
Dynamic Scheduling of Multiclass
Queueing Networks

A Thesis
Presented to

The Academic Faculty

by

Caiwei Li

In Partial Fulfillment
of the Requirements for the Degree of

Doctor of Philosophy in Industrial Engineering

Georgia Institute of Technology
November 2001

Copyright c© 2001 by Caiwei Li

Dynamic Scheduling of Multiclass
Queueing Networks

Approved:

Prof. Jiangang Dai, Chairman

Prof. Leon McGinnis

Prof. Richard Serfozo

Prof. John Vande Vate

Prof. Yang Wang

Date Approved

Acknowledgements

I would like to express my sincere gratitude to my advisor, Professor Jim Dai for

his direction, support and feedback. His genius, patience and deep insights make

it a pleasure to work with him. I also acknowledge the help and support of the

other members of my committee, Professors Leon McGinnis, Richard Serfozo, John

Vande Vate and Yang Wang. I would also thank the Virtual Factory Lab for providing

computing resources during my four years research. Particularly, I thank Dr. Douglas

Bodner for his support. My appreciation goes out to the entire school of ISyE at

Georgia Tech, students and faculty, for their support and help. I would especially

like to thank Ki-Seok Choi for his willingness to help me. In particular, I owe much

to Zheng Wang who had the substantial tasks of proof-reading a draft of this thesis.

On a more personal level, I would like to thank my friends, Jianbin Dai and Sheng

Liu, for their help during my study at Georgia Tech.

I would like to thank the National Science Foundation, which has supported my

research through grants DMI-9457336 and DMI-9813345. I also thank Brooks Au-

tomations Inc., AutoSimulations division for donating AutoSched AP software and

providing technical support. I can hardly imagine how this research could be done

without the AutoSched AP software.

Finally, I thank my family for their love and support throughout. Particularly, I

thank my wife Miao Liu for her continuous support and encouragement.

iii

Contents

Acknowledgements iii

List of Tables vii

List of Figures viii

Summary ix

1 Introduction 1

1.1 Motivation of the Model . 1

1.2 Literature Review . 4

1.3 Contributions . 5

1.4 Outline of the Thesis . 8

I Standard Multiclass Queueing Networks 10

2 Stochastic Processing Networks 11

2.1 Multiclass Queueing Network Models 11

2.2 Primitive Processes . 12

3 Dispatch Policies 14

3.1 Discrete Proportional Processor Sharing 14

iv

3.2 Largest Weighted Upstream Unbalanced 18

3.3 Largest Weighted Total Unbalanced Policies 19

4 Dynamics of Multiclass Queueing Networks and Fluid Models 20

4.1 Queueing Networks Equations . 20

4.2 Rate Stability . 22

4.3 Fluid Models and Fluid Limits . 23

5 Stability of Dispatch Policies 26

5.1 Stability of DPPS Policies . 26

5.1.1 Proofs of Lemmas 5.1.1-5.1.4 32

5.1.2 Some Additional Lemmas . 42

5.2 Stability of LWUU Policies . 45

5.3 Stability of LWTU policies . 50

II Stabilizing Batch Processing Networks 54

6 Open Multi-Class Batch Processing Networks 61

6.1 The Batch Processing Network . 61

6.2 The Standard Processing Network . 64

6.3 The Induced Batch Policy . 65

6.4 Rate Stability and the Main Result 66

7 Processing Network and Fluid Model Equations 69

7.1 Dynamics of Batch and Standard Networks 69

7.2 Batch and Standard Fluid Models . 72

v

7.3 Connection between Processing Networks and Fluid Models 73

8 Connection between Standard and Batch Fluid Models 76

9 Examples of Normal Policies 80

9.1 Static Buffer Priority Policies . 80

9.2 First-In–First-Out Policy . 84

9.3 Generalized Round Robin Policies . 89

III Simulation Studies 96

10 Simulation Studies 97

10.1 A Three-Product-Five-Station Network 97

10.2 Simulation Study of Dispatch Policies 100

10.3 Simulation Study of Batch Policies 102

10.4 Simulation Study of Batch and Setup Policies 103

11 Conclusions and Future Work 106

Vita 114

vi

List of Tables

1 mean processing time . 98

2 simulation result of case 1 . 101

3 simulation result of case 2 . 102

4 simulation result of case 3 . 102

5 simulation result of the batch network 103

6 simulation result of the batch and setup network with smaller arrival

rates . 104

7 simulation result of the batch and setup network with higher arrival rate105

vii

List of Figures

1 A two-station, four-class batch processing network 57

2 The total number of jobs in system 58

3 a three-product-five-station network 99

viii

Summary

This thesis presents several dispatch policies for multi-class queueing networks and

studies their stability properties. The discrete proportional processor sharing (DPPS)

dispatch policies are shown to be stable as long as each server’s traffic intensity

is less than one. Any policy can be embedded into a DPPS policy and the new

policy is always stable. Largest weighted upstream unbalance (LWUU) policies and

largest weighted total unbalance (LWTU) policies are two families of policies which

use downstream or upstream information. For more restricted network models, we

show that both LWUU and LWTU policies are stable.

In a batch processing network, multiple jobs can be formed into a batch to be

processed in a single service operation. The network is multiclass in that several

job classes may be processed at a server. Jobs in different classes cannot be mixed

into a single batch. A batch policy specifies which class of jobs is to be served next.

Throughput of a batch processing network depends on the batch policy used. When

the maximum batch sizes are equal to one, the corresponding network is called a

standard processing network, and the corresponding service policy is called a dispatch

policy. There are many dispatch policies that have been proven to maximize the

throughput in standard networks. This thesis shows that any normal dispatch policy

can be converted into a batch policy that preserves key stability properties. Examples

of normal policies are given. These include static buffer priority (SBP), first-in–first-

out (FIFO) and generalized round robin (GRR) policies.

ix

A series of simulation studies is conducted in a three-product-five-station network.

The simulation results show that DPPS dispatch policies and their induced batch

policies have good performance.

x

Chapter 1

Introduction

1.1 Motivation of the Model

Semiconductor wafer fabrication lines are among the most difficult systems for plan-

ning and scheduling. The major difficulty stems from the reentrant process flows of

such lines. Typically converting into semiconductor product requires a wafer hun-

dreds of processing steps. In a wafer fab, there are many processing stations. Each

station is equipped with one or more machines. Very few machines are dedicated to

a particular processing step. Instead, many machines can carry out several different

but similar processing steps by simply changing configurations or tools. Usually, the

number of processing steps that a station carries out is greater than the total number

of machines at that station. So one can not simply dedicate one machine to each

processing step. A job consisting of a cassette of wafers needs to visit some stations

several times and thus jobs at different steps contend with each other for machines at

such a station. Because jobs visit some machines multiple times at different processing

steps, the process flows have a reentrant structure.

When a machine completes a job, it has to decide which job to process next.

A policy specifying such decisions is called a dispatch policy or service policy or

sequencing policy. Since a wafer fab is an extremely complex system, it is unlikely

1

one can find an optimal dispatch policy. Often, simple heuristic policies such as first-

in-first-out (FIFO) are used. Dispatch policies are important to good performance

in a fab. They impact not only on the cycle times, but also the throughput. Poor

dispatch policies can lead to the loss of throughput, longer cycle time and higher work-

in-process (WIP). In a wafer fab, WIP never grows to infinity since managers will slow

down the release of new jobs if WIP is too high. A good dispatch policy guarantees

maximum throughput. Moreover, a good policy also ensures better performance with

respect to secondary performance measures such as average cycle time.

In this thesis, we discuss several dispatch policies, including Discrete Proportional

Processor Sharing (DPPS), Largest Weighted Up Stream Unbalanced (LWUU), and

Largest Weighted Total Unbalanced (LWTU). A DPPS policy is a discrete version

of an ideal head-of-line proportional-processor-sharing (HLPPS) policy. The HLPPS

policy studied in Bramson [3] can not be used for practical purpose because it requires

each server to be able to split effort to many jobs simultaneously. Simultaneous split-

ting is impossible for almost all manufacturing lines or even computer and telecom-

munication systems. Our DPPS policies can be implemented in real systems. Also,

DPPS policies have the same fluid limit model as the corresponding HLPPS policy.

(See Section 4.4 for a discussion of fluid limits.) Moreover, each DPPS policy can be

treated as more than merely a dispatch policy. In fact, it can be used as a scheme

to stabilize other policies. In other words, any non-idling policy can be combined

with a DPPS policy so that the resulting policy is stable for any multi-class queueing

network as long as the traffic intensities at each stations is less than one. LWUU and

LWTU are special policies in a family of more general policies, called MIVSRP. Li,

Tang and Collins [34] demonstrated through simulation that MIVSRP policies give

2

smaller cycle times than FIFO. In this thesis, we demonstrate the stability properties

of DPPS, LWUU and LWTU policies. Moreover, we demonstrate through simulation

that those policies give better performance than FIFO.

A machine may need additional operations such as changing tools before it switches

from one processing step to another. Although an operator may do some of these

operations while the machine is processing, for others an operation must wait until

the machine finishes a job, which causes an additional delay. This delay is called setup

delay, and the amount of delay is called setup time. In some cases, the setup time can

be as much as ten times of the processing time. When a long setup occurs, one also

needs to decide whether it should change from one processing step to another. When

such a decision is involved, the policy that a machine follows is called a setup policy.

Jennings [21] studied the stability of setup policies and gave a general framework for

turning a good dispatch policy into a good setup policy.

Machines may involve batch operations. One good example is a furnace which

can often process up to a dozen jobs at a time. When there is a batch operation, one

may also need to decide whether it should wait for full batch or not. In that case,

the policy is called a batch policy. In this thesis, we provide a general framework

for converting a dispatch policy into a batch policy. We call such a batch policy an

induced batch policy. Our framework guarantees that the induced batch policy is

throughput optimal if the corresponding dispatch policy is. While we are not able

to prove similar result for mean cycle times, we can demonstrate through simulation

that batch policies induced from good dispatch policies also give good secondary

performance characteristics such as short mean cycle times.

3

1.2 Literature Review

Recently, stability of multiclass queuing networks has received a lot of attention in

the research community. This is due to many examples of queuing networks that are

unstable under the usual traffic intensity conditions. The first example was found by

Kumar and Seidman [24]. Later Lu and Kumar [27] gave an example that is unstable

under the Static Buffer Priority (SBP) policy. Rybko and Stolya [32] studied the

stochastic version of the Lu-Kumar network, and found that SBP policy used in Lu

and Kumar [27] is also unstable in a stochastic setting. Bramson [1] presented an

exponential queuing network that is unstable under the FIFO policy when the usual

traffic condition is satisfied. At the same time, Seidman [33] independently found

an unstable FIFO deterministic queuing network. Perhaps, because FIFO is such

a natural and fair policy, and widely used in practice, these instable examples have

motivated more researchers to work in the field. Dai [10] provided a connection be-

tween the stability of a fluid model and the stability of the corresponding stochastic

queueing network in Dai [10]. See also Stolyar [35]. Since then, many policies have

been proven to be stable. Dai and Weiss [14] and Kumar and Kumar [25] proved

Last-buffer-first-server (LBFS) and first-buffer-first-serve (FBFS) are stable in single

product reentrant line. Bramson [2] proved FIFO policy is stable for Kelly type queu-

ing networks. Jennings [21] proved that Generalized Round Robin (GRR) is stable for

all queuing networks even with setup delays when its parameters are chosen properly.

Bramson [3] proved HLPPS is stable. In order to guarantee stability, GRR needs to

know the arrival rates of the system. In a real factory, because arrival rates fluctuate

from week to week, they are difficult to estimate. HLPPS can guarantee optimal

4

throughput without the information of arrival rates as long as the traffic intensity is

less than one at each station. However, the HLPPS discussed in Bramson [3] can not

be used for practical purposes because it requires servers to split their effort among

multiple jobs simultaneously. More recently, Bramson [5] showed that Earliest Due

Date (EDD) is stable for all queueing networks. Maglaras’s [28] fluid tracking poli-

cies are stable for all networks. Maglaras [29] showed that Harrison’s discrete review

policies are stable for all networks.

Most of the stability analysis in the literature has been limited to standard process-

ing networks, also called multiclass queueing networks, as advanced by Harrison [18].

Two exceptions are Maglaras and Kumar [30] and Kumar and Zhang [26], which stud-

ied batch processing networks. In [30], a family of discrete review batch policies was

shown to maximize the throughput. In [26], a family of fluctuation-smoothing batch

policies was shown to maximize the throughput in special networks,which Kumar [23]

calls reentrant lines.

1.3 Contributions

The specific contributions of this thesis begin from Part I with proposing or improving

several family policies. The first family of policies, the discrete proportional processor

sharing (DPPS) policies, are related to the head-of-line proportional processor shar-

ing (HLPPS) policy proposed by Bramson [3]. In Bramson [3], HLPPS is proved to

be stable for all open multiclass queueing networks in which the traffic intensities of

all stations are less than one. However, there is one assumption of HLPPS policy. It

assumes that each server can serve more than one job at a time. In other words, each

5

server can split its service effort infinitely among several jobs. This assumption makes

the HLPPS policy impossible to implemente at least in real wafer fabs. DPPS poli-

cies relax this unrealistic assumption and thus may be implemented in real systems.

Moreover, we prove that the fluid limits of queueing networks under DPPS and those

of queueing networks under HLPPS are identical. A DPPS policy is a realistic policy

in the sense that it can be implemented in real systems. In addition, it only makes

high level decisions and leaves detailed sequencing decisions open. More concretely,

during any decision period, a DPPS policy only specifies the number of jobs of each

class to be processed without determining the processing sequence of those jobs. One

can use any other policy or optimization procedure to further specify the sequence.

For a wafer fab the arrival rates fluctuate from week to week making any policy that

requires knowledge of the arrival rates undesirable. A DPPS policy does not need

information about arrival rates, which makes it a practical policy.

The second family of policies is the largest weighted upstream unbalance (LWUU)

policies. LWUU policies assign a target queue length to each buffer and dynamically

change each buffer’s priority according to upstream buffers’ imbalance information.

The server always gives higher priority to buffers with higher weighted upstream

imbalance. For each buffer (p, k), the upstream imbalance is defined as

βp

∑

l≤k

(Zp,l(t)− ξp,l),

where Zp,l(t) is the number of jobs in class (p, l) at time t, ξp,l is the target queue

length for buffer (p, l), and βp is some positive constant.

The third family of policies, the largest weighted total unbalance (LWTU) policies,

use both upstream and downstream information. Similar to LWUU policies, LWTU

6

policies also assign a target queue length to each buffer and dynamically change

each buffer’s priority according to both upstream and downstream buffers’ imbalance

information. The server always gives higher priority to larger weighted total unbalance

defined by:

βp

∑

l≤k

(Zp,l(t)− ξp,l)− βp

∑

l>k

(Zp,l(t)− ξp,l).

For second and third family of policies, we show that for deterministic routing multi

product queueing networks, all these policies are stable as long as the long term traffic

intensity at each station is less than one.

Batch processing is a very important feature of semiconductor reentrant lines. One

example is a furnace. A furnace usually can processes up to a dozen jobs at one time.

The processing time can typically be as long as 8 hours which is 100 times longer than

the processing times in other areas. Because of its long processing time, a furnace

has a very significant impact on the performance of the entire system. Similar to the

stations in other areas, several classes of jobs are waiting to enter a furnace. The

batch policy specifies which class of jobs to process next when the furnace finishes

a batch. Since the capacity of a furnace depends on the batch size, one has to be

careful when deciding to process a batch whose size is less than the maximal batch

size. On the other hand, which class to process is still very important because this

will affect the overall flow through the entire system.

There are a number of efficient dispatch policies for the standard processing net-

works in which the batch size is restricted to one. To take advantage of these dispatch

policies when batch sizes are allowed to exceed one, we propose an algorithm to con-

vert a dispatch policy to a batch policy. The basic idea is that a station always

chooses those classes with enough jobs to form a full batch. Hence the capacity of

7

a station is protected. Among those classes, use the dispatch policy to determine

which class to work on. Since we know that the original dispatch policy has good

performance, intuitively we would expect that the converted batch policy should have

good performance as well. In fact, we show that if the original dispatch policy is a

“normal” policy and can achieve maximal throughput, the converted batch policy can

also achieve maximal throughput. The definition of normal policy is through fluid

models. We demonstrate that static buffer priority (SBP), FIFO, and Generalized

Round Robin (GRR) are all normal policies.

