problems LQ(r0) for all possible r0 ∈ R.

One of the major innovation in this thesis is to address this dilemma by including

r0 as a state variable. This simple trick solves LQ(r0) for r0 ∈ R all at once through

one round of Bellman-backward induction, which greatly increases computational

efficiency5. More importantly, r0, along with its evolution:

4Note that r0 also controls risk aversion level with higher value of r0 implying more risk seeking
and lower value of r0 implying more risk aversion, which has an opposite effect on risk aversion as
κ in MV(κ).

5the solutions of the original mean-variance problems MV(κ) for all κ > 0 are also readily
available, which allows the trader to conveniently depict the mean-variance scatter plot (i.e. efficient
frontier) and choose the appropriate mean-variance trade-off directly from the efficient frontier.
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ri = r0 + 2× execution cost up to current time i

play the role of dynamically adjusting risk aversion levels based on previous execution

quality. For example, if the execution cost is small up to the current time (i.e. the

trader is doing a good job so far), ri will be small accordingly, which results in a higher

risk aversion level for the remainder of the trading. Therefore, the trader will trade

more quickly trying to conserve his realized gains and put less capital for the remaining

execution. This mechanism of automatically adjusting their own risk-aversion levels

is the main reason why adaptive strategies can outperform deterministic strategies.

To the best of our knowledge, there are few existing works in academia that

directly address the discrete time order execution problem in a mean-variance frame-

work6. Most trading models are formulated and solved in continuous-time and the

continuous solution is used to approximate the discretized solutions. However, mod-

eling in discretized time allows much more flexible assumptions. For example, market

features such as the lead-lag relationship in price and volume, and autocorrelation

in liquidity, cannot be easily modeled in continuous time. On the other hand, we

choose variance as a risk measure because the simple mean-variance approach has the

practical advantage that risk and reward are expressed as two real variables and then

are easily understood and visualized in a two-dimensional plot. It is important to

note that practitioners prefer the mean-variance characterization of the risk-reward

trade-offs to the more mathematically sophisticated utility function formulations of

the risk-reward trade-offs. More importantly, the framework we provide here allows

the practitioners to efficiently solve for the optimal strategies for different risk aver-

sion levels all at once, which makes it fairly easy for them to choose an appropriate

risk aversion level that fits their objectives with simple visual inspection.

6Even models that address the same problem (i.e. discrete time mean-variance trading problem)
tend to have overly complicated solution structures, see Section 2.4.3 for details.
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From the industry perspective, the risk diversification framework provides a sys-

tematic methodology that practitioners can apply to solve complicated trading prob-

lems. Most trading models used in industry are highly heuristic. The decisions are

often pre-determined in some parametric form to match the desired trading behavior.

The unknown parameters are then determined by applying the parametric policy to

historical data and choosing the parameters that would have optimized some objec-

tives, such as minimizing risk adjusted execution cost. By pre-specifying a parametric

policy space, practitioners may significantly restrict themselves to a limited (or even

incorrect) decision space. The risk diversification framework presented here provides

a completely different approach. Rather than guessing what the optimal strategy

should look like, we stress the importance of first recognizing the major market dy-

namic risks for the specific problem7. In other words, rather than directly guessing

the trading strategy, we want to first understand how the market works. It is not until

we express the execution cost numerically as a function of various market dynamic

risks will we be ready to recognize what the state variables are and what the optimal

policy should look like8. We believe this simple framework can significantly improve

risk management in multi-period trading problems for practitioners.

7For example, although we include market impact for the scheduling problem with the arrival
price benchmark, it is omitted for the scheduling problem with the VWAP benchmark

8Note that the choice of the specific state variables determined through this systematic approach
may not be very obvious at first glance. For example, although current execution cost is included
in the state space for the scheduling problem with the arrival price benchmark, it is not included in
the scheduling problem with the VWAP price benchmark. This may not be obvious during heuristic
assessment.
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CHAPTER II

TRADE SCHEDULING WITH ARRIVAL PRICE

BENCHMARK

2.1 Introduction

A trend observed for the past decade in financial markets is the increase in the us-

age of algorithmic trading. Computer-driven trading not only allows broker-dealers

to increase their capacity for execution business, but also allows investors to closely

monitor and scrutinize the execution quality of their orders. Most importantly, al-

gorithmic trading provides a systematic approach for traders to minimize execution

costs.

When an order is executed in the financial market it tends to move the price

to a trader’s disadvantage; for instance, driving the price up when the trader is

buying. This adverse price reaction to one’s trading (namely, “market impact”) is

more significant when the order size is relatively large compared with average volume

or when the asset is illiquid.

One of the most common ways to measure the execution cost caused by market

impact is to obtain the “implementation shortfall”, which is defined as the difference

between the actual cost of the execution and the notional value of the order when it

arrives at the trading desk. Implementation shortfall is usually the largest portion

of the execution cost1. Two important sources contributing to the implementation

shortfall include: limited liquidity (market impact) and adverse price movement due

to volatility.

1The other parts of execution cost includes direct and predictable costs, such as commissions,
taxes and exchange fees.
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In order to minimize the expected implementation shortfall, traders split up the

initial parent order into multiple small slices (i.e. child orders) and trade them se-

quentially over a given time horizon. However, the extended trading process incurs

extra timing (or, volatility) risk, specifically, the risk of order execution price being

significantly worse than the arrival price due to price volatility. The more volatile an

asset is, the more widely its price fluctuates over the trading horizon, which makes the

implementation shortfall more likely to increase with the length of trading horizon.

Volatility risk can be cut to zero if we execute all of the parent order at the arrival

time. However this approach often results in maximal market impact. Therefore, a

good execution strategy should maintain a balance between the minimization of both

market impact and volatility risk. In this chapter, we measure volatility risk through

the variance of implementation shortfall. As a result, our objective is to minimize the

weighted sum of mean and variance of the implementation shortfall.

Up until recently, the focus of mean-variance execution has been restricted to

deterministic (or static) strategies as in [2], which determine the child order sizes be-

forehand and do not change them as market conditions evolve. However, in practice,

traders prefer more general adaptive (or dynamic) strategies, which generate child or-

ders and their sizes at their respective trading times, depending on the latest available

information such as price realizations. As we will show later, adaptive strategies can

significantly reduce implementation shortfall and improve execution performance, es-

pecially for illiquid or less volatile assets. Due to the time inconsistency of the variance

operator in the mean-variance criteria we clarify that the mean-variance objective in

our problem is fixed at the arrival time and should not be modified during the trading

process, which corresponds to Problem 2 in [31].

In this chapter, we consider a discrete-time trading problem over a finite-horizon,

where the trading time is divided into multiple periods. Our goal is to derive an

adaptive scheduling algorithm that splits the total order into a sequence of child
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orders, each of which is traded in a single time period. Unlike some trade scheduling

problems such as [39], where the objective is to minimize a trader’s expected utility,

our problem cannot directly apply the traditional dynamic programming approach

due to a failure of the iterated-expectations property for mean-variance objectives.

Inspired by [30], we circumvent the problem by introducing a family of auxiliary

problems with linear-quadratic objectives and prove that the optimal strategy of the

original mean-variance problem is a subset of the solutions for all auxiliary prob-

lems. By extending the weight in the linear-quadratic objective as a time changing

state variable updated after each child order, we can solve all auxiliary problems

with different weights through only one set of backward inductions, which simplifies

computation significantly. Moreover, this state variable also keeps a record of realized

(partial) implementation shortfall, which contains information regarding to past price

realization. The state variable is then used to dictate the size of the next child order,

which allows our algorithm to be adaptive to past price evolution.

It turns out that with the mean-variance objective, the optimal adaptive strategy

is “”aggressive-in-the-money” as defined in [28], which means that for a buying order,

we trade fast (i.e. large child order generated) when the price goes down (i.e. in the

money), and slow when the price goes up. This is consistent with [3] and [31], and as

explained in [3], the advantage of the adaptive strategy over the deterministic strategy

lies in the anti-correlation between current execution and future execution: “after a

fortunate price move the investor would try to conserve his realized gains and put

less capital at risk in the remainder”.

An accurate capture of market impact is essential for the adaptation of trading

strategies in practice. The modeling of illiquid market microstructure is still an

ongoing research topic. In this chapter, we use a similar linear market impact model as

[2] because it is simple enough for modeling while still maintaining the key properties

for implementation shortfall based strategies. Yet, our linear-quadratic approach can
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be easily extended to more complex market models. For example, we will show that

with an additional state variable, the same linear-quadratic approach can be extended

to problems with the resilient market impact introduced in [33].

Recently a few papers have emerged on adaptive execution strategies. For exam-

ple, [39] takes on a continuous-time problem over infinite time horizon with different

utility functions. They have shown that the adaptability pattern (i.e. aggressive-in-

the-money, passive-in-the-money, or deterministic) of the adaptive strategy is a result

of utility function structure. The utility function of our auxiliary linear-quadratic

problem falls into the category of increasing absolute risk aversion (IARA), and the

adaptive strategy should be AIM, which is consistent with our findings in the nu-

merical examples. [19] uses the Hamilton Jacobi Bellman approach to solve the

continuous-time version of the auxiliary linear-quadratic problems.

Our problem is essentially the same as the one in [31], which also resort to dynamic

programming to solve an equivalent constrained variance minimization problem. They

achieve the backward induction through the decomposition of variance objective func-

tion by Law of Total Variance. However, their model structure is more complicated

than that of ours: at each time period our decision variable is simply the child order

size, while their decision variable contains both the child order size and an additional

integrable function over the sample space of next period’s price change. The inte-

grable function represents the upper bound of the expected implementation shortfall

with respect to the next price change for the remaining periods. As a well-known

problem, dynamic programming suffers the notorious “curse of dimensionality”([10]).

Although the state variables in both our model and the one in [31] are of two dimen-

sions, the dimension of the decision variables differ significantly: our model’s decision

variable is just a scalar while the decision variable in [31] infinite dimensions. In order

to solve this dilemma, [31] proposes to approximate the integrable decision function

through a step function. For example, a two-level step function may correspond to
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whether the price goes up or down for the next time period, which essentially re-

stricts the stochastic price process into a binomial tree. While the approximation

greatly reduces the decision variable to a three-dimensional one , it also restricts

the adaptability of the trading algorithm. On the other hand, the scale of our algo-

rithm’s adaptability relies not on the decision variable but the state variable. With

a delicate discretization of the two state variables, our strategy adapts to distinguish

hundreds of different price-change levels per period rather than simplifying them as

just “up” or “down”. This helps us to achieve almost full price adaptability with even

less computation complexity. Our numerical results have shown that with the same

state variable resolution, our strategy performs consistently better than the restricted

adaptive strategy in [31], and in some cases, saves more than 40% of the expected

implementation shortfall.

The chapter is structured in the following way. Section 2 introduces the market

model, defines the mean-variance problem, and provides the deterministic strategy

as a benchmark for later comparison. Section 3 introduces the family of auxiliary

linear-quadratic problems and provides an efficient algorithm to solve them all at

once. It also explores the relationship between original mean-variance problem and

auxiliary linear-quadratic problem, which allows us to essentially solve the original

mean-variance problem. Section 4 provides the numerical results and presents its

advantage over deterministic strategies and restricted adaptive strategies appeared in

current literature. Section 5 concludes the chapter. To help readers follow the model,

we try to use similar notation as [31] whenever possible.

2.2 The optimal trading problem

2.2.1 Security price dynamics

Consider a trader receiving an execution order of buying X shares of security within

a fixed period of time T . For example, we can set T = 1 day, which is 6.5 hours for
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the US equity market. Without loss of generality, we will only consider buying orders

in this chapter. The case for selling is completely analogous.

The security price is determined by both our execution and trading from a pop-

ulation of exogenous traders who submit their orders independently. We model the

latter part as an arithmetic Brownian motion St, t ∈ [0, T ]:

St = S0 + σS0Bt (1)

where Bt is the standard Brownian motion, and S0 is the initial mid quote when the

order arrives at the trading desk. An observable proxy for St is the market mid quote

at time t. σ is the standard deviation for the percentage of price change within one

unit of time(such as one day). For example, if a stock’s annual volatility is 20%, and

its trading horizon is T = 1 day, one may take σ = 20%/
√

252 ≈ 0.0125 = 125bps

(one bps = 10−4). Although traditionally geometric Brownian motion is used to model

the stock price, the trading time horizon in our problem is relatively short(varying

from a few hours to a few days), and the assumption of arithmetic Brownian motion

is not a major divergence from reality. Note that the assumption of zero drift in (1)

underlies the price having no momentum or mean-reverting pattern. The indepen-

dent increment of Brownian motion also implies it exhibits no autocorrelation.

We focus on a discrete-time framework and divide [0, T ] into N equally spanned

time periods by t0 = 0, t1, ..., tN−1, tN = T . At time ti(i = 0, ..., N − 1), the trader

decides to buy a child order of yi shares within period [ti, ti+1). Naturally,

N−1∑
i=0

yi = X and yi ≥ 0 for i = 0, 1, ..., N − 1; (2)

To insure trading actions are non-anticipating, we also require yi to depend only on

price up to time ti, i.e.

yi is adapted to Fti for i = 0, 1, ..., N − 1. (3)
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where Ft is the σ−field generated by the underlying Brownian motion {Bs : 0 ≤ s <

t} for t ∈ [0, T ]. Any π = {y0, y1, ..., yN−1} that satisfies (2) and (3) is called a feasi-

ble trading strategy, which constitutes the decision space of our optimization problem.

As the trader liquidates the child orders, he crosses the limit orders on the op-

posite side and moves the price towards his disadvantage. The price he actually

pays deviates from the market price when the child order is submitted. This devi-

ation is proportional to trading volume as well as trading speed and it is modeled

as market impact, which consists of temporary impact and permanent impact on

market microstructure2. Temporary market impact reflects cost of demanding liquid-

ity, while permanent market impact corresponds to the long term price effect of the

order, representing value information exposed to other market participants. There

are many different models to quantify market impact, such as [1], [2] and [33]. The

majority of this chapter will be based on the simple assumption of linear temporary

impact3. However, the same methodology we introduce here can be applied to more

complicated liquidity models. One such model is described in [33] with the addition

of permanent and resilient market impact with exponential decay which depend on

previous trading history. We illustrate the optimal strategy under this assumption in

Appendix A.2.

The linear temporary market impact assumes the the gap between the executed

price S̃ti and the fundamental price Sti is proportional to the trading speed during

2The explanation for market impact here is based on standard market clearing framework. Some
alternative explanations can be found in other literature, such as [12]. For example, it is believed
trading orders convey a signal about private information. Therefore, other market participants may
follow a particular buy order and believe its trader possessing more information than they do so
they take long positions in the stock, which results in up trend price movement.

3It can be shown that when the temporary impact factors are assumed constant, the market model
with both linear permanent and temporary impact can be restructured as a temporary impact only
model.
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ith period: vi = yi
1/N

= Nyi. Therefore, when yi shares are bought, the executed price

is raised up by ηivi = Nηiyi. The impact factor ηi represents the average liquidity

level of the underlying asset in period [ti, ti+1]: smaller value of ηi implies higher

liquidity. We allow the market impact factor to be a function of trading period to

reflects the trader’s belief of liquidity profile during the trading day. If price and

trading speed use units $/share and share/time respectively, then impact factor ηi

has the unit ($/share)/(share/time). Furthermore, we assume more selling orders will

be attracted to the order book after our trader exhausts the liquidity during period

[ti, ti+1), and the price will return completely to the fundamental level Sti+1
before

the next trading decision. In other words, our execution has no elastic effects on

the future price process. In reality, execution price should also incorporate a certain

amount of bid-ask spread into the execution price to capture the order placement

quality. However, for simplicity, we will omit this part and assume the ith child order

will be executed at market mid-quote Sti plus the temporary market impact Nηiyi:

S̃ti = Sti +Nηiyi. (4)

To calibrate market impact factor ηi, we can simply assume ηi to be a constant

η. One may set

η = (60 bps)S0/ADV

where ADV is the average daily volume for the security with the unit (share/time).

This assumption agrees with the fact that larger orders tend to have larger price

impacts, and hence large transaction costs.

2.2.2 Implementation shortfall

The execution cost of a single completed trade is typically the difference between

the final average trade price, including commissions, fees and all other costs, and a

suitable benchmark price representing a hypothetical perfectly executed trade. The
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sign is taken so that positive cost represents loss of value: buying for a higher price

or selling for a lower price. Some of the costs of trading are direct and predictable,

such as broker commissions, taxes and exchange fees. Although these costs can be

significant, they are commonly not included in the quantitative analysis of execution

cost. Indirect costs include all other sources of price discrepancy, such as limited

liquidity (market impact) and price motion due to volatility. In this article, we will

assume that the execution cost consists entirely of the indirect costs, and will ignore

the direct costs.

When the order size is fixed and the benchmark is the arrival price, i.e. the

quoted market price in effect at the time the order was released to the trading desk,

the execution cost can be equivalently defined as the difference between final purchase

price and the notional value based on arrival price:

IN =
N−1∑
i=0

S̃tiyi −XS0

=
N−1∑
i=0

Nηiy
2
i +

N−1∑
i=1

σS0(Bti −Bti−1
)xi (5)

where xi = X − (y0 + y1 + ... + yi−1) is the remaining number of shares right before

time ti. IN is often referred as implementation shortfall ([34]) or slippage. Clearly,

x0 = X,

xi+1 = xi − yi for i = 0, 1, ..., N − 1. (6)

By convention, we require xN = 0.

Since xi is Fti−1
measurable, and {Sti} is a martingale, we have E[Sti ] = S0 and

E[(Sti − Sti−1
)xi] = 0. The expected implementation shortfall is

E[IN ] = NE[
N−1∑
i=0

ηiy
2
i ]. (7)
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The minimal value of (7) is

N
X2∑N−1

j=0 1/ηj
. (8)

with

yi =
X/ηi∑N−1
j=0 1/ηj

for i = 0, 1, ..., N − 1.

When ηi = η for each period i, yi = X/N , and the minimal expected implementation

shortfall is

NηX2/N = ηX2.

This result has been established in [8]. In the following, we will refer to this as the

linear strategy. The final average execution price of the linear strategy is the same as

the time-weighted average price (TWAP) of the whole trading horizon. If the market

volume for each period is constant, TWAP and VWAP (volume weighted average

price) are the same. The constant participation rate through all time periods is due

to the assumption of fundamental price following arithmetic Brownian motion with

zero-drift, which shows no correlation between prices of adjacent periods. Note that

when the objective is just minimizing average implementation shortfall, the optimal

strategy is deterministic(or non-random). The size of child orders are determined

even before the parent order’s arrival, and it will remain unchanged during execution

process regardless of any price development. In the following sections, we will include

a risk factor into the utility function. With risk considered, the optimal trading strat-

egy turns out to be dependent on price realization.

2.2.3 Risk aversion

To simplify notation, we divide the implementation shortfall by the product of the

initial notional cost and volatility. Namely,

ĨN =
IN

σXS0

(9)
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Thus, σĨ is the implementation shortfall divided by the total amount of “paper

money”. Multiplying by 104 as 104σĨ gives the slippage value in terms of bps, which

often appears in the brokerage’s execution cost analysis report. Let

ỹi = yi/X, for i = 0, 1, ..., N − 1,

x̃i = xi/X, for i = 0, 1, ..., N − 1.

In practice, if the minimal unit for trading is assumed to be d shares(such as 1 lot=100

shares), both ỹi and x̃i will be restricted to values within {0, d
X
, 2d
X
, ..., 1}.

Constraints (2) and (6) become

N−1∑
i=0

ỹi = 1 and ỹi ≥ 0 for i = 0, 1, ..., N − 1; (10)

x̃i+1 = x̃i − ỹi for i = 0, 1, ..., N − 1 (11)

Based on (5), the scaled implementation shortfall is

ĨN =
N−1∑
i=0

Nµ̃iỹ
2
i +

N−1∑
i=1

(Bti −Bti−1
)x̃i (12)

where

µ̃i =
ηiX

σS0

= (60bps)(
X

ADV
)
1

σ
. (13)

For example, if X = 1 million shares, and ADV= 10 million shares, the whole

trade accounts for 10% of the average daily volume, and the associated impact fac-

tor is µ̃i = 6bps/σ. The scale of µi can be interpreted this way: regardless of the

volatility level, if we trade all the parent order instantaneously at t = 0 with a

POV(participation of volume) rate of 10%, the implementation shortfall will be 6bps.

The idea of using an instantaneous trade’s execution cost to estimate the market

impact factor originated in the market imbalance model in [28].

If we assume the liquidity level remains the same during the trading horizon, then

µ̃i = µ̃ for i = 1, 2, ..., N − 1, which is exactly the same nondimensional “market
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power” parameter defined in [31]. The market power parameter µ̃ also reveals the

relative role of market impact factor ηi and volatility σ in determining the optimal

strategy. For example, with all other settings equal, a security with twice the mar-

ket impact should be traded in the same pattern as a security with half volatility.

Both terms in (12) have economic interpretations. The first term corresponds to the

transaction costs due to temporary market impact. The second term corresponds

to the volatility risk accumulated throughout [0, T ] rather than buying all N shares

instantaneously at the beginning.

For the rest of the chapter, we will focus on ĨN defined in (12) with market power

µ̃i defined in (13). We will drop the tilde notation from now on.

With a single goal of minimizing average slippage, the optimal execution strategy

(i.e. linear strategy) takes as long as necessary to prevent significant market impact.

As (8), its expected implementation shortfall is

E[Ilin] =
N∑N−1

j=0 1/µj
,

V ar[Ilin] =
1

3

(
1− 1

N

)(
1− 1

2N

)
.

However, it exposes the order to a much greater timing risk, especially for volatile

securities. The more volatile a security is, the more likely its price will move up and

its implementation shortfall will increase (for a buy order). Furthermore, the linear

strategy sometimes generates a nonintuitive result. As mentioned above, when the

market power (or market impact) is assumed to be constant throughout trading hori-

zon, a simple objective of minimizing the average implementation shortfall will lead

to a constant speed of accumulating shares over the whole trading horizon, which

contradicts the real practice of tradng a liquid security faster than an illiquid one.
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This motivates [2] to introduce variance of implementations shortfall as the risk com-

ponent into the objective function, where the optimal execution problem is treated

analogous to the classical portfolio management problem [32], and the efficient fron-

tier of optimal trading execution are constructed.

The trader’s urgency preference is reflected through risk aversion factor κ > 0,

with a larger value of κ implying quicker execution intention. Our goal is to minimize

the sum of the expectation and variance of the implementation shortfall weighted by

κ:

MV(κ) : min
Π

E[IN ] + κVar[IN ] (14)

where Π stands for all feasible strategies:

Π = { π = (y0, y1, ..., yN−1)|∀i, yi is a random variable adapted to Fti ;

π satisfies (10) and (11)}. (15)

Finding the appropriate risk aversion factor is not easy. Brokers sometimes sort

the incoming orders into a few different categories such as “urgent”, “neutral” or

“passive” according to clients’ preferences, and map each category with a particular

κ value. An alternative approach is to specify a target variance level v > 0 while

minimizing the expected implementation shortfall:

E(v) : min
Π

E[IN ]

s.t. Var[IN ] ≤ v (16)

or equivalently, to specify an expected slippage level m > 0 while minimizing its risk:

V(m) : min
Π

Var[IN ]

s.t. E[IN ] ≤ m (17)

From the theory of Lagrange methods, all three formulations (14) - (17) are equivalent

in producing the same set of optimal trading strategies:
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Property 1 1. Considering three dynamic programming problems: (14),(16) and

(17). If π∗(κ) is the optimal strategy of MV(κ) in (14), then π∗(κ) also solves E(v)

with v = Var[IN |π∗(κ)] and V(m) with m = E[IN |π∗(κ)].

By varying κ, we plot the optimal trading strategy’s efficient frontier(EF ):

EF = {(E[IN |π∗(κ)],Var[IN |π∗(κ))] | κ > 0 and π∗(κ) solves MV(κ)}. (18)

Any point (m, v) that falls on the efficient frontier satisfies the following the property:

there does not exists a strategy π ∈ Π such that both E[IN |π] < m and Var[IN |π] < v.

Because of the equivalence shown in Property 1, we will mainly focus on MV(κ) in

the following analysis.

2.2.4 Deterministic strategies

Before deriving the optimal strategy for MV(κ), let’s consider the suboptimal solution

within deterministic strategy space Π̂ ⊂ Π:

D(κ) : min
Π̂

E[IN ] + κVar[IN ] (19)

where

Π̂ = {π = (y0, y1, ..., yN−1)|∀i, yi is non-random scalar; π satisfies (10) and (11)}.

(20)

Compare the definition of Π in (15) and Π̂ in (20): an adaptive strategy π ∈ Π is a

discrete stochastic process with filtration Ft while a deterministic strategy π̂ ∈ Π̂ is

just a non-random N dimension real vector.

Given a deterministic strategy π̂ = {y0, y1, ..., yN−1}, the variance of the imple-

mentation shortfall depends only on the variance of the price change:

Var[IN ] =
T

N

N−1∑
i=1

x2
i , (21)
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Therefore, the total mean-variance cost is

N−1∑
i=0

Nµiy
2
i +

κT

N

N−1∑
i=1

x2
i . (22)

When the market power is assumed to be a constant µ, the deterministic strategy

that minimizes (22) is the solution to this:

min
Π̂

N−1∑
i=0

y2
i + α

N−1∑
i=1

x2
i (23)

where

α =
κT

N2µ
> 0. (24)

(23) is a convex optimization problem with convex constraints, which can be solved

with the Lagrange method. We provide a recursive procedure to derive the optimal

deterministic strategy π̂∗ ∈ Π̂ in Appendix A.1. In the following, we will use π̂∗ ∈ Π̂

to refer to the optimal deterministic strategy for D(κ). [2] solved the same problem

by solving difference equations.

By combining market power parameters µ(consists of liquidity η and volatility

σ) and risk aversion factor κ into one parameter α, we simplify the deterministic

strategy’s dependence on exogenous setting. Through (13) and (24) we observe that

α increases as the market impact factor decreases (i.e. security is more liquid), price

volatility increases (i.e. security is more volatile) and the trader’s risk aversion in-

creases. All three factors result in a strategy that trades more quickly in the early

periods, such that the volatility risk can be minimized. However, trading more quickly

earlier incurs a higher market impact cost at the beginning. In the extreme case, when

α = ∞, the optimal deterministic strategy is to buy all the shares at the beginning:

y0 = 1, yi = 0 for i > 0. In this case, the trader exposes himself to no further uncer-

tainties, but he pays the highest liquidity premium for incurring the largest market

impact:

E[Iinst] = Nµ0.
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On the other hand, in the setting of a less risk averse customer or a less volatile or

liquid security, slower trading may be preferred. In the extreme case when α = 0, the

deterministic strategy buys shares at a constant speed: yi = 1
N

for i = 0, 1, ..., N − 1,

which is the linear strategy mentioned above. It provides the minimum average im-

plementation shortfall, but exposes the trader to the greatest timing risk.

2.3 Linear quadratic formulation

We now expand the decision space from deterministic strategies Π̂ to adaptive strate-

gies Π. We hope to use dynamic programming to solve the mean-variance problem.

However, a direct implementation to minimize the mean-variance of implementation

shortfall as in (14) is not amenable since the variance operator does not satisfy the

smoothing property, i.e. ∀0 ≤ s ≤ t, Var[Var(·|Ft)|Fs] 6=Var(·|Fs).

Inspired by [30], we set up a family of auxiliary problems that can be solved by

dynamic programming, and show that the optimal strategy of a certain auxiliary

problem also solves the original problem MV(κ).

2.3.1 Auxiliary problem

For r0 ∈ R, consider the linear quadratic objective:

LQ(r0): min
Π

E[r0IN + I2
N ]. (25)

where Π is the same set of feasible strategies as in (15). LQ(r0) can be solved by

dynamic programming since the expectation operator satisfies smoothing property:

∀0 ≤ s ≤ t, E[E(·|Ft)|Fs] = E(·|Fs). The following proposition underlies the rela-

tionship between solutions of MV(κ) and LQ(r0). It follows a similar proof as in

[30].
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Proposition 1. Let

ΠMV(κ) = {π|π ∈ Π and π is a minimizer of (14)},

ΠLQ(r0) = {π|π ∈ Π and π is a minimizer of (25)},

ΠLQ =
⋃
r0∈R

ΠLQ(r0),

then ΠMV(κ) ⊂ ΠLQ. More specifically, if π∗(κ) ∈ ΠMV(κ), then π∗(κ) ∈ ΠLQ(r∗0)

where

r∗0 =
1

κ
− 2E[IN |π∗(κ)]. (26)

Proof. Define f(a, b) = a+κb−κa2 be a map on R2 → R. The objective function in

(14) can be writtten as E[IN ]+κVar[IN ] = f(E[IN ],E[I2
N ]). Assume π∗(κ) ∈ ΠMV(κ),

then ∀π ∈ Π:

f(E[IN |π],E[I2
N |π]) ≥ f(E[IN |π∗(κ)],E[I2

N |π∗(κ)]). (27)

Let fa, fb be the partial derivatives with respect to first and second variable. Since

f(a, b) is a concave function of a and b,

f(E[IN |π],E[I2
N |π]) ≤ f(E[IN |π∗(κ)],E[I2

N |π∗(κ)])

+fa(E[IN |π∗(κ)],E[I2
N |π∗(κ)])(E[IN |π]− E[IN |π∗(κ)])

+fb(E[IN |π∗(κ)],E[I2
N |π∗(κ)])(E[I2

N |π]− E[I2
N |π∗(κ)])

= f(E[IN |π∗(κ)],E[I2
N |π∗(κ)])

+(1− 2κE[IN |π∗(κ)])(E[IN |π]− E[IN |π∗(κ)])

+κ(E[I2
N |π]− E[I2

N |π∗(κ)]) (28)

Combine (27) and (28):

(1− 2κE[IN |π∗(κ)])(E[IN |π]− E[IN |π∗(κ)]) + κ(E[I2|π]− E[I2
N |π∗(κ)]) ≥ 0. (29)

Let

r∗0 =
1

κ
− 2E[IN |π∗(κ)], (30)
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As κ ≥ 0, through (29) we have

r∗0E[IN |π] + E[I2
N |π] ≥ r∗0E[IN |π∗(κ)] + E[I2

N |π∗(κ)]. (31)

Because (31) holds for ∀π ∈ Π, π∗(κ) ∈ ΠLQ(r∗0). Since this is true for ∀π∗(κ) ∈

ΠMV(κ), ΠMV(κ) ⊂
⋃
r0∈R ΠLQ(r0) = ΠLQ.