1.4 Outline of the Thesis

The remaining part of this thesis is organized into three parts. Part I including

Chapters 2, 3, 4, and 5 addresses the dispatch policies. In Chapter 2, we introduce

standard multiclass queueing networks. In Chapter 3, we focus on three families of

dispatch policies: the discrete proportional processor sharing (DPPS) policies, the

largest weighted upstream unbalance first (LWUU) policies, and the largest weighted

total unbalance first (LWTU) policies. In Chapter 4, we introduce an important

analysis tool—-fluid models, as well as other related conceptions, such as rate stability

and fluid limits. In chapter 5, using the fluid model approach and assumption that

the traffic intensity at each stations is less than one, we show that (1) any DPPS

policy is rate stable for any standard multiclass queueing network; (2) LWUU and

LWTU polices are rate stable for any standard multiclass queueing network with

deterministic routing. Part II includes Chapters 5, 7, 8, and 9. In part II, we will focus

on batch processing networks and their relation with standard processing networks. In

8

Chapter 6, we introduce batch processing networks and their corresponding standard

processing networks. We then describe a general scheme for converting a dispatch

policy into a batch policy. We also define the notion of rate stability and present the

main theorem of this part. In Chapter 7, we introduce the fluid models of batch and

standard processing networks. We establish that the stability of a fluid model implies

the stability of the corresponding processing network, and we discuss fluid limits

that are used to justify the fluid equations defining a fluid model. In Chapter 8,

we study the relationship between the fluid models of processing networks. Using

this relationship, we then define normal dispatch policies in a standard network, a

key notion used in the statement of our main theorem, which saying the the induced

batch policy can preserve stability properties of the original dispatch policy. Finally,

we present examples of normal dispatch policies in Chapter 9. These include the

static buffer priority, first-in–first-out, and generalized round robin policies. In Part

III, we conduct several simulation studies. First we introduce a 3-product-5-station

network which serves as our test bed. We conduct three simulation studies. First we

simulate the network under several dispatch policies, assuming no batch operations

or setup delays. Second, we add batch operations and simulate the network under

several batch policies. Finally, we add both batch operations and setup delays to the

network and simulate the network under various batch and setup policies.

9

Part I

Standard Multiclass Queueing

Networks

10

Chapter 2

Stochastic Processing Networks

In this chapter, we describe the model that is the subject of this thesis. In Section

2.1, we introduce the multiclass queueing network model. Section 2.2 discusses three

primitive processes which are basic mathematical elements of our model.

2.1 Multiclass Queueing Network Models

The network under study has J single-server stations and K job classes. Stations

are labeled by j = 1, ..., J and classes by k = 1, ..., K. Class k jobs are served at a

unique station σ(k). Each station may serve more than one class and has an unlimited

buffer capacity for each job class. Jobs arrive at the network from outside, and change

classes as they move through it. When a job finishes its processing, it is routed to the

next class or if it has completed processing of all steps, leaves the network. If a job is

routed to another class, it enters the buffer of that class and waits at the end of line.

Each job eventually leaves the network. The ordered sequence of classes that a job

visits in the network is called a route. A reentrant line is a special type of processing

network in which all jobs follow a deterministic route of K stages, and jobs may visit

some stations several times. One can also extend reentrant lines to multiple product

reentrant lines. In this case, there are P products. All jobs of a particular product p

11

follow a deterministic route with Kp stages. Again jobs may visit some stations more

than once. Different products can have different routes.

2.2 Primitive Processes

We let C(j) denote the set of classes that are served by station j. When j and k

appear together, we imply that j = σ(k). For each class k, there are three cumulative

processes Ek = {Ek(t), t ≥ 0}, the external arrival process; Vk = {Vk(n) : n =

1, 2, ...}, the service time process; and Φk = {Φk(n) : n = 1, 2, ...}, the job routing

process. For each time t ≥ 0, Ek(t) counts the number of external arrivals to class

k in [0, t] and Vk(n) is the total service time requirement for the first n jobs in class

k. For each positive integer n, Φk(n) is a K-dimensional vector taking values in ZK
+ .

For each class `, Φk
` (n) is the total number of jobs going to class ` among the first n

jobs finishing service at class k. By convention, we assume

Ek(0) = 0, Vk(0) = 0, and Φk(0) = 0.

For each time t ≥ 0, we extend the definitions of Vk(t) and Φk(t) as

Vk(t) = Vk(btc) and Φk(t) = Φk(btc),

where btc denotes the largest integer less than or equal to t. We call (E, V, Φ) the

primitive processes, where E = {E(t), t ≥ 0}, V = {V (t), t ≥ 0}, and Φ = {Φ(t), t ≥

0} with E(t) = (E1(t), E2(t), ..., EK(t))′, V (t) = (V1(t), V2(t), ..., VK(t))′, and Φ(t) =

(Φ1(t), Φ2(t), ..., ΦK(t))′. We assume that the strong law of large numbers holds for

12

the primitive processes, namely, with probability one,

lim
t→∞

Ek(t)
t

= αk, lim
t→∞

Vk(t)
t

= mk, and lim
t→∞

Φk
` (t)/t = Pk`, (2.2.1)

where k, ` = 1, . . . , K. The parameter (α, m, P) with α = (α1, . . . , αK)′, m =

(m1, . . . , mK)′ and P = (Pk`) has the following natural interpretation: For each class

k, αk is the external job arrival rate at class k and mk is the mean service time for

class k jobs. For classes k and `, Pk` is the long-run fraction of class k jobs that

expect to move to class `. The parameter Pk` is also called the routing probability

from class k to class `. The K × K matrix P = (Pk`) is called the routing matrix.

We assume that the network is open, i.e., the matrix

Q = I + P ′ + (P ′)2 + ...

is finite, which is equivalent to the assumption that (I − P ′) is invertible and Q =

(I − P ′)−1.

Whenever a server is ready to load a job, it must decide which job to serve next.

A policy for making this decision is called a dispatch policy. We assume that once a

service is started, it cannot be preempted. A dispatch policy is said to be non-idling

if a server remains active whenever there are jobs at its station.

13

Chapter 3

Dispatch Policies

Consider a standard queueing network without batch operations and setup delays.

When a server completes processing of one operation it must decide which class

to work on next. When there is no setup delay and batch operation involved, we

call this decision a dispatch policy. Many dispatch policies have been proposed in

the literature, including first-in-first-out (FIFO), last-buffer-first-served (LBFS), and

first-buffer-first-served (FBFS). We restrict our dispatch policies to non-idling head-

of-line (HL) dispatch policies. Under an HL dispatch policy, each class has at most

one job (the leading job) that is ready to be served by a server. Jobs within a class

are served in FIFO order. In this section, we will discuss several families of dispatch

policies, including the Discrete Proportional Processor Sharing (DPPS) policies, the

Largest Weighted Up Stream Unbalanced (LWUU) policies and the Largest Weighted

Total Unbalanced (LWTU) policies. All of these policies are HL dispatch policies.

3.1 Discrete Proportional Processor Sharing

In this section, we introduce Discrete Proportional Processor Sharing (DPPS) dis-

patch policies. Since DPPS policies are closely related to the head-of-line proportional-

processor-sharing (HLPPS) dispatch policy studied in Bramson [3], we first review

14

the HLPPS policy.

When a stochastic network operates under the HLPPS policy, jobs in each buffer

are ordered according to the jobs’ arrival time to the buffer. At each time t, the

leading job from each nonempty buffer k receives a portion of service from server

i = σ(k). Thus, server i simultaneously works on all the nonempty buffers at the

station. The amount of service effort received by the leading job in a nonempty class

is proportional to the number of jobs in that class. Denoting by Tk(t) the cumulative

amount of time that server i = σ(k) has spent on class k jobs in [0, t], one has

Ṫk(t) =
Zk(t)
Ui(t)

for t ≥ 0, (3.1.1)

where Ṫk(t) is the derivative of Tk at time t, Zk(t) is the number of jobs in buffer k at

time t, including the one being served, and Ui(t) =
∑

k∈C(i) Zk(t) is the total number

of jobs at station i. Each time a service is completed at a station, the server adjusts

its service effort allocation following the new queue lengths at the station.

The HLPPS dispatch policy assumes that at any given time each server is able to

split its service effort among multiple jobs in an arbitrary fashion. Such an assumption

does not hold for most real world systems. Our DPPS policies, introduced in the next

paragraph, try to mimic the HLPPS policy. The important difference is that, under

a DPPS policy, each server works on only one job at a time and preemption of jobs

is not allowed. Thus, under a DPPS policy condition (3.1.1) does not hold at each

time t ≥ 0. We will show that (3.1.1) holds for each “fluid limit” under DPPS policy.

When the network operates under a DPPS policy, each server makes its service al-

location decision independent of other servers. Server i makes decisions at a sequence

of decision times t0, t1, For each integer n = 0, 1, . . ., tn is called the nth decision

15

epoch, and [tn, tn+1) is called the nth cycle. At the beginning of the nth cycle tn,

server i decides how many jobs to serve for each class during the cycle based on the

queue lengths at its station. The cycle ends when all the planned jobs are served,

and the next cycle starts.

Fix a station i. The length of the nth cycle at the station depends on a parameter

Ln which is called the nominal length of the nth cycle. (In general, Ln depends on

station i. For convenience, we drop the index i from the symbol Ln.)

Suppose that the nominal length Ln has been chosen at tn,the beginning of the

nth cycle. This length is to be split among all the classes at the station. The amount

that class k receives is proportional to Zk(tn)/Ui(tn). (The ratio 0/0 is interpreted

as zero.) Thus, the nominal service time that class k receives during the cycle is

(Zk(tn)/Ui(tn))Ln. Since the service speed for class k jobs is µk, we plan to serve

(Zk(tn)/Ui(tn))Lnµk (3.1.2)

class k jobs during the cycle.

There are two potential problems in our schedule. First, there may be fewer jobs

available at tn in a class than planned by our schedule. Secondly, the number in (3.1.2)

may not be an integer. To resolve the first problem, we serve as many as planned

class k jobs that are available during the cycle. Some of these jobs may arrive at the

station after tn. For the second problem, we simply truncate the number in (3.1.2)

to an integer. But the residual number rk(n) is retained for the next cycle when the

ending buffer level is positive.

To summarize, for a given station i and nominal length Ln, define for each cycle

16

n and each class k,

qk(n) = rk(n− 1) +
Zk(tn)
Ui(tn)

Lnµk, (3.1.3)

βk(n) = bqk(n)c, (3.1.4)

rk(n) = [qk(n)− βk(n)]1{Zk(tn+1)>0}, (3.1.5)

where bxc denotes the largest integer less than or equal to x, and rk(0) = 0. We call

qk(n) the quota for class k in cycle n, and rk(n) the residual quota for class k after

cycle n. Note that the residual quota is saved to the next period only when the queue

length of that class is positive at the end of the cycle (or the beginning of next cycle).

The integer βk(n) is the number of class k jobs that should be processed in cycle n.

βk(n) may not be used up during nth cycle. We denote this part as pk(n) and it is

lost after the cycle n.

The choice of Ln can be quite flexible. It can be dynamic or static. In the former

case, we require Ln to be bounded above by a constant. This ensures that even if

some buffers have a huge number of jobs during a cycle, the cycle will end reasonably

soon. The DPPS policy does not specify in which order the planned jobs are served

during a cycle. Actually, within a cycle, one can use any other dispatch policy to

determine the order for serving the jobs. More concretely, combining DPPS with

another dispatch policy π works as follows. In addition to empty buffers, any buffer

k with βk = 0 is also considered to be “empty”. Then one uses the policy π to choose

a “nonempty” buffer to work on. Once a buffer is selected, the server serves the first

job of that buffer. After finishing serving that job, β corresponding to that buffer is

reduced by one. Then the server updates the “nonempty” list and uses π to select

the next working buffer again. This process continues until there is no “nonempty”

17

buffer. When this procedure stops, cycle n is finished and station i enters cycle n+1.

3.2 Largest Weighted Upstream Unbalanced

In this section, we will focus on slightly more restricted models. We assume that

the routes of products are deterministic. Here we will use slightly different notation.

Let (p, k) denote buffer k for product p. Let Zp,k(t) be the queue length in buffer k

of product p. Let Z+
p,k(t) be the number of jobs of product p in the steps preceding

step k (including k), thusZ+
p,k(t) =

∑k
`=1 Zp,`(t). Let parameter βp be weight given

to product p and let ξp,k be a constant which represents the desired average queue

length of buffer k of product p. A Largest Weighted Up Stream Unbalanced (LWUU)

policy works as follows. When station i at time t needs to decide which job to serve

next, it always picks the first job of the buffer (q, `) such that

(q, `) = arg max
(p,k)

βp

k
∑

j=1

(Zp,j(t)− ξp,j).

Note that βp is positive number and can be chosen to reflect the importance of product

p. The more important the product p, the larger βp should be. For the ξp,k, one can

choose any real number or simply let ξp,k be 0. In this case the policy will select the

class with the largest weighted number of upstream jobs. One possibility is to let ξp,k

equal the average queue length of class (p, k) which would have to be estimated. There

are several methods to estimate it. For example, start by letting ξp,k equal 0. The

average queue length with this value provides an initial estimate of ξp,k. Simulation

with this value provides a yet better estimate of ξp,k. After several iterations, one can

obtain pretty good estimate of ξp,k.

18

3.3 Largest Weighted Total Unbalanced Policies

As in the last section, we again only consider restricted models, where the routes are

assumed to be deterministic. Similar to a LWUU policy, a largest weighted total un-

balance (LWTU) policy also uses imbalance information on queue lengths. However,

a LWTU policy considers the imbalance not only upstream, but also downstream.

Operating under a LWTU policy, a server always picks a job to process from class

(q, `) such that

(q, `) = arg max
(p,k)

βp

[

∑

j≤k

(Zp,j(t)− ξp,j)−
∑

j>k

(Zp,j(t)− ξp,j)

]

.

The parameters βp, ξp,k can be chosen using methods similar to those discussed in

the previous section.

19

Chapter 4

Dynamics of Multiclass Queueing
Networks and Fluid Models

In this chapter, we introduce the queueing network equations of a queueing network

and the fluid model equations of the corresponding fluid model. In addition, we

discuss the fluid limits connecting the queueing networks and the fluid models.

4.1 Queueing Networks Equations

The dynamics of the queueing network can be described by a processX = (A,D, T, U, Y, Z).

The components A = {A(t), t ≥ 0}, D = {D(t), t ≥ 0}, T = {T (t), t ≥ 0}, and

Z = {Z(t), t ≥ 0} are K dimensional. For each class k, Ak(t), the arrival process,

denotes the number of jobs that have arrived to class k (from external and internal

sources) in [0, t], Dk(t), the departure process, denotes the number of jobs that have

departed from class k in [0, t], Tk(t), the server allocation process, denotes the amount

of time that server j = σ(k) has spent serving class k jobs during the interval [0, t],

and Zk(t), the job count process, denotes the number of jobs in class k that are wait-

ing or being served at station j at time t. The components Y = {Y (t), t ≥ 0} and

U = {U(t), t ≥ 0} are J dimensional, where J is the number of stations. For each

station j, Yj(t) denotes the total amount of time that server j has been idle in the

20

time interval [0, t] and Uj(t) denotes the total number of jobs at station j that are in

the buffer or being served at time t. The process Y is called the cumulative idle time

process. One can check that X = (A,D, T, Y, U, Z) satisfies the following equations:

A(t) = E(t) +
∑

k

Φk(D(t)), (4.1.1)

Z(t) = Z(0) + A(t)−D(t), (4.1.2)

CT (t) + Y (t) = et, (4.1.3)

Yi(t) can increase only when Ui(t) = 0, k = 1, ..., K, (4.1.4)

(4.1.5)

where C is the constituency matrix defined as

Cik =











1 if k ∈ C(i),

0 otherwise,
(4.1.6)

e denotes the J vector of all 1′s. We note that T and Y are continuous, and that

A,D,U and Z are right continuous with left limits. All of the variables are nonneg-

ative in each component, and A,D, T and Y being nondecreasing. For a particular

dispatch policy, we also have following equation:

additional equations associated with the particular dispatch policy. (4.1.7)

By assumption, one has

A(0) = D(0) = T (0) = Y (0) = 0. (4.1.8)

For a HL dispatch policy, we also have

V (D(t)) ≤ T (t) ≤ V (D(t) + e),

where the inequalities are componentwise and e denotes the K vector of all 1′s.

21

4.2 Rate Stability

There are several definitions of stability for multiclass queueing networks. Here we

are going to introduce the simplest definition of stability, rate stability. A network is

said to be rate stable if the throughput rate or departure rate from a class is equal

to the nominal total arrival rate to that class. Rate stability has been advanced by

Stidham and his co-authors (see El-Taha and Stidham [16] and the references there).

This notion of stability was first introduced for multiclass queueing network settings

in Chen [6].

Let αk be the external arrival rate and Pkl be the probability that a class k job

joins class l when it leaves class k. The vector λ = (λ1, . . . , λK)′ of nominal total

arrival rates satisfies the following system of equations

λl = αl +
K

∑

k=1

λkPkl, for ` = 1, 2, ..., K. (4.2.1)

In vector form, λ = α + P ′λ. Since P is transient, the unique solution to (4.2.1) of λ

is given by λ = Qα. Recall that Q = (I −P ′)−1. We define the traffic intensity ρj for

server j as

ρj =
∑

k∈C(j)

λkmk, j = 1, . . . , J, (4.2.2)

with ρ being the corresponding vector. Note that ρj is the nominal utilization of

server j. When

ρj ≤ 1, j = 1, ..., J, (4.2.3)

we say that the usual traffic condition is satisfied.

Recall that Dk(t) denotes the number of jobs that have departed from class k in

[0, t].

22

Definition 4.2.1. The queuing network is rate stable if for each fixed initial state,

with probability one,

lim
t→∞

Dk(t)
t

= λk for k = 1, ..., K. (4.2.4)

Therefore, the queuing network is said to be rate stable if the throughput rate or

departure rate from a class is equal to the nominal total arrival rate to that class.

4.3 Fluid Models and Fluid Limits

Let X̄ = (Ā, D̄, T̄ , Ȳ , Z̄) be the formal deterministic analog of the discrete queueing

network process X = (A,D, T, Y, Z). Its components satisfy the following equations:

Ā(t) = α′t + P ′D̄(t), t ≥ 0, (4.3.1)

Z̄(t) = Z̄(0) + Ā(t)− D̄(t), t ≥ 0, (4.3.2)

D̄k(t) = µkT̄k(t), t ≥ 0, (4.3.3)

CT̄ (t) + Ȳ (t) = et, t ≥ 0, (4.3.4)

Ȳj(t) increases only when Ūj(t) = 0, j = 1, ..., J, (4.3.5)

additional equations associated with the particular dispatch policy. (4.3.6)

Definition 4.3.1. A fluid model is said to be weakly stable if for each fluid model

solution X̄ with Z̄(0) = 0, Z̄(t) = 0 for t ≥ 0.

The criterion for including an equation in the fluid model is that the equation is

satisfied by fluid limits. A fluid limit of a network is obtained through a law-of-large-

number procedure on the queueing network process. Note that the queueing network

process X is random, depending on the sample ω in an underlying probability space.

23

To denote such dependence explicitly, we sometimes use X(ω) to denote the discrete

network process with sample ω. For an integer d, Dd[0,∞) denotes the set of functions

x : [0,∞) → Rd that are right continuous on [0,∞) and have left limits on (0,∞). An

element x in Dd[0,∞) is sometimes denoted by x(·) to emphasize that x is a function

of time. For each ω, X(ω) is an element in D4K+2J [0,∞).

For each r > 0, define

X̄r(t, ω) = r−1X(rt, ω) t ≥ 0. (4.3.7)

Note that again for each r > 0, X̄r(·, ω) is an element in D4K+2J [0,∞). The scaling

in (4.3.7) is called the fluid or law-of-large-numbers scaling.

Definition 4.3.2. A function X̄ ∈ D4K+2J [0,∞) is said to be a fluid limit of the

queueing network if there exists a sequence rn →∞ and a sample ω satisfying (2.2.1)

such that

lim
n→∞

X̄rn(·, ω) → X̄(·),

where, here and later, convergence is interpreted as uniform convergence on compact

sets (u.o.c.).

The existence of fluid limits is well known, see for example, Dai [10].

The introduction of fluid limits connects discrete queueing networks and fluid

models. Particularly, weak stability of a fluid model implies rate stability of the

corresponding discrete queueing network. Actually we have the following theorem

first explicitly stated in Chen [6].

Theorem 4.3.1. If the fluid model is weakly stable, then the corresponding discrete

queueing network is rate stable.

24

A similar relationship between fluid models and discrete queueing networks also

holds under other definitions of stability, such as positive Harris recurrence. For

addtional details, see Dai [10].

25

Chapter 5

Stability of Dispatch Policies

In this chapter, we explore the stability properties of DPPS, LWUU, and LWUT

policies. In Section 5.1, we establish the stability of DPPS policies by showing that the

fluid limits of queueing networks operating under a DPPS policy satisfy the HLPPS

fluid model. In Section 5.2 and Section 5.3, we give corresponding fluid models of

LWUU and LWUT policies; and then justify that the fluid limits of queueing network

under LWUU and LWUT policies are the solutions of corresponding fluid models;

finally, using Lyapunov functions, we show that the fluid models of LWUU and LWUT

policies are stable.

5.1 Stability of DPPS Policies

Theorem 5.1.1. A multi-class queueing network, in which the traffic intensity of

each station is less than one is rate stable under any DPPS policy.

Recall that under the HLPPS fluid model, the equation (4.3.6) is replaced by

Ṫk(t) =
Zk(t)
Ui(t)

(5.1.1)

for each i such that Ui(t) > 0. Bramson [3] shows that HLPPS fluid models are stable

under the conventional traffic intensity condition. Hence to prove Theorem 5.1.1,

26

using Theorem 4.3.1 we only need to show that each fluid limit of a queueing network

operating under a DPPS policy satisfies the equations of the HLPPS fluid model.

Actually we have following proposition.

Proposition 5.1.1. Each fluid limit of a queueing network operating under a DPPS

policy is a fluid model solution to the HLPPS fluid model.

We finish this section by providing a proof of Proposition 5.1.1.

Proof of Proposition 5.1.1. Let X̄ be a fluid limit of the queueing network operating

under a DPPS policy. To show that X̄ is a solution of the HLPPS fluid model, we

need to show that the fluid limit satisfies each equation of the HLPPS fluid model.

Since equation (4.3.1) to (4.3.5) are common to the fluid models of every dispatch

policy, we only show that X̄ satisfies (5.1.1) of the HLPPS fluid model. Suppose that

at time t, Ūi(t) > 0. Then there exists a δ such that for all s ∈ (t, t + δ), Ūi(s) > 0.

It is enough to show that

T̄k(t + δ)− T̄k(t) =
∫ t+δ

t

Z̄k(s)
Ūi(s)

ds. (5.1.2)

Since X̄ is a fluid limit, there exists a sequence {rn} with rn → ∞ as n → ∞

such that X̄rn → X̄ u.o.c. as n → ∞. Now consider the discrete queueing network.

Suppose that during time period (rnt, rnt + rnδ), there are Nn − 1 complete cycles

with Nn decision points:

rntn1 < rntn2 < ... < rntnNn . (5.1.3)

Note that rnt < rntn1 and rntnNn < rn(t + δ). Furthermore, intervals (rnt, rntn1) and

(rntnNn , rn(t + δ)) form two incomplete cycles. We first show that

T̄k(t + δ)− T̄k(t) = lim
n→∞

Nn−1
∑

j=1

Zk(rntnj)
Ui(rntnj)

Ln
j

rn
. (5.1.4)

27

Recall that pk(j) is the quota that is lost during cycle j. By Lemma 5.1.1 below,

Dk(rntnNn)−Dk(rntn1) =
Nn−1
∑

j=1

Zk(tnj)
Ui(tnj)

Ln
j µk −

Nn−1
∑

j=1

pk(j) + rk(0)− rk(Nn − 1),

where rk(·) is defined in equation (3.1.5). Dividing both sides by rn and letting

n →∞, we have

lim
n→∞

Dk(rntnNn)−Dk(rntn1)
rn

= lim
n→∞

[

Nn−1
∑

j=1

Zk(rntnj)
Ui(rntnj)

Ln
j

rn
µk −

Nn−1
∑

j=1

pk(j)
rn

+
rk(0)− rk(Nn − 1)

rn

]

.

We show in Lemma 5.1.2

lim
n→∞

1
rn

Nn−1
∑

j=1

pk(j) = 0.

Since rk(0) < 1 and rk(Nn − 1) < 1, we have

lim
n→∞

rk(0)− rk(Nn − 1)
rn

= 0.

Hence, we have

lim
n→∞

Dk(rntnNn)−Dk(rntn1)
rn

= lim
n→∞

Nn−1
∑

j=1

Zk(rntnj)
Ui(rntnj)

Ln
j

rn
µk. (5.1.5)

Since (rnt, rntn1) and (rntnNn , rn(t + δ)) are incomplete cycles, and the total number of

class k jobs served during each period is less than Lmaxµk + 1, we have

lim
n→∞

Dk(rntn1)−Dk(rnt)
rn

≤ lim
n→∞

Lmaxµk + 1
rn

= 0,

and

lim
n→∞

Dk(rn(t + δ))−Dk(rntnNn)
rn

≤ lim
n→∞

Lmaxµk + 1
rn

= 0.

So we have

lim
n→∞

Dk(rntn1)−Dk(rnt)
rn

= 0

28

and

lim
n→∞

Dk(rn(t + δ))−Dk(rntnNn)
rn

= 0.

So, we have

lim
n→∞

Dk(rntnNn)−Dk(rntn1)
rn

= lim
n→∞

Dk(rn(t + δ))−Dk(rnt)
rn

= D̄k(t + δ)− D̄k(t).

(5.1.6)

Equation (5.1.4) follows from (4.3.3), (5.1.5) and (5.1.6).

Next, we claim that

lim
n→∞

Nn−1
∑

j=1

Zk(rntnj)
Ui(rntnj)

Ln
j

rn
=

∫ t+δ

t

Z̄k(s)
Ūi(s)

ds. (5.1.7)

Since X̄ is a fluid limit, for each ε > 0, there exists an M1 such that for all n > M1,

sup
s∈[t,t+δ]

∣

∣

∣

∣

Zk(rns)
Ui(rns)

− Z̄k(s)
Ūi(s)

∣

∣

∣

∣

<
ε
6δ

.

For j = 0, 1, . . . , Nn, let

sn
j+1 = tn1 +

j
∑

i=1

Ln
j

rn
. (5.1.8)

Note that rnsn
j is the ending time of the jth nominal cycle, whereas rntnj is the ending

time of the jth actual cycle in (rnt, rn(t+δ)). It will be proven in Lemma 5.1.3 below

that these times cannot differ much in fluid scaling, namely,

lim
n→∞

max
j≤Nn

| tnj − sn
j |= 0.

Since Ūi(s) > 0 for s ∈ [t, t + δ], Z̄k(·)/Ūi(·) is uniformly continuous over [t, t + δ].

Therefore, there exists an M2 such that for all n > M2,

max
j≤Nn

∣

∣

∣

∣

∣

Z̄k(tnj)
Ūi(tnj)

−
Z̄k(sn

j)
Ūi(sn

j)

∣

∣

∣

∣

∣

<
ε
6δ

.

29

Finally, by Lemma 5.1.4 below, there exists M3 such that for all n > M3,
∣

∣

∣

∣

∣

Nn−1
∑

j=1

Z̄k(sn
j)

Ūi(sn
j)

(sn
j+1 − sn

j)−
∫ t+δ

t

Z̄k(s)
Ūi(s)

ds

∣

∣

∣

∣

∣

<
ε
3
.

Thus for n > max{M1,M2,M3}, we have
∣

∣

∣

∣

∣

Nn−1
∑

j=1

Zk(rntnj)
Ui(rntnj)

Ln
j

rn
−

∫ t+δ

t

Z̄k(s)
Ūi(s)

ds

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

Nn−1
∑

j=1

Zk(rntnj)
Ui(rntnj)

Ln
j

rn
−

Nn−1
∑

j=1

Z̄k(tnj)
Ūi(tnj)

Ln
j

rn

+
Nn−1
∑

j=1

Z̄k(tnj)
Ūi(tnj)

Ln
j

rn
−

Nn−1
∑

j=1

Z̄k(sn
j)

Ūi(sn
j)

Ln
j

rn
+

Nn−1
∑

j=1

Z̄k(sn
j)

Ūi(sn
j)

Ln
j

rn
−

∫ t+δ

t

Z̄k(s)
Ūi(s)

ds

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

Nn−1
∑

j=1

Zk(rntnj)
Ui(rntnj)

Ln
j

rn
−

Nn−1
∑

j=1

Z̄k(tnj)
Ūi(tnj)

Ln
j

rn

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

Nn−1
∑

j=1

Z̄k(tnj)
Ūi(tnj)

Ln
j

rn
−

Nn−1
∑

j=1

Z̄k(sn
j)

Ūi(sn
j)

Ln
j

rn

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

Nn−1
∑

j=1

Z̄k(sn
j)

Ūi(sn
j)

Ln
j

rn
−

∫ t+δ

t

Z̄k(s)
Ūi(s)

ds

∣

∣

∣

∣

∣

≤ sup
s∈[t,t+δ]

∣

∣

∣

∣

Zk(rns)
Ui(rns)

− Z̄k(s)
Ūi(s)

∣

∣

∣

∣

Nn−1
∑

j=1

Ln
j

rn
+ max

j≤Nn

∣

∣

∣

∣

∣

Z̄k(tnj)
Ūi(tnj)

−
Z̄k(sn

j)
Ūi(sn

j)

∣

∣

∣

∣

∣

Nn−1
∑

j=1

Ln
j

rn

+

∣

∣

∣

∣

∣

Nn−1
∑

j=1

Z̄k(sn
j)

Ūi(sn
j)

(sn
j+1 − sn

j)−
∫ t+δ

t

Z̄k(s)
Ūi(s)

ds

∣

∣

∣

∣

∣

≤ 2ε
6δ

Nn−1
∑

j=1

Ln
j

rn
+

ε
3
.

But

Nn−1
∑

j=1

Ln
j

rn
= sn

Nn − sn
1 < sn

Nn − t ≤ |sn
Nn − tnNn |+ |tnNn − t| ≤ |sn

Nn − tnNn |+ δ,

and by Lemma 5.1.3,

lim
n→∞

max
j≤Nn

|tnj − sn
j | = 0,

we have

lim sup
n→∞

Nn−1
∑

j=1

Ln
j

rn
≤ δ.

30

Thus, for large enough n, we have

Nn−1
∑

j=1

Ln
j

rn
< 2δ,

and thus,
ε
3δ

Nn−1
∑

j=1

Ln
j

rn
+

ε
3

< ε.

Thus, (5.1.7) holds. Finally, (5.1.2) follows from (5.1.4) and (5.1.7).

We end this section by stating the lemmas that were used in the proof of Propo-

sition 5.1.1. We leave the proofs of these lemmas to Section 5.1.1. Recall that pk(`)

is the class k quota lost during cycle `. Let tn and tm be two decision points with

m > n. Our first lemma relates the number of jobs served with the nominal number

of jobs allocated and the lost quotas.

Lemma 5.1.1. Assume that station i is nonempty throughout (tn, tm). Then,

Dk(tm)−Dk(tn) =
m−1
∑

`=n

Zk(t`)
Ui(t`)

L` µk −
m−1
∑

`=n

pk(`) + rk(n− 1)− rk(m− 1). (5.1.9)

The next lemma shows that the cumulative lost quotas are negligible in fluid

scaling.

Lemma 5.1.2.

lim
n→∞

Nn
∑

j=1

pk(j)
rn

= 0.

The next lemma shows that the difference between the end times of the nominal

and actual periods is negligible in fluid scaling.

Lemma 5.1.3. Let tnj and sn
j be defined as in (5.1.3) and (5.1.8).

lim
n→∞

max
j≤Nn

|tnj − sn
j | = 0.

31

Our last lemma shows that a Riemann type of sum is close to the desired integral.

One main issue is that the sj’s may lie outside of (t, t + δ).

Lemma 5.1.4. Let sn
j be defined as in (5.1.8).

lim
n→∞

∣

∣

∣

∣

∣

Nn−1
∑

j=1

Z̄k(sn
j)

Ūi(sn
j)

(sn
j+1 − sn

j)−
∫ t+δ

t

Z̄k(s)
Ūi(s)

ds

∣

∣

∣

∣

∣

= 0. (5.1.10)

5.1.1 Proofs of Lemmas 5.1.1-5.1.4

In this section, we prove Lemmas 5.1.1-5.1.4. We first prove Lemma 5.1.1.