The above Proposition shows that by choosing the appropriate r∗0, we can derive

the optimal strategy of the original problem MV(κ) by solving auxiliary problem

LQ(r∗0). However, according to (26), r∗0 depends on π∗(κ) ∈ ΠLQ(r∗0), which would

not be available until we know the value of r∗0. Thus we have a “chicken and egg”

dilemma.

One solution is to generate optimal strategies of LQ(r0) for all r0 values on the

real line, i.e. attaining the set ΠLQ. Since ΠMV(κ) ⊂ ΠLQ, an optimal strategy

π∗(κ) ∈ ΠMV(κ) that solves MV(κ) should satisfy

π∗(κ) = arg min
π∈ΠLQ

{E[IN |π] + κVar[IN |π]} (32)

The search for π∗(κ) can be decomposed as two respective optimization steps. First,

note that for r0 ∈ R, LQ(r0) may have multiple solutions which all contribute to

ΠLQ(r0). For r0 ∈ R, we are only interested in the strategy within ΠLQ(r0) that

minimize the mean-variance objective, which we define as a representing strategy

π(r0) for the set ΠLQ(r0):

π(r0) = arg min
π∈ΠLQ(r0)

{E[IN |π] + κVar[IN |π]}. (33)

Secondly define r∗0(κ) as

r∗0(κ) = arg min
r0∈R
{E[IN |π(r0)] + κVar[IN |π(r0)]}. (34)

Naturally the optimal strategy π∗(κ) ∈ ΠMV(κ) satisifes

π∗(κ) = π(r∗0(κ)).
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By representing ΠLQ(r0) through a single element π(r0) ∈ ΠLQ(r0), we shift our focus

from directly searching π∗(κ) within ΠLQ as in (32) to searching r∗0(κ) within R as

in (34).

A procedure similar to the one used in (33)-(34) can be applied to solve V(m)

or E(v), although the mean-variance minimization operator in the definition of both

π(r0) and r∗0(κ) would have to be replaced by constraint optimization operators.

Without confusion, we will use the same notations π(r0) and r∗0 as in (33)-(34) for

the following (35)-(38). The differences lie in the independent variables risk aversion

factor κ, target mean m or target variance v):

Corollary 1. For E[Ilin] ≤ m ≤ E[Iinst], let

π(r0) = arg min
π∈ΠLQ(r0)

{Var[IN |π] | E[IN |π] ≤ m} (35)

and

r∗0(m) = arg min
r0∈R
{Var[IN |π(r0)] | E[IN |π(r0)] ≤ m}, (36)

then π(r∗0(m)) solves V(m).

For 0 ≤ v ≤ Var[Ilin], let

π(r0) = arg min
π∈ΠLQ(r0)

{E[IN |π] | Var[IN |π] ≤ v} (37)

and

r∗0(v) = arg min
r0∈R
{E[IN |π(r0)] | Var[IN |π(r0)] ≤ v}, (38)

then π(r∗0(v)) solves E(v).

Proof. We prove π(r∗0(m)) solves V(m), the case for E(v) is analogous. Define

v′ = min
π∈Π

[Var(IN |π) | E(IN |π) ≤ m].

If π(r∗0(m)) does not solve V(m), then v′ < Var[IN |π(r∗0(m))]. Since EIlin ≤ m ≤ EIinst,

there exists κ′ ∈ R such that the solution of MV(κ′) and V(m) coincides, i.e. ∃π′ ∈
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ΠMV(κ′), such that

v′ = Var[IN |π′ ] and E[IN |π′ ] ≤ m.

Due to Proposition, π′ ∈ ΠLQ. From the definition of π(r0) in (35) and r∗0(m) in

(36),

v′ = Var[IN |π′ ] ≥ min
π∈ΠLQ

{Var[IN |π]|E[IN |π] ≤ m} = Var[IN |π(r∗0(m))].

This leads to a contradiction, and hence π(r∗0(m)) does solve V(m).

r0 in LQ(r0) represents the asssigned weight ratio between first and second mo-

ment of implementation shortfall, with different values of r0 corresponding to different

optimal strategies. However, (34), (36) and (38) all require us to solve LQ(r0) for

any r0 ∈ R. Later for numerical computation, we will solve (34), (36) and (38)

through LQ(r0) only for a finite number of discretized r0 values(ranging from 100

to 600 values). Even so, using dynamic programming methods to solve LQ(r0) one

by one will still be computationally intensive. The following algorithm solves the

optimal strategies for r0 ∈ R all at once by extending r0 as a state variable ri for

i = 0, ..., N−1, which greatly increases the computation efficiency. (34), (36) and (38)

provide a mechanism to choose the approximate r0 to derive the optimal strategies for

different risk aversion levels κ (or target mean m or variance v). More importantly,

the introduction of time varying state variables ri also allows the trader the flexibility

during execution to drift away from predetermined adaptive policies for changed risk

version factor κi (or target mean mi or variance vi) for the remaining trading time

periods.

2.3.2 Dynamic programming for auxiliary problem

Given a feasible strategy π = {y0, y1, ..., yN−1} ∈ Π, define the first and last i peri-

ods’ partial implementation shortfalls Ii and Īi for i = 1, 2, ..., N as (for notational

conformity, assume BtN = BtN−1
and y−1 = 0):
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Ii =
i−1∑
j=0

[
Nµjy

2
j + (Btj+1

−Btj)xj+1

]
(39)

Īi =
N−1∑
j=N−i

[
Nµjy

2
j + (Btj+1

−Btj)xj+1

]
Obviously, Īi + IN−i = ĪN = IN ,∀i = 1, 2, ..., N .

For any given r0 and π, define ri as

ri = r0 + 2Ii for i = 1, 2, ..., N − 1. (40)

For a given r0, ri contains information about the realized partial implementation

shortfall before time ti to be (ri− r0)/2, which is adaptive to price process up to time

ti. To facilitate solving LQ(r0) through dynamic programming, we decompose its

objective function r0ĪN + Ī2
N to a summation of cost functions at each time period:

r0ĪN + Ī2
N

= r0(Nµ0y
2
0 + (Bt1 −Bt0)x1 + ĪN−1) + (Nµ0y

2
0 + (Bt1 −Bt0)x1 + ĪN−1)2

= r0(Nµ0y
2
0 + (Bt1 −Bt0)x1) + (Nµ0y

2
0 + (Bt1 −Bt0)x1)2

+(r0 + 2Nµ0y
2
0 + 2(Bt1 −Bt0)x1)ĪN−1 + Ī2

N−1

= r0(Nµ0y
2
0 + (Bt1 −Bt0)(x0 − y0)) + (Nµ0y

2
0 + (Bt1 −Bt0)(x0 − y0))2

+r1ĪN−1 + Ī2
N−1

=
i−1∑
j=0

[
rj(Nµjy

2
j + (Btj+1

−Btj)(xj − yj)) + (Nµjy
2
j + (Btj+1

−Btj)(xj − yj))2
]

+riĪN−i + Ī2
N−i

=
N−1∑
i=0

[
ri(Nµiy

2
i + (Bti+1

−Bti)(xi − yi)) + (Nµiy
2
i + (Bti+1

−Bti)(xi − yi))2
]
(41)

To preserve the Markovian property in making decision yi at time ti, we not only

need to know the remaining percentage of shares xi, but also the realized partial
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implementation shortfall through ri. Furthermore, just as r0 represents the desired

ratio of weights between ĪN and Ī2
N , (41) shows that ri also works as the (implied)

ratio of weights between ĪN−i and Ī2
N−i. We set the combinations (xi, ri) as our state

variables. Combined with the decisions yi, {((xi, ri), yi)|i = 0, 1, ..., N − 1} is known

as a finite time horizon Markov Decision Process(MDP). The state variables follow

the transition functions:

xi+1 = xi − yi for i = 0, 1, ..., N − 1, (42)

ri+1 = ri + 2(Nµiy
2
i + (Bti+1

−Bti)xi) for i = 0, 1, ..., N − 1. (43)

Define each item in the sum (41) as the cost function Ci for i = 0, 1, ..., N − 1:

Ci((x, r), y,∆S) = r(Nµiy
2 + ∆S(x− y)) + (Nµiy

2 + ∆S(x− y))2. (44)

with the mean

ci((x, r), y) = E[Ci((x, r), y, (Bti+1
−Bti))]

= rNµiy
2 + (Nµiy

2)2 +
T

N
(x− y)2. (45)

The problem (25) is equivalent to

LQ(r0): min
Π

E
N−1∑
i=0

Ci((xi, ri), yi, Bti+1
−Bti). (46)

Assume the optimal strategy π∗ = {y∗0, y∗1, ..., y∗N−1} for LQ(r0) is given, the value

functions(also called cost-to-go function) are defined as the expected costs using policy

π∗ from time ti onward

Vi(xi, ri) = E
N−1∑
j=i

Cj((xj, rj), y
∗
j , Btj+1

−Btj)

A fundamental result of dynamic programming is the Bellman’s equation, which

describes the recursive relationship of value functions for different time periods and

hence provides a backward induction algorithm to compute value functions and opti-

mal strategies:
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First, since we need to finish buying all the shares by time T , the optimal action

in the last time period is deterministic:

y∗N−1(x, r) = x; (47)

VN−1(x, r) = rNµN−1x
2 + (NµN−1x

2)2. (48)

Then for i = N − 2, N − 3, ..., 0, the Bellman’s equations are:

Vi(x, r) = min
0≤y≤x

{ci((x, r), y)+E[Vi+1(x−y, r+2Nµiy
2 +2(Bti+1

−Bti)(x−y))|(x, r)]}

(49)

Since the search space for y in (49) is finite, so ∀i = 0, 1, ..., N − 2,∀r ∈ R

and ∀X ∈ {0, d
X
, 2d
X
, ..., 1}, the optimizer in (49) y∗i (X, r) exists and is well defined.

However, it may not be unique. All possible combination of the sequential decision

functions y∗i (x, r) are combined as Π∗:

Π∗LQ = {{y∗i (xi, ri)}i=N−1
i=0 | y∗N−1(xN−1, rN−1) satisfies (47) ,

{y∗i (xi, ri)}i=N−2
i=0 minimizes (49)

for x0 = 1, r0 ∈ R and (xi, ri)
i=N−1
i=1 satisfies (42),(43)}.

(50)

y∗i (x, r) gives the percentage of shares to trade at time [ti, ti+1) when the remaining

percentage of shares is x and the realized implementation shortfall is (r− r0)/2 for a

given fixed r0. Note that the realized value of r by time ti depends on price process

by time ti: {St|t ∈ [0, ti]}, so the child order volume percentage y∗i (x, r) is adaptive

to Fti . Therefore, Π∗LQ consists feasible strategies:

Π∗LQ ⊂ Π.

Furthermore, for a particular r0 value such as r0 = r′0 with r′0 ∈ R, we can attain

the optimal strategies for LQ(r′0) by setting the initial state r0 = r′0 in Π∗LQ:

Π∗LQ(r′0) = {π∗|r0 = r′0 and π∗ ∈ Π∗LQ}. (51)
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At this moment, Π∗LQ = ΠLQ and Π∗LQ(r′0) = ΠLQ(r′0). However, in the following, we

will cut off the state space of ri for i = 0, 1, ..., N − 1 from R to an finite number of

values within an interval, the optimal strategy Π∗LQ calculated under this assumption

will only be an approximation of the true optimal strategy ΠLQ, similarly, Π∗LQ(r′0) is

an approximation for ΠLQ(r′0).

2.3.3 Solution to the original mean-variance problem

Although we have solved LQ(r0) for all r0 ∈ R, essentially, for MV(κ), what we re-

ally care about is only LQ(r∗0(κ)). Therefore, the value functions Vi(x, r) or decision

functions y∗i (x, r) at extreme large or small r0 values are not necessary. For a given

κ, we are only interested in the auxiliary problems LQ(r0)’s for r0 ∈ [Z0(κ), ZK(κ)],

which hopefully contains r∗0(κ). Sometimes, without confusion, we may use [Z0, ZK ]

to simplify notation. Furthermore, we require the same interval be applied for

ri, i = 1, 2, ..., N − 1. In other words, we will calculate Bellman backward induction

(49) within the restricted state space r ∈ [Z0, ZK ] for i = 0, 2, ..., N −2. The cutoff of

ri state space from R to an interval [Z0, ZK ] will introduce computational error, espe-

cially when ri is near the boundary points Z0 and ZK . So the interval length should

also be wide enough to include most possible realizations of ri(i = 1, 2, ..., N − 1)

under the unknown optimal strategy π∗ ∈ Π∗ to minimize the cut off error. Based on

(40), this process can be separated into approximation for both r∗0 and an interval for

possible Ii values. A simple approach is to estimate these values through simulation

of another strategy that approximates π∗. Our experience shows that deterministic

strategy π̂ serves well for this purpose. We test deterministic strategy π̂ over 10000

sample price paths, and estimate the sample mean of implementation shortfall to be

ÎN , and sample minimum and maximum to be Îmin and Îmax. Since Îmin and Îmax

are based on a finite number of sample paths, we then take an extended interval
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[Imin, Imax with Imin = 1.1Îmin, Imax = 1.1Îmax as a conservative estimation for all

possible values of Ii for ∀i = 0, 1, ..., N . Based on (26), we approximate r∗0 through

r̂0 = 1
κ
− 2ÎN . Combine these two parts,

Z0(κ) = r̂0 + Imin =
1

κ
− 2ÎN + Imin

ZK(κ) = r̂0 + Imax =
1

κ
− 2ÎN + Imax (52)

So far the auxiliary dynamic programming problem LQ(r0) is discrete in time

and mixed in state space (discrete in remaining percentage of shares to be traded xi,

but continuous in implied ratio ri (or realized implementation shortfall)). In order to

derive an algorithm that is ready to implement, we also discretize the state space of

the implied ratio. This approximation is based on an assumption that if two trades

have the same remaining percentages of shares xi, and similar realized partial slippage

Ii, then they should trade similar percentages of shares yi for the upcoming period.

With this assumption, discretization of the state space is legitimate. Note that once

the trading decision of yi−1 is made at time ti−1 and executed during [ti−1, ti), the

state variable ri will not be updated until ti. The value of ri will incorporate the

latest price change Sti − Sti−1
. Hence it seems that the discretization of ri’s restrict

our adaptability of price process Sti −Sti−1
to only finite possibilities. However, since

the decision space (i.e. 0 ≤ yi ≤ xi) is also discretized, when one state variable xi is

fixed, the assumption of close values in the other state ri generating the same decision

yi makes the restricted price adaptability less significant. We have observed from nu-

merical experiments that for a fixed resolution of xi’s, the performance improvement

will flatten out once the resolution of ri’s increase to a certain level. In other words,

for a ri resolution that is dense enough, the optimal decision y∗i (xi, ri) should be the

same for the case when ri is allowed to be continuous within [Z0, ZK ]. Therefore, for

high enough ri resolution, we believe our algorithm can fully achieve price adaptation.
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More specifically for i = 0, 1, ..., N − 1, the variable xi ∈ {0, dX ,
2d
X
, ..., 1}, where

integer d is the minimal shares to trade. Let J = bX/dc be the integer part of X/d.

In the following we will assume X/d to be an integer. For the state space of r, we dis-

cretize R intoK+2 equal width subintervals: (−∞, Z0], (Z0, Z1], ..., (ZK−1, ZK ], (ZK ,∞),

where [Z0, ZK ] serves as the boundary of ri values. For each period i = 0, 1, ..., N −1,

value functions Vi(
jd
N
, Zk) are calculated at each grid point ( jd

N
, Zk) for j = 0, 1, ..., J

and k = 0, 1, ..., K. Furthermore, given r0 fixed, {Zk, k = 0, 1, ..., K} can depend on i

as {Zi
k, k = 0, 1, ..., Ki}. For example, we can assign a more delicate resolution with

smaller intervals near those values where ri are more likely to take. We believe a

good choice of discretization over ri will improve computation speed and approxima-

tion accuracy. However, in this chapter, we use an equally split up discretized state

space {Zk = Z0 +k · ZK−Z0

K
, k = 0, 1, ..., K} for ∀ri as i = 0, 1, ..., N−1. As mentioned

before, due to the cut off and discretizatio of the state space of ri, Π∗LQ and Π∗LQ(r′0)

defined in (49) and (52) are only approximations for optimal strategy setΠLQ and

ΠLQ(r′0).

With the above discretization, the storage space for one strategy

π∗ = {y∗0, y∗1, ..., y∗N−2} ∈ Π∗LQ is roughly (N − 1)(J + 1)(K + 1).

Of course, we also need to store the value functions. But the storage of their full

history is not necessary. Instead, only the next period’s value functions are needed

to conduct Bellman backward induction (49). The computation time, in worst case,

is in the order of O((N − 1)(J + 1)2(K + 1)).

Assume our eventual goal is to solve MV(κ). For any π ∈ ΠLQ(r0), we can

simulate it over sample price paths, and estimate the mean and variance of imple-

mentation shortfall : E[IN |π] and Var[IN |π]. The representing strategy π∗(r0) for

Π∗LQ(r0) can then be determined by choosing the strategy that produces the minimal
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mean variance:

π∗(r0) = arg min
π∈Π∗LQ(r0)

{E[IN |π] + κVar[IN |π]}.

Compared with (33), π∗(r0) is an approximation for π(r0). As before, we use a two

step decomposition approach to solve MV(κ). First, plot the mean-variance pair for

all representing strategies, which is defined as Pseudo Efficient Frontier(PEF [Z0, ZK ]):

PEF [Z0, ZK ] = {(m(r0), v(r0)) | r0 ∈ [Z0, ZK ]} (53)

where

m(r0) = E[IN |π∗(r0)] and v(r0) = Var[IN |π∗(r0)].

Secondly, use PEF [Z0, ZK ] to search r∗0(κ). Assume r∗0(κ) ∈ [Z0, ZK ], then according

to (34), r∗0(κ) can be approximated through

r∗0(κ) ≈ arg min
r0∈[Z0,ZK ]

{m(r0) + κv(r0)}. (54)

and its representing strategy π∗(r∗0(κ)) solves MV(κ). Numerically, m(r0) + κv(r0)

is a convex function with respect to r0 ∈ [Z0, ZK ], so the minimum is easy to search.

The geometric meaning of r∗0(κ) is then the index on the PEF [Z0, ZK ] whose projec-

tion along the direction of κ is the smallest for all points over the PEF [Z0, ZK ].

Note that Pseudo Efficient Frontier is not the Efficient Frontier EF in (18), how-

ever, disregard the difference in the continuous state space and discretized state space

for ri, a special case of PEF [−∞,+∞] can be used to construct EF :

EF =
⋃
κ≥0

{(m, v) | (m, v) ∈ PEF [−∞,+∞] and

m+ κv = min
(m′,v′)∈PEF [−∞,+∞]

{m′ + κv′}} (55)

However, as we will demonstrate later through numerical results, we believe PEF [−∞,+∞]

should be a smooth convex curve such that every point on it is non-inferior(as defined

in [38]) and corresponds to a solution for the minimization problem min(m′,v′)∈PEF [−∞,+∞]{m′+
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κv′}. In other words, there are no extra points of PEF [−∞,+∞] that lies inside of

the EF :

PEF [−∞,+∞] =
⋃
κ≥0

{(m, v) | (m, v) ∈ PEF [−∞,+∞]

and m+ κv = min
(m′,v′)∈PEF [−∞,+∞]

{m′ + κv′}}

= EF.

Furthermore, [Z0, ZK ] defined in (52) is normally wide enough to cover most inter-

esting part of PEF [−∞,+∞]. Combined with these two parts, the interior part of

PEF [Z0, ZK ](i.e. when r0 is away from the boundary Z0 or ZK) should coincide with

the part of EF very well, which is indeed confirmed by our numerical results. This

prompts us to name the curve defined in (53) as Pseudo Efficient Frontier, and we

believe it can be used as a good approximation for EF .

The adaptive strategy exhibits a patten of “aggressive-in-the money(AIM)” in

the sense of [28]. Our numerical result has shown that for ∀i = 1, 2, ..., N − 1 and

∀x ∈ {0, d
X
, 2d
X
, ..., 1}, y∗i (x, ri) is a decreasing function of ri. Given r0 = r∗0(κ) cho-

sen, ri is an indication of the level of realized implementation shortfall Ii. Therefore,

whenever the past price movement is in favor of the trader’s advantage(for a buying

problem, smaller Ii implies downward price movement), the adaptive trader tends to

trade more aggressively to reduce timing risk by paying more market impact costs.

Similarly, when price is moving up and incur a large ri, adaptive trader tends to be

more passive and trade slower, which is reflected in a smaller value of y∗i (x, ri). The

AIM patten comes from our simple assumption of fundamental stock price following

an arithmetic Brownian motion with zero drift. Naturally, when the price process ex-

hibits mean-reverting patten, the adaptive strategy π∗(r∗0(κ)) tends to perform better

than the deterministic strategy π̂(κ).
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2.3.4 Flexibility in adjusting trading urgency

In practice, a precise description of risk aversion factor κ is not an easy task. Normally

what traders have is a range of values for potential κ’s. [Z0(κ), ZK(κ)] defined in (52)

is a robust estimation for the interval that covers r∗0(κ) and most ri realizations. For

example, in Section 4.4, we fix κ and shrink [Z0, ZK ] into half or shift it from original

setting in (52) and we still observe similar PEF compared with original setting (52).

More importantly, the resulting adaptive strategy set Π∗LQ based on [Z0(κ), ZK(κ)]

also works well with problem MV(κ′) for κ′ close to κ.

Note that κ has been used twice in both decomposition steps to derive optimal

strategy: first, use (52) to construct PEF [Z0(κ), ZK(κ)] which consists the mean-

variance pair of all representing strategies π(r0) for r0 ∈ [Z0, ZK ]; second, approximate

r∗0(κ) through (54). These two steps can be carried out using different κ. Therefore,

the robustness of Z0, ZK as mentioned above naturally implies that an adaptive strat-

egy based on a specific risk aversion factor κ can also be used to solve MV(κ′) for

other risk aversion factors κ′ different but close to κ. Once PEF [Z0(κ), ZK(κ)] is

constructed, approximate r∗0(κ′) through

r∗0(κ′) ≈ arg min
r0∈[Z0(κ),ZK(κ)]

{m(r0) + κ′v(r0)}. (56)

then the representing strategy π∗(r∗0(κ′)) solves MV(κ′). Similarly, PEF [Z0(κ), ZK(κ)]

can also be applied to generate optimal strategies for E(v′) and V(m′):

r∗0(v′) ≈ arg min
r0∈[Z0,ZK ]

{m(r0) | v(r0) ≤ v′}, (57)

r∗0(m′) ≈ arg min
r0∈[Z0,ZK ]

{v(r0) | m(r0) ≤ m′}. (58)

In order to achieve a good approximation, v′ should be close enough to Var[IN |π∗(r∗0(κ))]

andm′ close enough to E[IN |π∗(r∗0(κ))]. Examples of such values can be v = Var[ÎN |π̂∗(κ)]

and m = E[ÎN |π̂∗(κ)], where π̂∗(κ) is the optimal deterministic strategy for D(κ).
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Therefore, by calculating PEF [Z0, ZK ] once, we can use it to solve mean variance

objective for different risk aversion levels. More importantly, Π∗LQ allows the trader

to diverge from the initial trading path and adjusting his risk aversion level dur-

ing the trading horizon. Since risk aversion factor dominates our trading urgency, by

readjusting its level, we can also incorporate trader’s view of near term price direction.

For example, suppose the security price goes under in early time periods, and

the buying execution incurs a small (and hence beneficial) implementation shortfall

before the mid trading period ti. And a sudden news event breaks out and the trader

has a strong belief the stock price will go down even further by the end of trading

horizon. Therefore, rather than following the strict optimal policy of AIM by buying

a large amount of y∗i (xi, ri) percentage of shares, the trader hopes to wait and trade

more slowly. In other words, the trader reassigns a smaller risk aversion factor κ̃i < κ

and be willing to take more timing risk while getting gains for speculative downward

price movements. Similar as our original problem, where the value of κ will dictate

the appropriate choice of r∗0, a change of risk aversion level will result in a deviation

of ri from its original value. This will be reflected as the trader opt to a r̃i larger than

ri, and shifts from action y∗i (xi, ri) to y∗i (xi, r̃i) with r̃i > ri. The immediate trading

action y∗i (xi, r̃i) will be smaller than y∗i (xi, ri).

Both of the above two cases can be easily adapted in our current algorithm. The

following Property 2 combined with Property 1 shows that we can still resort to

the original strategy Π∗LQ even though we have re-assigned the risk aversion factor to

κi from time ti on:

Property 2 1. For a given pair of (x, r) ∈ [0, 1]×R, assume

Πi = {πi = (yi, yi+1, ..., yN−1)|π satisfies xi = x, yj ≥ 0 for j = i, i+ 1, ..., N − 1,

and (3), (11)},
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then the value function Vi(x, r) of (49) also satisfies

Vi(x, r) = min
Πi

E
N−1∑
j=i

Cj((xj, rj), yj, Btj+1
−Btj)

= min
Πi

E(rĪN−i + Ī2
N−i) (59)

Furthermore, the optimal strategy of (59) π∗i = (y∗i , y
∗
i+1, ..., y

∗
N−1) is embedded in the

optimal solution of (49) π∗ = {y∗0, ..., y∗i , y∗i+1, ..., y
∗
N−1} ∈ Π∗LQ as in (50).

For implementation, if at the ith period, risk aversion factor needs to be reassigned

to κ̃i. We can simulate all embedded strategy π∗i = (y∗i , y
∗
i+1, ..., y

∗
N−1) from ∀π∗ ∈ Π∗LQ

for the remaining time periods and choose the one that produce the minimal mean-

variance as the representing strategy, which then generates the pseudo efficient frontier

PEFi[Z0, ZK ] for the remaining periods. r∗i (κ̃i) can be searched through

r∗i (κ̃i) = arg min
(m,v)∈PEFi[Z0,ZK ]

{m+ κ̃iv}.

Once the new state variable is available, the decision will then shift from the prede-

termined y∗i (xi, ri) to y∗i (xi, r
∗
i (κ̃i)).In this case, it is the r∗i (κi) rather than the past

partial implementation shortfall ri−r0
2

that decides yi for the upcoming period. Simi-

lar as (57) and (58), PEFi[Z0, ZK ] can also be applied when it is the target mean or

variance for the remaining slippage that needs to be adjusted.

2.4 Numerical results

In this section we compute some numerical examples for the purpose of exploring the

qualitative properties of adaptive strategies.

2.4.1 π∗ and π∗(κ)

Assume we receive a buying order of X = 1 million shares of a stock to be traded

within T = 1 day from 9 : 30 to 16 : 00. We split up the whole day into N = 50

time periods, each lasting 7.8 minutes. The arrival price is S0 = $100, and the daily
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volatility σ = 125bps is constant throughout the day. Assume the average daily

volume(ADV) is 10 million, then the order accounts for 10% of ADV. If the market

impact factor is constant during the day, then according to (13) the market power

µ = 0.048. Through (9) we know that σIN represents the fraction of slippage over

notational value XS0, which is easier to understand for practitioners. Therefore, in

this section, sometimes we present statistics in terms of σIN instead of IN , although

all the computations are still based on IN scaled in (9). The risk aversion factor in

(14) set as κ = 6.4396 to make sure that the half-life of deterministic strategy is 30

minutes, i.e. deterministic strategy will trade 50% of volume within half an hour. The

state space {(Xi, ri)|Xi ∈ [0, 1], ri ∈ [Z0, ZK ]} is discretized with resolution J = 250

and K = 400 for ∀i = 1, 2, ..., N −1. By running deterministic strategy D(6.4396) on

10000 sample paths, we observe the sample mean, maximum and minimum of slip-

page are E[ÎN ] = 0.2819, Îmin = −0.9272, Îmax = 2.0628 respectively. According to

(52), the state space of ri(i = 0, 1, ..., N−1) can be cut as [Z0, ZK ] = [−1.4283, 1.8606].

Following steps listed in (47)-(49), we obtain the value function Vi(x, r) and the

optimal action y∗i (x, r) for each discrete state grid point (x, r) and i = 0, 1, ..., N − 1.

Particularly, we compute expectation over normal random variable Bti+1
−Bti in (49)

through Gaussian quadrature ([37]). Although Gaussian Hermite quadrature seems

more appropriate to compute the expectation for normal random variable as the

integrated function contains exponential function, it does not work very well in our

case as the discretized value functions Vi are not smooth enough. Instead, we cut the

integration domain from (−∞,+∞) to an interval within ±7 standard deviation, and

divide it into three sub intervals, and apply degree 4 Gaussian Legendre quadrature

separately:
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E[Vi+1(x− y, r + 2Nµiy
2 + 2(Bti+1

−Bti)(x− y))|(x, r)]

=

∫ +∞

−∞

√
N

2π
e−

z2N
2 Vi+1(x− y, r + 2Nµiy

2 + 2z(x− y))dz

≈
∫ 7√

N

− 7√
N

√
N

2π
e−

z2N
2 Vi+1(x− y, r + 2Nµiy

2 + 2z(x− y))dz

=

∫ − 3√
N

− 7√
N

· · ·+
∫ 3√

N

− 3√
N

· · ·+
∫ 7√

N

3√
N

· · ·

where ∫ b

a

· · · =

∫ b

a

√
N

2π
e−

z2N
2 Vi+1(x− y, r + 2Nµiy

2 + 2z(x− y))dz

≈ b− a
2

4∑
i=1

wi

√
N

2π
e−

( b−a
2 zi+

a+b
2 )2N

2 Vi+1(x− y,

r + 2Nµiy
2 + 2(

b− a
2

zi +
a+ b

2
)(x− y))

with wi and zi be the ith standard(i.e. integral over [−1, 1]) weights and abscissas

for degree 4 Gaussian Legendre quadrature:

z1 = 0.3400, z2 = −z1, z3 = 0.8611, z4 = −z3;

w1 = w2 = 0.6521, w3 = w4 = 0.3479.

In total, to compute each execution in (49), we need to visit the value functions at

only 12 states of the next time period, which is quite effective computationally.

The computation of value function Vi(x, r) or decision function y∗i (x, r) requires

us to solve a minimization problem within (49) which may not be a convex function.

There may be multiple optimizers y∗i ’s that minimize (49). This is the reason the opti-

mal solution of auxiliary problem Π∗LQ in (50) is a set of all possible optimal strategies.

However, we find out that numerically we seldom have more than one minimizer y∗i

for (49), and even as it happens, we will opt to use the minimizer y∗i that has the
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largest value. With this arrangement, for each state pair (xi, ri), y
∗
i (xi, ri) is a scalar,

and Π∗LQ will only have one element Π∗LQ = π∗. Furthermore, for the minimization

problem within the Bellman equation (49), rather than searching yi within [0, xi] ex-

clusively, we resort to deterministic decision ŷi to achieve a smaller search range such

as [0,min(xi, 4ŷi)], which often result in a significant reduction in computation time.

This works particularly well when the market power µi or the risk aversion factors

κ are small, when adaptive decision y∗i (xi, ri) tends to lie in a close neighborhood of

deterministic decision ŷi. Therefore, by searching around deterministic strategy ŷi we

can significantly decrease computation time.

One sample value function for i = 1: V1(x1, r1) is presented in Figure 1. Figure

2 shows the corresponding decision function y∗1(x1, r1). y∗i (x1, r1) is a non-increasing

function with respect to r1 for fixed x1 values. This means an advantageous earlier

price movement(i.e. Bt1 −Bt0 < 0 for a buying problem, which leads a smaller value

of r1) will allow the trader to be more aggressive in the next periods trading(i.e. y∗1

to be larger), which corresponds to the aggressive-in-the-money property of mean-

variance objective.

We no longer need to pick a representing strategy as Π∗LQ(r0) has only one ele-

ment Π∗LQ(r0) = π∗(r0). Figure 3 shows the adaptive strategy π∗(−0.990) for two

sample price paths. Depending on different price evolution, adaptive strategy may

finish trading in just 9 periods for down sample, or take all 50 periods for up sample.

The PEF [Z0, ZK ] can be simply constructed through simulation of the single op-

timal strategy π∗(r0) for different initial state (1, r0) for r0 ∈ [Z0, ZK ]. Although we

restrict Π∗ into one single element, numerical results have proven it is a highly robust

strategy.
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By simulating π∗(r0) for r0 ∈ [Z0, ZK ] over 10000 common price paths, we can con-

struct PEF [Z0, ZK ] consisting of mean-variance pair. Figure 4 plots the PEF [Z0, ZK ]

with Z0 = −1.4283 and ZK = 1.8606, and presents how it can be used to determine

appropriate r∗0 to solve either MV(κ) and E(v). The performance of the resulting

strategy is further illustrated in Table 1 for four different problems: MV(6.4396),

V(0.0353), D(6.4396) and MV(0). Note the solution of MV(0) is just linear(or

VWAP) strategy. The value v = 0.0353 is chosen to match the sample variance of de-

terministic strategy for D(6.4396): Var[ÎN ] = 0.0353. The initial trading percentage

y0 = 8.40% of V(0.0353) is much smaller than deterministic counterpart ŷ0 = 20.63%.

By trading less in the beginning, adaptive strategy accumulates necessary leeway for

later adjustment.

Although the adaptive strategy is based on a price model with zero drift, in real-

ity, small short term momentum is commonly observed among equity prices. When

the drift is small, adaptive strategy may still perform better than the deterministic

strategy. Figure 5 plots the mean-variance difference of these two strategies tested

on price modeled as arithmetic Brownian motion with daily drift θ:

St = S0 + σS0(θt+Bt),

where θ = 1 corresponds to mean price increasing 100% during T = 1 day. In our

current setting, as long as the daily drift does not exceed 37.10%, adaptive strategy

always outperform deterministic strategy. Furthermore, as shown in Figure 5, adap-

tive strategy for a buying order performs much better in the bear market than the bull

market. This is because adaptive strategy tends to trade less at the earlier periods

to remain adaptation flexibility for later trading. When the downward trend is con-

tinued, buying more in the latter periods results in smaller implementation shortfall

than deterministic strategy. Therefore, the drift boundary for misspecification leans
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towards the negative side for our buying order, and positive side for the selling order.

2.4.2 Risk aversion factor κ and market power µ

By varying risk aversion factor κ for MV(κ) with fixed market power µ = 0.096, we

can plot the efficient frontier(EF ) of adaptive strategy consisting of sample mean and

variance of implementation shortfall IN |π∗(r∗0(κ)) as a function of κ. Note that once κ

has changed, so is [Z0(κ), ZK(κ)], π∗(κ) and PEF [Z0(κ), ZK(κ)]. In other words, at

this moment, each pseudo efficient frontier PEF [Z0(κ), ZK(κ)] is used to only solve

one single problem MV(κ). Figure 6 compares the efficient frontier of adaptive and

deterministic strategy for κ ∈ [0.0336, 120.0750]. For risk neutral trader with κ = 0,

adaptive, deterministic and VWAP strategy all coincide. As the trader gets more and

more risk adverse, the advantage of adaptive strategy gets more prominent.

On the other hand, when κ is fixed, different levels of market power µ reflect var-

ious liquidity and volatility conditions based on (13). When market power is small,

adaptive strategy performs similarly as determinist strategy. In other words, when

the underlying security is very liquid or volatile, the adaptive strategy tends to be

price insensitive. [31] has proved that under certain conditions, the adaptive strategy

and deterministic strategy coincides for µ = 0.

To give the reader some general idea, we compared adaptive and deterministic

strategy under different combinations of κ and µ in Table 2. Note that adaptive

strategy is based upon discretized action space {0, d
X
, 2d
X
, ..., 1} while deterministic

strategy is based upon continuous space [0, 1], it is possible deterministic strategy

may outperform adaptive one when market power µ is small and resolution of xi K is

not large enough, which explains the performance for the senario when deterministic
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half life =1.5hrs and market power corresponds to 5% of ADV. In addition, for each

senario, we also list the drift boundary within which adaptive strategy will outper-

form deterministic strategy in terms of mean-variance sum. We can see that adaptive

strategy achieves the most advantage when the asset is illiquid, volatile and the trader

is risk averse.

2.4.3 Full price adaptability

As mentioned before, the main advantage of our model over the adaptive strategy

in recent [31] is our full price adaptability. While the state variables in both our

model and [31]’s are of two dimension and both take remaining unexecuted percent-

age xi as one state variable, the difference lies in the second variable. We use state

ri to record realized partial implementation shortfall Ii = ri−r0
2

, while [31]’s state ci

is the limit of expected unrealized implementation shortfall for the remaining peri-

ods, i.e. ci ≥ E[IN−i]. In terms of decision variable, both use percentage of shares

yi to be traded in the next period, but [31] requires an extra integrable function

zi(ξ) ∈ L1(Ω,R) of the price change ξ = Bti+1
− Bti ∈ Ω. By the end of period i

of ti, the price change Bti+1
− Bti will be observed, and the value of function zi will

be set as the new state variable ci+1 = zi(Bti+1
− Bti), which dictates decision yi+1

for the next time period. To simplify computation, [31] restricts the decision zi to

the space of step functions rather than measurable functions, such as zi(ξ) = z+
i for

ξ ≥ 0 and zi(ξ) = z−i for ξ < 0. As mentioned in [31], “the adaptability of our trading

strategy is restricted to reacting to the observation whether the stock price goes up

or down during each of N trading periods.” Since zi determines next period’s state

variable, a two level step function restricts optimal strategy’s decision paths {yi}i=N−1
i=0

to at most 2N−1 possibilities regardless of the resolution of xi. On the other hand,

our model naturally incorporates ξ = Bti+1
− Bti ∈ Ω into the next period’s state
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variable ri+1, which takes K + 1 possible values. Therefore, with comparable reso-

lution of xi, the total possibilities of our trading paths {yi}i=N−1
i=0 is in the order of

O((K + 1)N−1). Table 3 compares the numerical performance between our adaptive

strategy and the one proposed in [31]. We set the same state vector resolution as

in [31], i.e. J = 250, K = 100 to make sure the comparison based soely upon two

strategies’s different price adaptability. We can see that our strategy performs at

least as good as [31], and in some cases, we can decrease the average implementation

shortfall more than 40% compared with their performance.

2.4.4 PEF [Z0(κ), ZK(κ)] vs. EF

Since the state space of ri(∀i) has been trunked as [Z0, ZK ], a natural question is

whether the algorithm is robust with regard to different choices of [Z0, ZK ]. In Fig-

ure 7, we implement two kinds of tests, by either shrinking the interval length or by

shifting the interval from original setting in (52). The numerical details are listed in

Table 4, we can see that they all produce close performance with the original setting

(52), which implies (52) as a robust choice for optimal strategy computation.

Our goal in this section is to illustrate through numerical results the legitimacy

of simplification for solving MV(κ′) for different risk aversion factors κ′ based on

a single pseudo efficient frontier PEF [Z0(κ), ZK(κ)]. An underlying assumption

here is that PEF [Z0(κ), ZK(κ)] can work as a good approximation of part of EF

that covers {(E[IN |π∗(κ′)],Var[IN |π∗(κ′)])} for κ′ close with κ. Note that besides

state discretization, there are mainly three layers of approximation of EF through

PEF [Z0(κ), ZK(κ)]:

1. using [Z0(κ), ZK(κ)] to approximate R as the state space for ri for i = 1, 2, ..., N−

1, this introduce cut off error;
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Table 1: Comparison of different strategies
problem r∗0 E[IN ] Var[IN ] E + 12.88Var E[σIN ] Std[σIN ] y0

MV(6.4396) -0.4499 0.2991 0.0155 0.3992 37.39 15.58 14.00%
V(0.0353) -0.0990 0.2137 0.0353 0.4412 26.72 23.50 11.60%
D(6.4396) 0.2819 0.0353 0.5094 35.23 23.50 20.63%
MV(0) 0.0490 0.3309 2.1797 6.13 71.90 2.00%

2. when more than one minimizer are available within Bellman equation (49),

picking the minimizer y∗i with the largest value, which introduced sampling

error of PEF [Z0(κ), ZK(κ)] as it is constructed by a particular strategy within

Π∗LQ(r0) for r0 ∈ [Z0(κ), ZK(κ)] rather than the representing strategy π∗(r0) for

r0 ∈ [Z0(κ), ZK(κ)] as defined in (53).

3. assuming every point on the ultimately ideal pseudo efficient frontier PEF [−∞,+∞]

is non-inferior, i.e. PEF [−∞,+∞] = EF .

Even with all those approximation error, the two curves still coincide with each other

closely as presented in Figure 8. The robustness of [Z0(κ), ZK(κ)] decreases the first

error. We believe the second error is small due to the uniqueness of optimizer in (49),

and the third error is small due to the non-inferiority of points on PEF [−∞,+∞].

Therefore, numerically we can just use PEF [Z0(κ), ZK(κ)] to approximately solve

MV(κ′), E(v′) and V(m′) for different levels of κ′, v′ and m′ that are close to κ,

Var[IN |π∗(r∗0(κ))] or E[IN |π∗(r∗0(κ))] respectively. r∗0 can be determined through (57)-

(56). Figure 9 goes further to give a robust range of v′ values such that the solution

of E(v′) through PEF [Z0(0.3266), ZK(0.3266)] is close to the optimal strategy.
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Table 2: Numerical performance for varying risk aversion factor and market power
% of ADV 5% 10% 20%

half life (bps) E[σIN ] Stdev[σIN ] E[σIN ] Stdev[σIN ] E[σIN ] Stdev[σIN ]

0.5hrs
adaptive 15.70 23.50 26.72 23.50 42.59 23.50

static 17.62 23.50 35.23 23.50 70.47 23.50
drift bound [−100.00%, 26.86%] [−100.00%, 37.10%] [−100.00%, 43.46%]

1.0hrs
adaptive 7.54 38.33 14.47 38.357 26.11 38.35

static 7.58 38.35 15.17 38.35 30.31 38.35
drift bound [−100.00%, 3.68%] [−100.00%, 11.69%] [−100.00%, 22.39%]

1.5hrs
adaptive 4.93 48.56 9.73 48.69 18.93 48.56

static 4.92 48.56 9.84 48.56 19.68 48.56
drift bound [−100.00%, 3.09%] [−100.00%, 11.43%]

Table 3: Comparison with adaptive strategy in [31]
case 1 2 3 4
κ 1.62 5.2875 30 108.75

E[IN ] Var[IN ] E[IN ] Var[IN ] E[IN ] Var[IN ] E[IN ] Var[IN ]
Linear 0.1531 0.3309 0.1531 0.3309 0.1531 0.3309 0.1531 0.3309

Deterministic 0.2567 0.1439 0.4537 0.0771 1.0716 0.0274 1.9898 0.0109
Adaptive 0.2331 0.1435 0.3271 0.0771 0.4893 0.0274 0.6373 0.0109

E[IN ]
E[Ilin]

Var[IN ]

Var[Ilin]

E[IN ]
E[Ilin]

Var[IN ]

Var[Ilin]

E[IN ]
E[Ilin]

Var[IN ]

Var[Ilin]

E[IN ]
E[Ilin]

Var[IN ]

Var[Ilin]

Deterministic 1.68 0.43 2.96 0.23 7.00 0.08 13.00 0.03
Adaptive 1.52 0.43 2.14 0.23 3.20 0.08 4.16 0.03

[31]’s Adaptive 1.52 2.27 3.92 7.09
improvement % 0 5.73% 18.37% 41.33%
impv of E[σIN ] 0 2.49 13.78 56.06

Table 4: Different settings for state space ri for i = 0, 1, ..., N − 1
state space setting

r∗0(4.29) y0(r∗0) E[IN ] Var[IN ] E[σIN ]
Z0 ZK ZK − Z0

original
r̂0 + Imin r̂0 + Imax 3.2890 -0.0990 0.1160 0.2137 0.0353 26.72
-1.4283 1.8606

half
r̂0 + 1

2
Imin r̂0 + 1

2
Imax 1.6445 -0.1044 0.1120 0.2142 0.0354 26.78

-0.9184 0.7261

left shift
r̂0 + 3

2
Imin r̂0 + 1

2
Imax 2.6644 -0.1075 0.1120 0.2145 0.0353 26.81

-1.9383 0.7261

right shift
r̂0 + 1

2
Imin r̂0 + 3

2
Imax 3.9136 -0.0993 0.1160 0.2138 0.0353 26.72

-0.9184 2.9952
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Figure 1: Value function V1(x1, r1) on [0, 1]× [−1.4283, 1.8606]: in general, Vi(xi, ri)
is a non-decreasing function with respect to ri for fixed xi.
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Figure 2: Optimal decision function y1(x1, r1) on [0, 1] × [−1.4283, 1.8606] with the
figure on the right showing three particular choice of x1: 1, 0.68 and 0.34. y∗1(x1, r1)
is a non-increasing function with respect to r1 for fixed x1, which implies the adap-
tive strategy is aggressive-in-the-money. However, y∗1(x1, r1) may not be a monotone
function with respect to x1, such as when r1 = −0.5.

2.5 Conclusion

This chapter solves the optimal execution problem which requires to balance a trade-

off between liquidity risk of fast trading and timing risk of slow trading. The objec-

tive is to minimize the weighted sum of the mean and variance of the implementa-

tion shortfall. Since the mean-variance problem can not be directly solved through

dynamic programming, we circumvent the problem with a two step process: first

solve a family of auxiliary linear-quadratic problems with different linear-quadratic

weights through dynamic programming, second find the solution for a particular lin-

ear quadratic problem that also solves the original mean-variance problem. One of

the major contribution of this chapter is to provide a simple framework to combine

these two steps in a seamlessly way. Specifically, by incorporating the linear-quadratic

weights as a state variable, we can solves all linear-quadratic problems with one sin-

gle backward induction. This greatly simplifies the modeling and computation com-

plexity. As a result, our algorithm improves the execution performance significantly
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Figure 3: First two figures show two sample price paths Sti and the trading percentage
yi. At each ti, the trading decision yi will not be determined until Sti has been
observed. Unlike deterministic strategy, adaptive strategy buy more shares when the
price goes down, and vice versa. The last two figures compare the implementation
shortfall for adaptive and deterministic strategy for both sample paths. In both of
these particular cases, adaptive strategy perform smaller implementation shortfall
than static strategy.
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Figure 4: Determining r∗0: PEF [−1.4283, 1.8606] can be used to determine the
optimal r∗0 for different problems: the left figure for MV(6.3496) and the right for
E(0.0353)
.

over the methods in existing literature with even less computation complexity. This

chapter also studies the performance of adaptive trading strategies vs. deterministic

trading strategies, and the unique Aggressive-In-the-Money behavior appeared in the

mean-variance objectives.
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Figure 5: Comparison of mean-variance sum E[IN |π∗(r∗0(v))]+6.4396Var[IN |π∗(r∗0(v))] of
deterministic and adaptive strategy when the underlying process has non-zero drift:
daily drift=100% means the mean price will increase to $200 by the end of the day
when S0 = $100. Here v = 0.0353. Adaptive strategy produced smaller mean-
variance as long as the daily drift is below 37.10%. For a buying problem, adaptive
strategy tends to performs much better for a downward market.
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risk aversion level κ are used to compare adaptive and deterministic strategy. These
risk aversion levels correspond to 60 deterministic half lives spanning from 0.1525
hours to 3.25 hours, with 0.0525hrs increase. In terms of risk aversion factor, it varies
from κ = 0.0336(half life=3.25 hours) to κ = 120.0750(half life=0.1525 hours). We
can see adaptive strategy works particularly when κ is large, and they coincide with
deterministic strategy when κ is small.
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Figure 7: Robustness of [Z0, ZK ]: the pseudo efficient frontier generated through
state space [Z0, ZK ] defined rather than 52 are compared. The left figure shrink
[Z0, ZK ] width as half, and the right figure shifts [Z0, ZK ] sideways. We can see
that the transformed pseudo efficient frontier coincides with the original one, which
fluctuations in the value of Z0 and ZK do not have a significant impact on the derived
strategy for auxiliary problems.
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Figure 8: EF vs. PEF [Z0(0.3266), ZK(0.3266)]: EF is generated in the same way
as the adaptive EF in Figure 6, which is based on 60 different risk aversion κ′ within
[0.0336, 120.0750]. A particular such pseudo efficient frontier is plotted for κ = 0.3266:
PEF [Z0(0.3266), ZK(0.3266)]. We can see that it matches closely to part of EF .
Therefore, we can use pseudo efficient frontier to solve E(v′) for different levels of v′

that is close to Var[IN |π∗(r∗0(0.3266))]. Figure 9 will show that when 0.05 ≤ v′ ≤ 0.2895,
the strategy generated from EF and PEF [Z0(0.3266), ZK(0.3266)] has very close
expected implementation shortfall.
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Figure 9: Approximation error of implementation shortfall based on
PEF [Z0(0.3266), ZK(0.3266)]: the bar represents the difference of E[σIN ] for
the solution of E(v′) with v′ ∈ [0.0208, 0.2895] generated by EF and
PEF [Z0(0.3266), ZK(0.3266)] We can see that when 0.05 ≤ v′ ≤ 0.2895, these two
strategies perform very closely with the difference of E[σIN ] within 0.1bps.
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CHAPTER III

TRADE SCHEDULING WITH VWAP BENCHMARK

3.1 Introduction

Besides the arrival price benchmark used in Chapter 2, another commonly used bench-

mark is Volume weighted average price (VWAP). The VWAP of a stock over a period

of time is the average price paid per share during the given period, typically of full

day or part day horizon. VWAP trading is a strategy of ex-ante buying or selling

a fixed number of shares at an average price that ex-post tracks the market VWAP

benchmark as closely as possible.

According to [9], VWAP execution orders represent about 50% of all institutional

investor trading. It is popular for several reasons. First, unlike IS (Implementation

Shortfall) strategy where the trader is risk averse, and charges a large risk premium

because of the size of the risk, investors can save on the risk premium by using VWAP

trading because market directional risk remains the investor’s responsibility. Second,

the VWAP benchmark encourages traders to spread their trades out over time to

avoid the risk of trading at prices that are at the extremes of the day. Therefore,

it can reduce the market impact and prevent manipulation of market prices. Third,

VWAP orders can be used to evaluate a traders’ performance since the effect of

market directional movement is excluded in comparisons with market VWAP. Last,

VWAP’s computational simplicity and transparency is a major advantage, especially

in markets where detailed trade level data are difficult to obtain.

A VWAP trader wishes to get the average execution price as close to the market
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VWAP as possible to avoid price movement risk. A common approach of achieving

a VWAP, as in [29], is to use automated trading strategies to participate proportion-

ately through the trading. This way the trader could disguise his trades by mimicking

the actions of the other market participants: he trades more whenever others trade

more. Orders can be split up for execution over the day in accordance with the

historical volume profile, which tends to have a U-shape. The problem with such a

strategy based on time pattern, however, is that the actual realized volume on any

given day can depart significantly from the historical average.

As a result, there are a large literature in econometrics on modeling the intra-day

trading volume, which is then used to update trading decision adaptively. For exam-

ple, [11] concentrates on volume dynamics of a group of stocks, decomposing excess

volume into common and idiosyncratic components. The authors in [13] use Compo-

nent Multiplicative Error Models to estimate the intra-day volume. [25] improves on

[11]’s framework and incorporates intra-day noise into the volume prediction frame-

work. However, after obtaining the volume prediction for both the next period and

the remainder of the day, these papers tend to use a deterministic approach to make

trading decisions. For example, the trading size for the next period in [11] is the

product of the remaining unexecuted shares and the ratio of next periods’ predicted

volume over predicted volume for the remainder of the day. Therefore, the “adap-

tiveness” of these strategies reflects only within the updates of new volume prediction.

Rather than incorporating sophisticated econometric model of intra-day volume

and price processes, this chapter takes an alternative approach of deriving an adap-

tive VWAP trading strategy from a rather simple assumption of volume and price

processes. The majority of our numerical results are based on the assumption that
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volume and price are two independent Markovian processes. Although this assump-

tion may not be realistic in real environment, our numerical examples in both sim-

ulated and real environment shows that this assumption not only greatly simplifies

the calibration process, it also allows us to build a dynamic programming model that

is trackable for meaningful analysis and results. This is particularly important as

dynamic programming often involves state space with extra high dimensions. For

example, in this chapter, the state space has eight dimensions, which makes direct

computation of a value function infeasible.

There are three major contributions in this chapter. First, we derive a theoreti-

cal result which shows that under certain market assumptions, the optimal adaptive

strategy is independent of the realized execution VWAP and market VWAP up to

the current time. As a corollary of this property, we prove that for a mean-variance

problem, the optimal solution is independent of risk aversion factor. Second, as often

used in Approximate Dynamic Programming, we come up with a reasonable way to

approximate the value function such that the optimal adaptive strategy is equivalent

to a cumulative curve matching problem, i.e. make sure the sequentially executed

order percentages get as close as possible to the expected cumulative market volume

percentage. This is one of the approaches often used by practitioners. Therefore,

this chapter provides an important link between the theoretical framework and ac-

tual industry practice. The adaptive strategy defined this way indeed outperforms

the deterministic strategy proposed in [29] in both simulation data and real market

data. Lastly, to compensate for potential model misspecification and avoid the ad-

verse impact of large volume spike/lull, we add a two sided bound constraint over the

cumulative curve of the deterministic strategy. The goal is to prevent ourselves from

over-reaction or under-reaction when the market volume largely deviates from the
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historical average profile. This simple adaptive strategy with controlled bands pro-

tection significantly outperforms the method proposed in some recent articles, such

as [11], that only depend on the sophisticated intraday volume prediction. Therefore,

our work shows that the benefits of using a simple and tractable dynamic program-

ming approach may outweigh the benefits of using a sophisticated intraday volume

prediction model with only a deterministic decision making framework.

The remainder of this chapter is organized as follows. Section 2 begins with a

formulation the problem and presents the main theoretical result of this chapter which

claims a simple dependency of optimal adaptive strategy on a two dimension variable

under certain market assumption. This simple dependency structure suggests a value

function approximation that results in an adaptive strategy similar to a cumulative

curve matching problem. However, the detailed derivation of both the dependency

structure as well as the value function approximation will be left to Section 4. At the

end of Section 2, we introduce the controlled adaptive strategy. Section 3 presents

the performance comparison of three types of strategies - deterministic, uncontrolled

adaptive and controlled adaptive - when applied to both simulation data and real

market data. Section 4 fills the analytical details missed in Section 2. It formulates the

VWAP trading problem under a strict dynamic programming framework by defining

the state variable, cost function, and eventually deriving the Bellman equation. We

then proved the simple dependency structure of the adaptive strategy and illustrate

how it can be applied to approximate the value function to achieve the curve matching

problem introduced in Section 2. Section 5 concludes the chapter.

3.2 Cumulative Curve Matching

This section introduces the adaptive VWAP trading problem, and presents the major

result of this chapter: a solution through matching the cumulative volume curve.
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3.2.1 Problem Setup

Imagine a scenario where a trader buys a certain amount of shares for a given hori-

zon(such as 1 day). He splits the parent order to participate proportionately in the

market’s volume, such that his average trading price tracks market VWAP as close

as possible. Divide 1 day into n intra-daily bins by t0, t1, ..., tn where t0 = 0 and

tn = 1 day. At each time ti(i = 1, 2, ..., n), we define the incremental market vol-

ume(excluding the trader’s portion) during (ti−1, ti] as ∆Vi and the price change as

∆Pi. The cumulative volume by time ti excluding the trader’s execution is Vi:

Vi = Vi−1 + ∆Vi for i = 1, 2, ..., n. (60)

Similarly, the price at time ti is

Pi = Pi−1 + ∆Pi for i = 1, 2, ..., n. (61)

where Pi represents the market volume weighted average price for the period (ti−1, ti]

which will not be known until time ti. For convenience, we shift and normalized

the price process, such that P0 = 0 and Pi represents the price change with respect

to first period’s VWAP. Let Fi be the σ-field generated by the exogenous process

{P1, V1, P2, V2, ..., Pi, Vi}.

At time 0, the parent order size vn−1 is given exogenously, which should also be

scaled by the total number of outstanding shares1. At ti(i = 0, 1, ..., n − 1), after

observing the latest market volume Vi and price Pi, we need to determine the child

order size

∆vi = vi − vi−1 ≥ 0 (62)

to be placed during the upcoming period [ti, ti+1). Since we do not allow selling exe-

cution, vi is a non-negative non-decreasing series. For notational ease let v−1 = 0.

1Although the parent order size has a index of n− 1, it is actually known at the beginning of the
order, and hence F0 measurable
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If the trader has executed a positive number of shares vi by time ti+1, his volume

weighted average price (VWAP) is defined as

qi+1 :=
i∑

j=0

∆vj
vi

Pj+1 for i = 0, 1, ..., n− 1; (63)

while the corresponding market VWAP by time ti+1 is

Qi+1 =
i∑

j=0

∆Vj+1 + ∆vj
Vi+1 + vi

Pj+1 for i = 0, 1, ..., n− 1. (64)

Otherwise, if vi = 0, we define qi+1 = 0 and if Vi+1 + vi = 0, we define Qi+1 = 0.