Proof of Lemma 5.1.1. If Zk(t`+1) > 0, then pk(`) = 0 and

bqk(`)c = Dk(t`+1)−Dk(t`). (5.1.11)

If Zk(t`+1) = 0, then

pk(`) = qk(`)− (Dk(t`+1)−Dk(t`)) . (5.1.12)

Hence, the number of class k jobs served in cycle `, Dk(t`+1) − Dk(t`), is equal to

bqk(`)− pk(`)c, and thus

Dk(tm)−Dk(tn) =
m−1
∑

`=n

bqk(`)− pk(`)c.

On the other hand, by equations (3.1.4) and (3.1.5), we have

rk(`) = (qk(`)− bqk(`)c)1{Zk(t`+1)>0}.

We claim that

rk(`) = qk(`)− pk(`)− bqk(`)− pk(`)c. (5.1.13)

32

To show this, we consider two cases.

Case 1: Zk(t`+1) = 0. Then we have rk(`) = 0. By (5.1.12)

qk(`)− pk(`) = Dk(t`+1)−Dk(t`).

So pk(`)− qk(`) is an integer, and thus qk(`)− pk(`)− bqk(`)− pk(`)c = 0. Therefore,

(5.1.13) holds.

Case 2: Zk(t`+1) > 0. In this case, (5.1.13) follows from the fact that pk(`) = 0 and

rk(`) = qk(`)− bqk(`)c. Hence,

Dk(tm)−Dk(tn) =
m−1
∑

`=n

[qk(`)− pk(`)− rk(`)] .

Using equation (3.1.4), we have

Dk(tm)−Dk(tn) =
m−1
∑

`=n

[

rk(`− 1) +
Zk(t`)
Ui(t`)

L`µk − pk(`)− rk(`)
]

=
m−1
∑

`=n

Zk(t`)
Ui(t`)

L`µk −
m−1
∑

`=n

pk(`) + rk(n− 1)− rk(m− 1),

proving the lemma.

For Lemmas 5.1.2-5.1.4, recall that rn is so chosen that rn → ∞ and X̄rn → X̄

u.o.c. as n →∞. It is assumed that Ūi(s) > 0 for s ∈ [t, t+ δ], and that there are Nn

complete cycles in time interval (rnt, rn(t + δ)). Before we prove the next lemma, we

first start with a few lemmas that will be used in the proofs of Lemmas 5.1.2-5.1.4.

Lemma 5.1.5.

lim sup
n→∞

Dk(rntn1)
rn

< ∞, (5.1.14)

lim inf
n→∞

Nn

rn
> 0, (5.1.15)

lim sup
n→∞

Nn

rn
< ∞. (5.1.16)

33

Proof. Note that Dk(rntn1) ≤ Dk(rn(t + δ)), we have

lim sup
n→∞

Dk(rntn1)
rn

≤ lim
n→∞

Dk(rn(t + δ))
rn

= D̄k(t + δ) < ∞,

thus proving (5.1.14).

To prove (5.1.15), we note that Ūi(s) > 0 for s ∈ (t, t+ δ). Thus, for large enough

n, Ui(s) > 0 for s ∈ (rnt, rn(t + δ)), and therefore server i is busy during the entire

interval. Hence, at least one class of jobs, say class k, receives at least rnδ/|C(i)|

amount of time from the server during (rnt, rn(t + δ)), where |C(i)| is the number of

classes at station i. Recall that ξk(`) is the service time for the `th class k job. We

have,
Dk(rn(t+δ))+1

∑

`=Dk(rnt)

ξk(`) ≥
rnδ
|C(i)|

. (5.1.17)

Dividing both side by rn and taking the liminf, we can get

lim inf
1
rn

Dk(rn(t+δ))+1
∑

`=Dk(rnt)

ξk(`) ≥
δ

|C(i)|
. (5.1.18)

Since limn→∞ Dk(rnt)/rn and limn→∞ Dk(rn(t+δ))/rn exist, by Lemma 5.1.8, we have

lim
n→∞

Dk(rn(t + δ))−Dk(rnt)
rn

> 0.

Now because the number of class k jobs served during a cycle is at most Lmaxµk, we

have

(Nn + 1)Lmaxµk > Dk(rn(t + δ))−Dk(rnt).

Thus,

lim inf
n→∞

Nn

rn
> 0.

34

To show (5.1.16), we note that the number of cycles is fewer than the total number

of jobs served during (rnt, rnt + rnδ). So we have

lim sup
n→∞

Nn

rn
≤ lim

n→∞

1
rn

∑

k∈C(i)

[Dk(rn(t + δ))−Dk(rnt)] =
∑

k∈C(i)

[D̄k(t + δ)− D̄k(t)] < ∞.

The next lemma is used in the proof of Lemma 5.1.2 only.

Lemma 5.1.6. For any ε > 0, there exists an N > 0 such that for all n > N and

s ∈ (t, t + δ),

1{Zk(rns)<Lmaxµk} ≤ 1{Z̄k(s)<ε},

where 1{·} is an indicator function.

Proof. Since

lim
rn→∞

Zk(rns)
rn

= Z̄k(s), u.o.c.,

there exists an M such that for all n > M ,

sup
s∈(t,t+δ)

∣

∣

∣

∣

Zk(rns)
rn

− Z̄k(s)
∣

∣

∣

∣

<
ε
2
.

Thus, for any s ∈ (t, t + δ) with Z̄k(s) ≥ ε,

Zk(rns) ≥ rnε/2, for all n > M.

Choose N > M such that for all n > N , rnε/2 > Lmax µk. Thus for all n > N ,

Zk(rns) ≥ Lmaxµk. So

1{Zk(rns)≥Lmax µk} ≥ 1{Z̄k(s)≥ε}.

Therefore for all n > N and s ∈ (t, t + δ), we have

1{Zk(rns)<Lmaxµk} ≤ 1{Z̄k(s)<ε}.

35

Proof of Lemma 5.1.2. Because Lj < Lmax, during cycle j,

qk(j) ≤ 1 +
Zk(rntnj)
Ui(rntnj)

Ljµk ≤ 1 + Lmaxµk.

Let C = 1 + Lmaxµk. Then when Zk(rntnj) ≥ C, the quota lost during cycle j is zero.

On the other hand, if Zk(rntnj) < C, the quota lost during cycle j is at most

Zk(rntnj)
Ui(rntnj)

Lmaxµk.

Hence

pk(j) ≤
Zk(rntnj)
Ui(rntnj)

Lmaxµk1{Zk(rntnj)<C}.

Therefore we have

Nn
∑

j=1

pk(j)
rn

≤ 1
rn

Nn
∑

j=1

Zk(rntnj)
Ui(rntnj)

Lmaxµk1{Zk(rntnj)<C}.

By Lemma 5.1.6, for any ε > 0, there exists an N1 > 0 such that for n > N1 and

s ∈ (t, t + δ),

1{Zk(rns)<C} ≤ 1{Z̄k(s)<ε}.

Since X̄ is a fluid limit, there exists an N2 such that for all n > N2,

sup
s∈(t,t+δ)

∣

∣

∣

∣

Zk(rns)
Ui(rns)

− Z̄k(s)
Ūi(s)

∣

∣

∣

∣

< ε. (5.1.19)

Finally, by (5.1.16), there exists a B > 0 and an N3 > 0 such that for all n > N3,

36

Nn

rn
< B. Now, for n > max{N1, N2, N3}, we have

1
rn

Nn
∑

j=1

Zk(rntnj)
Ui(rntnj)

Lmaxµk1{Zk(rntnj)<C}

=
Lmaxµk

rn

Nn
∑

j=1

[

Zk(rntnj)
Ui(rntnj)

−
Z̄k(tnj)
Ūi(tnj)

+
Z̄k(tnj)
Ūi(tnj)

]

1{Zk(rntnj)<C}

≤ Lmaxµk

rn

Nn
∑

j=1

∣

∣

∣

∣

∣

Zk(rntnj)
Ui(rntnj)

−
Z̄k(tnj)
Ūi(tnj)

∣

∣

∣

∣

∣

+
Lmaxµk

rn

Nn
∑

j=1

Z̄k(tnj)
Ūi(tnj)

1{Zk(rntnj)<C}

≤ Nn

rn
Lmaxµkε +

Lmaxµk

rn

Nn
∑

j=1

Z̄k(tnj)
Ūi(tnj)

1{Z̄k(tnj)<ε}

≤ Nn

rn
Lmaxµkε +

Lmaxµkε
mins∈(t,t+δ) Ūi(s)

Nn

rn

≤ BLmaxµk

(

1 +
1

mins∈[t,t+δ] Ūi(s)

)

ε.

Now we turn to the proof of Lemma 5.1.3. First, we introduce some additional

notation and an additional lemma.

Let F n
k (j) = Dk(rntnj+1)−Dk(rntn1) be the number of class k jobs served from time

rntn1 to rntnj+1. By Lemma 5.1.1, we have

F n
k (l) =

l
∑

j=1

Zk(tj)
Ui(rntnj)

Ljµk + rk(rntn0)− rk(rntnl)−
l

∑

j=1

pk(j). (5.1.20)

Multiplying both sides of (5.1.20) by mk and summing up all classes in C(i), we have

∑

k∈C(i)

F n
k (l)mk =

l
∑

j=1

Lj +
∑

k∈C(i)

[rk(rntn0)− rk(rntnl)]mk −
l

∑

j=1

mkpk(j). (5.1.21)

Lemma 5.1.7.

lim
n→∞

max
j≤Nn

1
rn

∣

∣

∣

∣

∣

∣

Dk(rntnj)
∑

`=Dk(rntn1)

ξk(l)− F n
k (j − 1)mk

∣

∣

∣

∣

∣

∣

= 0.

37

Proof. Let ξ̂k(l) = ξk(l)−mk. Then

max
j≤Nn

∣

∣

∣

∣

∣

∣

Dk(rntnj)
∑

`=Dk(rntn1)

ξk(l)− F n
k (j − 1)mk

∣

∣

∣

∣

∣

∣

= max
j≤Nn

∣

∣

∣

∣

∣

∣

Dk(rntn1)+F n
k (j−1)

∑

`=Dk(rntn1)

ξ̂k(l)

∣

∣

∣

∣

∣

∣

.

By Lemma 5.1.5, we

lim sup
n→∞

Dk(rntn1)
rn

< +∞,

lim sup
n→∞

F n
k (Nn − 1)

rn
≤ lim

n→∞

Dk(rn(t + δ))
rn

< +∞,

lim
n→∞

Nn = ∞.

So the conditions of Lemma 5.1.9 are satisfied, and thus

lim
n→∞

max
j≤Nn

∣

∣

∣

∣

∣

∣

Dk(rntn1)+F n
k (j−1)

∑

`=Dk(rntn1)

ξ̂k(l)
rn

∣

∣

∣

∣

∣

∣

= 0,

and the lemma is proved.

Proof of Lemma 5.1.3. Recall that for j = 1, . . . , Nn,

rnsn
j = rntn1 +

j−1
∑

i=1

Li

is the end point of the jth nominal cycle, and rntnj is the end point of the jth actual

cycle in (rnt, rn(t + δ)). Thus,

rn(tnj − tn1) =
∑

k∈C(i)

Dk(rntn1)+F n
k (j−1)

∑

l=Dk(rntn1)+1

ξk(l),

and

rn(tnj − sn
j) =

∑

k∈C(i)

Dk(rntn1)+F n
k (j−1)

∑

l=Dk(rntn1)+1

ξk(l)−
j−1
∑

i=1

Li.

By (5.1.21), we have

j−1
∑

`=1

L` =
∑

k∈C(i)

F n
k (j − 1)mk −

∑

k∈C(i)

[rk(t0)− rk(tj−1)]mk +
∑

k∈C(i)

j−1
∑

`=1

mkpk(t`).

38

Therefore,

tnj − sn
j =

∑

k∈C(i)





Dk(rntn1)+F n
k (j−1)

∑

l=Dk(rntn1)+1

ξk(l)
rn

− Fk(j − 1)mk

rn



 +
∑

k∈C(i)

[rk(t0)− rk(tj−1)]mk

rn

−
∑

k∈C(i)

j−1
∑

`=1

mkpk(t`)
rn

.

It follows that

max
j≤Nn

|tnj − sn
j | ≤ max

j≤Nn

∑

k∈C(i)

∣

∣

∣

∣

∣

∣

Dk(rntn1)+F n
k (j−1)

∑

l=Dk(rntn1)+1

ξk(l)
rn

− F n
k (j − 1)mk

rn

∣

∣

∣

∣

∣

∣

+
1
rn

∑

k∈C(i)

mk + max
j≤Nn

∑

k∈C(i)

j−1
∑

`=1

mkpk(t`)
rn

.

The first term on the right converges to zero by Lemma 5.1.7. Clearly, the second

term converges to zero as well. Since

max
j≤Nn

∑

k∈C(i)

j−1
∑

`=1

mkpk(t`)
rn

≤
∑

k∈C(i)

mk

Nn
∑

`=1

pk(t`)
rn

,

and by Lemma 5.1.2,

lim
n→∞

Nn
∑

j=1

pk(j)
rn

= 0

for each class k, we have

lim
n→∞

max
j≤Nn

∑

k∈C(i)

j−1
∑

`=1

mkpk(t`)
rn

= 0.

Thus, the third term also converges to zero. Hence we have limn→∞ maxj≤Nn |tnj −

sn
j | = 0, proving the lemma.

Proof of Lemma 5.1.4. Let m = max{j ≤ Nn : sn
j < t+δ}. Then, t, sn

1 , s
n
2 , . . . , s

n
m, t+

δ forms a partition of [t, t + δ]. We need to show that the norm of this partition

39

converge to 0, namely,

lim
n→∞

max
1<j≤m

(sn
j − sn

j−1) = 0 a.s., (5.1.22)

lim
n→+∞

(sn
1 − t) = 0 a.s., (5.1.23)

lim
n→+∞

(t + δ − sn
m) = 0 a.s. (5.1.24)

Since

max
1<j≤m

(sn
j − sn

j−1) = max
1<j≤m

Ln
j

rn
≤ Lmax

rn
→ 0 as n →∞,

(5.1.22) is satisfied for every sample path. Now

lim
n→∞

(tn1 − t) ≤ lim
n→∞

∑

k∈C(i)

1
rn

Dk(rntn1)
∑

`=Dk(rnt)

ξk(`).

Since (rnt, rntn1) is a partial cycle, the total number of class k jobs served during this

period is less than Lmaxµk + 1. So

Dk(rntn1)−Dk(rnt)
rn

<
Lmaxµk + 1

rn
→ 0, as n →∞.

Hence by Lemma 5.1.8 below,

lim
n→∞

1
rn

Dk(rntn1)
∑

`=Dk(rnt)

ξk(`) = 0.

So (5.1.23) is true. Finally, if m < Nn, then

rn(t + δ)− rnsn
m < rnsn

m+1 − rnsn
m < Lmax;

if m = Nn, then

rn(t + δ)− rnsn
m < rntnNn − rnsn

Nn .

40

But limn→∞ Lmax/rn = 0 and by Lemma 5.1.3, limn→+∞(tnNn − sn
Nn) = 0. So in either

case we have (5.1.24). Thus,

lim
n→+∞

∣

∣

∣

∣

∣

Z̄k(t)
Ūi(t)

(sn
1 − t) +

m−1
∑

j=1

Z̄k(sn
j)

Ūi(sn
j)

(sn
j+1 − sn

j) +
Z̄k(sn

m)
Ūi(sn

m)
(t + δ − sn

m)−
∫ t+δ

t

Z̄k(s)
Ūi(s)

ds

∣

∣

∣

∣

∣

= 0.

(5.1.25)

Because Z̄k(t)/Ūi(t) is bounded by 1, from (5.1.23) and (5.1.24), we have

lim
n→+∞

Z̄k(t)
Ūi(t)

(sn
1 − t) = 0 a.s.

lim
n→+∞

Z̄k(sn
m)

Ūi(sn
m)

(t + δ − sn
m) = 0 a.s.

So we can delete the first and last terms in the left side of equation (5.1.25) and

obtain

lim
n→+∞

∣

∣

∣

∣

∣

m−1
∑

j=1

Z̄k(sn
j)

Ūi(sn
j)

(sn
j+1 − sn

j)−
∫ t+δ

t

Z̄k(s)
Ūi(s)

ds

∣

∣

∣

∣

∣

= 0. (5.1.26)

On the other hand,
Nn
∑

j=m

Z̄k(sn
j)

Ūi(sn
j)

(sn
j+1 − sn

j) < sn
Nn − sn

m.