Note that the definition in (63) assumes the trader has the perfect limit order

placement model2 that completes the child order of ∆vj shares exactly at market

VWAP of Pj+1. This may not be the case in practice as the actual average transac-

tion price may fluctuate around market VWAP or even worse due to a combination of

poor timing and market impact which often moves the price adversely. However, this

uncertainty between transaction price and market VWAP diminishes as we increase

the number of bins and make more frequent decisions. As the number of bins goes to

infinity, the trader’s execution price within each period will be the same as market

VWAP. For this reason, we ignore the market impact in this chapter, and focus our

efforts on order splitting.

Our goal is try to align the order splitting with the market volume such that the

order’s total VWAP qn gets as close as possible to the market VWAP Qn:

minE
[
(qn −Qn)2

]
. (65)

At first glance, the symmetric mean square measure (65) ignores the directional

difference of qn − Qn and penalizes both potential price improvement and execution

2Limit order placement model explores market microstructure and decides which order
types(market order, limit order, etc) and at which price levels to place orders.
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loss. Therefore, some natural alternative objectives can be:

minE
[
d0(qn −Qn) + (qn −Qn)2

]
where d0 ≥ 0 (66)

or

min
[
E(qn −Qn) + κVar(qn −Qn)

]
where κ > 0 (67)

Note that we assume this is a buy order. With similar argument as in Chapter 2

of this thesis, the solution of the mean-variance problem (67) is also a solution of

(66) for the proper value of d0. Therefore, in the following, we will focus on solving

linear-quadratic objective (66).

There are two types of strategies that solves 65: deterministic strategies and

adaptive strategies. The child order sizes ∆vi(i = 0, 1, ..., n− 1) are fixed ex-ante at

order arrival for deterministic strategies, while adaptive strategies expand the decision

space to allow inter-temporal adjustment during the trading horizon.

3.2.2 Main Theoretical Result

So far we have not made any assumption of the market processes {Pi, Vi}i=ni=1 . Al-

though there are numerous empirical study on the relationship between price and

volume process, the main theoretical result of this chapter is based on a very simple

assumption of {Pi, Vi}i=ni=1 :

{∆Vi}ni=1 are independent non-negative random variables

with E[∆Vi] = µi and Var[∆Vi] = σ2
i ;

{∆Pi}ni=1 are i.i.d random variables with E[∆Pi] = 0 and Var[∆Pi] = σ2
P .

Furthermore, {∆Vi}ni=1 and {∆Pi}ni=1 are mutually independent. (68)

(68) does not take into consideration the potential positive correlation between

price volatility and market volume, nor does it incorporate the positive autocorrela-

tion often observed in intraday volume processes. Instead, (68) focuses mainly on the
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mean of individual period volume µi and the variance σ2
i . However, this simplification

allows us to achieve a simple optimal decision structure, which results in a simple and

robust adaptive strategy. Specifically, [29] has proved that the optimal deterministic

strategy trades proportionally to a pre-defined intraday volume curve:

∆vi = E
[∆Vi+1

Vn

]
. (69)

This chapter instead focuses the on adaptive strategy. As will be presented in detail

in Section 3.4, (68) is a special case of the assumption under Proposition 1, which

claims that:

Property 1. Under the assumption of (68), the optimal adaptive decision ∆v∗i only

depends on the executed quantity vi−1, and the cumulative market volume Vi:

∆v∗i = gi(vi−1, Vi). (70)

This may seem to be a trivial result. But in Section 3.4 a strict modeling of the

problem (66) using dynamic programming will reveal a seven or eight dimension state

space. This means ∆v∗i should depend on not only vi−1 and Vi, but also other vari-

ables, such as d0, Pi, qi and Qi. The claim in the Property above basically excludes

all these other dependencies. For example, qi −Qi represents the difference between

the executed VWAP and the market VWAP, which turns out to be irrelevant in op-

timal decision. The Property above also claims that the optimal adaptive strategy

is independent of d0 in (66). As a result, (65)-(67) all share the same solution. This

implies that under assumption (68), there is no meaningful method to outperform the

market VWAP(i.e. making a directional bet). The only question we can answer is

how to execute the parent order such that executed VWAP gets as close as possible

to the market VWAP.
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3.2.3 Curve Matching

Although the optimal decision only depends on two variables, its functional form

depends on the value functions, which are functions over seven dimension state space.

The result in Property suggests a natural value function approximation that results in

approximate optimal decisions. Particularly, when the order size is small with respect

to the market volume: vn−1 � Vn, using the value function approximation, we derive

the following heuristic trading policy:

∆v∗i = gi(vi−1, Vi) = min

(
vn−1 − vi−1,max

(
0,E

[
Vi+1

Vn

∣∣∣∣Vi]vn−1 − vi−1

))
(71)

Ignoring the boundary constraints, (71) is equivalent to

vi−1 + ∆v∗i
vn−1

= E
[
Vi+1

Vn

∣∣∣∣Vi] (72)

(72) reveals that the optimal trading size ∆v∗i is the size that matches the prospec-

tive cumulative execution percentage with the expected cumulative market volume

percentage for the next period. Therefore, the (approximate) optimal strategy is a

cumulative curve matching strategy. It constantly updates the cumulative market

curve based on realized volume Vi, and tries to match vi
vn−1

with expected Vi+1

Vn
. Al-

though (72) may look very natural, it is important to point out this is not the only

matching scheme. Rather than matching on cumulative terms, an alternative is to

match the next period’s size with predicted proportion of the next period’s volume

over the remaining trading horizon’s volume:

∆vi = E
[

∆V̂i+1∑n
j=i+1 ∆V̂j

]
(vn−1 − vi−1). (73)

where ∆V̂j(j = i + 1, i + 2, ..., n) are predicted market volume given all previous

periods’ volume up to time ti. In fact, this is commonly used in the econometrics

literature, such as in [11] and [25]. Under this approach, the cumulative market

volume is no longer explicit in the decision function, which only directly depends
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on vi−1. The dependency of Vi is implicit through the prediction of future volume

∆V̂j(j = i+ 1, i+ 2, ..., n). The dependency of the trading decision over vi−1 and Vi is

hence separated. In contrast, (71) combine vi−1 and Vi organically, which can results

in a better performance in numerical test.

The simple dependency of the optimal adaptive decision ∆v∗i over just two vari-

ables: vi−1 and Vi is based on the assumption (68). Although (68) may not be

fully consistent with the market microstructure property, we believe it nonetheless

captures the most important component of the adaptive VWAP problem. This is il-

lustrated fully in the numerical section where our simple adaptive strategies not only

outperform deterministic strategies, but also perform as well as (or even better than)

strategies based on (73) when sophisticated time series models are used to predict fu-

ture volumes. Therefore, we can argue that allowing a more complex market process

assumption is secondary to the tractability of a simpler solution format (71) under

the less sophisticated assumption in (68).

One final missing piece in (71) involves the estimation of E
[
Vi+1

Vn

∣∣∣Vi], which requires

some assumption of the distribution of (∆Vi+1,∆Vi+2, ...,∆Vn) conditioned on Vi.

The independence assumption of period volume in (68) allows us to treat conditional

expectation as marginal expectation, which greatly simplify the estimation from real

market data. According to [41], the expected ratio of two random variables Y and Z

follows

E
[
Y

Z

]
≈ EY

EZ
− Cov(Y, Z)

(EZ)2
+

EY
(EZ)3

VarZ (74)
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Utilizing (74), under the assumption of (68),

E
[
Vi+1

Vn

∣∣∣∣Vi]
=

E[Vi+1|Vi]
E[Vn|Vi]

− Cov(Vi+1, Vn|Vi)
(E[Vn|Vi])2

+
E[Vi+1|Vi]
(E[Vn|Vi])3

Var[Vn|Vi] (75)

=
Vi + µi+1

Vi +
∑n

j=i+1 µj
−

σ2
i+1(

Vi +
∑n

j=i+1 µj

)2 +
Vi + µi+1(

Vi +
∑n

j=i+1 µj

)3

n∑
j=i+1

σ2
j (76)

Some of the literature approximates the expected ratio through just the first order

terms, i.e. E
[
Y
Z

]
≈ EY

EZ , which only requires first moment estimation of future volume.

However, empirical testing shows that additional second and third order approxima-

tion as in (74) and (76) provides additional improvement in both deterministic and

adaptive strategy with additional effort of second moment estimation of future volume

process.

3.2.4 Controlled Adaptive Strategy

Note that in (72), the left hand side consists only of traders’ decision, while the

right hand side only involves market volume. Since ∆vi ∈ [0, vn−1 − vi−1], the left

hand side of the trader’s cumulative curve is constrained within
[ vi−1

vn−1
, 1
]
. If the

prospective cumulative market curve E
[
Vi+1

Vn

∣∣∣Vi] falls outside of this boundary, the

decision becomes binary, either trading nothing or everything remaining. In other

words, by adding the boundary constraint back, (71) is equivalent to

vi−1 + ∆v∗i
vn−1

= min

(
UBi−1,max

(
LBi−1,E

[
Vi+1

Vn

∣∣∣∣Vi]
))

(77)

where the upper and lower bounds are defined as

UBi−1 = 1 (78)

LBi−1 =
vi−1

vn−1

. (79)

In practice, intraday volume process often presents strong dispersion from the

historical average. The explanation comes from the equities’ particular events, such
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as an earning announcement, dividend payments, changes in the management board,

etc., which have direct influence on the intraday volume process. For example, a

volume spike of ∆Vi may leave Vi exceptionally large. Under the assumption (68),

future volume processes are independent processes. This may lead to a higher than

usual estimate of E
[
Vi+1

Vn

∣∣∣Vi]. As a result, following (77), the trader may decide

to allocate a larger quantity ∆vi to the next period to catch up with the market

cumulative curve. This may not be the optimal decision ex-post if it turns out the

rest of the day also observes a higher than usual trading volume. To mitigate the

adverse impact of a sudden volume spike, practitioners often impose stricter bounds

based on an ex-ante deterministic volume profile E
[
Vi+1

Vn

]
:

UBi−1(e) = min

(
E
[
Vi+1

Vn

]
+ e, 1

)
(80)

LBi−1(e) = max

(
E
[
Vi+1

Vn

]
− e, vi−1

vn−1

)
. (81)

where e is a trader specified value between [0, 1], which allows the extent of control

the trader would like to impose on the adaptive strategy. For example, e = 0 means

the trader strictly follows the ex-ante cumulative volume profile - the deterministic

strategy. Alternatively, if e = 1, (80)-(81) is equivalent to (78)-(79), which is an

uncontrolled adaptive strategy. In the following, we will refer to the combination of

(77), (80) and (81) as the controlled adaptive strategy with notation Adaptive(e).

Empirical testing reveals that the controlled adaptive strategy performs significantly

better than the uncontrolled one when applied to real market data.

3.3 Numerical Results

In this section, we address the issue of the execution performance of the adaptive strat-

egy. In particular, we are interested in comparing the performance of three strategies:
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the deterministic strategy (111)(i.e. Adaptive(0)), the uncontrolled adaptive strat-

egy (i.e. Adaptive(1)), and controlled adaptive strategies (Adaptive(e) for 0 < e < 1).

3.3.1 Test Setup

Consistent with our previous analysis, we will assume the parent order size is consid-

erably smaller than the market volume: vn−1 � Vn, and the market process follows

the assumption of (68). Under these assumptions, the (approximate) optimal strat-

egy of Adaptive(e) for any 0 ≤ e ≤ 1 can be easily derived through curve matching of

(77), where the upper and lower bound are defined in (80)-(81) and the conditional

expectation of E
[
Vi+1

Vn

∣∣∣Vi] follows (76). Therefore, the (approximate) optimal deci-

sion requires the estimation of the mean µi and variance σ2
i of period volume ∆Vi for

i = 1, 2, ..., n. The estimation procedure will be described below.

The empirical study focuses on VWAP orders with a one-day horizon. The data

set consists of the (volume weighted average) price and volume history with one

minute frequency for 500 component stocks from the S&P 500 from 01/01/2012 -

12/31/2012, which contains about 255 trading days. We carried out tests on four

different period lengths: 5, 10, 15 and 30 minutes. Since a trading day lasts 390

minutes, the order horizon is separated into 78, 39, 26, 13 periods accordingly. Given

a fixed frequency, the period VWAP and aggregated volume are computed for both

training and test purposes.

The test is carried out on a per (stock,date) pair with a 20-day rolling window.

More specifically, starting from the 21st business day, for each stock and date t, we

will use the market data of the stock for the previous 20 business days (from date

t− 20 to date t− 1) to estimate the mean and variance of period volume: µi and σ2
i
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for i = 1, 2, ..., n. Then these estimations can be plugged into (76), (77), (80) and

(81) for decision making on date t. Therefore, we have about (255-20)×500=117500

out-of-sample tests. After removing erroneous and incomplete intra-day data, the

number of (stock,date) pairs shrink to 112185. We chose 20 as the number of days

because it maintains a good balance between model relevance and statistical signifi-

cance. A longer training data set may fail to capture the dynamic links that prevail

in the market process.

For each (stock,date) out-of-sample pair, the market VWAP Qn and the order’s

VWAP qn(e) are computed when the order follows the Adaptive(e) strategy (0 ≤

e ≤ 1). Consistent with objective (65), the strategy’ performance is measured by how

close qn(e) and Qn are in absolute terms: |qn(e)−Qn(e)|. When the strategy is applied

to panel data across different stock and date combinations, we use the normalized

mean absolute error(MAE) to estimate the strategy Adaptive(e)’s performance:

MAE(e) = 10000E
[∣∣∣∣qn(e)−Qn

Qn

∣∣∣∣] (82)

where the multiplier of 10000 makes MAE(e) in terms of bps unit and expectation is

based on sample mean. Smaller values of MAE(e) imply better strategies.

The following subsections will present different strategies’ MAEs under different

setups. We first look at aggregated statistics over all (stock,date) tests and stock-

specific results. These results will present a significant advantage of using adaptive

strategies, particularly controlled adaptive strategies. We then look into some studies

to understand how different intraday volume risks play roles in adaptive strategies’

performances. In the end, we carry out robustness tests with respect to control

variable e and alternative ways to compute expected volume percentage.
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Table 5: Statistics of mean absolute error(MAE)
period Deterministic Adaptive(1) Adaptive(0.05)

mean std Q95 mean std Q95 mean std Q95
sim 15 4.702 5.936 14.906 3.993 5.703 12.803 3.966 5.448 12.617

real

5 6.520 11.437 21.692 6.314 14.325 21.126 5.579 11.009 18.886
10 6.397 11.289 21.364 6.191 13.562 20.619 5.528 10.802 18.673
15 6.294 11.169 21.036 6.108 13.136 20.323 5.490 10.678 18.423
30 6.024 10.837 20.322 5.904 12.116 19.581 5.391 10.437 18.074

3.3.2 Aggregated Result

In this section, three strategies: Deterministic, Adaptive(0) and Adaptive(0.05) are

tested for both simulated data and actual market data. For each (stock,date) pair,

market data are resampled in four frequencies - 5, 10, 15 and 30 minutes - while

simulated data are generated based on 15 minute frequency. In the simulation, both

volume ∆Vi and price ∆Pi are assumed to be normal, and follow assumption (68),

where µi, σ
2
i (i = 1, 2, ..., n), σ2

P are calibrated from the previous 20 days’ market data.

For the controlled policy, we use e = 0.05 as a representative for the range e ∈ (0, 1),

which means the adaptive strategy can deviate 5% on both sides from the determinis-

tic strategy. As will be shown later, the performance of controlled adaptive strategies

is robust with respect to difference choices of e value.

Table 5 summarizes three statistics of mean absolute error (82) for tests over all

(stock,date) pairs: mean, standard deviation(std) and 95% quantile(Q95). The adap-

tive strategy is designed to minimize mean MAE; therefore, mean MAE is the most

important benchmark. Both std and Q95 contain important information about how

reliable and robust these strategies are, which are particularly important for practi-

tioners.

Since both the simulated data as well as Adaptive(0) are based on assumption

(68), the test on simulated data reveals the potential upper limit of the performance
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improvement that can be achieved over the deterministic strategy . As shown in

Table 5, this limit is about 15.08% = 4.702−3.993
4.702

. Interestingly, controlled adaptive

strategy Adaptive(0.05) achieves a similar performance, which shows that the bound

of 5% is not too restrictive and most sample trading trajectories do not violate the

5% constraint.

In contrast, the controlled strategies significantly outperform the uncontrolled

strategy in all four tests based on real data. Adaptive(0) saves on average 0.18bps of

MAE compared with the Deterministic strategy, while Adaptive(0.05) increases this

advantage to 0.81bps. In percentage terms, the Deterministic strategy lags Adap-

tive(0) by 2.8% and Adaptive(0.05) by 14.7%, which is close to the potential upper

limit exhibited in the simulation test. Our numerical results show that by applying a

two side bounds on the cumulative execution curve, the controlled adaptive strategy

can “recover” a significant proportion of potential improvements that are disrupted

by simplified assumption of volume and price processes. Furthermore, besides the

advantage of closing the gap from market VWAP, the controlled strategy also pro-

duced more stable and robust performance as its MAE standard deviation and 95%

quantile lead the other two strategies in tests of all four frequencies.

As a comparison, the adaptive strategy in [11] is based on 73 where future vol-

umes are predicted through sophisticated time series models. Their adaptive strategy

shrinks the MAE from 10.06bps in the Deterministic strategy (called “classical strat-

egy” in their paper) to 8.98bps in the dynamic strategy. This is only a 10.74% im-

provement. For a better comparison, we applied the Adaptive(0) and Adaptive(0.05)

on a majority (30 out of 40) of the European stocks tested in [11]. A detailed stock

specific comparison is presented in Appendix B.2. The test result is consistent with

what we observed in American stock tests in Table 5. This not only confirms the
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superiority of the controlled adaptive strategy over the deterministic strategy, but

more importantly, the superiority (or at least comparability) over adaptive strategies

based purely on volume prediction with sophisticated econometrics models.

3.3.3 Stock Specific Result

Table 6: Winning percentages on aggregated stock MAEs
strategy Deterministic Adaptive(1) Adaptive(0.05)

winning

0.60% 8.40% 91.00%
36.20% 63.80% N/A
0.60% N/A 99.40%
N/A 8.60% 91.40%

Different stocks posses different volume and price risks. This section looks at

stock specific result where the average MAEs’ over a year for each stock are collected.

From now on, we will restrict our tests to data of 15 minutes frequency. When the

three strategies are compared, Adaptive(0.05) is superior to the other two in trading

455 of the stocks(91%), the uncontrolled adaptive strategy takes the second place

by leading in 42 stocks(8.47%), and the Deterministic strategy is only optimal for

three stocks(0.60%). This is reported in the first row of Table 6. The rest of the

rows in Table 6 show all possible comparisons of two strategies where Adaptive(0.05)

dominates the other two strategies.

Table 7: Stock specific improvement of adaptive vs. deterministic strategy
x y regression R2 p-val(intercept) p-val(slope)

MAE(0) MAE(0-1) y = −0.0998 + 0.0457x 0.0358 0.1666 1.32E-05
MAE(0) MAE(0-0.05) y = 0.0163 + 0.1252x 0.6198 0.595 5.04E-106

Another significant advantage of the controlled adaptive strategy is that it per-

forms best exactly for those stocks where the Deterministic strategy fails most in
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Figure 10: Dependency between deterministic strategy’s MAE and the gain/loss for
adaptive strategy

tracking the market VWAP. This is verified by studying whether the adaptive strate-

gies are able or unable to correct the large tracking errors of the Deterministic strat-

egy. Figure 10 shows the scatter plot of MAE(0) on the x-axis against the gain or

loss observed by applying either uncontrolled or controlled adaptive strategies on the

y-axis, with each point corresponding a stock. The statistics of two regressions are

presented in Table 7. The slope coefficients in both regressions are positive, with p-

values smaller than 1%, which means the larger the tracking error of the deterministic

strategy, the larger the gain of the adaptive strategies. Quantitatively, Adaptive(1)

decreases the tracking error by 4.57% while Adaptive(0.5) decreases it by 12.52%.

The R2 coefficient for Adaptive(0.05) is particularly large, indicating a strong linear

positive link between MAE(0) and MAE(0-0.05)(short form for MAE(0)-MAE(0.05)).

In fact, even for these few stocks where Adaptive(0.05) fails to outperform the De-

terministic strategy, the loss is smaller than 0.1bps. However, for those stocks with

MAE(0) larger than 15bps, the improvement of switching to Adaptive(0.05) is at

least 1.3bps. This result confirms that our controlled adaptive strategy is a real im-

provement since it is not only better in average terms, but it also is most beneficial

74



precisely when it is mostly needed.

3.3.4 Analysis Based on Volume Risks

Table 8: Test results of two specific samples
stock date mean stdev skew kurt MAE(0) MAE(1) MAE(0.05)
FAST 2012/02/13 -0.109 0.283 -0.793 2.714 27.829 7.330 16.196
AIG 2012/05/04 0.630 0.588 5.155 22.640 15.996 27.752 3.987
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Figure 11: Market volume and cumulative curves for two specific examples

The discrepancy of the test results performed over simulation data and actual

market data suggests that model misspecification may be the cause of Adaptive(1)’s

underperformance. This section takes a closer look at this issue under different volume

risks. First, we take a look at two actual examples: FAST on 02/13/2012 and AIG on

05/04/2012. Table 8 presents intraday volume statistics as well as three strategies’

performances. The mean, stdev, skew and kurt columns refer to the mean, standard

deviation, skewness and kurtosis of normalized excess period volume: ∆Vi−µi
µi

where

µi is the average of the i-th period volume of the stock during the previous 20 days.
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The top row of Figure 11 plots the actual market volume ∆Vi and historical average

µi for i = 1, 2, ..., 26. The bottom rows plot four cumulative curves: the cumulative

market volume percentage and cumulative execution percentage for three strategies.

Naturally, the closer the cumulative action curve is to the actual cumulative market

volume curve, the smaller the MAE of the strategy.

In the FAST case, the period volume is approximately normally distributed with-

out a large deviation from the historical average. In this case, the uncontrolled adap-

tive strategy performs best with a close match with cumulative market volume curves.

In the AIG case, there is a volume spike at the beginning of the day where the first

period’s actual volume is 4.5 times that of the historical average. The market volume

spike results in aggressive trading at the beginning of the day. By the end of the

fourth period, Adaptive(1) already completed 50% of the order. On the other hand,

Adaptive(0.05) is protected by the upper bound and trades more slowly. It turns out

that the excess volume observed in the early morning lasts for the remainder of the

day (the last period’s volume is about 3 times that of the historical average), which

vindicates a less aggressive trading in the morning than Adaptive(1) does. The large

volume spike at both ends of the day, as well as the overall and consistent larger than

average volume for the rest of the day are reflected in the four moment statistics of

the period volume. Particularly, a mean value of 0.63 suggests an overall larger than

average volume for the whole day. The skewness of 5.155 suggests a consistency of

positive excess volume for majority of periods and the kurtosis of 22.640 suggests the

existence of a few periods with a particularly large volume spike.

Table 9 categorizes all (stock,date) pairs into ten groups based on the mean val-

ues of normalized excess period volume: ∆Vi−µi
µi

. All groups have the same sample

size with group zero containing (stock,date) pairs with the lowest realized volume and
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group 9 with the highest realized volume with respect to the historical average. Table

10 - Table 12 present similar test results based on the standard deviation, skewness

and kurtosis of the normalized excess period volume. The columns MAE(0)-MAE(1)

in all four tables show that the uncontrolled adaptive strategy works best when excess

volume is not significant (i.e. its mean is near zero in Table 9), within reasonable

variation (i.e. not too large, not too small as in Table 10), balanced (i.e. a mix with

both positive excess and negative excess, as in Table 11) and has few large dispersions

from the historical average (i.e. small kurtosis in Table 12). It is interesting to point

out that the smaller standard deviation also hurts Adaptive(1)’s performance. This

is because the variance of period volume are used to estimate the cumulative curve

in (76). The top three categories with the worst Adaptive(1) performances are those

(stock,date) pairs with the largest overall excess volume (group 9 in Table 9), most

consistent deviation direction (group 9 in Table 11 where almost all periods are either

larger or smaller than the historical average) and existence of a few extreme large de-

viations (group 9 in Table 12). All of them may result in a particularly erroneous

estimation in (76).

As an alternative, Adaptive(0.05) greatly improves the execution quality. As

shown in column MAE(0)-MAE(0.05), out of forty groups, Adaptive(0.05) outper-

forms the deterministic strategy for 37. Within the three groups for which Adap-

tive(0.05) fails, the maximum loss is 0.169bps (group 8 in Table 12). Furthermore,

similarly to our previous stock specific results in Section 3.3.3, the controlled adaptive

strategy gets the highest gain precisely in groups for which the uncontrolled version

suffers the greatest loss. This is illustrated in column MAE(1)-MAE(0.05). For ex-

ample, the top three groups where Adaptive(1) performs the worst coincide with the

top three groups where Adaptive(0.05) demonstrates the greatest improvement over

the deterministic strategy.
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Table 9: Performance based on 10 levels of mean normalized excess volume
group min medium max MAE(0-1) MAE(0-0.05) MAE(1-0.05)

0 -0.959 -0.516 -0.431 -1.749 0.381 2.130
1 -0.431 -0.372 -0.323 -0.058 0.467 0.525
2 -0.323 -0.279 -0.238 0.788 0.600 -0.188
3 -0.238 -0.197 -0.157 1.663 1.072 -0.591
4 -0.157 -0.117 -0.075 2.193 1.535 -0.657
5 -0.075 -0.031 0.017 2.427 1.820 -0.607
6 0.017 0.070 0.130 2.331 1.760 -0.571
7 0.130 0.200 0.287 1.765 1.217 -0.548
8 0.287 0.400 0.570 -0.006 0.096 0.102
9 0.570 0.895 38.076 -7.492 -0.904 6.589

Table 10: Performance based on 10 levels of standard deviation of normalized excess
volume

group min medium max MAE(0-1) MAE(0-0.05) MAE(1-0.05)
0 0.018 0.188 0.222 -2.050 0.092 2.142
1 0.222 0.250 0.274 0.006 0.542 0.537
2 0.274 0.297 0.320 0.760 0.819 0.059
3 0.320 0.343 0.367 1.325 1.076 -0.249
4 0.367 0.391 0.418 1.491 1.158 -0.332
5 0.418 0.448 0.480 1.490 1.146 -0.344
6 0.480 0.517 0.561 1.473 1.124 -0.350
7 0.561 0.613 0.679 1.078 0.944 -0.133
8 0.679 0.772 0.916 0.203 0.710 0.507
9 0.916 1.218 33.472 -3.915 0.433 4.347

3.3.5 Robustness

This section presents evidence to suggest that the adaptive strategy is robust. First,

the robustness with respect to different sampling frequencies, such as 5, 10, 15, and

30 minutes, are presented in Section 3.3.2. Second, all the previous results with re-

gard to the controlled adaptive strategy are represented by Adaptive(0.05). As an

extension to Table 5, Figure 12 plots the mean, standard deviation and 95% quantile

for MAE(e) of any Adaptive(e) with 0 ≤ e ≤ 0.15 under all four sampling frequen-

cies. With respect to minimizing the expected MAEs, all adaptive strategies with
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Table 11: Performance based on 10 levels of skewness of normalized excess volume
group min medium max MAE(0-1) MAE(0-0.05) MAE(1-0.05)

0 -158.909 -6.458 -4.209 -2.121 0.200 2.320
1 -4.209 -3.004 -2.129 0.114 0.521 0.407
2 -2.129 -1.437 -0.879 1.063 0.848 -0.215
3 -0.879 -0.381 0.053 1.777 1.249 -0.528
4 0.053 0.460 0.829 2.216 1.551 -0.664
5 0.830 1.190 1.538 2.268 1.629 -0.640
6 1.538 1.871 2.211 2.163 1.527 -0.636
7 2.211 2.562 2.931 1.395 1.021 -0.374
8 2.931 3.338 3.835 -0.165 0.135 0.300
9 3.835 4.533 11.840 -6.850 -0.637 6.212

Table 12: Performance based on 10 levels of kurtosis of normalized excess volume
group min medium max MAE(0-1) MAE(0-0.05) MAE(1-0.05)

0 1.424 2.531 2.938 2.554 1.813 -0.741
1 2.938 3.322 3.719 2.124 1.442 -0.683
2 3.719 4.123 4.570 1.822 1.285 -0.537
3 4.570 5.051 5.593 1.548 1.132 -0.416
4 5.594 6.193 6.873 1.312 1.018 -0.294
5 6.873 7.636 8.516 0.916 0.789 -0.127
6 8.516 9.586 10.871 0.354 0.518 0.163
7 10.871 12.452 14.477 -0.647 0.120 0.767
8 14.477 17.307 21.822 -2.718 -0.169 2.549
9 21.823 32.823 16837.196 -5.405 0.098 5.503
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0 < e ≤ 0.15 beat the deterministic one: MAE(0). The optimal control variable that

maximizes the improvement is reached between 0.06 and 0.07 for all four frequencies.

Although not plotted in Figure 12, the superiority of the adaptive strategy over the

deterministic strategy in terms of minimizing E[MAE(e)] is also true for any e > 0.