If m = Nn, then sn
Nn − sn

m = 0, otherwise

sn
Nn − sn

m = sn
Nn − (t + δ) + (t + δ)− sn

m

< |sn
Nn − tnNn |+ |sn

m+1 − sn
m|

< |sn
Nn − tnNn |+

Lmax

rn
.

But limn→∞ |sn
Nn − tnNn| = 0 and limn→+∞ Lmax/rn = 0, so

lim
n→+∞

(sn
Nn − sn

m) = 0.

Thus

lim
n→+∞

Nn
∑

j=m

Z̄k(sn
j)

Ūi(sn
j)

(sn
j+1 − sn

j) = 0. (5.1.27)

41

So by (5.1.26) and (5.1.27), we have

lim
n→+∞

∣

∣

∣

∣

∣

Nn−1
∑

j=1

Z̄k(sn
j)

Ūi(sn
j)

(sn
j+1 − sn

j)−
∫ t+δ

t

Z̄k(s)
Ūi(s)

ds

∣

∣

∣

∣

∣

= 0. (5.1.28)

5.1.2 Some Additional Lemmas

In this section, we present a few lemmas that concern a general sequence of real

numbers that possesses a long-run average. Throughput this section, assume that

{ξ(i) : i = 1, . . . , } is a sequence of real numbers satisfying

1
n

(ξ(1) + . . . + ξ(n)) → ξ̄ as n →∞ (5.1.29)

for some real number ξ̄.

Our first lemma was used in the proof of Lemma 5.1.4, again in the proof of

Lemma 5.1.9. The elementary proof can be found in, for example, Jennings [21].

Lemma 5.1.8. Let f1,f2 and g be three maps from Z+ to Z+ satisfying

lim sup
n→+∞

f1(n)
g(n)

< +∞, lim
n→+∞

f2(n)
g(n)

= 0, and lim
n→+∞

g(n) = +∞.

Then

lim
n→∞

1
g(n)

f1(n)+f2(n)
∑

=f1(n)+1

ξ(j) = 0. (5.1.30)

In the proof of Lemma 5.1.7, we made a critical use of the following lemma. The

proof of this lemma is the main content of this section.

Lemma 5.1.9. Assume that ξ̄ = 0 in (5.1.29). Let f and h be two maps from Z+ to

Z+, and g be a map from Z2
+ to Z+. Let {rn} be a sequence with rn →∞ as n →∞.

42

Suppose that

lim
n→∞

h(n) = ∞,

lim sup
n→∞

f(n)
rn

< ∞,

lim sup
n→∞

g(h(n), n)
rn

< ∞,

and for each fixed n, g(m, n) is nondecreasing function in m. Then,

lim
n→∞

maxm≤h(n) |
∑f(n)+g(m,n)

`=f(n) ξ(`)|
rn

= 0. (5.1.31)

To prove Lemma 5.1.9, we make use the following lemma. The proof can be found,

for example, in Gut[17].

Lemma 5.1.10. Let S(n) =
∑n

i=1 ξ(i). Then

lim
m→+∞

maxn≤m S(n)
m

= ξ̄+,

lim
m→+∞

minn≤m S(n)
m

= ξ̄−,

where for a real number x, x+ denotes the positive part of x and x− denotes the

negative part of x.

Proof of Lemma 5.1.9. Since

maxm≤h(n) |
∑f(n)+g(m,n)

`=f(n) ξ(`)|
rn

= max

{

maxm≤h(n)
∑f(n)+g(m,n)

`=f(n) ξ(`)

rn
,
−minm≤h(n)

∑f(n)+g(m,n)
`=f(n) ξ(`)

rn

}

,

we only need to show

lim sup
n→∞

maxm≤h(n)
∑f(n)+g(m,n)

`=f(n) ξ(`)

rn
≤ 0 a.s. (5.1.32)

43

and

lim inf
n→∞

minm≤h(n)
∑f(n)+g(m,n)

`=f(n) ξ(`)

rn
≥ 0 a.s. (5.1.33)

Because g(m, n) is nondecreasing with respect to m, we have

max
m≤h(n)

f(n)+g(m,n)
∑

`=f(n)

ξ(`) ≤ max
m≤g(h(n),n)

f(n)+m
∑

`=f(n)

ξ(`).

Thus,

maxm≤h(n)
∑f(n)+g(m,n)

`=f(n) ξ(`)

rn

≤
maxm≤g(h(n),n)

∑f(n)+m
`=f(n) ξ(`)

rn

=
maxm≤g(h(n),n)

∑f(n)+m
`=1 ξ(`)−

∑f(n)
`=1 ξ(`)

rn

=
maxm≤g(h(n),n)

∑f(n)+m
`=1 ξ(`)

rn
−

∑f(n)
`=1 ξ(`)
rn

≤
maxm≤g(h(n),n)+f(n)

∑m
`=1 ξ(`)

rn
−

∑f(n)
`=1 ξ(`)
rn

≤
maxm≤g(h(n),n)+f(n)+rn

∑m
`=1 ξ(`)

rn
−

∑f(n)
`=1 ξ(`)
rn

=
maxm≤g(h(n),n)+f(n)+rn

∑m
`=1 ξ(`)

g(h(n), n) + f(n) + rn

(

1 +
g(h(n), n) + f(n)

rn

)

−
∑f(n)

`=1 ξ(`)
rn

.

Since limn→∞(g(h(n), n) + f(n) + rn) = +∞, by Lemma 5.1.10, we have

lim
n→∞

maxm≤g(h(n),n)+f(n)+rn

∑m
`=1 ξ(`)

g(h(n), n) + f(n) + rn
= 0.

Together with the condition

lim sup
n→

g(h(n), n) + f(n)
rn

< +∞,

we have

lim
n→∞

maxm≤g(h(n),n)+f(n)+rn

∑m
`=1 ξ(`)

g(h(n), n) + f(n) + rn

(

1 +
g(h(n), n) + f(n)

rn

)

= 0.

44

From Lemma 5.1.8, we have

lim
n→∞

∑f(n)
`=1 ξ(`)
rn

= 0.

Thus (5.1.32) is true. Similarly, we can show (5.1.33) is also true. So

lim
n→∞

maxm≤h(n) |
∑f(n)+g(m,n)

`=f(n) ξ(`)|
g(h(n), n)

= 0 a.s. (5.1.34)

5.2 Stability of LWUU Policies

In this section, we will show that networks with deterministic routing under LWUU

policies are stable. As previous sections, we will prove this by showing that fluid

models are stable. The corresponding fluid model is following.

Z̄p,k(t) = Z̄p,k(0) + Āp,k(t)− D̄p,k(t), p = 1, 2, ...P, k = 1, 2, ...Kp, (5.2.1)

Āp,k(t) = D̄p,k−1(t), p = 1, 2, ...P, k = 1, 2, ...Kp, (5.2.2)

CT̄ (t) + Ȳ (t) = et, t ≥ 0, (5.2.3)

Ȳj(t) increases only when Ūj(t) = 0, j = 1, ..., J, (5.2.4)

˙̄Tp,k(t) = 0 if ∃(q, l) ∈ C(j) s.t. βpZ̄+
p,k(t) < βqZ̄+

q,l(t) and Z̄q,l(t) > 0, (5.2.5)

where Z̄+
q,l(t) =

∑l
k=1 Z̄q,k(t).

Proposition 5.2.1. The fluid limits of queueing networks under LWUU policies sat-

isfy the above fluid equations.

45

Proof. We only check equation (5.2.5). Verification of other equations is standard.

Let X̄ be a fluid limit under a LWUU policy. Let rn → ∞ be a corresponding

sequence such that X̄rn → X̄ as n → ∞. For any time t, suppose that there exists

class (q, l) such that βpZ̄+
p,k(t) < βqZ̄+

q,l(t) and Z̄q,l(t) > 0. Let

ε = min{βqZ̄+
q,l(t)− βpZ̄+

p,k(t), Z̄q,l(t)}.

Then by the continuity of Z̄(t), there exists δ such that for all s ∈ (t − δ, t + δ),

βqZ̄+
q,l(s)−βpZ̄+

p,k(s) > ε/2, and Z̄q,l(s) > ε/2. Since Z̄rn(·) → Z̄(·) u.o.c. and rn →∞

as n →∞, there exists an N such that for all n > N ,

sup
0≤s≤t+δ

|βpZ+
p,k(rns)/rn − βpZ̄+

p,k(s)| < ε/8,

sup
0≤s≤t+δ

|βqZ+
q,l(rns)/rn − βqZ̄+

q,l(s)| < ε/8,

and

sup
0≤s≤t+δ

|Z+
q,l(rns)/rn − Z̄q,l(s)| < ε/4.

Hence for s ∈ (t− δ, t + δ),

βqZ+
q,l(rns)/rn − βpZ+

p,k(rns)/rn > ε/4,

and

Z+
q,l(rns)/rn > ε/4.

And thus for s ∈ (rn(t− δ), rn(t + δ)),

βq(Z+
q,l(s)− ξ+

q,l)− βp(Z+
p,k(s)− ξ+

p,k) > rnε/4− (βqξ+
q,l − βpξ+

p,k),

and

Z+
q,l(s) > rnε/4.

46

So for large enough n, we have

βq(Z+
q,l(s)− ξ+

q,l)− βp(Z+
p,k(s)− ξ+

p,k) > 0.

Thus by the definition of LWUU policies, the server will never work for class (p, k)

during (rn(t− δ), rn(t + δ)). So

Tp,k(rn(t + δ))− Tp,k(rn(t− δ)) = 0.

Divided by rn and let n →∞ we have

T̄p,k(t + δ)− T̄p,k(t− δ) = 0.

Hence

˙̄Tp,k(t) = 0.

Let fp,k(t) = βpZ̄+
p,k(t) and f(t) = maxp=1,2,..P,k=1,2,...kp fp,k(t). Since each fp,k is a

linear function of Z̄(t), f is a piecewise linear Lyapunov function of Z̄(t). One can

check that f(t) is a Lipschitz function of t, and is thus absolutely continuous. In this

section, t is said to be regular if both X and f are differentiable at t. Whenever a

derivative is used at time t, t is assumed to be a regular point.

Lemma 5.2.1. For a regular point t, if

f(t) = max
p=1,2,..P,k=1,2,...kp

fp,k(t),

ḟp,k(t) = ḟ(t).

47

Proof. Let g(t) = f(t) − fp,k(t). Then g(t) ≥ 0. If for a regular point t, f(t) =

maxp=1,2,..P,k=1,2,...kp fp,k(t), then g(t) = 0. Hence t is minimum point. Since t is

regular point for both f(·) and fp,k(·) and hence is also regular point of g(·) , we have

ġ(t) = 0. Thus ḟp,k(t) = ḟ(t).

Proposition 5.2.2. The fluid model of a queueing network operated under LWUU

policies is stable.

Proof. For any regular point t, let f(t) be the function defined above. Suppose

that f(t) > 0. Then there exists a class (p, k) such that fp,k(t) = f(t). Since

fp,k(t) = maxq,l fq,l(t), we have fp,k(t) ≥ fp,l(t) for all l > k. And because βq,l > 0

and Z̄p,l(t) ≥ 0, we have fp,k(t) ≤ fp,l(t) for all l > k. Thus we have Z̄p,l = 0 for all

l > k. Furthermore we can assume that Z̄p,k(t) > 0. Otherwise we can replace class

(p, k) with (p, k − 1) and still have fp,k−1(t) = f(t). Since f(t) > 0, this procedure

can keep going and finally a positive buffer will be reached.

Now let j = σ(p, k), which is the index of the server that class (p, k) belongs to.

Since Z̄p,k(t) > 0, we have
∑

(q,l)∈C(j)

˙̄Tq,l(t) = 1. (5.2.6)

Let

C+
j (t) = {(q, l) ∈ C(j) : fq,l(t) = f(t)}.

By (5.2.5) and (5.2.6) we have

∑

(q,l)∈C+
j (t)

˙̄Tq,l(t) = 1.

48

Let dq,l = ˙̄Dq,l(t). Then we have

∑

(q,l)∈C+
j (t)

mq,ldq,l = 1.

Since

ḟ(t) = βq(αq − dq,l)

for all (q, l) ∈ C+
j (t), we have

dq,l = αq − ḟ(t)/βq

for all (q, l) ∈ C+
j (t). Hence we have

∑

(q,l)∈C+
j (t)

mq,l(αq − ḟ(t)/βq) = 1.

So we have

ḟ(t) =

∑

(q,l)∈C+
j (t) mq,lαq − 1

∑

(q,l)∈C+
j (t) mq,l/βq

.

By the definition of C+
j (t), we have C+

j (t) ⊆ C(j). Hence

∑

(q,l)∈C+
j (t)

mq,lαq ≤
∑

(q,l)∈C(j)

mq,lαq < 1.

Thus we have

ḟ(t) < 0.

Therefore there exists t0 such that for all t > t0 we have f(t) = 0.

Theorem 5.2.1. For a given multi-product deterministic route network, assume the

traffic intensity of each station is less than one. Then the multi-product deterministic

route network is rate stable under a LWUU policy.

Proof. The conclusion follows from Theorem 4.3.1 and Proposition 5.2.2.

49

5.3 Stability of LWTU policies

In this section, we will show that networks with deterministic routing under LWTU

policies are stable. Again, we will prove this by showing that corresponding fluid

models are stable. The corresponding fluid model is following.

Z̄p,k(t) = Z̄p,k(0) + Āp,k(t)− D̄p,k(t), p = 1, 2, ...P, k = 1, 2, ...Kp, (5.3.1)

Āp,k(t) = D̄p,k−1(t), p = 1, 2, ...P, k = 1, 2, ...Kp, (5.3.2)

CT̄ (t) + Ȳ (t) = et, t ≥ 0, (5.3.3)

Ȳj(t) increases only when Ūj(t) = 0, j = 1, ..., J, (5.3.4)

˙̄Tp,k(t) = 0 if ∃(q, l) ∈ C(j) such that (5.3.5)

βp(Z̄+
p,k(t)− Z̄−

p,k(t)) < βq(Z̄+
q,l(t)− Z̄−

q,l(t)) and Z̄q,l(t) > 0, (5.3.6)

where Z̄+
p,k(t) =

∑k
l=1 Z̄p,l(t) for k = 1, 2, ...Kp, Z̄−

p,k(t) =
∑K

l=k+1 Z̄p,l(t) for k =

1, 2, ...Kp − 1, and Z̄−
p,Kp

(t) = 0.

Proposition 5.3.1. The fluid limits of queueing networks under LWTU policies sat-

isfy the above fluid equations.

Proof. We only check equation (5.3.6). Verification of other equations is standard.

Let X̄ be a fluid limit under a LWTU policy. Let rn →∞ be a corresponding sequence

such that X̄rn → X̄ as n → ∞. For any time t, suppose that there exists class (q, l)

such that βp[Z̄+
p,k(t)− Z̄−

p,k(t)] < βq[Z̄+
q,l(t)− Z̄−

q,l(t)]. Let

ε = min{Z̄q,l(t), βq[Z̄+
q,l(t)− Z̄−

q,l(t)]− βp[Z̄+
p,k(t)− Z̄−

p,k(t)]}.

Then by the continuity of Z̄(t), there exists δ such that for all s ∈ (t − δ, t + δ),

βq[Z̄+
q,l(t)− Z̄−

q,l(t)]−βp[Z̄+
p,k(t)− Z̄−

p,k(t)] > ε/2 and Z̄q,l(s) > ε/2. Since Z̄rn(·) → Z̄(·)

50

u.o.c. and rn →∞ as n →∞, there exists an N such that for all n > N ,

sup
0≤s≤t+δ

∣

∣βp[Z+
p,k(rns)− Z−

p,k(rns)]/rn − βp[Z̄+
p,k(s)− Z̄−

p,k(s)]
∣

∣ < ε/8,

sup
0≤s≤t+δ

∣

∣βq[Z+
q,l(rns)− Z−

q,l(rns)]/rn − βq[Z̄+
q,l(s)− Z̄−

q,l(s)]
∣

∣ < ε/8,

and

sup
0≤s≤t+δ

|Z+
q,l(rns)/rn − Z̄q,l(s)| < ε/4.