However, this is not the case in terms of minimizing the standard deviation or 95% of

MAE(e). The relaxation of the cumulative curve constraints as e increases from 0 to

1 first decreases the standard deviation (or 95% quintile) of MAE(e), but gradually

increases after e = 0.07 and eventually exceeds the level reached at e = 0 of deter-

ministic strategy.

Third, both the deterministic and adaptive strategies rely on estimations of the

cumulative market volume curve E
[
Vi+1

Vn

∣∣∣Vi]. All previous results are based on (76)

which uses a third order approximation. A simpler approach, as used in the academic

literature, such as [11], only approximates with first order:

E
[
Vi+1

Vn

∣∣∣∣Vi] ≈ Vi + µi+1

Vi +
∑n

j=i+1 µj
. (83)

Table 13 repeat all tests in Table 5 with this simpler approximation. Not surprisingly,

the results in Table 13 are slightly worse than those in Table 5. The interesting part

is to compare strategy specific performance. Using a first order approximation, the

Deterministic strategy results in about 0.103bps underperformance for market data

tests (mean column under Deterministic), but the equivalent value is only 0.010bps

for Adaptive(1) and 0.0002bps for Adpative(0.05). This proves that the adaptive

strategies are much more robust to different methods of computing the expected ratio

E
[
Vi+1

Vn

∣∣∣Vi] than is the deterministic strategy. This flexibility allows us to disregard the

second moment estimation of period volume σ2
i in (83) and only focus on estimating

the mean of the historical period volume.
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Figure 12: Statistics of Mean Absolute Error(MAE(e)) for varying e

3.4 Optimal Strategy through Approximate Dynamic Pro-
gramming

This section fills the gap of analytical details that was missing in Section 2, particu-

larly the proof of Property (70) and the derivation of the curve matching approach

(71) through value function approximation.

Although most of the results and numerical tests are based on assumption (68),

we will start with a more general assumption about market processes {Pi, Vi}i=ni=1 : we

assume the two dimensional process (Vi, Pi) is jointly Markovian and depends only
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Table 13: Statistics of MAE when expected ratio is approximately on first order
period Deterministic Adaptive(1) Adaptive(0.05)

mean std Q95 mean std Q95 mean std Q95
sim 15 4.719 5.966 14.976 4.007 5.721 12.833 3.971 5.456 12.642

real

5 6.587 11.505 21.905 6.317 14.227 20.992 5.574 10.970 18.796
10 6.489 11.396 21.678 6.198 13.431 20.470 5.524 10.748 18.543
15 6.405 11.305 21.409 6.119 12.982 20.150 5.488 10.613 18.301
30 6.166 11.031 20.823 5.925 11.912 19.401 5.403 10.354 17.992

on the cumulative market volume and price up to time ti−1 : (Vi−1, Pi−1). Naturally

(68) is a special case under this assumption. As we proceed with the analysis, we may

restrict the joint Markovian assumption when necessary. But starting with a more

general assumption allows part of our results to be used for further research, partic-

ularly in the econometrics and the Approximate Dynamic Programming communities.

The joint Markovian assumption incorporates two empirical properties with re-

spect to volume and price processes. First, the intra-day volume spike, often driven

by economic or corporate news and announcements, tends to be followed by a larger

than usual trading volume after the announcement. [11] observed that there exists a

positive autocorrelation between intraday excess volumes. In our model, the lasting

effect of a volume spike can be represented through ∆Vi’s dependence upon realized

cumulative volume Vi−1: a large value of Vi−1 may imply a large ∆Vi probabilistically.

Second, note that the Markovian assumption allows the possibility of a positive corre-

lation between ∆Vi and ∆P 2
i , which is observed in empirical study. This is consistent

with the “Mixture of Distribution Hypothesis” by [14] and empirical analysis by [26],

which assumes all traders simultaneously receive the new price signals. As a result,

there exists a contemporaneous correlation between price volatility and market trad-

ing volume.
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3.4.1 Dynamic Programming Formulation

3.4.1.1 Objective Decomposition

We start by building the Bellman Equation that the optimal strategy of (66) should

satisfy. To achieve that, we need to first decompose (66) as the sum of adaptive cost

functions. We have

qn −Qn =
n∑
i=1

ci. (84)

where

ri =
∆vi
vi

if vi 6= 0; ri = 0 if vi = 0 for i = 0, 1, ..., n− 1; rn = 0;

Ri+1 =
∆Vi+1 + ∆vi
Vi+1 + vi

if Vi+1 + vi 6= 0;

Ri+1 = 0 if Vi+1 + vi = 0 for i = 0, 1, ..., n− 1;

ci = (Pi −Qi−1)(ri−1 −Ri)− ri(qi −Qi) for i = 1, 2, ..., n. (85)

Following Chapter 2 of this thesis, (84) can be used to decompose the objective

(66) as the sum of cost components:

d0(qn −Qn) + (qn −Qn)2 =
n∑
i=1

(
di−1ci + c2

i

)
=:

n∑
i=1

Ci (86)

with the introduction of a variable di representing realized portion of final VWAP

slippage qn − Qn as in (84): di = di−1 + 2ci = 2
∑i

j=1 cj. The cost component

contributing to the linear quadratic objective is

Ci := di−1ci + c2
i

= di−1[(Pi −Qi−1)(ri−1 −Ri)− ri(qi −Qi)]

+[(Pi −Qi−1)(ri−1 −Ri)− ri(qi −Qi)]
2.

(87)

Note that since c1 = 0 from (85), C1 = 0.
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3.4.1.2 State Variables and Value Function

To carry on dynamic programming, we need to define state variable Si, which sum-

maries the past decision and exogenous processes:

hi = (S0,∆v0, P1, V1, S1,∆v1, ...,∆vi−1, Pi, Vi)

There are multiple ways to represent the state variable; we will pick the following

one:

Si = (di−1, vi−1, Vi, ri−1, Ri, qi−1, Qi−1, Pi). (88)

The state variable records all information necessary to make the next optimal decision

∆vi:

• di−1: previous execution’s cumulative contribution to the VWAP error;

• vi−1: cumulative executed shares by the trader;

• Vi: cumulative market volume excluding the trader’s;

• ri−1vi−1: child order size executed in [ti−1, ti);

• Ri(Vi + vi−1): total market volume during [ti−1, ti);

• qi−1: trader’s realized VWAP;

• Qi−1: market’s realized VWAP;

• Pi: current price.

Since the next decision ∆vi follows immediately once Si is determined, Si is also

referred to as a pre-decision state variable in Approximate Dynamic Programming

community [35].
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The cost function defined on the state variable is Ci(Si,∆vi) = di−1ci + c2
i with

ci(Si,∆vi) = (Pi −Qi−1)(ri−1 −Ri)

− ∆vi
vi−1 + ∆vi

[
(1− ri−1)qi−1 + ri−1Pi − (1−Ri)Qi−1 −RiPi

]
(89)

The transition function Si+1 = SMi+1(Si,∆vi,∆Vi+1,∆Pi+1) is

qi = (1− ri−1)qi−1 + ri−1Pi; (90)

Qi = (1−Ri)Qi−1 +RiPi; (91)

di = di−1 + 2

[
(Pi −Qi−1)(ri−1 −Ri)−

∆vi
vi−1 + ∆vi

(qi −Qi)

]
; (92)

vi = vi−1 + ∆vi; (93)

ri =
∆vi
vi

; (94)

Pi+1 = Pi + ∆Pi+1; (95)

Vi+1 = Vi + ∆Vi+1; (96)

Ri+1 =
∆Vi+1 + viri
Vi+1 + vi

. (97)

Note from (90) and (91) that the update of qi and Qi depend solely on Si, and do

not incorporate any new decision ∆vi or new information (∆Vi+1,∆Pi+1). The initial

state is S0 = (d−1, v−1, V0, r−1, R0, q−1, Q−1, P0) := (d0, 0, 0, 1, 1, 0, 0, 0).

The transition function Si+1 = SMi+1(Si,∆vi,∆Vi+1,∆Pi+1)(i.e. (90)-(97)) is de-

composed into two parts:

Svi = SM,v
i (Si,∆vi); (98)

Si+1 = SM,W
i+1 (Svi , Pi+1, Vi+1). (99)

We propose that the post-decision state variable has the form

Svi = (di, vi, qi, Qi, Pi, Vi, ri)

which is one dimension less than the pre-decision state Si. In terms of transition

functions, (98) is based on (90)-(94) while keeping (Pi, Vi) unchanged. Once Pi+1 and
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Vi+1 are known, the transition (99) is based on (95)-(97).

The backward induction based on post-decision state variables is as follows:

for i = n:

Jn−1(Svn−1) = E
[
Cn(Sn)

∣∣Svn−1

]
. (100)

for i = 1, 2, ..., n− 1:

Ji−1(Svi−1) = E
[

min
∆vi

(
Ci(Si,∆vi) + Ji(S

v
i )
)∣∣∣Svi−1

]
(101)

where the optimal action for i = n− 1 is fixed as ∆v∗n−1 = vn−1 − vn−2, and

∆v∗i (Si) = arg min
∆vi

(
Ci(Si,∆vi) + Ji(S

v
i )
)
; (102)

for i = 0:

∆v∗0(S0) = arg min
∆v0

Jv0 (Sv0 ); (103)

Note that in (101), given the post-state variable Svi−1, the decision ∆vi is made after

observing the new information Pi and Vi. This allows the flexibility of using observed

market data, which arrives after trading decision ∆vi, to replace the expectation in

(101). Using a post-decision state variable not only decreases the dimension of the

value function, but most importantly, allows us the potential flexibility of directly

estimating the value function with real data without ever knowing their distribution.

However, in later section of the chapter, we do assume a simple distribution for the

stochastic processes (Pi, Vi) for a quick test using market data. But the structure

we built here through post-decision state variables lays a flexible ground for further

research through ADP techniques([35]).
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3.4.2 Optimal Adaptive Strategy

The optimal trading size ∆v∗i allocated within [ti, ti+1) depends on the value func-

tion Ji as in (102). Traditional dynamic programming uses backward induction (101)

to estimate value functions sequentially. However, this method suffers the curse of

dimensionality as the state variable has at least seven dimensions, which makes it

computationally infeasible to work with a tabular representation with reasonable res-

olution. Approximate Dynamic Programming solves the curse of dimensionality by

approximating the value function with lower dimensionality representation, either

through state aggregation or features regression. In our problem, we also need to

resort to function approximation in Section 3.2 to achieve a structurally simple and

computationally feasible solution. But as a first step, we will derive an interesting

analytical result for the optimal trading size ∆v∗i .

3.4.2.1 Optimal Trading Size

One important property of the value function is that it is the expected sum of the

cost functions following the optimal strategy. For fixed i:

Ji(S
v
i ) = E

[ n∑
j=i+1

Cj(Sj,∆v
∗
j (Sj))

∣∣∣∣Svi ] (104)

where ∆v∗i+1(Si+1), ...,∆v∗n−1(Sn−1) all follow the unknown optimal adaptive strat-

egy. For notational ease, we will drop the star sign and functional expression be-

low and assume the trading action ∆vj is a function of Sj for j > i, given Svi =

{di, vi, qi, Qi, Pi, Vi, ri} is fixed and known3.

A closer look into (104) reveals a decomposition of Ji(S
v
i ) into two parts: one

that can be expressed analytically through Svi , and the other that is a conditional

3Note that given Sv
i , the decision at time i: ∆vi = (1 − ri)vi is a known scalar. Therefore, the

notional simplification is not applied on ∆vi.
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expectation of a future stochastic process. More importantly, this decomposition can

be used to simplify the optimal strategy ∆v∗i (Si):

Propersition 2 1. For i = 0, 1, ..., n− 2:

Ji(S
v
i ) = diK(Svi ) +K2(Svi )− (di + 2K(Svi ))E[UI |Svi ] + E[U2

I |Svi ] (105)

∆v∗i (Si) = arg min
∆vi

[
− (di + 2K(Svi ))E[UI |Svi ] + E[U2

I |Svi ]
]

(106)

where K(Svi ) is Fi-measurable, while UI depends on future stochastic process {(Pj, Vj)}nj=i+1

and future optimal decision ∆vi+1, ...,∆vn−1:

K(Svi ) = −(1− ri)(qi −Qi) +
vi
vn−1

(1− ri)(qi − Pi); (107)

UI =
[Vi + (1− ri)vi](Qi − Pi)

Vn + vn−1

+
n−1∑
j=i

(
vj−1

vn−1

− Vj + vj−1

Vn + vn−1

)
∆Pj+1. (108)

What is unknown in (106) is the first and second conditional moment of UI . A

particular complication lies in the fact that the total market volume Vn appearing in

the denominator of (108) may not be independent of {∆Pj}nj=i+1. However, under

the following assumptions, the decision function can be simplified:

Proposition 3 1. For i = 0, 1, ..., n− 2, assume

1. E[∆Pi+1|Fi] = 0;

2. given Fi,
∑n

j=i+1 ∆Vj and ∆Pi+1 are conditionally independent;

Then:

∆v∗i (Si) = arg min
∆vi

n−1∑
j=i+1

E

[(
vj−1

vn−1

− Vj + vj−1

Vn + vn−1

)2

∆P 2
j+1

∣∣∣∣∣Svi
]

(109)

Note that under the Markovian assumption, ∆Vi+1 and ∆Pi+1 are allowed to be

conditionally correlated. Furthermore, future volume ∆Vj+1(j ≥ i + 1) is allowed to

be correlated with previous change ∆Pi+1. The second assumption in Proposition

1 essentially restricts the causality flow between volume and price processes to only
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one direction: future price can depend on the previous volume process, but not the

reverse. This assumption is not ungrounded. In [16], the authors studied the values

of 30 stocks in DJIA at 5-minute intervals. They found that there exists significant

causality flowing from trading volume to return volatility in at least 12 stocks, which

is consistent with our assumption since the conditional volatility of ∆Pi depends upon

the previous {∆Pj,∆Vj}j=i−1
j=i−1−l, where l corresponds to the number of lags that shows

causality. They also found that the reverse causality from volatility to volume was

generally much smaller, and achieved statistical significance in only two out of 30

stocks. A special case that satisfies the second assumption of Proposition 1 is when

{Vi}ni=1 is a Markovian process by itself, but {∆Pi+1} is allowed to depend on (Vi, Pi)

jointly, which has a simple one lag causality flow from volume to price volatility.

(109) greatly simplifies (106). Particularly, only two volume components of Svi , vi

and Vi, are kept in (106) while all other components, including Pi, qi, Qi, di, are no

longer “visible”. (109) seems to suggest that the expectation conditioned on Svi can be

simplified as an expectation conditioned only on (vi, Vi) and consequently the optimal

decision ∆v∗i only depends on executed volume vi−1 and cumulative market volume

Vi. However, there is a catch. Since the future decisions ∆vi+1,∆vi+2, ...,∆vn−1 are

functions of futures Si+1, Si+2, ..., Sn−1, which all evolve from current state Si, all these

future decisions also depend on Pi, qi, Qi, di. Luckily, if we assume both volume and

price are independent of the current state variable, we can prove through backward

induction that the optimal decision only depends on executed volume and cumulative

market volume.

Propersition 4 1. For i = 0, 1, ..., n − 2, under the condition of Proposition 1 and

the assumption that future market information σ({∆Vj}nj=i+1, {∆Pj}nj=i+2) is indepen-

dent with post-decision state Svi , then the optimal decision only depends on executed
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quantity vi−1, and cumulative market volume Vi:

∆v∗i (Si) = arg min
∆vi

n−1∑
j=i+1

E

[(
vj−1

vn−1

− Vj + vj−1

Vn + vn−1

)2

∆P 2
j+1

∣∣∣∣∣(vi, Vi)
]

=: gi(vi−1, Vi).

(110)

Proposition 1 shows that when future market processes are independent of past

realization, the optimal decision only depends on how much the trader has executed,

and how much the market has traded. Although our eventual goal is to minimize the

difference between the trader’s total VWAP qn and the market’s total VWAP Qn,

neither of the partially observed VWAPs, qi and Qi, plays a meaningful role guiding

future trading action. In addition, the optimal decision ∆vi(Si) does not rely on di−1,

which is a function of the linear quadratic coefficient d0 in the objective function (66):

Corollary 1. Under the assumption in Proposition 1, the optimal trading decision is

independent of d0 in (66).

Therefore, the optimal solutions for (65) and (66) are the same. Furthermore,

using an approach similar to the one used in Chapter 2 of this thesis, the solution

of the mean-variance problem (67) becomes a subset of the linear-quadratic problem

(66). Under the assumption that there exists a unique solution to the linear-quadratic

problem, both (66) and (67) share the same solution for any risk aversion factor λ.

This implies that under our market assumption, there is no meaningful method to

outperform the market VWAP, i.e. making a directional bet. The only question we

can answer is how to execute the parent order such that our VWAP gets as close to

the market VWAP as possible.

A special case under the assumption of Proposition 1 is (68), which makes (Vi, Pi)
n
i=1

a particularly simple example of a two dimensional Markovian process. Its simplicity

ignores the potential causality flow from volume to price as assumed in Proposition
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1. It also assumes the future market volume ∆Vi is independent of the previous cu-

mulative volume Vi, which is inconsistent with elastic effects of a news driven volume

spike. However, the advantage of a simple decision structure as in (110) outweighs the

disadvantage of model misspecification, which will be demonstrated in the numerical

test.

3.4.2.2 Function Approximation and Curve Matching

In Proposition 1, if we assume Var[∆P 2
j+1|(vi, Vi)] = σ2

P (for j ≥ i) to be a constant,

the optimal decision ∆v∗i = gi(vi−1, Vi) does not depend on price processes anymore:

∆v∗i = g(vi−1, Vi) = arg min
∆vi

n−1∑
j=i+1

E

[(
vj−1

vn−1

− Vj + vj−1

Vn + vn−1

)2
∣∣∣∣∣(vi, Vi)

]
(111)

The optimal decision depends on both future volume processes as well as future

optimal decisions ∆vi+1,∆vi+2, ...,∆vn−1, which are unknown. Using methods similar

to those used in Approximate Dynamic Programming, we can approximate

E

[
n−1∑
j=i+1

(
vj−1

vn−1

− Vj + vj−1

Vn + vn−1

)2
∣∣∣∣∣(vi, Vi)

]

as an explicit function of (vi, Vi) without dependency over future decisions.

For i+ 1 ≤ j ≤ n, define the functions:

h(j) =
vj−1

vn−1

; (112)

H(j) =
Vj + vj−1

Vn + vn−1

. (113)

h(j) represents the cumulative percentage of shares that has been executed by

the trader after the jth trade, while H(j) is its market volume counterpart. Both

functions are non-decreasing with respect to j and both of them have the same right

boundary value: h(n) = H(n) = 1. h(j) and H(j) do not appear in the value function

separately. Instead, they always appear as a pair: h(j)−H(j). In an ex-post fashion
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where we know the market volume in each period, h(j) should equal H(j). However,

both the optimal decision and the volume process are stochastic, hence the difference

between h(j) and H(j) fluctuates, and eventually decreases(or increases) to 0 when

j = n. Whatever shape {H(j)}j=nj=i+1 may have, the future optimal strategy should

track the curve of H(j) closer as j increases. Hence, the absolute value of h(j)−H(j)

should also decrease. Therefore, we assume h(j)−H(j) is a linear function starting

at h(i+ 1)−H(i+ 1) = vi
vn−1
− Vi+1+vi

Vn+vn−1
and ending at h(n)−H(n) = 0:

h(j)−H(j) ≈ n− j
n− i− 1

(
vi
vn−1

− Vi+1 + vi
Vn + vn−1

)
(114)

Taken (112) and (113) into (111):

g(vi−1, Vi) = arg min
∆vi

n−1∑
j=i+1

E

[(
vj−1

vn−1

− Vj + vj−1

Vn + vn−1

)2
∣∣∣∣∣(vi, Vi)

]

≈ arg min
∆vi

n−1∑
j=i+1

(
n− j

n− i− 1

)2

E

[(
vi
vn−1

− Vi+1 + vi
Vn + vn−1

)2
∣∣∣∣∣(vi, Vi)

]
(115)

= arg min
∆vi

(n− i)(2n− 2i− 1)

6(n− i− 1)
E

[(
vi
vn−1

− Vi+1 + vi
Vn + vn−1

)2
∣∣∣∣∣(vi, Vi)

]
(116)

= min

(
vn−1 − vi−1,max

(
0,

E
[

Vi+1Vn
(Vn+vn−1)2

∣∣∣∣Vi]
E
[

V 2
n

(Vn+vn−1)2

∣∣∣∣Vi]vn−1 − vi−1

))
(117)

The expectation part of (116) is a convex quadratic function of ∆vi, with con-

straint 0 ≤ ∆vi ≤ vn−1 − vi−1. The detailed derivation from (116) to 117 is is listed

in the Appendix B.1. The solution (117), which exists and is unique, reduces the

optimal decision’s dependence on each remaining periods’ market volume and the

future market decision. The remaining dependence is on just two unknown sources:

the next period’s market volume ∆Vi+1 and the sum of the remaining periods’ total

volume Vn − Vi.

92



Note that the approximation (115) does not require satisfaction of the assumption

of Proposition 1. The major assumption underlying the linear approximation (114) is

that ∆vi+1, ...,∆vn−1 follow the optimal trajectory that shrinks the gap between h(j)

and H(j). This can be applied naturally to (109) in Proposition 1 as well. The seven

dimension state space of Svi can be aggregated to only two dimensions: (vi, Vi). This

technique is commonly used in the Approximate Dynamic Programming literature to

solve the curse of dimensionality. The conclusion in Proposition 1 by focusing only

upon (vi, Vi) provides the inspiration and theoretical support for using the dimension

reduction approach in (115).

When the order size is small with respect to the market volume: vn−1 � Vn,

Vi+1+vi
Vn+vn−1

≈ Vi+1

Vn
. Therefore, (116) can be approximately by

arg min
∆vi

(n− i)(2n− 2i− 1)

6(n− i− 1)
E

[(
vi
vn−1

− Vi+1

Vn

)2
∣∣∣∣∣(vi, Vi)

]

Following similar procedure as Appendix B.1, we can prove (71).

3.5 Conclusion

This chapter deviates from a common approach in the literature of using a sophis-

ticated volume prediction model to improve VWAP trading over the deterministic

strategy. We built a dynamic programming approach based on fairly simple assump-

tions about market volume and price processes. The simple assumption not only

made the dynamic programming problem trackable for theoretical analysis, it also

allowed us to come up with an intuitive approximation framework that simplified

VWAP trading into a curve matching problem, which is exactly the approach the

broker-dealer industry often use in practice. To compensate for potential model mis-

specification, we introduced a controlled adaptive strategy which not only beat the
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deterministic strategy, but also outperformed the prediction-driven adaptive strate-

gies in the existing literature.

Further research can be conducted on how to incorporating sophisticated intraday

volume and price models into a tractable dynamic programming problem, particularly

the inclusion of heavy tail and autocorrelation of the volume process. This will likely

result in a dynamic programming problem with larger state space and a trackable

solution may resort to the recent advances in Approximate Dynamic Programming

or Reinforcement Learning.
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CHAPTER IV

OPTIMAL TRADING WITH MARKET AND LIMIT

ORDERS

4.1 Introduction

Technology innovation has completely transformed how trading is done today in fi-

nancial markets. Today, the majority of execution orders in the U.S. stock markets are

traded electronically in a systematic fashion through computer algorithms. Although

there are different execution preferences specified by investors, most algorithmically

traded orders go through three steps: trade scheduling, optimal order placement and

smart order routing. In the trade scheduling step, a large parent order is split into

gradually executed smaller child orders. Once a child order size is determined, it is

fed into the optimal order placement model (OOPM) to be executed within a speci-

fied duration. OOPM decides how many shares of the child order will be submitted

as a market order, and how many shares as limit orders and at which limit prices.

If there are multiple trading venues available1, smart order routing (SOR) is needed

next to route the market or limit order to the appropriate trading destination, based

on the order type, size and limit price. Simply put, an execution order will be split

repeatedly in three ways: split in time by trade scheduling, then split in order type

by OOPM and lastly split in space by SOR. An execution algorithm is essentially an

algorithm that decides how to split the order in these three dimensions.

What further complicates the splitting process is that investors prefer algorithms

that are adaptive to market condition changes. This is not surprising, as an adaptive

1In US equity markets, there are more than ten active exchanges(or electronic crossing networks)
and more than 40 dark pools.
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strategy that accurately incorporates market dynamics should always outperform a

deterministic strategy that fixates all splitting at the beginning of the parent order.

An optimal trading algorithm should be designed with the consideration of differ-

ent market dynamic risks2. Unfortunately, these risks are often in conflict with each

other, so different steps of algorithmic trading are used to address these conflicts. For

example, if the trading cost is measured against the arrival price, a trade scheduling

problem tries to find the right balance between fast trading with a large liquidity risk

(risk associated with the the adverse price reaction due to one’s own trading action,

namely, market impact) and slow trading with a timing risk (risk associated with

price fluctuations). On the other hand, a optimal order placement model(OOPM)

tries to find the optimal balance between paying higher prices by using market orders

(i.e. liquidity risk) and facing the uncertainty of incomplete order fills by using limit

orders namely, execution risk. Specifically, market orders guarantee immediate exe-

cution but come with the costs of spread and market impact. Limit orders can save

on the spread, but the orders may not be completely filled. Thirdly, a smart order

routing model tries to balance order flow, queue size and fee structures3.

The three stages approach, widely used in financial industry, is a perfect exam-

ple of the “divide and conquer” tactic when dealing with different market dynamic

risks, which include aforementioned liquidity risk, timing risk and execution risk4.

For example, the trade scheduling problem addresses the conflicts between liquidity

2The term ‘risk’ here is a general term which includes various uncertainties in the evolution of
market related variables, such as price, volume, etc.

3Different exchanges charge differently for orders executed on their venues, sometimes even with
a rebate to attract liquidity

4As a summary, the three types of market dynamic risks we are interested in this chapter are:

1. timing risk: risk associated with price volatility;

2. liquidity risk: risk associated with short term supply and demand imbalance, which includes
market impact, bid-ask spread, etc. It is often associated with market order submission;

3. execution risk: risk associated with incomplete order transaction, which is often associated
with limit order submission;
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risk and timing risk while OOPM addresses the conflicts between liquidity risk and

execution risk. However, by addressing these risks separately, we may potentially re-

strict ourselves to suboptimal strategies. One such restriction is the assumption that

child orders will always be completely executed in the given period. This assump-

tion simplifies the modeling in the trade scheduling problem. For example, in order

to guarantee child orders’ complete execution, the authors in two trade scheduling

papers: [33] and [1], assume child orders are submitted as market orders. The side

effect of this restriction shows up in the downstream OOPM where any unfilled limit

orders will be resubmitted as a market order at the end of the period. For example,

[18], [21], [6] and [22] analyze order placement strategies that only use market orders

as a fall-back should there be any shares left unexecuted. This may not be optimal,

such as in the case when spread is large. What if we do not force market order sub-

mission at the end of a period and return the unexecuted shares back to the upstream

scheduling problem for the next period? This is indeed the option traders sometimes

choose as a badly timed market order often raises the eyebrows of investors. However,

this behavior makes the original scheduling suboptimal as it never incorporates the

possibility of OOPM returning unexecuted shares.

A natural question arises: why not extend the trade scheduling problem from

submitting purely market orders to a combined use of market and limit orders? Will

this outperform strategies that only submit market orders, assumed for example in [33]

and [1]? In other words, rather than addressing the market dynamic risks separately,

why not combine the trade scheduling and optimal order placement model together

and find an optimal trade-off among liquidity risk, timing risk and execution risk?

Will this unified approach improve the execution performance, compared with the

approach that treats scheduling and OOPM separately? These are the two main

questions we would like to answer in this chapter.

In this chapter, we provide a discrete-time adaptive strategy that minimizes the
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mean-variance cost of the execution slippage. However, since variance is not a time

consistent measure, we cannot directly use dynamic programming to solve it. Instead,

we use the same risk diversification framework as the one in Chapter 2 of this thesis

to circumvent this issue by solving a family of auxiliary linear-quadratic problems.

To highlight the conflicts among different market dynamic risks, we used simplified

assumptions to capture the key risks. Specifically, the liquidity risk associated with

market orders is modeled as the sum of the spread and the linear temporary market

impact. Timing risk is modeled through price volatility. With regard to execution risk

associated with limit orders, we assume that limit orders are submitted only at the

prevalent best quote prices (ask prices for sell orders and bid prices for buy orders).

When we submit a buy limit order, execution risk is modeled as aggregated sell volume

that is eligible to cross with our buy limit order. Naturally, only the sell volume that

is submitted at or below our buy limit price can be included. Similarly, for a sell limit

order, execution risk is represented by aggregated buy volume submitted at or above

the limit sell price that is eligible to cross with our sell limit order. Furthermore, to

address different rebates/fees for market and limit orders, we also include them into

the modeling.

With these simplifications, the problem is modeled as a finite time horizon dy-

namic programming problem with two dimensional decision variable and a four di-

mensional state variable. The decision variable includes market and limit order size,

while the state variable includes slippage from the arrival price up to the current time,

the latest price change, the current spread and the number of remaining shares and

time periods.

Like the optimal strategy from the scheduling problem, the unified strategy trades

faster at the start of the order. This is a natural result of the arrival price benchmark.

However, under the same market condition, the unified strategy will trade slower than

the scheduling strategy at the beginning of the order. This is due to the fact that
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the unified strategy can wait to submit limit orders at better price levels in the

future to take advantage of the price and spread fluctuations and save on market

impact. Orders with different sizes are treated differently under the unified strategy.

Small orders predominantly use limit orders for execution. Waiting for limit orders

to be filled, the unified strategy may not submit market orders until later periods to

complete (parent order) trading. On the other hand, large orders require submission

of both market and limit orders. If a large number of the limit orders are filled

relatively quickly, then submission of market orders may be scaled back accordingly.

Besides order size, other factors that affects the unified approach’s trading behavior

include the trader’s risk aversion level and the stock’s liquidity condition.

To answer the two questions we proposed, we compare this unified strategy with

two different benchmark strategies. One benchmark is a strategy similar to the one

discussed in Chapter 2 of this thesis and [3], where only market orders are submitted.

The other benchmark is a strategy that separates scheduling and OOPM into two

steps. For a fair comparison, the OOPM component in this benchmark is simulated

by submitting all child order shares at best quote at the beginning of the period and

executing whatever is left as a market order at the end of the period. This is like

combining Chapter 2 with a simplified version of [22]. We test these three strategies

in out-of-sample test. Even with a conservative estimate of aggregated liquidity that

undermines the potential of the unified strategy, the unified approach still outperforms

the other two benchmarks consistently under different market settings.

The major contribution of this chapter is to provide a general framework for

solving dynamic discrete time execution problem where different market dynamic

risks can be integrated in a systematic way. The framework allows us to optimally

diversify various risks over time. Therefore we will refer this as a risk diversification

framework. Although the model here uses relatively simple assumptions (such as

that the market impact is temporary and linear, liquidity flow is an independent time

99



series, etc), it can handle more sophisticated assumptions (such as that market impact

decays over time, liquidity flow is auto-correlated due to the consistent short term

order flow imbalance, etc). The framework also allows the extension of submitting

limit orders at multiple price levels, or use other price benchmarks rather than arrival

price.

To our knowledge, papers directly addressing the discrete time trading problem in

a mean-variance framework is not very common in both academia and industry. Most

trading models are built and solved in continuous time and use it to approximate the

discretized optimal solutions (such as [24]). However, modeling in discretized time

allows much more flexible assumptions. For example, lead-lag relationship, autocor-

relation in liquidity, is not easy to model in continuous time. On the other hand, we

choose variance as a risk objective because the simple mean-variance approach has the

practical advantage that risk and reward are expressed as two real variables that are

easily understood and displayed in a two-dimensional picture. This is an important

preference for practitioners in contrast to more mathematically sophisticated utility

function formulations. More importantly, the framework we provide here allows the

practitioner to efficiently solve the optimal strategies for different risk aversion levels

all at once, which makes the two dimensional risk-reward plot easily available.

Once a trading model is built using our framework. There are in general two

ways to solve them. One is through traditional backward induction, while the other

through forward induction with approximated value functions. The latter approach

can be used to significantly decrease the state space dimension, which is the key idea

behind approximate dynamic programming(ADP) and reinforcement learning(RL).

More importantly, ADP/RL approach does not require direct statistical inference

of market variables. The end product of data training is not a parametric/non-

parametric description of how the market looks, but directly how to trade. A well

designed ADP/RL model can pick up market evolution and reflect it into its decision
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making process without presenting itself to the model user. We believe this is an im-

portant direction for future innovation in algorithmic/systematic trading. Although

we present our numerical results based on backward induction solution, the theoret-

ical framework we built here provides an analytical context which can be leveraged

by techniques in ADP/RL. We will leave this part of work for future research.

Trade scheduling problems began to receive academic interest when [8] studied it

for a risk-neutral trader to minimize market impact cost. By introducing the vari-

ance of the slippage as a risk measure, [2] improved upon [8]s result , and derived a

deterministic strategy that minimize the mean-variance of the execution cost. Since

then, numerous academic studies have appeared that present different variations of

the scheduling problem. Some of them use more sophisticated market microstructure

assumptions, such as a market impact model based on the shape of the limit order

book([33], [1], [36]). Others improve on the deterministic trading strategy by devel-

oping adaptive strategies that adjust to market condition evolution (Chapter 2 of this

thesis ,[31],[19]).

Although studies of strategies that submit both limit and market orders have

appeared, such as [5], it is not until very recently that an optimal order placement

model has received academic attention, such as [22] and [15]. [15] consider a one

period unified problem that combines order placement and smart order routing. [22]

considers a multi-period problem where a risk-neutral trader decides on quantities of

limit orders at multiple price levels; whatever is not executed at the end of the given

horizon will be executed as market order. We will use a simplified version of [22] to

simulate the order placement model in our numerical test.

To our knowledge, besides [24], there is almost no other chapter that combines

the scheduling and optimal order placement problems. Both [24] and this chapter

combine three risks together: liquidity risk, timing risk and execution risk. How-

ever, this chapter differs significantly from [24] in two ways. First, [24] considers
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a continuous trading problem where orders adjust continuously while our model di-

rectly solves the discretized problem. As mentioned before, discretized settings not

only fit reality better, but more importantly, can capture a lead-lag relationship in

market dynamics which cannot be modeled through continuous models. Our model

also fits industry practice as we are using a mean-variance framework, which can be

easily interpreted by practitioners while [24] aims to minimize a cost utility function.

Second, and more importantly, while the model in [24] is based on a specific mar-

ket microstructure model from the result of econophysics study, our model provides

a general framework that can be easily extended with various market assumptions.

This framework allows the practitioner the flexibility to choose between modeling

complexity and computation complexity.

This chapter is organized as follows. In Section 4.2, we describe market dynamics,

order types, and model different market dynamic risks, such as market impact and

eligible liquidity. All these components are integrated together to develop a definition

of the execution cost. We then introduce the mean-variance objective as well as

the auxiliary linear-quadratic objectives. Section 4.3 derives the Bellman equations

that can be used to solve the auxiliary linear-quadratic problems, and we introduce

two approaches to solve them: backward induction and forward induction through

ADP/RL. Section 4.4 provides detailed description on how to numerically solve the

Bellman equations through backward induction. It also discuss how to estimate

eligible liquidity from real quote tick-by-tick data. We then test three strategies (a

unified strategy that submits both market and limit orders, a strategy that only

submits market orders, and a strategy that separates scheduling OOPM into two

sequential steps) in out-of- sample tests and compare their performance.
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4.2 Problem Formulation

We take the perspective of a risk-adverse trader facing the problem of executing a

large order within a given period of time. The goal is to minimize the risk-adjusted

execution cost, which is measured against the arrival price. The problem set up

and formulation is similar to Chapter 2 of this thesis with one major difference:

Chapter 2 allows only market orders while this chapter includes limit orders as well.

In the following, we will start by introducing the market dynamics, and incorporate

them into the definition of slippage. In the end, we will introduce the risk-adjusted

execution cost by discussing mean-variance objective functions as well as the auxiliary

linear-quadratic objective functions.

4.2.1 Market Dynamics

Imagine a scenario where a trader is given a buy order of X shares of a certain stock

for a given horizon T (normally lasting from a few minutes to a few hours). In this

section, we will focus on a buy order; the modeling of a sell order is completely

analogous.

To avoid a potential massive market impact by buying all X shares at once, the

trader often splits the large order (parent order) into gradually executed smaller ones

(child orders). In this chapter, we assume the child orders are equally spaced in time.

More specifically, total trading duration T can be divided into n equal periods by

t0, t1, ..., tn where t0 = 0 and tn = T . The number of periods n is often determined

based on trader’s discretion, fee structure as well as infrastructure setup. In general,

a period lasts from few seconds to few minutes. Child orders decisions are made at

the first n discrete time points: t0, ..., tn−1.

4.2.1.1 Price Dynamics

The security price is determined by both our execution and trading activities of other

exogenous traders who submit their orders independently. We assume the latter part
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is the fundamental price of the security and we model it as a random walk:

Pi = Pi−1 + εi for i = 1, 2, ..., n (118)

where Pi is the fundamental price at time ti. P0 is referred as the arrival price as this

is the price when the execution order arrives at the trading desk. An observable proxy

for Pi is the market mid quote. As a special case, we can assume the price increments

εi follow independent and identically distributed (i.i.d) normal distributions with

zero mean and a standard deviation of σ. Traditionally it is the price return Pi−Pi−1

Pi−1
,

rather than price difference Pi − Pi−1 modeled as i.i.d. random variables. However,

the trading horizon in our problem is relatively short. Therefore, the assumption

that the price difference is i.i.d is not a major divergence from short-term asset price

dynamics.

4.2.2 Limit Order and Market Order

As mentioned previously, for i = 0, 1, ..., n − 1, ti is the time that the trader makes

the (i + 1)-th child order decision. At each ti, the trader has the option to submit

market and/or limit orders to get access to market liquidity in the upcoming period

[ti, ti+1).

A limit order is an order to trade a certain amount of a security at a given

price. Limit orders are posted to an electronic trading system and the outstanding

aggregated limit orders from both buy and sell orders form the limit order book

(LOB). The LOB is represented by multiple price levels and their associated posted

quantity. Two price levels are of particular importance in the LOB: the ask price is

the lowest price for which there is an outstanding limit sell order, and the bid price

is the highest price for the outstanding buy limit order. If we assume the spread

between the bid and ask prices at time ti is si and the mid quote is the fundamental

price Pi, then the ask price is Pi + 1
2
si and bid price is Pi − 1

2
si.

In practice, for a buy order, patient traders can post limit orders at multiple price
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levels at and/or below the bid price. To simplify modeling in this chapter, we will

only post the limit order at the bid price for the buy order. We use yi to denote the

quantity the trader wants to post at bid price Pi − 1
2
si at time ti. We do not allow

any intermediate selling. Therefore, yi should be non-negative, yi ≥ 0. Furthermore,

we assume any remaining shares from the previous limit order submitted at ti will

be canceled at time ti+1. Therefore, only one limit order can be active at a time,

i.e. only by canceling his current limit order can the trader create a new one. This

simplification is important in reducing modeling complexity. Otherwise, the model

needs to record all previous outstanding limit orders’ fill status, which will result in

a state space that grows exponentially over time.

A market order is an order to buy/sell a certain amount of a security at the best

available price in the LOB. For example, a buy market order with size xi will be

matched with sell limit orders at ask price Pi+
1
2
si. If there is not enough liquidity at

ask price, the remaining shares will be matched with the sell limit orders available at

the next price level until all xi shares are executed. Therefore, a market buy order will

“eat off” the sell limit orders on LOB with the lowest price and potentially pushes the

ask price at a new higher level. In this chapter, we assume the aggregated liquidity

at or above ask price level is unlimited. In other words, the completion of market

order is guaranteed.

Unlike buy limit orders, where we can guarantee the upper bound for execution

price, market buy orders often incur extra liquidity risk beyond ask price, i.e. market

impact. The existence of market impact is the reason why traders do not execute

the parent order all at once. There are extensive literature studying market impact

in the framework of optimal execution, such as Chapter 2 of this thesis,[1] and [33].

The key in our problem is to model the causality relationship that large market order

leads to large adverse price deviation. Therefore, we use the simplistic assumption

that market impact is temporary and proportional to trading speed. Specifically, we
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assume the market order with size xi executed during [ti, ti+1) has an average price

of

Pi +
1

2
si + η

xi
T/n

(119)

where xi
T/n

= nxi
T

is the average trading speed during period [ti, ti+1). For notational

simplicity, we can adjust the time unit such that T = 1. Then (119) becomes Pi+
1
2
si+

nηxi. The market impact factor η represents the liquidity premium, with smaller value

of η implying higher liquidity. According to [33], the linear market impact structure

is a result of the assumption that LOB has a block shape with same limit order queue

lengths at different price levels. Furthermore, we assume more sell limit orders will

be attracted to the order book after our trader exhausts the liquidity during period

[ti, ti+1), and the price will recover completely to the fundamental price level Pi+1.

4.2.2.1 Eligible Liquidity

A market order pays a higher price, but guarantees execution. On the other hand, a

limit order saves on spread and market impact5, but it does not ensure fill completion.

Any limit orders that are not completed now have to be executed in the future, which

are exposed to future market impacts and/or price fluctuations. Therefore, using limit

orders introduces another type of risk: execution risk. We capture execution risk by

eligible liquidity. For the buy limit order submitted at price Pi− 1
2
si during [ti, ti+1), its

eligible liquidity is defined as the aggregated shares of sell orders submitted at/below

Pi− 1
2
si during [ti, ti+1) that is eligible to cross the buy limit order. In other words, it

is the number of shares that will be crossed if we submit an infinitely large limit buy

order: yi = ∞. Larger eligible liquidity means limit orders will be easily filled and

hence incurs less execution risk. We use li for the notation of eligible liquidity during

[ti, ti+1) that can potentially cross with our limit order submitted at Pi − 1
2
si. Note

5Recently research(see [23]) points out that limit orders also have market impact. For the sim-
plicity of the analysis, we do not assume that a limit order has a market impact. However, an
addition of a simple linear limit order market impact does not add extra modeling complexity.
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that li will not be known until ti+1. By ti+1, the filled quantity for the limit order

will be known as well:

yi ∧ li := min(yi, li).

Naturally, the larger the spread si, the less likely the limit order will be filled, as

it costs more for market sell orders to cross the spread. Therefore, si and li should be

negatively correlated, which can be captured in our model. Furthermore, we do not

require {li}n−1
i=0 to be identically distributed. This allows us the flexibility to model

intraday seasonality of the eligible liquidity, which often has a U-shape similar to

intraday volume.

Not all sell orders submitted during [ti, ti+1) can be counted as eligible liquidity

li. It depends on the market structure where the stock is traded. Take the U.S.

equity market for example. The LOBs in the U.S. equity market follow a price/time

priority rule for crossing, i.e. buy limit orders with higher price will be crossed first.

Furthermore, the U.S. equity market is highly fragmented and investors can trade

stocks in multiple displayed electronic systems. As a result of the Order Protection

Rule6, a large sell market order submitted at a trading venue/exchange (for example

Venue A) will first cross with buy limit orders at the highest price (i.e. prevailing

bid price, such as $10) in Venue A. If the sell market order is not completely filled,

it will be routed to other venues to cross with buy limit orders at the same bid price

$10. It is not until the buy liquidity at $10 from all venues are depleted will the sell

market order return to Venue A to cross with buy limit orders at next bid price level

(such as $9.99) and lowers the bid price from $10.00 to $9.99. Following this rule, if

we submit a buy limit order at price Pi − 1
2
si = $10 at ti, and if during [ti, ti+1) we

observe sell market orders crossing at $9.99, or sell limit orders posted at $9.99, we

6Order Protection Rule is one of the provisions of Reg NMS(National Market System) that aims
to ensure that both institutional and retail investors get the best possible price for a given trade by
comparing quotes on multiple exchanges. If a better price is quoted elsewhere, the trade must be
routed there for execution, and not “traded through” at its current exchange.
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can guarantee that our buy limit order will have been filled. Otherwise, if the market

has less selling pressure during [ti, ti+1), whether or not our buy limit order at $10

submitted at ti will be crossed depends not only on the venue at which we submitted

our order, but also the number of shares waiting in front our buy limit order at $10

at this venue.

Therefore, it is not easy to estimate the accurate distribution of eligible liquidity

li. To circumvent this difficult problem, we will instead give a fairly conservative

estimate of li, which is easier to observe. In fact, for a buy limit order submitted at

$10 at ti, we will only count a subset of the limit sell orders posted at $9.99 during

[ti, ti+1), which is a subset of the true li. The detailed procedure will be provided

in Section 4.4. We can show that even under this conservative liquidity assumption

which may reduce its performance potential, the unified trading strategy with both

limit and market orders still outperforms the strategy that relies solely on market

orders.

However, in actual practice, once we collect enough data of submitted limit orders

and their associated filled sizes, we can use the censored maximum likelihood method

to directly estimate a parametric distribution of eligible liquidity based on our own

historical execution data. Hence the previous described procedure based on market

data will no longer be used. We will revisit this issue in Section 4.4.

4.2.2.2 Fee Structure

One last component of market dynamics is the order fee structure. To attract market

participants to provide liquidity, some electronic trading venues reward them with a

rebate when their submitted limit orders are filled. On the other hand, these systems

charge a fee when market orders are submitted to take liquidity. We will use f l as the

rebate for providing liquidity, and fm as the fee charged for the market order. For

example, according to Nasdaqs website, adding liquidity rewards f l = $0.00295 per
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share while taking liquidity risks fm = $0.0029 per share. Most electronic trading

venues give rebates for limit orders and charge fees for market orders. However, there

are also venues with exactly the opposite fee structure. For these venues, both f l and

fm will be negative.

4.2.2.3 Execution cost per period

In summary, at time ti(i = 0, 1, ..., n− 1), the trader will submit a market order with

size xi and a limit order of size yi at the prevailing bid price Pi − 1
2
si. Both order

sizes are assumed nonnegative: xi ≥ 0 and yi ≥ 0. The associated execution cost is:

(
Pi +

1

2
si + fm + nηxi

)
xi +

(
Pi −

1

2
si − f l

)
(yi ∧ li). (120)

Since the trader needs to complete the parent order with size X by the end of time

T , only the market order is submitted at time tn−1. In other words, we require:

yn−1 = 0 (121)
n−1∑
i=0

(xi + yi ∧ li) = X. (122)

4.2.3 Trading Objectives

Execution cost is often measured as the difference between the final average trade

price and a pre-defined benchmark price7. The sign is taken such that positive cost

represents of loss of value: buying for a higher price or selling for a lower price. Some

common benchmarks are the arrival price, close price, volume weighted average price

and time weighted average price. In this chapter we focus on the problem using arrival

price as the benchmark.

For a buy order with fixed parent order size, the execution cost with arrival price

benchmark can be equivalently defined as the difference between the final dollar values

7In this chapter, we exclude commissions, taxes and fees from the calculation of the final average
trade price. This is due to the fact that these costs are direct and predictable, hence play less
important roles in the quantitative analysis of execution quality
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paid for the purchase and the notional value based on arrival price, which is called

implementation shortfall (or slippage):

I :=
n−1∑
i=0

[(
Pi +

1

2
si + fm + nηxi

)
xi +

(
Pi −

1

2
si − f l

)
(yi ∧ li)

]
−XP0 (123)

Similar to Chapter 2, by introducing a variable to record the remaining unexecuted

shares, we can rewrite (123). More specifically, define

z0 = X, , zi = z0 −
i−1∑
j=0

(xj + yj ∧ lj)

then (123) is equivalent as

I =
n−1∑
i=0

ci (124)

where

ci = ziεi+
(1

2
si+fm+nηxi

)
xi+

(
− 1

2
si−f l

)
(yi∧ li) for i = 0, 1, ..., n−1 (125)

and

ε0 := 0. (126)

where ε0 is defined in (118). The detailed derivation from (123) to (124)-(126) is

presented in Appendix C.1. A special case for (125) is the last period cost when

i = n− 1. At time tn−1, we will submit all remaining shares as a market order:

xn−1 = −zn−1 and yn−1 = 0.

Therefore, the eligible liquidity ln−1 will never be referred in the last period’s cost

cn−1:

cn−1 = zn−1εn−1 −
(1

2
sn−1 + fm − nηzn−1

)
zn−1

(123) captures the liquidity risk(sum of half spread and market impact) as well

as execution risk. If the objective is just to minimize the average execution cost,

the optimal approach is to trade as slowly as possible to minimize the liquidity risk.

However, this exposes the order to a possible large adverse deviation from the arrival
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benchmark price, particularly if the stock is volatile. As in [2] and Chapter 2, we

introduce variance in the objective function to penalize timing risk induced by slow

trading. Our goal is to minimize both the mean and variance of the slippage:

MV(κ) : min
Π

EI + κVar[I] (127)

where κ ≥ 0 is the risk aversion factor and Π stands for all feasible strategies:

Π = { π = (xi, yi)
n−1
i=0 |∀i, xi, yi are random variables adapted to Fi;

π satisfies (121) and (122)}. (128)

In (128) we introduced the definition of feasible strategies where Fi is the σ-field

generated by all the information available up to time ti. More specifically,

Fi := σ(s0, l0, ε1, s1, ..., li−1, εi, si).

By definition, a feasible strategy is an adaptive strategy that adjusts trading deci-

sions according to quickly-changing market conditions as well as the previous trading

decisions.

For a finite time horizon problem such as MV(κ), dynamic programming is often

the first choice of tools to be considered. However, a direct application of dynamic

programming is not possible since the variance operator does not satisfy the smooth-

ing property, i.e. ∀0 ≤ s ≤ t, Var[Var(·|Ft)|Fs] 6=Var(·|Fs). To address this problem,

[31] achieves the Bellman backward induction through the decomposition of vari-

ance objective function by Law of Total Variance. Chapter 2 and Chapter 3 of this

thesis take an alternative approach by solving a family of auxiliary linear-quadratic

problems. According to Chapter 2, the latter approach is structurally simpler and nu-

merically more efficient. Therefore, we will resort to an approach similar to Chapter

2 and Chapter 3 of this thesis.

Consider a family of linear quadratic problems for r0 ∈ R:

LQ(r0): min
Π

E[r0I + I2]. (129)
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where Π is the same set of feasible strategies defined in (128). Similar to κ in (127),

r0 also plays the role of determining risk aversion level. However, they have reverse

effects. Larger value of κ in MV(κ) implies higher risk aversion while larger value of

r0 in LQ(r0) implies lower risk aversion tolerance.

Proposition 1 in Chapter 2 establishes the relationship between the solutions of

mean-variance problems and linear quadratic problems:

Proposition 1. Let

ΠMV(κ) = {π|π ∈ Π and π is a minimizer of MV(κ)},

ΠLQ(r0) = {π|π ∈ Π and π is a minimizer of LQ(r0)},

ΠLQ =
⋃
r0∈R

ΠLQ(r0),

then ΠMV(κ) ⊂ ΠLQ. More specifically, if π∗(κ) ∈ ΠMV(κ), then π∗(κ) ∈ ΠLQ(r∗0)

where

r∗0 =
1

κ
− 2E[I|π∗(κ)]. (130)

The proof of Proposition 1 can be found in Chapter 2. The equation (130) shows

that by choosing the appropriate r∗0, we can derive the optimal strategy of the MV(κ)

by solving auxiliary problem LQ(r∗0). However, according to (130), r∗0 depends on

π∗(κ) ∈ ΠLQ(r∗0), which would not be available until we know the value of r∗0. Thus

we have a “chicken and egg” dilemma.

Alternatively, Chapter 2 structured a framework that can solve LQ(r0) for all r0 ∈

R simultaneously by introducing r0 as a state variable. Assume π(r0) solves LQ(r0),

the solution for MV(κ) is achieved by finding the appropriate r0 that minimizes the

mean-variance benchmark:

r∗0(κ) = arg min
r0∈R
{E[I|π(r0)] + κVar[I|π(r0)]}.
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According to Proposition 1, π(r∗0(κ)) ∈ ΠMV(κ) solves the original mean-variance

problem. A detailed description of this two step process can be found in (3.8)-(3.10)

in Chapter 2. Therefore, we will focus on solving the linear-quadratic problem LQ(r0)

from now on.

4.3 Optimal Adaptive Strategies

4.3.1 Bellman Equations

To solve LQ(r0) through dynamic programming, we first decompose the objective

function into a sum of cost functions. As in Chapter 2, we introduce the linear-

quadratic weight r0 as a state variable, which evolves following:

ri+1 = r0 + 2
i∑

j=0

cj for i = 0, 1, ..., n− 2. (131)

Note that 1
2
(ri+1 − r0) can be interpreted as a partial realization of the slippage I

that is Fi-measurable. In other words, it records information about how the trader

performs up to time ti.

Once ri is introduced, the objective can be decomposed as:

E[r0I + I2]

= E
[
r0

n−1∑
i=0

ci +
( n−1∑
i=0

ci

)2
∣∣∣∣F0

]

= E
[ n−1∑
i=0

(rici + c2
i )

∣∣∣∣F0

]

= E
[ n−1∑
i=0

E
[
rici + c2

i

∣∣∣Fi]∣∣∣∣F0

]
and the cost function Ci is defined as:

Ci = E
[
rici + c2

i

∣∣∣Fi] (132)

where the conditional expectation is taken over future liquidity li.

Define the state variable Si := (ri, zi, εi, si), which includes information about

aggregated trading performance up to time ti: ri, remaining number of shares zi,
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latest price change εi and current spread si. The cost (132) can be written as a

function of state Si and action (xi, yi):

Ci(Si, xi, yi) := E
[
rici + c2

i

∣∣∣Fi]
= E

[
ri

[
ziεi +

(1

2
si + fm + nηxi

)
xi +

(
− 1

2
si − f l

)
(yi ∧ li)

]

+

[
ziεi +

(1

2
si + fm + nηxi

)
xi +

(
− 1

2
si − f l

)
(yi ∧ li)

]2
∣∣∣∣∣Fi
]

(133)

When i = n−1, the conditional expectation operator is not necessary for the previous

period’s cost since only the market order is submitted and future liquidity ln−1 does

not come into effect:

Cn−1(Sn−1) = rn−1

[
zn−1εn−1 −

(1

2
sn−1 + fm − nηzn−1

)
zn−1

]
+

[
zn−1εn−1 −

(1

2
sn−1 + fm − nηzn−1

)
zn−1

]2

Once the cost function is defined, the Bellman equations as well as the optimal trading

decisions follow naturally:

For i = n− 1:

Jn−1 = Cn−1(Sn−1) (134)

x∗n−1(Sn−1) = −zn−1 (135)

y∗n−1(Sn−1) = 0. (136)

For i = n− 2, ..., 0:

Ji(Si) = min
xi,yi

(
Ci(Si, xi, yi) + E

[
Ji+1(Si+1)

∣∣∣Si]) (137)(
x∗i (Si), y

∗
i (Si)

)
= arg min

xi,yi

(
Ci(Si, xi, yi) + E

[
Ji+1(Si+1)

∣∣∣Si]) (138)

where the minimization is over two dimensional space {(xi, yi)|xi ≥ 0, yi ≥ 0, xi+yi ≤

zi} to make sure we always submit buy orders and the sum of submitted order size

does not exceed the remaining shares zi.
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4.4 Numerical Tests

In this section, we will first introduce a formulation based on scaled variables. Next

we will describe how market variables can be calibrated from real market data and

be used to solve Bellman equations through backward induction. Finally, we will

compare the unified strategy with the other two benchmarks. In the following, we will

use ML to refer to the “market-limit” strategy that submits both market and limit

orders, MO to refer to the ’market only’ strategy that submits only market order, and

TS to refer to the “two steps” strategy that separates scheduling and optimal order

placement and treats them sequentially. We will compare their relative performances

under different order sizes, market impacts and risk-aversion settings. We will show

that ML has consistent advantages over the other two strategies, particularly for

illiquid stocks, less risk averse traders and large orders. We will also study the trading

behavior of ML and try to understand how the market dynamic risks we built in the

previous analysis get reflected in its trading decisions.

For illustration purpose, we will focus on a trading problem of executing certain

Apple Inc (AAPL) shares within one hour. We allow a trading frequency of once per

minute. In other words, T = 1 hour, n = 60 and each period is one minute. The

tests based on other S&P 500 stocks convey similar results.

4.4.1 Scaling

For better analysis and interpretation of the test results, we scale the slippage by

notional value, similar to the procedure in Chapter 2:

Ĩ :=
I

XP0

.

Accordingly, price related variables are scaled by arrival price P0. This includes price

Pi, price change εi, spread si, rebate for posting liquidity f l and fee for taking liquidity
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fm for i = 0, 1, ..., n:

P̃i =
Pi
P0

, , ε̃i =
εi
P0

, , s̃i =
si
P0

, , f̃ l =
f l

P0

, , f̃m =
fm

P0

. (139)

Size related variables are scaled by the total order size X, including parent order

size itself, market order size xi, limit order size yi, remaining shares zi and eligible

liquidity li:

X̃ = 1, , x̃i =
xi
X
, , ỹi =

yi
X
, , z̃i =

zi
X
, , l̃i =

li
X
. (140)

Cost related variable ri is scaled by total notional value:

r̃i =
ri
XP0

Market impact is scaled according to:

η̃ =
ηX

P0

.

and risk aversion factor λ is scaled according to:

λ̃ =
λ

(XP0)2

Then the slippage (123) can be rewritten as

Ĩ =
n−1∑
i=0

[(
P̃i +

1

2
s̃i + f̃m + nη̃x̃i

)
x̃i +

(
P̃i −

1

2
s̃i − f̃ l

)
(ỹi ∧ l̃i)

]
− X̃P̃0 (141)

Note that (141) has exactly the same form as (123). Similarly, the mean-variance

objective MV(κ) is equivalent to the same form:

min
Π

EĨ + κ̃Var[Ĩ]

and linear-quadratic objective LQ(r0) is equivalent to the same form:

min
Π

E[r̃0Ĩ + Ĩ2].