Hence for s ∈ (t− δ, t + δ),

βq[Z+
q,l(rns)− Z−

q,l(rns)]/rn − βp[Z+
p,k(rns)− Z−

p,k(rns)]/rn > ε/4,

and

Z+
q,l(rns)/rn > ε/4.

And thus for s ∈ (rn(t− δ), rn(t + δ)),

βq[(Z+
q,l(s)− ξ+

q,l)− (Z−
q,l(s)− ξ−q,l)]− βp[(Z+

p,k(s)− ξ+
p,k)− (Z−

p,k(s)− ξ−p,k)]

> rnε/4− [βq(ξ+
q,l − ξ−q,l)− βp(ξ+

p,k − ξ−p,k)],

and

Z+
q,l(s) > rnε/4.

So for large enough n, we have

βq[(Z+
q,l(s)− ξ+

q,l)− (Z−
q,l(s)− ξ−q,l)]− βp[(Z+

p,k(s)− ξ+
p,k)− (Z−

p,k(s)− ξ−p,k)] > 0,

and

Z+
q,l(s) > 0.

51

Thus by the definition of the LWTU policy, the server will never work for class (p, k)

during (rn(t− δ), rn(t + δ)). So

Tp,k(rn(t + δ))− Tp,k(rn(t− δ)) = 0.

Divided by rn and let n →∞ we have

T̄p,k(t + δ)− T̄p,k(t− δ) = 0.

Hence

˙̄Tp,k(t) = 0.

Let fp,k(t) = βp(Z̄+
p,k(t)−Z̄−

p,k(t)) and f(t) = maxp=1,2,..P,k=1,2,...kp fp,k(t). Similar to

last section, f(t) is a piecewise linear Lyapunov function of Z̄(t). Again one can check

that f(t) is a Lipschitz function of t, and hence is absolutely continuous. As previous

section, t is said to be regular if both X and f are differentiable at t. Whenever a

derivative is used at time t, t is assumed to be a regular point.

Lemma 5.3.1. For any regular time t, we have

(1) f(t) ≥ 0.

(2) If fq,l(t) = f(t) > 0, there exist k ≤ l such that fq,k(t) = fq,l(t) and Z̄q,k(t) > 0.

(3) If fq,l(t) = f(t), ḟq,l(t) = βq,l(αq − dq,l).

Proof. (1) Let p be any product and kp be the last step of product p. Then f(t) ≥

fp,kp(t). Since Z̄−
Kp

(t) = 0, we have fp,kp(t) = βpZ̄+
Kp

(t) ≥ 0. Hence f(t) ≥ 0.

(2) Let fq,l(t) = f(t) > 0. If Z̄q,l(t) > 0, then we are done. Otherwise let k be

the largest index such that k < l and Z̄q,k(t) > 0. If such k does not exist, then

52

Z̄+
q,l(t) = 0 and hence fq,l(t) = −βqZ̄−

q,l(t) ≤ 0, which contradicts to the assumption

fq,l(t) = f(t) > 0. Therefore conclusion (2) is true.

(3)Suppose that fq,l(t) = f(t), then for any k > l Z̄q,k(t) = 0. If this is not true,

let k > l such that Z̄q,k(t) > 0. So

Z̄+
q,k(t) ≥ Z̄+

q,l(t) + Z̄q,k(t) > Z̄+
q,l(t),

and

Z̄−
q,k(t) ≤ Z̄−

q,l(t)− Z̄q,k(t) < Z̄−
q,l(t).

Hence

fq,k)(t) = βq(Z̄+
q,k(t)− Z̄−

q,k(t)) > βq(Z̄+
q,l(t)− Z̄−

q,l(t)) = fq,l(t).

This contradicts to the fact that fq,l(t) = f(t). So

fq,l = βqZ̄+
q,l(t).

So conclusion (3) is true.

Proposition 5.3.2. The fluid model of queueing network operated under LWTU poli-

cies is stable.

Proof. For any regular point t, let f(t) be the function defined above. Suppose that

f(t) > 0. Then there exists a class (p, k) such that fp,k(t) = f(t). By the Lemma 5.3.1

we can assume that Z̄p,k(t) > 0. Using the part 3 of Lemma 5.3.1, the rest proof

follows exactly same as the proof of Proposition 5.2.2.

Theorem 5.3.1. For a given multi-product deterministic route network, assume the

traffic intensity of each station is less than one. Then the multi-product deterministic

route network is rate stable under LWTU policies.

Proof. The conclusion follows from Theorem 4.3.1 and Proposition 5.3.2.

53

Part II

Stabilizing Batch Processing

Networks

54

Our study involves batch processing networks in which multiple jobs can be pro-

cessed as a batch in a single service operation. The size of a batch is limited by the

physical capacity of the server or by the number of jobs available. The processing time

of a batch is independent of the size of the batch. A semiconductor wafer fabrication

facility, known as a wafer fab, is an example of a batch processing network. In a wafer

fab, diffusion furnaces can often process up to a dozen jobs at a time. However, the

processing time of a batch may be as long as 8 hours, as much as 100 times longer

than a typical processing step in other areas.

In a batch processing network such as a wafer fab, product flows are reentrant.

Multiple processing steps, called job classes, compete for service at a single service

station. When a server is ready to load the next batch, the class of jobs to be loaded

next must be determined. A policy specifying such decisions is called a batch policy.

A common issue is whether a server should wait for a full batch in order to fully

utilize the server’s capacity.

This part is concerned with the throughput or production rate in a batch process-

ing network. As discussed further at the end of this introduction, the throughput in

such a network depends not only on the processing speeds of the servers, but also on

the batch policy employed. We contend that throughput is a more important perfor-

mance measure than utilization of each individual server. When a good throughput is

achieved, the servers are automatically utilized at proper levels. Our research shows

that in order to achieve a good throughput: (1) full batch classes should have high

priority; (2) when there are no full batch classes at a station, it does not matter

whether the server waits for a full batch or not; (3) which full batch class loaded next

is important.

55

When there is no batch operation in a batch processing network, we call the

network a standard processing network. Although a standard processing network is

in a special class of batch processing networks, with maximum batch sizes being one,

we call the corresponding service policy in the standard network a dispatch policy.

There have been many dispatch policies that have been proven to maximize the

throughput; see, for example, Kumar and Seidman [24], Bramson [2, 3], Kumar and

Kumar [25], Dai and Weiss [14], and Chen and Zhang [8, 9]. In this part, we present

a general scheme for converting a dispatch policy into a batch policy. We prove that

the corresponding batch policy preserves certain stability properties of the dispatch

policy. In particular, a dispatch policy that maximizes the throughput in a standard

network can be turned into a batch policy that maximizes the throughput in the

corresponding batch processing network.

Most of the stability analyses in literature have been limited to standard processing

networks, also called multiclass queueing networks, as advanced by Harrison [18].

Two exceptions are Maglaras and Kumar [30] and Kumar and Zhang [26], in which

batch processing networks were studied. In [30], a family of discrete review batch

policies was shown to maximize the throughput. In [26], a family of fluctuation-

smoothing batch policies was shown to maximize the throughput in special networks

called reentrant lines by Kumar [23].

In the stability analysis for a standard processing network, the standard tool is

to use fluid models as we discuss in part I; see, Rybko and Stolyar [32], Dai [10],

Stolyar [35], Dai and Meyn [12], Chen [6], and Bramson [4]. Jennings [22] extended

the fluid model tool for processing networks with setups. In this part, as in [26], we

also extend the fluid model tool to batch processing networks.

56

m1=1.8

m3=2.7 m4=10.8

m2=7.2
a=1

Figure 1: A two-station, four-class batch processing network

The following is an example of a batch processing network, illustrating that

throughput depends on the batch policy employed. The network has two single-

server service stations serving four job classes, as illustrated in Figure 1. Each job

follows four processing steps, alternating between stations 1 and 2. Jobs being pro-

cessed or waiting to be processed in step k are called class k jobs and reside in buffer

k. The maximum batch sizes for servers 1 and 2 are 5 and 20, respectively. Jobs

are assumed to arrive from the outside following a Poisson process with rate α = 1

job per minute. The processing times for class k batches are independent, exponen-

tially distributed with mean mk, k = 1, 2, 3, 4. The mean service times are set to be

m1 = 1.8, m2 = 7.2, m3 = 2.7, and m4 = 10.8 minutes, as shown in the figure. The

traffic intensities for stations 1 and 2, to be defined in (6.4.2) in Section 2, are given

by

ρ1 = α(m1 + m3)/5 = 0.9 and ρ2 = α(m2 + m4)/20 = 0.9.

Therefore the usual traffic condition (6.4.3) is satisfied for the parameter set. In-

tuitively, the batch processing network should have enough capacity to handle all

incoming jobs, achieving a throughput of 1 job per minute.

57

0

100

200

300

400

500

600

700

800

900

0 500 1000 1500 2000 2500 3000 3500 4000 4500

W
IP

time

"WIP"

Figure 2: The total number of jobs in system

Since last-buffer-first-serve (LBFS) dispatch policy maximizes the throughput in a

standard reentrant line (Dai and Weiss [14] and Kumar and Kumar [25]), we employ

the LBFS batch policy in the batch processing network. Under the LBFS policy,

each server always loads the highest nonempty class to form a batch, even though

the selected class may have only 1 job in it. We simulate this processing network by

using the ASAP software package produced by AutoSimulations Inc. The following

table shows the average times in system.

Number of jobs leaving the system 50 500 5000 50000

Average time in system 54.2 208.4 1057.3 6831.6

Figure 2 plots the total number of jobs in the system as time increases. Clearly,

the system is unstable, thus it cannot handle the offered load in long-run. On the

58

other hand, the same simulation shows that, after completing 50000 jobs, server 1 is

busy 96% of the time with average batch size 4.19 jobs and server 2 is busy 99.97%

of the time with average batch size 16.41 jobs. The servers are apparently heavily

utilized, yet the system is unstable. Under the LBFS batch policy, server 2 keeps

serving class 4 batches that may have only 5 jobs, sent recently from class 3 by server

1, although class 2 has a large number of jobs waiting. This example shows that a

naive implementation of a service policy may lead to an extremely inefficient system,

although the policy performs well in a standard network. This source of inefficiency

can be eliminated by employing the full batch policies to be described in Section 2.

Under the full LBFS batch policy, server 2 gives high priority to class 2 when class 2

has a large number of jobs and class 4 has fewer than 20 jobs. Under this modified

LBFS policy, the system can handle the offered load, achieving throughput of 1 job

per minute.

The preceding source of inefficiency seems easy to identify and to correct. There is

another source of inefficiency that is subtle and difficult to identify. This inefficiency

occurs in processing networks having reentrant flows even when there are no batch

operations. The challenge here is to decide which full batch class to load next when

there are multiple full batch classes. Poor decisions lead to low utilization of servers,

and at the same time the number of jobs in the system building up to infinity. Since

this inefficiency phenomenon has been well studied in literature (Kumar-Seidman [24],

Lu and Kumar [27], Rybko and Stolyar [32], Bramson [1], and Seidman [33]), we refer

readers to these papers for further discussion. (A more recent explanation can be

found in Dai and Vande Vate [13] and Hasenbein [20] through virtual and pseudo

stations.)

59

This part is organized as follows. In Chapter 6, we introduce batch processing

networks and their corresponding standard processing networks. We then describe a

general scheme for converting a dispatch policy into a batch policy. We also define the

notion of rate stability and present the main theorem of this part. In Chapter 7, we

introduce the fluid models of batch and standard processing networks. We establish

that the stability of a fluid model implies the stability of the corresponding processing

network, and we introduce fluid limits that are used to justify fluid equations defining

a fluid model. In Chapter 8, we study the relationship between batch and standard

fluid models; through the relationship, we then define normal dispatch policies in a

standard network, a key notion used in the statement of our main theorem. Finally,

we present examples of normal dispatch policies in Chapter 9. These include static

buffer priority, first-in–first-out, and generalized round robin policies.

60

Chapter 6

Open Multi-Class Batch Processing
Networks

In this chapter, we first introduce the open multi-class batch processing networks,

called batch processing networks, that are the focus of this study. In a batch process-

ing network, multiple jobs can form a batch to be served in a single service operation.

We then introduce their corresponding standard processing networks that are identi-

cal to batch processing networks except that jobs are processed one at a time. Finally,

we describe a general mechanism of constructing an (induced) batch policy for the

batch network from a dispatch policy for the standard network.

6.1 The Batch Processing Network

The network under study has J single-server stations and K job classes. Stations

are labeled by j = 1, ..., J and classes by k, ` = 1, ..., K. Class k jobs are served at

a unique station σ(k). For each station, more than one class might be served. Each

station has an unlimited waiting space for each job class. Multiple jobs can form a

batch that is to be processed in a single service operation. Each server always forms

a batch as large as possible and the largest batch size for class k is Bk. We assume

that jobs in different classes can not be merged into a batch. The processing time for

61

a batch is independent of the batch size.

Jobs arrive at the network from outside, and change classes as they move through

the network. When a batch finishes its processing, it is split into individual jobs

again, and these jobs are individually routed to the next class or outside. Each job

eventually will leave the network. The ordered sequence of classes that a job visits in

the network is called a route.

We use C(j) to denote the set of classes that belong to station j. When j and

k appear together, we implicitly set j = σ(k). For each class k, there are three

groups of cumulative processes Ek = {Ek(t), t ≥ 0}, Vk = {Vk(n) : n = 1, 2, ...},

and Φk = {Φk(n) : n = 1, 2, ...}. For each time t ≥ 0, Ek(t) counts the number of

external arrivals to class k in [0, t]. For each positive integer n, Vk(n) is the total

service time requirement for the first n batches (regardless of batch size) in class k.

For each positive integer n, Φk(n) is a K-dimensional vector taking values in ZK
+ . For

each class `, Φk
` (n) is the total number of jobs going to class ` among the first n jobs

finishing services at class k. By convention, we assume

Ek(0) = 0, Vk(0) = 0, and Φk(0) = 0.

For each time t ≥ 0, we extend the definitions of Vk(t) and Φk(t) as

Vk(t) = Vk(btc) and Φk(t) = Φk(btc),

where btc denotes the largest integer less than or equal to t. We call (E, V, Φ) the

primitive processes, where E = {E(t), t ≥ 0}, V = {V (t), t ≥ 0}, and Φ = {Φ(t), t ≥

0} with E(t) = (E1(t), E2(t), ..., EK(t))′, V (t) = (V1(t), V2(t), ..., VK(t))′, and Φ(t) =

(Φ1(t), Φ2(t), ..., ΦK(t))′. We assume that the strong law of large numbers holds for

62

the primitive processes, namely, with probability one,

lim
t→∞

Ek(t)
t

= αk, lim
t→∞

Vk(t)
t

= mk, and lim
t→∞

Φ(t)
t

= P. (6.1.1)

The parameter (α, m, P) with α = (α1, . . . , αK)′ and m = (m1, . . . ,mK)′ has the

following natural interpretations: For each class k, αk is the external job arrival rate

at class k and mk is the mean service time for class k batches. (Recall that the

processing time of a batch is independent of its batch size.) For classes k and `, Pk` is

the long-run fraction of class k jobs that become class `. It is also called the routing

probability from class k to class `. The K×K matrix P = (Pk`) is called the routing

matrix. We assume that the network is open, i.e., the matrix

Q = I + P ′ + (P ′)2 + ...

is finite, which is equivalent to the fact that (I−P ′) is invertible and Q = (I−P ′)−1.

A reentrant line is a special type of processing network in which all jobs follow a

deterministic route of K stages, and jobs may visit some stations multiple times.

For future purposes, we introduce the counting process S = {S(t) : t ≥ 0}

associated with the primitive service process V . For each time t ≥ 0, S(t) =

(S1(t), . . . , SK(t))′ with

Sk(t) = max{n : Vk(n) ≤ t}, k = 1, 2, ..., K.

It follows from the strong law of large numbers (6.1.1) that

lim
t→∞

Sk(t)
t

= µk, k = 1, . . . , K, (6.1.2)

where µk = 1/mk.

63

Whenever a server is ready to load a batch, it needs a policy to decide which batch

to serve next. Such a policy is called a batch policy. We assume that, within a class,

first-in-first-serve (FIFO) policy is used to form a batch. Once class k is selected by

a server, the server always attempts to form a batch of size Bk if possible. Once a

service is started, the service cannot be preempted. A class k with at least Bk jobs

is called a full batch class. In this part, we restrict ourselves to full batch policies.