Therefore, all the analysis in Section 4.2 and Section 4.3 can be carried out in the

exact same way and we can treat the results in these two sections as if they were

based on scaled variables. To simplify notation, we will ignore the tilde symbol from

now on. When we need to refer to unscaled variables, we will point it out specifically.
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4.4.2 Calibration for Market Exogenous Variables

As mentioned in Section 4.4.7.2, we will use traditional backward induction to com-

pute value functions. This requires the computation of expectations in (137). Hence

we need to know the distribution of three market exogenous variables: price change

εi(i = 1, 2, ..., n − 1), spread si(i = 0, 1, ..., n − 1) and eligible liquidity li(i =

0, 1, ..., n− 2).

We are going to make some simplified assumptions about these market exogenous

variables. The positive result from the out-of-sample test will show that these as-

sumptions are accurate enough to reflect actual market dynamics. Specifically, we

assume {εi}n−1
i=1 , {si}n−1

i=0 and {li}n−2
i=0 are mutually independent series with no autocor-

relation. εi follows a normal distribution with zero mean and standard deviation σ8.

For most actively traded US stocks with small price levels, the spread normally just

takes a few different values, such as zero cents, one cent, etc. If there are fewer than

10 different spread levels in the training data set, we will just use a discrete distribu-

tion to model the spread. Otherwise, we will use a zero-inflated Weibull distribution

to model the spread.

The calibration for eligible liquidity requires special attention as it is not directly

observable. Rather than following the exact definition described in Section 4.2.2.1, we

will instead estimate only a portion of the true eligible liquidity that can be directly

observed. The idea is that if we can show that ML can beat MO even with a smaller

liquidity estimation, then ML will definitely be able to outperform MO under true

market liquidity, which is larger than the conservative estimate.

Here is the conservative approach we used for estimating the eligible liquidity

submitted at the bid price Pi − 1
2
si at time ti. Recall the two groups of liquidity

8Recall that our model allows si and li to be correlated, which fits market reality better. However,
for training simplicity, we ignore their correlation and simply assume independence between si and
li in this section.
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in Section 4.2.2.1. We will only focus on the first group as the liquidity from the

second group depends on the venue in which we execute our order as well as our

queue position. More specifically, we collect tick-by-tick ask quote data9 within time

period [ti, ti+1). We aggregate the quote size at the best bid prices if the line satisfies

all the following conditions: 1) ask price is below Pi − 1
2
si (i.e. we only accept ask

liquidity which is submitted at a lower price than our buy limit order); 2) ask price

is no higher than previous ask prices (i.e. we don’t count liquidity when ask price is

updated upwards); 3) updated time is at least one second after ti (due to latency, sell

liquidity immediately appearing after ti may not be eligible for our buy limit order).

If the ask price has not changed from the previous line, we only include additional

quote size from the previous line. Although a similar procedure can be carried out

for tick-by-tick trade data, we intentionally exclude them because historical trades

happen when our limit buy order does not exist. Since our limit buy order may

prevent potential sell limit orders crossing the spread (i.e. market impact from limit

order), it may be optimistic to include historical trade data that happened below

Pi − 1
2
si when there is no limit buy order sitting there. This concern is much less

significant for an estimation from quote data.

We can carry out this conservative approach for both the training and testing

data sets for both the ask quote and bid quote data (the bid quote data is used for

selling execution problems). It appears that eligible liquidity frequently takes zero

values (i.e. there is no liquidity on one direction over a period of time), so we will use

a zero-inflated Weibull distribution to fit the training data set. The reason we use a

Weibull distribution is because it can model non-zero data with heavy tails.

In actual practice, the conservative estimation may make ML underachieve its

true potential at the beginning. Based on the feedback from actual limit order fills,

9Tick-by-tick ask quote data includes all the updates for ask price and/or its associated quote
size. The database has three columns: updated time, ask price, and quote size at ask price. If either
of these two values changes, a new line will be generated in the database
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the conservative estimation can be adjusted higher from time to time to reflect the true

liquidity distribution. As we collect more and more actual limit order fills, these data

can be used directly for estimating liquidity through censored maximum likelihood

method (see [27] for censored MLE). At this stage, the conservative estimation will

no longer be used.

In this section, we will use tick-by-tick quote data for Apple Inc (AAPL) from

02/01/2012- 12/31/2012. We exclude the first and last 30 minutes’ data as they often

include too much noise. Data from 02/01/2012-06/30/2012 will be used for calibration

and the rest will be used for testing. Note from (140) that scaled liquidity l̃i depends

on parent order size. To illustrate for now, we will assume the parent order size is

10% of the average one hour trade volume. The average one hour trading volume for

AAPL during 02/01/2012 -06/30/2012 is 2594420, hence the assumed parent order

size is 259442. The calibration for other parent order sizes can be easily derived by

adjusting the scale parameter below. Table 14 presents the parametric distribution

for aggregated one minute frequency data based on the training set:

Table 14: Parametric distribution of market exogenous variables
r.v. distribution
ei normal with mean 0 and stdev 7.198bps;
si with prob 0.000552 to take zero value,

else Weibull with scale 1.864bps and shape 0.122;
li with prob 0.357 to take zero value,

else Weibull with scale 0.0423 and shape 0.760.

There are three other market variables that need to be pre-specified: the rebate for

posting liquidity, f l; the fee for taking liquidity, fm; and the market impact, η. In this

test, we assume that unscaled f l = $0.003/share and unscaled fm = $0.003/share,

which are close to AAPL’s primary listed exchange(NASDAQ)’s fee structure. Rather

than scaling fm and f l by arrival price P0, as in (139), which may change from

trade to trade, we will scale them by average price $563.11. Therefore, the scaled

f l = fm = 0.0533bps, which is a small number compared with the spread or market
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impact. In other words, the rebate/fee has little impact on trading AAPL.

For the market impact, we use a similar assumption as in [2] and Chapter 2 where

the (scaled) market impact is proportional to the order’s percentage of the market

volume (POV)

η = market impact scale× unscaled order size

average trading volume within T

= market impact scale× POV (142)

where the market impact scale(mis) is pre-specified. POV represents the relative

order size with respect to market volume. Larger orders have a higher value of

market impact η, and hence are harder to trade. For example, if mis = 70bps, and

POV=10%, η = 7 bps, which means if you immediately execute an order worth of

10% of market average volume, you will incur an immediate market impact of 7 bps.

In the following tests, we will consider various scenarios with different combinations

of market impact scale and POV.

4.4.3 Backward Induction

We use a similar numerical procedures that was used in Chapter 2 to solve Bellman

equations (134)-(138). It includes the following few steps. More details are available

in Chapter 2.

First, for each state variable, we need to specify an interval within which it is

likely to lie. For zi, this will be [0, 1]. For ei, we will use [−3σ, 3σ]. For si, it

should be [0, 99% quantile]. Since rn = r0 + 2I, rn is proportional to slippage value

when r0 = 0. Therefore, the range of ri values should cover two times of most likely

observed slippage values. To achieve this, we test an equal split strategy with only

market order (i.e. xi = 1
n
, yi = 0 for i = 0, 1, ..., n−1) over the training data. It turns

out the largest absolute slippage is 56.252bps. We multiply it by four to set the range

for the values of ri: [-225.008,225.008].
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Second, we discretize each state variable within its respective interval. For exam-

ple, for zi ∈ [0, 1], we discretize it with 10 equally spaced values: (0, 0.1, 0.2, ..., 1).

We carry out the same procedures for ri, si, ei, all with resolution 10. Hence for

i = 0, 1, ..., 59, state space Si is represented by 11×11×11×11 grid points and value

function Vi(Si) is represented by a table of 114 values. For any state Si that does not

fall onto the grid points, its value Vi(Si) is estimated through spline interpolation(see

[17]).

Third, for i = n − 1, n − 2, ..., 0, value functions Vi(·) for 114 grid points are

computed following (134) and (137). The expectation is computed using Gaussian

Legendre quadrature, following the same approach used in Chapter 2. In the training

process, the discretized actions (xi, yi) share the same grid points with the ones used

for zi, i.e. (0,0.1,0.2,...,1). The optimal decision (x∗i , y
∗
i ) is found by enumerating all

possible grid points within the action space {(xi, yi)|xi ≥ 0, yi ≥ 0, xi + yi ≤ zi}.

Fourth, once all value functions Vi are known, (135),(136) and (138) can be used

to derive the optimal trading actions. However, in order to increase action flexil-

ity, we increase the resolution of (xi, yi) and make it adjustable to zi. Specifically,

given remaining shares zi, both xi and yi will use grid points with resolution 20:

(0, zi
20
, 2 zi

20
, ..., zi) instead of (0,0.1,0.2,...,1).

4.4.4 Testing

In this section, we will present the result of a trade simulation based on AAPL’s data

from 07/01/2012-12/31/2012. We extract 10 trading tests from each date. These are

buy and sell execution orders with 5 trading horizons: 10:00am-11:00am, 11:00am-

12:00pm,...,14:00pm- 15:00pm. We have complete and valid data for 121 days between

07/01/2012 and 12/31/2012, which means we have 1210 test samples.

Three pre-specified parameters will impact a strategy’s performance: market im-

pact scale (mis), order size (relative to market volume) and risk aversion level. We
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will carry out our test analysis based on different combinations of these three val-

ues. Specifically, we choose two mis for experimentation: 50 bps and 100 bps. The

majority of U.S. stocks should have mis falling into this bucket. For order size, we

consider four different possibilities: 5%,10 according to (142), larger orders have big-

ger market impact factor η. Second, larger orders will have a smaller percentage of

limit orders that can be filled by fixed amount of eligible liquidity. In other words,

it is harder to fill a larger order, regardless of if it is executed through market orders

or limit orders. Third, the risk aversion level can be adjusted by assigning different

r0 values. Large r0 values imply less risk aversion. We test trading strategies for

r0 ∈ (−75,−50,−25, ..., 150, 175). Note that unlike mis and order size, changes in

the value of r0 normally does not require new training. This is because, as men-

tioned previously, (134)-(138) is computed for r0 ∈ [−225.008, 225.008]. In summary,

we will train 8 models, which include all combination of mis∈ (50bps, 100bps) and

POV∈ (5%, 10%, 20%, 30%). Each model will be tested given 11 different values of

r0 ∈ (−75,−50,−25, ..., 150, 175).

Before we compare the performances of the three strategies, we will give a brief

description of MO and TS. The MO strategy is based on Chapter 2, with the same

market impact assumptions. We can arrive at that strategy in our model by setting

li ≡ 0, si ≡ 0 for i = 0, 1, ..., n− 1 and fm = f l = 0. Under these assumptions, since

limit orders will never be filled, the optimal ML strategy will always submit market

orders: xMO
i ≥ 0, yMO

i = 0 for i = 0, 1, ..., n− 1. By ignoring spread and rebates/fees,

we essentially focus only on the trade-offs between market impact and timing risk.

Once the solution of scheduling problem MO is computed, its associated TS can be

easily derived. At time ti, MO computes total shares xMO
i it targets to execute within

[ti, ti+1). TS will submit all xMO
i shares as limit order: yTSi = xMO

i . Whatever is left

unexecuted at ti+1− will be submitted as a market order of size (yi−1TS − li) ∧ 0.

Since actual price is a continuous process: Pti+1− = Pti+!
, submitting the market order
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at ti+1− is equivalent to submitting it at ti+1. In summary, TS follows the rules:

1. For i = 0: xTSi = 0, yTSi = xMO
i ;

2. For i = 1, 2, ..., n− 2: xTSi = (yi−1TS − li) ∧ 0, yTSi = xMO
i ;

3. For i = n− 1: xTSi = xMO
i .

In the following, we will start with a specific execution order and understand trad-

ing behaviors for ML, MO and TS. Then we will present the aggregated comparison

result for all 1210 test samples. In the end, we will focus on ML and analyse its

trading behavior under different market dynamics.

In terms of computation time, it takes around three days to run the test with

aforementioned resolution of 11×11×11×11 using a computer cluster with 30 CPUs.

The majority of computation time will be spent in the training process. Once value

functions are computed, decisions can be computed much more quickly.

4.4.4.1 One Test Sample

Assume two execution orders of trading 259442 shares (POV=5%) of AAPL from

10:00am to 11:00am on 09/11/2012. One execution order is for buying, the other for

selling. The market impact scale is set as 50 bps and the risk averse level is determined

by setting r0 = 125. Figure 13 plots the trading paths for the three strategies.

The five plots on the left focus on ML, while the one on the right focus on MO

and TS. The first left plot depicts mid quote Pi and spread si for i = 0, 1, ..., 59.

The stock price movement for this particular sample has a V shape with the lowest

price achieved around the 21st minute. The second plot depicts the eligible liquidity

for both a buy limit order and a sell limit order . Note that the eligible liquidity

often takes zero values and eligible liquidity for buy and sell orders are negatively

correlated. For example, the liquidity for the sell order between i = 2 and i = 7 is

almost zero while the liquidity for the buy order is much larger. This suggests that
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Figure 13: Trading paths for sample orders with mis=50 bps, POV=5% and r0 = 125
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there is an order flow imbalance with selling activities outweighs buying activities,

which is consistent with the price drop observed in the first left plot during [t2, t7]. The

third and fourth plots depict the limit orders yML
i and market orders xML

i submitted

during this hour. The fifth left plot records the number of remaining shares zML
i .

The first plot on the right is a copy of the price movement that appears in the first

left plot. We do not plot the spread as it is not used in the decision making of

MO and TS. The second and third plots on the right depict market orders xMO
i and

remaining shares zMO
i for MO. The fourth plot on the right depicts both market

and limit orders xTSi , yTSi for only the buy order using TS while the fifth right plot

records the remaining shares zTSi for both buy and sell orders. We omit depicting the

market/limit orders for the sell order using TS in the fourth right plot as they are

similar to buy order case.

Figure 13 reveals a few key properties of ML and its difference from the other

two strategies.

First, all three strategies are front loaded, such that there is more trading volume

in the beginning. This is a natural result of the arrival price benchmark. However,

ML trades more slowly than the other two strategies; while most of the orders done

with MO and TS are complete by t20, ML has about a quarter of the total shares left

at time t20. By trading slower, ML is able to take advantage of potential future limit

order fills at a better price level. This is clearly illustrated by looking at limit orders

submission yML
i during [t18, t50], where limit orders are submitted whenever spread si

is large, particularly for the sell order. However, ML needs to balance this benefit

with the timing risk of slow trading and the execution risk associated with leaving a

large unexecuted quantity till the end. This balance is reflected in the increased limit

order submission yML
i after t45.

Second, unlike MO and TS, for the relatively small order (POV=5%), market

orders are playing only complementary roles. Market orders xML
i are not submitted
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until the last ten minutes, and only in small quantities. Limit orders are used pre-

dominantly to execute majority of the order. However, this is not the case for larger

orders as they are constrained by the amount of eligible liquidity li available to fill

the limit orders. Instead larger orders need to rely on market orders.

Third, all three strategies are “aggressive-in-the-money”(AIM), which means that

whenever the trader outperforms (for a buy problem, it means small slippage), the

adaptive strategy tends to trade more aggressively to reduce future risk10. This can

be illustrated by comparing buy and sell orders. Note that the stock price is on a

downward trend until t21. When the benchmark is the arrival price, a buy order will

outperform a sell order in a downward price trend. This results in faster trading for

buy orders than sell orders. For example, in the first 20 minutes, larger limit orders

yML
i are submitted in ML and larger market orders are submitted in xMO

i for buy

orders than sell orders.

Table 15: Trading slippages for sample orders with mis=50 bps, POV=5% and
r0 = 125

strategy buy sell
ML -20.766 27.723
MO -14.618 49.070
TS -24.232 43.784

The actual slippage performance for this sample is listed in Table 15. Comparing

the average slippage of buy and sell orders, ML outperforms MO, and MO out-

performs TS. Actually, this is also the case for the risk-adjusted cost for aggregated

tests, as shown in the following section.
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Figure 14: Sample objective values r0E[I] + E[I2]
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Figure 15: Pseudo efficient frontier
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4.4.5 Aggregated Performance

Figure 14 and Figure 15 present the aggregated performance of ML, MO and TS

based on 1210 samples from 07/01/2013-12/31/2013. We choose two market impact

scales, i.e. 50 bps and 100 bps and two POV rates, i.e. 10% and 20% for presentation

purposes. Figure 14 presents the sample linear-quadratic cost r0E[I] + E[I2] for dif-

ferent values of r0 ∈ (−75,−50, ..., 175). Figure 15 presents the same result through

a scatter plot to highlight the mean-risk (i.e. (Stdev[I(r0)],E[I(r0)])) trade-offs.

Both figures suggest that ML consistently outperforms the other two strategies.

Theoretically, if our model can accurately describes market dynamics(such as the

distribution of eligible liquidity), ML should always outperform MO and TS as the

action spaces for the latter two strategies are subsets of the action space of ML.

However, in practice, certain assumptions have to be made to simplify modeling.

The potential of ML may be greatly undermined when our assumption significantly

deviates from market reality, which often leads to poor performance in out-of-sample

test based on real market data. This is particularly problematic if market dynamics

is not stationary and goes through regime-switching process between training period

and testing period. The fact that ML outperforms MO consistently even under

conservative eligible liquidity assumptions suggests the potential advantage of ML is

significant enough to overcome any shortcomings in accurate representation of market

dynamics.

The advantage of ML over MO and TS is more significant for large orders (POV),

and under the assumption of a large market impact scale. When mis is large, ML can

save execution costs by submitting more limit orders to save on market impact. From

the perspective of order size, large POV reflects increased trading difficulty in both

10This can be interpreted through the value of ri: a small slippage by time ti implies a small value
of ri. Since ri plays the reverse role of risk aversion factor, a small ri implies more risk taking for
future trading. Details of this analysis can be found in Chapter 2.
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market and limit orders. Specifically, when POV is large, market impact factor eta

will be increased, which increases the difficulty of trading through market orders. At

the same time, the proportion of shares filled through limit orders will be decreased,

which increases the difficulty of trading through limit orders. The former factor will

prompt ML to use fewer market orders while the latter factor will result in fewer limit

orders submission as well. The fact that ML has a larger advantage with larger POV

orders suggests that the increment in market impact factor plays a more dominant

role than the decrease in the percentage of limit order fills.

4.4.6 Trading Patterns of ML

In this section, we will focus on ML and study its submission of market and limit or-

ders under different market settings, including order size, risk aversion level and mar-

ket impact scale. We achieve this by plotting the average trading curves of {yML
i }59

i=0,

{xML
i }59

i=0 and {zML
i }59

i=0 over 1210 sample paths. The result is presented in Figure

16.

We use the following parameters as basic settings: r0 = 50 bps, market impact

scale=50 bps and POV=30%. Next we adjust one variable (either r0, mis or POV)

at a time while fixing the other two, and compare the resulting average trading paths

with the average trading paths in the basic setting. Specifically, the three left plots

in Figure 16 illustrate a comparison between different risk aversion levels: r0 = 50

vs r0 = 150. The three middle plots compare different mis assumptions: mis=50 bps

vs. mis=100 bps. The three right plots compare a large order(POV=30%) vs a small

order(POV=5%). The average paths for the basic setting are represented by blue

lines in all three groups of plots.

Let’s start with the three left plots. When r0 increases from r0 = 50 to r0 = 150,

ML(150) becomes less risk averse and trades slower (see the third left plot for zi).
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Figure 16: Average trading paths
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This is because in the beginning, it submits smaller limit orders, while maintain-

ing the same size of market orders as in the r0 = 50 case. Once ML(150) realize

submitting limit order can do a good enough job (i.e. z1(150) = z1(50)), ML(150)

immediately switches to a more gradual approach by significantly cutting down on

market order submission and focusing more on submitting limit orders. Until t11,

ML(150) submits more limit orders than ML(50), but fewer market orders. The

coordination allows ML(150) to trade slower than ML(50), which allows it more

flexibility to take advantage of future price and spread fluctuations.

Now, lets look at the middle three plots, where mis increases from 50 bps to 100

bps. We can interpret mis=50bps as the setting for a liquid stock while mis=100bps

is the setting for an illiqid stock. Increasing market impact has similar effects as

increasing r0. ML trades illiquid stocks slower with more focus on limit orders to

save market impact, particularly in the beginning. The submission of market order

speeds up only around t10.

For the three right plots, the order size is decreased from POV=30% to POV=5%.

Due to increased fill probability for limit orders, ML posts around 95% of the small

order as limit order at t0. The majority of the small order is executed through limit

orders. Similarly to the trading example we analyzed in Section 4.4.4.1, market orders

play only a complimentary role in this case, which are not used between t15 and t52.

Interestingly, the trading speed for the small order slows down significantly between

t30 and t50 compared with the speed for the large order (see the third right plot).

As mentioned in Section 4.4.4.1, this is because ML would like to take advantage of

potential price and spread functions for future trading. Therefore, it slows down its

trading in the middle of the hour and only picks up activity at the end. This flexibility

of leaving a proportion of shares till the end is a luxury only small orders can enjoy.

This is because small orders can fall back on the fact that there is a plentiful supply of

liquidity that can be used to fill limit orders at the end of the hour without resorting
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to market orders to complete the parent order.

These analyses of the adaptive trading patterns under different market dynamics

reveal the sophistication of the optimal strategies that combine market and limit or-

ders together. This complexity is achieved by recognizing the conflicts between differ-

ent market dynamic risks, and modeling them in a dynamic programming framework

that optimize the conflict balance in a systematic way.

4.4.7 Extension

4.4.7.1 Framework Extension

One of the major advantages of our model is its flexibility to be extended to fit various

assumptions or preferences.

First, rather than using the arrival price to measure execution cost, we can use

other price benchmarks, such as Volume Weighted Average Price (VWAP), Time

Weighted Average Price (TWAP) and Close Price, etc. For example, Chapter 3

of this thesis uses a similar framework to solve a scheduling problem with VWAP

benchmarks. It can be combined with this chapter to provide a VWAP trading

algorithm that submits both market and limit orders.

Second, in this chapter, we only submit limit orders at one price level, which is

the top of the limit order book on the bid side. In practice, optimal order placement

models (OOPM) often seek liquidity among multiple levels of the order book. Orders

submitted on top of the book often have better fill probability while orders submitted

deeper in the book (i.e. at price levels lower than the bid price) have better price

improvement and less adverse selection effects from trading against informed market

participants from the other side. OOPM’s main job is to find the optimal balance

between the execution risk and the price improvement among different limit prices.

Our framework can be easily extended to problems where limit buy orders can be

submitted at multiple levels at or below the bid price, and it achieves the same trade-

offs OOPM tries to balance. In this case, the eligible liquidity vector ~li = (l0i , l
1
i , ..., l

m
i )
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can be defined similarly for m+ 1 different price levels. For example, l0i is the eligible

sell liquidity submitted at or below Pi− 1
2
si, which is the same as fore-mentioned li. l

1
i

is the sell liquidity submitted at or below the next price level right below Pi− 1
2
si,etc.

By construction, l0i ≥ l1i ≥ · · · ≥ lmi , which captures the execution risk increment as

we move deeper into the order book.

Third, a lot of market dynamic risks in this chapter are modeled using simple

assumptions. However, the model we derived can be easily extended to incorporate

more sophisticated assumptions that better fit market reality. For example, the lin-

ear temporary market impact can be replaced by nonlinear market impact models.

One such nonlinear model can be found in appendix of Chapter 2 where market im-

pact consists of permanent market impact and instantaneous impact with exponential

decay. Impact model (119) can be considered its special case where the permanent im-

pact is zero and instantaneous impact decays immediately. As illustrated in Chapter

2, the addition of permanent impact does not add any extra computation complexity

to the problem. However, modeling exponential decay of instantaneous impact re-

quires adding an extra dimension to the state variable which captures the cumulative

decayed instantaneous impact from all previous trading activities.

Another example of the ways in which our model could be made more sophisticated

is to relax the assumption that eligible liquidities li(i = 0, 1, ..., n−1) are independent.

In fact, they are often positively autocorrelated due to short term elasticity of order

flow imbalance. To include the autocorrelation of li, we just need to add previous

eligible liquidity levels li−1, li−2, ... into the state space.

4.4.7.2 Training for Value Functions

Once the Bellman equations (134)-(138) are derived, the optimal trading decisions

(x∗i (Si), y
∗
i (Si)) are dictated by value functions Ji(Si) for i = 0, 1, ..., n − 1. There

are two ways to solve value functions. One way, which is the one we used in the
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numerical section, is to use backward induction. Under the this approach, Jn−1 of the

last period will be computed first according to (134), and then use (137) recursively

to compute Jn−2,Jn−3,...,J0. This is a conceptually easy and robust approach, and

it is guaranteed to be optimal. However, it suffers the curse of dimensionality for

high dimensional state space or action space. In our problem, the state space is four

dimensions while the action space is two dimensions. Both of them can be tackled

through backward induction a under decent discretization resolution.

Another approach, which has gained more popularity over the past two decades, is

through forward prorogation. This is often used in the approximate dynamic program-

ming (ADP)/reinforcment learning framework(RL)(see [42],[35],[7]). In ADP/RL,

value functions Ji(Si) for all i = 0, 1, ..., n− 1 are first given an initial approximation.

Once the sample exogenous data (such as price e0, spread s0 and eligible liquidity l−1

in our problem) is fed into the system for the initial period t = t0, suboptimal deci-

sions (x0, y0) are computed through (138), based on the approximated value functions,

which leads to new exogenous information flow (e1, s1, l0) and new decision making

(x1,y1) for the next period. The process of observing new information flow and then

making decisions will be repeated until time tn−1 when the last trade is decided. The

sample observed costs (133) will be collected at the end of the trading horizon T to

update value function approximations through temporal difference method(TD(λ)).

Under certain assumptions (such as each state is visited infinitely often), the approx-

imated value functions will converge to the true value functions as the number of

training samples goes to infinity. The curse of dimensionality is solved as the values

functions are often approximated through some parametric forms. An update to a

state’s value often leads to an update of the values of many more other states. This

benefit is of particular importance if we want to model a more sophisticated trading

problem, such as submitting limit orders at multiple price levels, which will result in

higher dimensions of state and action spaces.
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Besides significant computation benefits, ADP/RL does not require an explicit

description of the statistical properties of the exogenous information. The actual

market data is used to train the model. Unlike statistical learning, the output of the

training in ADP/RL is not a descriptive inference of the market variable distribution,

but direct trading decisions. This allows the ADP/RL framework to adjust naturally

when the distribution of exogenous variables changes over time. The fact that we do

not need to estimate the distribution of exogenous variables is particularly important

for our problem as the eligible liquidity is not easily observable. Under the ADP/RL

framework, the fill result of submitted limit orders will be used implicitly to update

the fill liquidity levels.

Given so many advantages of ADP/RL, one of the biggest difficulties in apply-

ing this technique is finding an appropriate parametric form to approximate value

functions. This is often decided on a case by case basis as there are no universal

parametric forms that apply to all problems. We will leave this part for future re-

search. Unlike in the computer science community where state variables and cost

functions are constructed heuristically based on expected behavior(see [43]), the op-

erations research community believes that rigorously defined state variable and cost

functions are important for robust performance in ADP problems(see [35]). The risk

diversification framework we built so far, including the state variable, cost function

and Bellman equations provides an analytical context where future researchers can

begin.

4.5 Conclusion

This chapter challenges the common practice in the algorithmic trading industry

that separates trade scheduling and optimal order placement model(OOPM). Trade

scheduling is about finding an optimal balance between liquidity risk and timing risk,

while the optimal order placement model is about the balance between liquidity risk
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and execution risk. Instead of treating these conflicts separately, we designed a uni-

fied approach by making sequential trading decisions through both market and limit

orders. The unified approach is capable of sophisticated trading patterns adaptable

to different market dynamics. Out-of-sample numerical tests show that the unified

approach can consistently outperform the strategy that only submits market orders

or the strategy that treats scheduling and order placement separately.

One of the major contributions of this chapter is to present an adaptive discrete

time framework that can be used to facilitate optimal trading decisions in a mean-

variance framework. We start by recognizing three major market dynamics risks, then

use simplified assumptions to model these characteristics, and eventually integrate

them into a dynamic programming problem. The real market dynamics is much

more sophisticated than what we assume here. However, the power of this framework

is its convenience to extend to various more complicated market assumptions.

Using this framework, the model can be easily extended by including multiple

levels of limit order submission, more sophisticated market impact models (for both

market and limit orders) and autocorrelation of eligible liquidity flow etc. The frame-

work can be used to solve optimal trading problems with other price benchmark, such

as volume weighted average price(VWAP).

This chapter, or the framework itself, can also be used as a starting point to

build adaptive dynamic programming/reinforcement learning algorithms that can

solve trading problems with higher dimensions. In a world where trading is increas-

ingly implemented in a systematic way, the ADP/RL approach shall be an important

direction for future research.
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APPENDIX A

APPENDIX FOR CHAPTER II

A.1 Deterministic strategy

Let the deterministic strategy π̂ = (ŷ0, ŷ1, ..., ŷN−1) which solves D(κ). D(κ) can be

simplified as a convex problem with convex constraint:

min
Π̃

N−1∑
i=0

y2
i + α

N−1∑
i=1

x2
i

where α > 0 and Π̃ is defined as in (20).

The optimal solution (ŷ0, ŷ1, ..., ŷN−1) satisfies

ŷ0 = β,

ŷ1 + αx̂1 = β,

ŷ2 + α(x̂1 + X̂2) = β,

...