Namely, at the end of a service, the server has to load a full batch class when one is

available at the station. When there is no full batch class at a station, the server can

choose to idle. Waiting for additional jobs to form full batches is a common practice

in some industries including wafer fabs. The full batch policies can and should be

relaxed in some cases; see Chapter 11 for possible extensions.

6.2 The Standard Processing Network

We now define the standard processing network that corresponds to a batch processing

network. The standard network is identical to the batch processing network except

that (a) the maximum batch size is one, and (b) the primitive service process is

given by Ṽk = {Ṽk(n) : n = 1, . . .} where Ṽk(n) = Vk(n)/Bk. As a result, the

counting process S̃ associated with the primitive service process Ṽ is described by

S̃k(t) = max{n : Ṽk(n) ≤ t} = Sk(Bkt), k = 1, 2, . . . , K, and the strong law of large

numbers becomes

lim
n→∞

Ṽk(n)
n

= mk/Bk and lim
t→∞

S̃k(t)
t

= Bkµk, k = 1, . . . , K. (6.2.1)

In short, the standard network processes one job at a time, and when class k jobs

are in service, the server speeds up by a factor of Bk over the service in the batch

64

network.

For a batch processing network driven by the primitive processes (E, V, Φ) with

maximum batch sizes (B1, . . . , BK)′, the corresponding standard processing network

is driven by the primitive processes (E, Ṽ , Φ) and the maximum batch sizes is one.

Since a standard network is a special case of a batch processing network, a service

or batch policy is also needed to operate such a network. We call a service policy

in such a network dispatch policy. The alternative term is needed to distinguish the

batch policy introduced in the previous section. A major result of this part is to

use a dispatch policy to construct a corresponding batch policy that preserves the

stability property of the dispatch policy. The construction will be carried out in the

next section.

6.3 The Induced Batch Policy

In this section, we describe a procedure to construct the corresponding batch policy

for a batch network from a dispatch policy for a standard network. Let π be a dispatch

policy for the standard network.

We now define an induced batch policy π̃ for the batch network. The policy π

dictates which nonempty class should be served next based on the system state of the

corresponding standard network. In the batch network, any class k with fewer than

Bk jobs is considered to be “empty”. In other words, the system state component

corresponding to class k is set at 0. Based on that revised state, each server in the

batch processing network uses the dispatch policy π to select a “nonempty” class `

to work on. Once class ` is selected according to policy π, the server serves exactly

65

B` jobs of class ` in a single batch. If all classes at a station are “empty”, the server

employs any batch policy to select a job to work on, including idling. To be concrete,

when a station is “empty,” we still use π to pick a nonempty class to work on according

to the original system state.

The goal of this part is to show that the batch processing network operating

under batch policy π̃ is stable if the standard network operating under π is stable.

(The stability definition will be given in Section 6.4 below.) In formulating our main

theorem, Theorem 6.4.1, we need to restrict ourselves to a family of normal dispatch

policies, whose precise definition will be given in Section 8. Most practical dispatch

policies are normal. As an illustration, we prove in Section 9 that three families of

dispatch policies are normal. They are static buffer priority (SBP), first-in-first-out

(FIFO) and generalized round robin (GRR) policies.

6.4 Rate Stability and the Main Result

For both the batch and standard processing networks, the nominal total arrival rates

and traffic intensities are identical. Let λ = (λ1, . . . , λK)′ be the vector of nominal

total arrival rates (for both the batch and standard processing networks). It satisfies

the following system of equations

λl = αl +
K

∑

k=1

λkPkl, for ` = 1, 2, ..., K. (6.4.1)

In vector form, λ = α + P ′λ. Since P is transient, the unique solution to (6.4.1) of λ

is given by λ = Qα. We define the traffic intensity ρj for server j (in both networks)

66

as

ρj =
∑

k∈C(j)

λk(mk/Bk), j = 1, . . . , J, (6.4.2)

with ρ being the corresponding vector. Note that in the batch network, ρj is the

nominal utilization of server j if every batch is of the maximum size. Because class k

batch sizes can be smaller than Bk, the fraction of time that server j is busy may be

greater than ρj in the batch network. When

ρj ≤ 1, j = 1, ..., J, (6.4.3)

we say that the usual traffic condition is satisfied.

We now define the rate stability for a batch processing network. Let Dk(t) denote

the number of jobs that have departed from class k in [0, t] in the batch processing

network. In the following definition, the term state is used. The precise definition

of a state depends on the particular batch policy used. We do not attempt a precise

definition here. Roughly speaking, a state is a snapshot of the network at any given

time. It should contain enough information that once the current state of the network

is given, the future evolution of the network is completely determined. Readers are

referred to Dai [10] and Bramson [4] for examples and additional discussions of states

in standard networks under various policies.

Definition 6.4.1. The batch processing network is rate stable if, for each fixed initial

state with probability one,

lim
t→∞

Dk(t)
t

= λk, for k = 1, ..., K. (6.4.4)

The batch network is rate stable if the throughput rate or departure rate from

a class is equal to the nominal total arrival rate to that class. Rate stability has

67

been advanced by Stidham and his co-authors (see El-Taha and Stidham [16] and the

references there). This notion of stability was first introduced for multiclass queueing

network settings in Chen [6]. As in a standard network, the usual traffic condition is

necessary for rate stability of a batch processing network (Dai [11]). There are other

definitions of stability, such as positive Harris recurrence (Dai [10]). The results in

this part can be extended to those settings as well.

As mentioned before, the main result of this part is that a dispatch policy of a

standard network can be turned into a batch policy that shares a similar stability

property. The precise form of the result is stated in the following theorem. The

definitions of “normal policy” and “fluid model” used in the following theorem are

delayed to later sections. The fluid model and its stability will be introduced in the

next section. The definition of a normal policy will be introduced in Section 8.

Theorem 6.4.1. For a given batch processing network, assume that a dispatch policy

π is normal for the corresponding standard network. The batch processing network

operating under the induced batch policy π̃ is rate stable if the standard fluid model

operating under π is weakly stable.

The proof of the theorem will be presented in Section 8. Section 9 is devoted to

the applications of Theorem 6.4.1.

68

Chapter 7

Processing Network and Fluid Model
Equations

In this Chapter, we define fluid models corresponding to the batch and standard

processing networks. Fluid models are continuous, deterministic analogs of batch

and standard processing networks, and are defined through a set of equations. To

describe the fluid models, we start with the dynamic equations for batch and standard

processing networks. Unless explicitly stated otherwise, we assume that the batch

processing network is operated under a full batch policy π̃ and the standard processing

network is operated under a nonidling dispatch policy π.

7.1 Dynamics of Batch and Standard Networks

The dynamics of the batch network can be described by processX = (A,D, T, U, Y, Z).

The components A = {A(t), t ≥ 0}, D = {D(t), t ≥ 0}, T = {T (t), t ≥ 0}, and

Z = {Z(t), t ≥ 0} are K dimensional. For each class k, Ak(t) denotes the number of

jobs that have arrived to class k (from external and internal sources) in [0, t], Dk(t)

denotes the number of jobs that have departed from class k in [0, t], Tk(t) denotes

the amount of time that server j = σ(k) has spent in serving class k batches during

interval [0, t], and Zk(t) denotes the number of jobs in class k that are buffered or

69

being served at station j at time t. The processes A, D, T , and Z are called the arrival,

departure, server allocation, and job count processes, respectively. The components

U = {U(t), t ≥ 0} and Y = {Y (t), t ≥ 0} are J dimensional. For each station j,

Uj(t) denotes the total number of jobs at station j that are buffered or being served

at time t, and Yj(t) denotes the total amount of time that server j has been idle in

the time interval [0, t]. The process Y is called the cumulative idle time process. One

can check that X = (A,D, T, U, Y, Z) satisfies the following set of equations:

A(t) = E(t) +
∑

k

Φk(D(t)), t ≥ 0, (7.1.1)

Z(t) = Z(0) + A(t)−D(t), t ≥ 0, (7.1.2)

Z(t) ≥ 0, t ≥ 0, (7.1.3)

U(t) = CZ(t), t ≥ 0, (7.1.4)

CT (t) + Y (t) = et, t ≥ 0, (7.1.5)

Yj(t) increases only when Zk(t) < Bk for each k ∈ C(j), j = 1, . . . , J, (7.1.6)

additional equations associated with the particular batch policy π̃. (7.1.7)

Here C is the constituency matrix defined as

Cjk =











1 if k ∈ C(j),

0 otherwise,

and e denotes the J vector of all 1′s. Since we assume that, within a class, the

FIFO policy is used to form batches, we have the following additional equations: for

0 ≤ t1 < t2 and k = 1, . . . , K,

Sk(Tk(t2))− Sk(Tk(t1)) ≤
1

Bk
(Dk(t2)−Dk(t1) + Bk − 1) (7.1.8)

70

when Zk(s) ≥ Bk for s ∈ [t1, t2], and

Sk(Tk(t2))− Sk(Tk(t1)) ≥
1

Bk
(Dk(t2)−Dk(t1)). (7.1.9)

To check (7.1.8), we note that the left side is the number of class k batches

completed in [t1, t2]. Since there are enough jobs in class k throughout the time

interval [t1, t2], any class k batch formed in (t1, t2) has batch size Bk . However, if

there is a class k batch in service time at t1, this batch was formed before t1 and

whose size maybe smaller than Bk. In any case, the right side of (7.1.8) provides an

upper bound on the number of class k batches completed in [t1, t2]. Thus, inequality

(7.1.8) holds. Inequality (7.1.9) can be justified similarly. We call equations (7.1.1)-

(7.1.9) batch network equations. We note that T and Y are continuous, and that A,

D, and Z are right continuous with left limits. All variables are nonnegative in each

component, with A, D, T , and Y being non-decreasing. By assumption,

A(0) = D(0) = T (0) = Y (0) = 0.

For each batch network driven by (E, V, Φ), the corresponding standard network

driven by (E, Ṽ , Φ) has similar processes. To contrast with batch network processes,

they are denoted by (Ã, D̃, T̃ , Ũ , Ỹ , Z̃). The equations governing these processes

are the same as the ones for batch networks, except that equations (7.1.8)-(7.1.9) are

reduced to

S̃(T̃ (t)) = D̃(t), for all t ≥ 0, (7.1.10)

which is well known for standard networks operating under a head-of-line dispatch

policy, and equation (7.1.7) is replaced by

additional equations associated with the particular dispatch policy π. (7.1.11)

71

7.2 Batch and Standard Fluid Models

Let X̄ = (Ā, D̄, T̄ , Ū , Ȳ , Z̄) be the formal deterministic analog of the batch network

process X = (A,D, T, U, Y, Z). Its components satisfy the following equations:

Ā(t) = α′t + P ′D̄(t), t ≥ 0, (7.2.1)

Z̄(t) = Z̄(0) + Ā(t)− D̄(t), t ≥ 0, (7.2.2)

Z̄(t) ≥ 0, t ≥ 0, (7.2.3)

Ū(t) = CZ̄(t), t ≥ 0, (7.2.4)

CT̄ (t) + Ȳ (t) = et, t ≥ 0, (7.2.5)

Ȳj(t) increases only when Ūj(t) = 0, j = 1, ..., J, (7.2.6)

D̄k(t2)− D̄k(t1) ≤ Bkµk(T̄k(t2)− T̄k(t1)), for 0 ≤ t1 < t2, k = 1, . . . , K, (7.2.7)

D̄k(t2)− D̄k(t1) = Bkµk(T̄k(t2)− T̄k(t1)) if Ūj(s) > 0 ∀s ∈ [t1, t2], 0 ≤ t1 < t2, (7.2.8)

additional equations associated with the particular batch policy π̃. (7.2.9)

Equations (7.2.1)-(7.2.9) are called batch fluid model equations, and they define the

batch fluid model. Any process X̄ = (Ā(t), D̄(t), T̄ (t), Ū(t), Ȳ (t), Z̄(t)) satisfying

(7.2.1)-(7.2.9) is called a batch fluid model solution. Similarly, we can define the

standard fluid model, which consists of the same set of fluid model equations except

that equations (7.2.7) and(7.2.8) are replaced by

D̂k(t) = BkµkT̂k(t), for all t ≥ 0, k = 1, . . . , K, (7.2.10)

and (7.2.9) is replaced by

additional equations associated with the particular dispatch policy π. (7.2.11)

72

Any process X̂ = (Â, D̂, T̂ , Û , Ŷ , Ẑ) satisfying equations (7.2.1)-(7.2.6) and equations

(7.2.10)-(7.2.11) is called a standard fluid model solution.

Definition 7.2.1. A batch fluid model is said to be weakly stable if for each batch

fluid model solution X̄ with Z̄(0) = 0, Z̄(t) = 0 for t ≥ 0.

Weak stability of a standard fluid model can be defined similarly as in Chen [6].

7.3 Connection between Processing Networks and

Fluid Models

The criterion for including an equation in the batch or standard fluid model is that

the equation is satisfied by fluid limits. A fluid limit of a batch processing network

is obtained through a law-of-large-number procedure on the batch network process.

Note that the batch network process X is random, depending on the sample ω in an

underlying probability space. To denote such dependence explicitly, we sometimes

use X(ω) to denote the batch network process with sample ω. For an integer d,

Dd[0,∞) denotes the set of functions x : [0,∞) → Rd that are right continuous on

[0,∞) and have left limits on (0,∞). An element x in Dd[0,∞) is sometimes denoted

by x(·) to emphasize that x is a function of time. For each ω, X(ω) is an element in

D4K+2J [0,∞).

For each r > 0, define

X̄r(t, ω) = r−1X(rt, ω) t ≥ 0. (7.3.1)

Note that again for each r > 0, X̄r(·, ω) is an element in D4K+2J [0,∞). The scaling

in (7.3.1) is called the fluid or law-of-large-number scaling.

73

Definition 7.3.1. A function X̄ ∈ D4K+2J [0,∞) is said to be a fluid limit of the batch

processing network if there exists a sequence rn →∞ and a sample ω satisfying (6.1.1)

such that

lim
n→∞

X̄rn(·, ω) → X̄(·),

where, here and later, the convergence is interpreted as the uniform convergence on

compact sets (u.o.c.).

The existence of fluid limits is well known. A standard argument like the one in

Dai [10] shows that for any r → ∞ and any sample ω, there is a sequence rn such

that T̄ rn(·, ω) converges as n →∞. Fix a ω that satisfies (6.1.1). The convergence of

T̄ rn , together with equation (7.1.9) and condition (6.1.1), implies that D̄rn converges.

This latter convergence, together with equation (7.1.1) and condition (6.1.1), implies

that Ārn converges. The convergence of other components of X̄rn then readily follows.

Thus, X̄rn converges to a fluid limit as n →∞.

Proposition 7.3.1. Each fluid limit of the batch processing network operating under

a full batch policy π̃ is a fluid model solution to the batch fluid model.

Proof. Let X be a fluid limit. Equation (7.2.7) follows from (7.1.9). To prove (7.2.8),

it is enough to show that for each s such that Ūj(s) > 0 and X̄ is differential at s,

˙̄Dk(s) = Bkµk
˙̄Tk(s), (7.3.2)

where, for a function f , f̄(s) denotes the derivative of f at s. To prove (7.3.2), let

rn →∞ be a sequence such that X̄rn → X̄ as n →∞. Since Ūj(s) > 0, there exists a

class ` at station j such that Z̄`(s) > 0. By the continuity of Z̄, there exists a δ > 0

74

such that mint∈[s−δ,s+δ] Z̄`(t) > 0. Since Z̄rn(·) → Z̄(·) u.o.c., one has that for large

enough n,

Z̄`(u) ≥ B` for u ∈ [rn(s− δ), rn(s + δ)].

Now, fix a class k at station j. Since class ` can always form full batches in [rn(s −

δ), rn(s + δ)], any class k batch formed during [rn(s − δ), rn(s + δ)] has to be a full

batch as well. Thus, (7.3.2) holds for t1 = rn(s− δ) and t2 = rn(s + δ). Namely,

Sk(Tk(rn(s + δ)))− Sk(Tk(rn(s− δ))) ≤ 1
Bk

(Dk(rn(s + δ))−Dk(rn(s− δ)) + Bk − 1).

Dividing both sides of the preceding inequality by rn and letting n →∞, one has

µk(T̄k(s + δ)− T̄k(s− δ)) ≤ 1
Bk

(D̄k(s + δ)− D̄k(s− δ)).

Dividing both sides of the preceding inequality by δ and letting δ → 0, one has

µk(˙̄Tk(s) ≤
1

Bk

˙̄Dk(s). (7.3.3)

Equation (7.3.2) now follows from (7.3.3) and (7.2.7). Other fluid model equations

can be verified as in Dai [10].