ŷN−1 + α(x̂1 + · · ·+ x̂N−1) = β,

or equivalently,

ŷi + α

i∑
j=1

x̂j = β, i = 0, 1, ..., N − 1, (143)

where 2β is the Lagrange multiplier. From (143), one has

ŷi = ŷi+1 + α
N−1∑
j=i+1

ŷj, i = 0, 1, ..., N − 2,

which can be solved recursively. For example, by setting yN−1 = 1, one has

yN−2 = α + 1, yN−3 = α2 + 3α + 1,

yN−4 = α3 + 5α2 + 6α + 1, yN−5 = α4 + 7α3 + 15α2 + 10α + 1
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Then all resulting yi, i = 0, 1, ..., N − 1 are scaled through ŷi = 1∑N−1
i=0 yi

yi.

A.2 Extension to resilient market impact

The main model presented in this chapter is based on the simple assumption of tem-

porary market impact, where the increased price due to our trading is assumed to

recover immediately before the next time period. However, in reality, it takes time

for the new orders to come in to fill up the order book gap again. Furthermore, as

pointed in Obizhaeva and Wang[2006], the above model has the conceptual difficulty

that the price impacts of two discrete trades is independent of the time interval be-

tween the trades. For example, two buy orders close to each other in time versus

far apart should generate different price dynamics, while in our assumption they lead

to the same price impact. Hence the temporary impact alone will be insufficient to

model the complicated market microstructure. However, our approach of using linear

quadratic formulations to solve mean variance problem, as well as introducing the

implied ratio as a state variable provides a general framework that works readily with

other more complicated market impact models. In this appendix, we give an example

by following the assumption in Obizhaeva and Wang[2006], where they introduced an

extra lag variable(i.e. resilient market impact) between time interval and solved the

misspecification mentioned above. However, they only provided deterministic strate-

gies for their risk aversion problem. In the following, we will give a dynamic trading

strategy for a market with permanent and resilient impacts, which is a more general

assumption than our temporary market impact.

We assume three factors determining security price. The fundamental price St is

governed by both outside supply/demand and our trading decisions. We model the

latter one as the permanent impact we impose to the price and modify (1) as

Sti = Sa + σSaBti + γyi for i = 0, 1, ..., N − 1 (144)
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where γ is the permanent impact factor with units ($/share)/share and Sa is the

arrival price(in our former model, S0 is the arrival price). With this form, each y

units we buy will lift up the price per share by γy, regardless of the time we take to

buy them.

A third factor is the resilient market impact. At time t0 = 0, if we decide to

buy y0 shares, our trading action will instantaneously lift up the price Sa to S̃0 =

Sa + γy0 + Nη0y0 with η0y0 representing the instantaneous temporary impact. Here

η0 ≥ 0 with unit ($/share)/(share/time). Because of our buying activity, more sell

orders will be attracted to the limit order book and gradually lower down the ask

price. If we do not continue trading further for the remaining trading horizon, we

assume the price will decrease over time with a limiting average price only reflecting

the permanent impact: ES̃∞ = Sa + γy0. The price difference between t = 0 and

t =∞ is Nη0y0. We assume the security price converges to its limit exponentially:

S̃t = Sa + γy0 +Nη0y0e
−ρt

= St0 +Nη0y0e
−ρt

where the resilient factor ρ ≥ 0 is a measure of the convergence speed. In this ap-

pendix, we assume the resilient factor is a constant. However, it can be relaxed to

be a time varying parameter. If ρ = ∞, this is the framework that contains both

permanent and temporary impact. On the other side of the spectrum, if ρ = 0, then

only the permanent impact (γ +Nη0)y0 are considered.

We can easily expand the above model from a single trade to multiple trades:

S̃ti = Sti +
i∑

j=0

Nηjyje
−ρ(ti−tj).

Therefore, the execution price results from acombination of fundamental price process

and resilient market impacts from all past trades. We can define the differences
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between execution price S̃ti and fundamental price Sti explicitly:

Di+1 = S̃ti − Sti

=
i∑

j=0

Nηjyje
−ρ(ti−tj) for i = 0, 1, ..., N − 1.

Di if Fti−1
-measurable, and records the resilient impact from all past trades before ti.

If we define D0 = 0, Di has the following recursive form:

Di+1 = Die
−ρ(ti−ti−1) +Nηiyi for i = 0, 1, ..., N − 1.

Following similar computation, the implementation shortfall of a given feasible strat-

egy π = {y0, y1, ..., yN−1} is

IN =
N−1∑
i=0

[
(Nηi +

γ

2
)y2
i +Die

−ρ(ti−ti−1)yi

]
+

N−1∑
i=1

σSa(Bti −Bti−1
)xi +

γ

2
X2

=
N−1∑
i=0

[
(Nηi +

γ

2
)y2
i +Die

−ρ(ti−ti−1)yi + σSa(Bti+1
−Bti)xi+1

]
+
γ

2
X2 (145)

by assuming BtN = BtN−1
. The last term γ

2
X2 in (145) is independent of strategy π

and its removal does not change the derivation of optimal trading strategy. Scale the

remaining shortfall by the product of order’s initial market value and price change’s

volatility:

ĨN =
IN − γ

2
X2

XSaσ
. (146)

For i = 0, 1, ..., N − 1, let

ỹi = yi/X, x̃i = xi/X,

γ̃ = γX/(Saσ), η̃i = ηiX/(Saσ),

D̃i = Di/(Saσ)

Notice that under these notifications, xi and Di still preserve the same recursive

formulation. For i = 0, 1, ..., N − 1:

x̃i+1 = x̃i − ỹi, x̃0 = 1, (147)

D̃i+1 = D̃ie
−ρ(ti−ti−1) + η̃iỹi, D̃0 = 0. (148)
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Then the scaled implementation shortfall in (146) is

ĨN =
N−1∑
i=0

[
(Nη̃i +

γ̃

2
)ỹ2
i + D̃ie

−ρ(ti−ti−1)ỹi + (Bti+1
−Bti)x̃i+1

]
.

From now on, we will omit the tilde notation.

Similar as in Section 3, the mean variance problem (14) can be solved through a

family of (25), and the appropriate r∗0 can be determined using the similar methods

in Section 3.3. Therefore, the main task is to derive the Bellman backward induction

similar as (48).

First of all, the objective function of the (25) can be decomposed as

r0ĪN + Ī2
N =

N−1∑
i=0

{ri
[
(Nηi +

γ

2
)y2
i +Die

−ρ(ti−ti−1)yi + (Bti+1
−Bti)(xi − yi)

]
+
[
(Nηi +

γ

2
)y2
i +Die

−ρ(ti−ti−1)yi + (Bti+1
−Bti)(xi − yi)

]2

}

where ri is defined in a similar way as in (43): for i = 0, 1, ..., N − 2

ri+1 = ri + 2
[
(Nηi +

γ

2
)y2
i +Die

−ρ(ti−ti−1)yi + (Bti+1
−Bti)(xi − yi)

]
. (149)

Since the current execution price is influenced by all past trade’s resilient impact, we

should introduce Di as our state variable for dynamic programming. Noticed that

(xi, Di, ri) is Fti-measurable(more specifically, Xi and Di are Fti−1
-measurable while

ri is Fti-measurable), we use it as our state vector, which follows the transition rule

of (147)-(149).

The last time period’s decision yN−1(x,D, r) and value function VN−1(x,D, r) is

the similar as in (2.3.2) and (47):

y∗N−1(x,D, r) = x;

VN−1(x,D, r) = r
[
(NηN−1 +

γ

2
)x2 +De−ρ(tN−1−tN−2)x

]
+
[
(NηN−1 +

γ

2
)x2 +De−ρ(tN−1−tN−2)x

]2
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While for i = N − 2, N − 3, ..., 0 :

Vi(x,D, r) = min
0≤y≤x

{ci((x,D, r), y) + E[Vi+1(x− y,De−ρ(ti−ti−1) +Nηiy,

r + 2(Nηi +
γ

2
)y2 + 2De−ρ(ti−ti−1) + 2(Bti+1

−Bti)(x− y))|(x,D, r)]}

and yi(X,D, r) is the corresponding optimizer for the above minimization problem.
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APPENDIX B

APPENDIX FOR CHAPTER III

B.1 Derivation on (117)

The following steps derive (117) from (116):

arg min
∆vi

(n− i)(2n− 2i− 1)

6(n− i− 1)
E

[(
vi
vn−1

− Vi+1 + vi
Vn + vn−1

)2
∣∣∣∣∣(vi, Vi)

]

= arg min
∆vi

E

[(( vi
vn−1

− vi
Vn + vn−1

)
− Vi+1

Vn + vn−1

)2
∣∣∣∣∣(vi, Vi)

]

= arg min
∆vi

E

[(
vi
vn−1

· Vn
Vn + vn−1

− Vi+1

Vn + vn−1

)2
∣∣∣∣∣(vi, Vi)

]

= arg min
∆vi

[
E
[

V 2
n

(Vn + vn−1)2

∣∣∣∣Vi]( vi
vn−1

)2

− 2E
[

Vi+1Vn
(Vn + vn−1)2

∣∣∣∣Vi]( vi
vn−1

)]

Without boundary constraint, vi
vn−1

will take the minimum value at

E
[

Vi+1Vn
(Vn+vn−1)2

∣∣∣∣Vi]
E
[

V 2
n

(Vn+vn−1)2

∣∣∣∣Vi]
However, the trading decision ∆vi is bounded by 0 ≤ ∆vi ≤ vn−1−vi−1, furthermore,

note that vi
vn−1

= vi−1+∆vi
vn−1

, the optimal ∆v∗i should hence satisfy (117).

B.2 Stock-specific comparison with [11]

This section tests the same stocks used in [11], and compares the relative performance

of our adaptive strategy with theirs. The stock specific results are listed in Table 16,

where the second and third columns are copied from Table 6 of [11] with the same

measurement as (82).
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The classic strategy in [11] (second column) is exactly the same as the deter-

ministic strategy we used in (111), while [11] used (73) for their adaptive strategy

(third column), where future volumes ∆V̂j(j = i + 1, i + 2, ..., n) are derived using

econometric models(ARMA and SETAR). [11] used one year of data for 39 CAC40

stocks from 09/02/2003 to 08/30/2004. Unfortunately, we are not able to find intra-

day data for these stocks for the same time period. Instead, we collected 30 of these

stocks’ intraday data during 09/01/2012-08/31/2013. The market microstructure has

changed dramatically during the past ten years, and we are not able to match the de-

terministic strategies’ performances (second column and fifth column) for most stocks

(except those in bold characters in Table 16). Nonetheless, Table 16 presents the rel-

ative performance of adaptive strategies over deterministic strategies for these two

different data sets. This is illustrated in the fourth column (diff=
classic-dynamic

classic
)

and seventh column (diff=
MAE(0)-MAE(0.05)

MAE(0)
). The larger the value in these two

columns, the more adaptive strategies outperform deterministic strategy. To develop

a fair comparison, we based our test results (fifth column to seventh column) on a

frequency of 20 minutes, and a rolling training window of 20 days, which is consistent

with the setup in [11]. As shown in Table 16, using the measure of relative advan-

tage, our Adaptive(0.05) outperforms [11]’s adaptive strategy for 24 out of 30 stocks.

The aggregated relative advantage of 13.41% from Adaptive(0.05) over Adaptive(1) is

consistent with 14.7% observed in US stocks test(see Table 5), which is much higher

than 8.27% in [11]. Taking into account the differences in the data samples, it is fair

to claim that our adaptive strategies’ performance is comparable to the one used in

[11].

145



Table 16: Comparison of adaptive strategies’ relative advantage between [11]’s dy-
namic method and our Adaptive(e)

results from [11] results based on Adaptive(e)
sample data dates range 09/02/2003-08/30/2004 09/01/2012-08/31/2013

companies classic dynamic diff MAE(0) MAE(0.05) diff
ACCOR 10.47 11.21 -7.07% 5.72 4.84 15.40%

AIR LIQUIDE 8.01 8.18 -2.12% 4.31 3.50 18.92%
ALCATEL 13.36 10.79 19.24% 16.76 15.57 7.09%
ARCELOR 11.71 10.62 9.31% 8.67 7.22 16.72%

AXA 9.30 8.89 4.41% 6.69 5.20 22.33%
BNP PARIBAS 7.82 7.42 5.12% 8.03 6.76 15.80%

BOUYGUES 17.15 17.73 -3.38% 8.42 6.18 26.55%
CAP GEMINI 23.23 14.91 35.82% 5.33 4.54 14.91%
CARREFOUR 6.28 6.38 -1.59% 8.59 6.91 19.49%

CREDIT AGRICOLE 13.89 11.02 20.66% 13.67 10.52 23.06%
DANONE 5.48 5.31 3.10% 3.92 3.43 12.34%

EADS 19.47 14.04 27.89% 9.51 8.06 15.28%
L’OREAL 8.66 8.32 3.93% 5.17 4.38 15.26%
LAFARGE 10.76 10.75 0.09% 6.57 5.63 14.21%

LVMH 11.31 9.59 15.21% 5.39 4.37 18.81%
MICHELIN 15.41 15.13 1.82% 5.94 5.49 7.57%

PERNOD-RICARD 7.75 7.45 3.87% 3.99 3.64 8.99%
SAINT GOBAIN GOBAIN 9.79 9.52 2.76% 9.42 9.25 1.85%

SANOFI-AVENTIS 9.99 8.97 10.21% 4.78 4.48 6.45%
SCHNEIDER ELECTRIC 8.65 10.27 -18.73% 6.24 5.89 5.54%
SOCIETE GENERALE 6.99 6.17 11.73% 11.48 9.40 18.09%
SODEXHO ALLIANCE 12.33 11.82 4.14% 3.97 3.52 11.29%

STMICROELECTRONICS 9.06 7.68 15.23% 13.21 11.01 16.69%
SUEZ 9.68 9.08 6.20% 17.25 16.92 1.92%

THALES 9.59 10.27 -7.09% 5.87 4.86 17.31%
TOTAL 5.28 5.08 3.79% 4.06 3.61 11.19%

VEOLIA ENVIRON. 13.00 12.86 1.08% 9.17 8.21 10.50%
VINCI (EX.SGE) 7.74 7.55 2.45% 4.54 4.09 9.79%

VIVENDI UNIVERSAL 10.95 10.20 6.85% 5.56 4.94 11.19%
average 10.80 9.90 8.27% 7.66 6.64 13.41%
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B.3 Derivation of (84)

Proof. We show through induction that the following recursive equations in terms of

qi −Qi exist for i = 1, 2, ..., n:

qi −Qi =
i−1∑
j=0

[
− rj(qj −Qj) + (Pj+1 −Qj)(rj −Rj+1)

]
. (150)

When i = 1, notice that r0 = R1 = 1 and q0 = Q0 = 0:

q1 −Q1 = r0P1 −R1P1 = 0 = −r0(q0 −Q0) + (P1 −Q0)(r0 −R1).

Next assume (150) holds for i, then we prove it will also holds for i+ 1:

qi+1 −Qi+1

= [(1− ri)qi + riPi+1]− [(1−Ri+1)Qi +Ri+1Pi+1]

= (Pi+1 −Qi)(ri −Ri+1) + (1− ri)(qi −Qi)

= [−ri(qi −Qi) + (Pi+1 −Qi)(ri −Ri+1)] + (qi −Qi)

=
i∑

j=0

[
− rj(qj −Qj) + (Pj+1 −Qj)(rj −Rj+1)

]
.

Therefore, by induction, (150) holds for i = 1, 2, ..., n. Particularly, for i = n,

qn −Qn =
n−1∑
i=0

[
− ri(qi −Qi) + (Pi+1 −Qi)(ri −Ri+1)

]
(151)

(notice rn = 0) = −r0(q0 −Q0) +
n∑
i=1

[
(Pi −Qi−1)(ri−1 −Ri)− ri(qi −Qi)

]
=

n∑
i=1

ci.

B.4 Proof of Proposition 1

Proof. First, we derive (105):
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The term
∑n

j=i+1 cj in (104) can be decomposed into:

n∑
j=i+1

cj

=
n∑

j=i+1

[
(Pj −Qj−1)(rj−1 −Rj)− rj(qj −Qj)

]
= ri(qi −Qi) +

n−1∑
j=i

[
− rj(qj −Qj) + (Pj+1 −Qj)(rj −Rj+1)

]
= ri(qi −Qi) + (qn −Qn)− (qi −Qi)

= −(1− ri)(qi −Qi) + (qn −Qn)

= −(1− ri)(qi −Qi) +
i−1∑
j=0

∆vj
vn−1

Pj+1 −
i−1∑
j=0

∆Vj+1 + ∆vj
Vn + vn−1

Pj+1

+
n−1∑
j=i

∆vj
vn−1

Pj+1 −
n−1∑
j=i

∆Vj+1 + ∆vj
Vn + vn−1

Pj+1

= −(1− ri)(qi −Qi) +
(1− ri)vi
vn−1

qi −
Vi + (1− ri)vi
Vn + vn−1

Qi

+
n−1∑
j=i

∆vj
vn−1

(
Pi +

j+1∑
k=i+1

∆Pk

)
−

n−1∑
j=i

∆Vj+1 + ∆vj
Vn + vn−1

(
Pi +

j+1∑
k=i+1

∆Pk

)
= −(1− ri)(qi −Qi) +

(1− ri)vi
vn−1

qi −
Vi + (1− ri)vi
Vn + vn−1

Qi

+
(

1− (1− ri)vi
vn−1

)
Pi −

(
1− Vi + (1− ri)vi

Vn + vn−1

)
Pi

+
n∑

k=i+1

n−1∑
j=k−1

(
∆vj
vn−1

− ∆Vj+1 + ∆vj
Vn + vn−1

)
∆Pk

= −(1− ri)(qi −Qi) +
(1− ri)vi
vn−1

(qi − Pi)−
Vi + (1− ri)vi
Vn + vn−1

(Qi − Pi)

−
n−1∑
j=i

(
vj−1

vn−1

− Vj + vj−1

Vn + vn−1

)
∆Pj+1

= Ki(S
v
i )− UI

Similar as (86), the partial sum of Cj can be expressed as a function of the partial
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sum of cj as well:

Ji(S
v
i ) = E

[ n∑
j=i+1

Cj

∣∣∣∣Svi ]

= E
[
di

n∑
j=i+1

cj +

( n∑
j=i+1

cj

)2∣∣∣∣Svi ]
= E

[
di(Ki(S

v
i )− UI) +

(
Ki(S

v
i )− UI

)2
∣∣∣∣Svi ]

= diK(Svi ) +K2(Svi )− (di + 2K(Svi ))E[UI |Svi ] + E[U2
I |Svi ]

Secondly, we prove the simplification for optimal action (106) using the above

result. From (102),

∆v∗i = arg min
∆vi

[
Ci(Si,∆vi) + Ji(S

v
i )
]

= arg min
∆vi

[
di−1ci + c2

i + diK(Svi ) +K2(Svi )− (di + 2K(Svi ))E[UI |Svi ] + E[U2
I |Svi ]

]
In the following, we show that di−1ci + c2

i + diK(Svi ) +K2(Svi ) is independent of ∆vi.

Note that given Svi , qi and Qi are also known. Furthermore, (1 − ri)vi = vi−1 is

independent of ∆vi. Let’s take the first order derivative of di−1ci + c2
i + diK(Svi ) +

K2(Svi ) over ∆vi:

∂ci
∂∆vi

= − ∆vi
(vi−1 + ∆vi)2

(qi −Qi)

∂K(Svi )

∂∆vi
=

∆vi
(vi−1 + ∆vi)2

(qi −Qi)

∂di
∂∆vi

= −2
∆vi

(vi−1 + ∆vi)2
(qi −Qi)
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Therefore

∂

∂∆vi
[di−1ci + c2

i + diK(Svi ) +K2(Svi )]

= di−1
∂ci
∂∆vi

+ 2ci
∂ci
∂∆vi

+
∂di
∂∆vi

K(Svi ) + di
∂K(Svi )

∂∆vi
+ 2K(Svi )

∂K(Svi )

∂∆vi
(152)

= di−1
∂ci
∂∆vi

+ 2ci
∂ci
∂∆vi

+ 2K(Svi )
∂ci
∂∆vi

− di
∂ci
∂∆vi

− 2K(Svi )
∂ci
∂∆vi

(153)

= (di−1 + 2ci − di)
∂ci
∂∆vi

(154)

= 0 (155)

Since the first order derivative of di−1ci + c2
i + diK(Svi ) + K2(Svi ) equals to zero for

any values of ∆vi, it is independent of ∆vi. Therefore,

∆v∗i = arg min
∆vi

[
− (di + 2K(Svi ))E[UI |Svi ] + E[U2

I |Svi ]
]

B.5 Proof of Proposition 1

Proof. First, the two assumptions in Proposition 1 make the following three condi-

tional expectations have value zero: For j ≥ i, note that σ(Svi ) is a sub-σ-field of Fj,

using the tower property:

E
[( vj−1

vn−1

− Vj + vj−1

Vn + vn−1

)
∆Pj+1

∣∣∣∣Svi ]
= E

[
E
[( vj−1

vn−1

− Vj + vj−1

Vn + vn−1

)∣∣∣∣Fj]E[∆Pj+1

∣∣∣∣Fj]
∣∣∣∣∣Svi
]

= 0 (156)

The first equation comes from the second assumption, while the second equation

comes from the first assumption. Similarly, the cross term UI also has zero conditional

expectation:

E
[

[Vi + (1− ri)vi](Qi − Pi)
Vn + vn−1

( vj−1

vn−1

− Vj + vj−1

Vn + vn−1

)
∆Pj+1

∣∣∣∣Svi ] = 0; (157)
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For k > j ≥ i, denote Ajk =
(
vj−1

vn−1
− Vj+vj−1

Vn+vn−1

)(
vk−1

vn−1
− Vk+vk−1

Vn+vn−1

)
, then

E
[( vj−1

vn−1

− Vj + vj−1

Vn + vn−1

)(vk−1

vn−1

− Vk + vk−1

Vn + vn−1

)
∆Pj+1∆Pk+1

∣∣∣∣Svi ]
= E

[
E
[
Ajk∆Pj+1∆Pk+1

∣∣∣∣Fk]
∣∣∣∣∣Svi
]

= E

[
E
[
Ajk∆Pj+1

∣∣∣∣Fk]E[Pk+1

∣∣∣∣Fk]
∣∣∣∣∣Svi
]

= 0 (158)

Secondly, (156)-(158) can be used to simplify −(di + 2K(Svi ))E[UI |Svi ] + E[U2
I |Svi ]:

−(di + 2K(Svi ))E[UI |Svi ] + E[U2
I |Svi ]

= −(di + 2K(Svi ))[Vi + (1− ri)vi](Qi − Pi)E
[ 1

Vn + vn−1

∣∣∣Svi ]
+[Vi + (1− ri)vi]2(Qi − Pi)2E

[ 1

(Vn + vn−1)2

∣∣∣Svi ]
+E

[(
vi−1

vn−1

− Vi + vi−1

Vn + vn−1

)2

∆P 2
i+1

∣∣∣∣∣Svi
]

+
n−1∑
j=i+1

E

[(
vj−1

vn−1

− Vj + vj−1

Vn + vn−1

)2

∆P 2
j+1

∣∣∣∣∣Svi
]

(159)

According to (106), −(di + 2K(Svi ))E[UI |Svi ] + E[U2
I |Svi ] is a function of both Si and

∆vi. However, it can be shown only the last item in (159) depends on ∆vi. Here is

the reason:

1. (152) and (153) show that (di + 2K(Svi )) is independent of ∆vi;

2. (1− ri)vi = vi−1 only depends on Si;

3. (90) and (91) show that qi −Qi depends only on Si;

4. since the volume process is an exogenous stochastic process independent with

our trading decision,
∑n

j=i+1 ∆Vj depends on Svi only through Vi, therefore

E
[

1
Vn+vn−1

∣∣∣Svi ] = E
[

1
Vn+vn−1

∣∣∣Vi] is independent with ∆vi. Similar argument can
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be used to get

E
[( vi−1

vn−1

− Vi + vi−1

Vn + vn−1

)2

∆P 2
i+1

∣∣∣Svi ] = E
[( vi−1

vn−1

− Vi + vi−1

Vn + vn−1

)2

∆P 2
i+1

∣∣∣(Vi, vi−1)
]

As a result,

∆v∗i = arg min
∆vi

n−1∑
j=i+1

E

[(
vj−1

vn−1

− Vj + vj−1

Vn + vn−1

)2

∆P 2
j+1

∣∣∣∣∣Svi
]
.

B.6 Proof of Proposition 1

Proof. First, we prove the following property: for random variables X, Y, Z, if Z is

independent of both X and Y , then for a continuous function f :

E[f(X,Z)|X, Y ] = E[f(X,Z)|X] (160)

Define h(X, Y ) := E[f(X,Z)|X, Y ]. For x, y ∈ R:

h(x, y) = E[f(X,Z)|X = x, Y = y] = E[f(x, Z)]

where the second equation is because Z is independent of σ(X, Y ). This implies

h(x, y) does not depend on y. We hence will write h(x, y) as h(x). Then (160) is

proved based on tower property:

E[f(X,Z)|X] = E
[
E[f(X,Z)|X, Y ]

∣∣∣X] = E[h(X)|X] = h(X) = E[f(X,Z)|X, Y ].

Next we prove Proposition 1 through induction. For i = n− 2, according to (109):

∆v∗n−2(Sn−2)

= arg min
∆vn−2

E

[(
vn−2

vn−1

− Vn−1 + vn−2

Vn + vn−1

)2

∆P 2
n

∣∣∣∣∣Svn−2

]

= arg min
∆vn−2

E

[(
vn−2

vn−1

− Vn−2 + ∆Vn−1 + vn−2

Vn−2 + ∆Vn−1 + ∆Vn + vn−1

)2

∆P 2
n

∣∣∣∣∣
vn−2, Vn−2, dn−2, qn−2, Qn−2, Pn−2, rn−2

]
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Define X = (vn−2, Vn−2), Y = (dn−2, qn−2, Qn−2, Pn−2, rn−2), Z = (∆Vn−1,∆Vn,∆Pn)

and function f(X,Z) =

(
vn−2

vn−1
− Vn−2+∆Vn−1+vn−2

Vn−2+∆Vn−1+∆Vn+vn−1

)2

∆P 2
n . Since vn−1 > 0 and

Vn−2 + ∆Vn−1 + ∆Vn + vn−1 > 0, f(X,Z) is a continuous function. Applying the

independent assumption of (∆Vn−1,∆Vn,∆Pn) and Svn−2 = (X, Y ) into (160), we

have

∆v∗n−2(Sn−2) = arg min
∆vn−2

E

[(
vn−2

vn−1

− Vn−1 + vn−2

Vn + vn−1

)2

∆P 2
n

∣∣∣∣∣vn−2, Vn−2

]

which is equivalent as ∆v∗n−2(Sn−2) = ∆v∗n−2(vn−3, Vn−2). Therefore we proved (110)

for i = n− 2.

Next assume (110) is true for j = i + 1, ..., n − 2, i.e. ∆v∗j (Sj) = ∆v∗j (vj−1, Vj),

write v∗j (vj−1, Vj) = vj−1 + ∆v∗j (vj−1, Vj), then

∆v∗i (Si) = arg min
∆vi

E

[(
vi
vn−1

− Vi+1 + vi
Vn + vn−1

)2

∆P 2
i+2

+
n−1∑
j=i+1

(
v∗j (vj−1, Vj)

vn−1

−
Vj+1 + v∗j (vj−1, Vj)

Vn + vn−1

)2

∆P 2
j+2

∣∣∣∣∣Svi
]

(161)

Note that v∗i+1(vi, Vi+1) is a function of vi, Vi,∆Vi+1. Since

v∗i+2(vi+1, Vi+2) = v∗i+2(v∗i+1(vi, Vi+1), Vi+2),

vi+2 depends on vi, Vi,∆Vi+1,∆Vi+2. Similarly, (161) is a function of vi, Vi, {∆Vj}nj=i+1

and {∆Vj}nj=i+2. DefineX = (vi, Vi), Y = (di, qi, Qi, Pi, ri), and Z = {∆Vj}nj=i+1, {∆Vj}nj=i+2.

(110) is true according to (160) and the independence assumption of Z and Svi .

153



APPENDIX C

APPENDIX FOR CHAPTER III

C.1 Slippage Decomposition

This section shows how (123) can be equivalently decomposed to (124)-(126).

I

:=
n−1∑
i=0

[(
Pi +

1

2
si + fm + nηxi

)
xi +

(
Pi −

1

2
si − f l

)
(yi ∧ li)

]
−XP0

= (note Pi = P0 +
i∑

j=0

εj and (122))

=
n−1∑
i=0

[( i∑
j=0

εj +
1

2
si + fm + nηxi

)
xi +

( i∑
j=0

εj −
1

2
si − f l

)
(yi ∧ li)

]

=
n−1∑
i=0

[
εi

n−1∑
j=i

(xj + yj ∧ lj) +
(1

2
si + fm + nηxi

)
xi +

(
− 1

2
si − f l

)
(yi ∧ li)

]

=
n−1∑
i=0

[
ziεi +

(1

2
si + fm + nηxi

)
xi +

(
− 1

2
si − f l

)
(yi ∧ li)

]

=
n−1∑
i=0

ci
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