Theorem 7.3.1. Let a batch policy π̃ be fixed. If the batch fluid model is weakly

stable, then the corresponding batch processing network is rate stable.

Proof. The theorem was first explicitly stated in Chen [6] for the standard processing

networks. The proof of our theorem is identical to one for the standard network. See,

for example, Dai [11].

75

Chapter 8

Connection between Standard and Batch
Fluid Models

Let X̄ = (Ā, D̄, T̄ , Ū , Ȳ , Z̄) be a batch fluid model solution. We would like to convert

it into a standard fluid model solution X̂ = (Â, D̂, T̂ , Û , Ŷ , Ẑ). We define X̂ as follows:

for each t ≥ 0,

Â(t) = Ā(t), (8.0.4)

D̂(t) = D̄(t), (8.0.5)

T̂k(t) =
mk

Bk
D̂k(t), k = 1, 2, ..., K, (8.0.6)

Ŷj(t) = t−
∑

k∈C(j)

T̂k(t), j = 1, . . . , J, (8.0.7)

Û(t) = Ū(t), (8.0.8)

Ẑ(t) = Z̄(t). (8.0.9)

Proposition 8.0.2. The X̂ constructed from X̄ by (8.0.4)-(8.0.9) satisfies standard

fluid model equations (7.2.1)-(7.2.6) and (7.2.10).

Proof. Since Ẑ(t) = Z̄(t), Â(t) = Ā(t), Û(t) = Ū(t) and D̂(t) = D̄(t), and since Z̄(t),

Ā(t), Ū(t), and D̄(t) satisfy equations (7.2.1)-(7.2.3), Ẑ(t), Â(t), Û(t), and D̂(t) also

satisfy (7.2.1)-(7.2.4). By (8.0.7), equation (7.2.5) is automatically satisfied. Since

76

D̂(t) is non-decreasing, T̂ (t) is also non-decreasing. To show that Ŷj is non-decreasing,

we note that for any 0 ≤ t1 < t2,

Ŷj(t2)− Ŷj(t1) = t2 − t1 −





∑

k∈C(j)

T̂k(t2)−
∑

k∈C(j)

T̂k(t1)



 .

By definitions (8.0.5)-(8.0.6), we have

T̂k(t2)− T̂k(t1) =
mk

Bk
(D̂k(t2)− D̂k(t1)) =

mk

Bk
(D̄k(t2)− D̄k(t1)) ≤ T̄k(t2)− T̄k(t1),

where the inequality follows from (7.2.7). Thus we have

Ŷj(t2)− Ŷj(t1) ≥ t2 − t1 −





∑

k∈C(j)

T̄k(t2)−
∑

k∈C(j)

T̄k(t1)



 ≥ 0.

The last inequality follows from (7.2.5) and the fact that Ȳj(·) is non-decreasing.

Thus, Ŷj(t) is non-decreasing. Moreover, Ŷj(t2) − Ŷj(t1) = 0 when Ûj(t) > 0 for

t ∈ [t1, t2] because (7.2.8), (7.2.5), and (7.2.6) are satisfied for X̄. Thus, equation

(7.2.6) is also satisfied for X̂. By (8.0.6), equation (7.2.10) is also true.

We hope that X̂ also satisfies standard fluid model equation (7.2.11). This, of

course, depends on the particular dispatch policy used. As will be shown in the next

section, X̂ satisfies (7.2.11) for many policies including static buffer priority, first-in–

first-out, and generalized round robin policies. Anticipating the future growth of the

list of dispatch policies, we define the notion of normal policy as follows.

Definition 8.0.2. A dispatch policy π is called normal if for any batch fluid model

solution X̄ under batch policy π̃ induced from π, X̂ constructed by (8.0.4)-(8.0.9) also

satisfies (7.2.11).

77

Proposition 8.0.3. If a dispatch policy π operating in a standard processing network

is normal, then the batch fluid model under the induced batch policy π̃ is weakly stable

if the standard fluid model under policy π is weakly stable.

Proof. Let X̄ be any batch fluid model solution with Z̄(0) = 0 under batch policy π̃.

One can construct X̂ by (8.0.4)-(8.0.9). By Proposition 8.0.2 and the definition of a

normal policy, X̂ is a standard fluid model solution under dispatch policy π. Since

the standard fluid model is weakly stable and Ẑ(0) = 0, Ẑ(t) = 0 for t ≥ 0. But

Z̄(t) = Ẑ(t) for t ≥ 0. Hence, we have Z̄(t) = 0 for all t ≥ 0. Thus the batch fluid

model under policy π̃ is weakly stable.

With this preparation, the proof of Theorem 6.4.1 follows trivially.

Proof of Theorem 6.4.1. Assume that π is a normal dispatch policy in the standard

network. Assume further that the corresponding standard fluid model is weakly

stable. By Proposition 8.0.3, the batch fluid model operating under the induced

batch policy π̃ is weakly stable. Theorem 6.4.1 then follows from Theorem 7.3.1.

In the batch and standard fluid models, equations (7.2.9) and (7.2.11) are deter-

mined by the batch policy and dispatch policy employed. Examples of these equations

will be studied in the next section for FIFO, SBP and GRR policies. Recall that T̄

and T̂ are server allocation processes for the batch and standard fluid models. Their

derivatives ˙̄T (t) and ˙̂T (t) at time t indicate the instantaneous server allocation efforts

among various classes. Thus, equation (7.2.11) often involves ˙̄T (t) and (7.2.9) often

involves ˙̂T (t). The following proposition is often useful to check that a dispatch policy

is normal.

78

Proposition 8.0.4. Let X̄ be a standard fluid model solution and X̂ be constructed

from X̄ by (8.0.4)-(8.0.9). Then, for k = 1, . . . , K,

˙̂Tk(t) = ˙̄Tk(t)

at each time t such that X̄ is differential at t and Ūj(t) > 0, where, as always,

j = σ(k).

Proof. Assume that Ūj(t) > 0. Since X̄(t) is a continuous function of time t, there

exists a δ > 0 such that Ūj(s) > 0 for s ∈ [t − δ, t + δ]. It follows from (7.2.8) and

(8.0.5)-(8.0.6) that we have

T̂k(t2)− T̂k(t1) = T̄k(t2)− T̄k(t1)

for any t1 and t2 with t− δ < t1 < t2 < t + δ, thus proving the proposition.

79

Chapter 9

Examples of Normal Policies

In this Chapter, we prove several dispatch policies that are normal. The policies,

including static buffer priority (SBP), first-in-first-out (FIFO) and generalized round

robin (GRR), have been extensively studied in the literature; see for example, Bram-

son [2], Chen and Zhang [7, 9], and Dai [11]. Our Theorem 6.4.1 shows that their

corresponding induced batch policies preserve the stability property in batch process-

ing networks. Recall that all batch policies are assumed to be non-preemptive, i.e.,

once a service is started, the server has to finish the service.

9.1 Static Buffer Priority Policies

Under a static buffer priority (SBP) dispatch policy, classes within a standard network

are ranked. Higher ranked classes have higher priorities. Such an SBP policy can be

denoted by a permutation π among classes. Let π(k) indicate the priority of class k.

If π(k) > π(`), class k has higher priority than class `.

For the SBP policy π, its induced batch policy is operated in the batch processing

network as follows: If π(k) > π(`) and class k has at least Bk jobs, then class k has

higher priority than class `. If π(k) < π(`), but class k has few than Bk jobs and

class ` has at least B` jobs, then class ` has higher priority than class k since class k

80

is treated as “empty.”

Let Hk = {` : ` ∈ C(j), π(`) ≥ π(k)} denote the set of classes whose priorities are

at least as high as class k. Let X̂ be a standard fluid model solution. Define

T̂+
k (t) =

∑

`∈Hk

T̂`(t)

as the cumulative time that server j = σ(k) has spent on all classes whose priorities

are at least as high as class k. Define Ẑ+
k (t) similarly. It follows from Dai and

Weiss [14] that the standard fluid model equation (7.2.11) takes the form

˙̂T+
k (t) = 1 for each time t such that Ẑ+

k (t) > 0 and X̂ is differential at t. (9.1.1)

The batch fluid model equation (7.2.9) under the induced batch policy π̃ is iden-

tical to that of a standard fluid model. The justification through fluid limits is the

same as the one in a standard network. For completeness, we provide a proof of

Proposition 9.1.1 at the end of this section.

Proposition 9.1.1. Each fluid limit X̄ of the batch processing network operating

under an induced SBP policy satisfies the following equations: for k = 1, . . . , K,

˙̄T+
k (t) = 1 for each time t such that Z̄+

k (t) > 0 and X̄ is differential at time t.

(9.1.2)

The main result of this section is the following proposition.

Proposition 9.1.2. Any SBP dispatch policy is normal.

Proof. Let X̄ be a solution to the batch fluid model operating under the induced

batch SBP policy. Let X̂ be a fluid solution constructed from X̄ by (8.0.4)-(8.0.9).

81

Assume that Ẑ+
k (t) > 0 and X̂ is differential at time t. From Proposition 8.0.4 and

(9.1.2), we have

˙̂T+
k (t) = ˙̄T+

k (t) = 1.

Thus, X̂ satisfies (9.1.1) and, therefore, is a solution to the standard fluid model. It

follows from Definition 8.0.2 that the SBP dispatch policy is normal.

A batch processing reentrant line is a special batch processing network. Classes

can be arranged so that αk = 0 for k = 2, . . . , K and Pk,k+1 = 1 for k = 1, . . . , K − 1.

Two SPB dispatch policies: last-buffer-first-serve (LBFS) and first-buffer-first-serve

(FBFS), have been studied in literature. Under the LBFS policy, classes in later

stages have higher priorities. Under the FBFS policy, classs in earlier stages have

higher priorities.

Corollary 9.1.1. A batch processing reentrant line operating under either the induced

LBFS or induced FBFS batch policy is rate stable whenever the usual traffic condition

is satisfied.

Proof. Assume the usual traffic condition. It follows from Dai and Weiss [14] and

Kumar and Kumar [25] that the standard fluid model is weakly stable under FBFS

and LBFS dispatch policies. Since these policies are normal, the corollary follows

from Theorem 6.4.1.

Proof of Proposition 9.1.1. Let X̄ be a fluid limit of the batch processing network

operating under the induced SBP policy. Let rn → ∞ be a corresponding sequence

such that X̄rn → X̄ as n → ∞. Let t > 0 be fixed. Assume that X̄ is differential at

time t and Z̄+
k (t) > 0. To prove (9.1.2), it is enough to show that ˙̄Y +

k (t) = 0, where

82

Ȳ +
k (t) = t − T̄+

k (t) is the cumulative time that server j = σ(k) can spend on classes

outside Hk in [0, t]. Since Z̄+
k (t) > 0, by the continuity of X̄, there exists a δ > 0 such

that ε = mint−δ<s<t+δ Z̄+
k (s) > 0. We would like to show that Ȳ +

k (t+δ)−Ȳ +
k (t−δ) = 0,

from which the proposition follows.

Since Z̄rn(·) → Z̄(·) u.o.c. and rn → ∞ as n → ∞, there exists an N such that

for all n > N ,

sup
0≤s≤t+δ

|Z+
k (rns)/rn − Z̄+

k (s)| < ε/2 and rnε/2 ≥ |C(j)| max
`∈C(j)

B`,

where Z+
k (t) is the total number of jobs in Hk at time t and |C(j)| is the number

of classes at station j. Hence Z+
k (rns) > rnε/2 for n > N and s ∈ (t − δ, t +

δ) or equivalently Z+
k (s) ≥ rnε/2 for s ∈ (rnt − rnδ, rnt + rnδ). Since rnε/2 ≥

|C(j)|max`∈C(j) B`, for each s ∈ (rnt−rnδ, rnt+rnδ), there exists an ` ∈ Hk such that

Z`(s) ≥ B`. (9.1.3)

Because the induced SBP batch policy is employed, in time interval (rnt− rnδ, rnt +

rnδ), it follows from (9.1.3) that server j = σ(k) will not work on any classes that

are not in Hk, except during the initial service period covering time instant rnt− rnδ.

It is possible for the server to continue working on a low priority class that is not in

Hk because preemption is not allowed. (The server must be busy at time rnt − rnδ

since there are enough jobs at the station at that time.) Let Rn be the remaining

service time for the batch that is currently in service at time rnt − rnδ. We have

Y +
k (rnt + rnδ) − Y +

k (rnt − rnδ) ≤ Rn for n > N , where Y +
k (s) =

∑

`∈Hk
Y`(s) is the

cumulative time that server j = σ(k) can spend on classes that are not in Hk in [0, s]

in the batch processing network.

83

Recall that S`(T`(rnt− rnδ)) is the number of class ` batches completed by time

rnt − rnδ. If class ` is currently in service at time rnt − rnδ, the server is working

on the (S`(T`(rnt − rnδ)) + 1)th batch. The total time for server j to finish all

S`(T`(rnt− rnδ)) + 1 batches is V`(S`(T`(rnt− rnδ)) + 1). But the server has already

spend T`(rnt − rnδ) amount of time on class `. Thus the remaining processing time

is equal to

V`(S`(T`(rnt− rnδ)) + 1)− T`(rnt− rnδ)

provided that class ` is in service at time rnt− rnδ. Thus, we have

1
rn

[Y +
k (rnt + rnδ)− Y +

k (rnt− rnδ)] ≤ max
`∈C(j)

V`(S`(T`(rn(t− δ))) + 1)− T`(rn(t− δ))
rn

for n > N . Because T̄ rn(·) → T̄ (·), and (6.1.1) and (6.1.2) hold, we have

lim
n→∞

V`(S`(T`(rn(t− δ))) + 1)
rn

= T̄`(t− δ)

and

lim
n→∞

T`(rn(t− δ))
rn

= T̄`(t− δ).

Taking n →∞, we have

Ȳ +
k (t + δ)− Ȳ +

k (t− δ) ≤ 0.

Since Ȳ +
k (·) is non-decreasing, we have Ȳ +

k (t+ δ)− Ȳ +
k (t− δ) ≥ 0. Hence Ȳ +

k (t+ δ)−

Ȳ +
k (t− δ) = 0, thus ˙̄Y +

k (t) = 0, proving ˙̄T+
k (t) = 1.

9.2 First-In–First-Out Policy

In a standard network, under the first-in–first-out (FIFO) dispatch policy, a server

always picks a class whose head-of-line job arrived at its station earliest. The induced

84

batch policy, called FIFO, works as follows in a batch processing network. Whenever

a server looks for a new class to load, it chooses the class, among the full batch classes,

whose head-of-line job reached the station earliest. If there is no full batch class at

the station, the server picks a class whose head-of-line job reached the station earliest.

Thus, in a batch network operating under FIFO policy, a server does not serve jobs

according to a strict FIFO policy. The oldest job at a station may have to wait for

more jobs in its class to arrive in order to form a full batch.

For the standard FIFO fluid model, the additional equation (7.2.11) takes the

form

D̂k(t + Ŵj(t)) = Âk(t), k = 1, ..., K (9.2.1)

for all t > 0, where

Ŵj(t) =
∑

k∈C(j)

mk

Bk
Ẑk(t), j = 1, . . . , J. (9.2.2)

See, for example, Bramson [2].

For the batch FIFO fluid model, the additional fluid model equation (7.2.9) takes

the same form as in (9.2.1) and (9.2.2). This is the content of our next proposition.

Proposition 9.2.1. Let X̄ be a fluid limit of the batch processing network operating

under the FIFO batch policy. It satisfies the following equations:

D̄k(t + W̄j(t)) = Āk(t), k = 1, ..., K, (9.2.3)

for all t > 0, where

W̄j(t) =
∑

k∈C(j)

mk

Bk
Z̄k(t), j = 1, 2, ..., J. (9.2.4)

We delay the proof until the end of this section.

85

Proposition 9.2.2. The FIFO dispatch policy is normal.

Proof. Let X̄ be batch fluid model solution under FIFO batch policy. Namely, X̄ satis-

fies equations (7.2.1)-(7.2.8) and (9.2.3)-(9.2.4). Let X̂ be a fluid solution constructed

from X̄ by (8.0.4)-(8.0.9). One can check that X̂ satisfies equations (9.2.1)-(9.2.2).

Thus, by Proposition 8.0.2, X̂ is a standard fluid model solution under FIFO dispatch

policy. Therefore, FIFO dispatch policy is normal.

A standard network is of Kelly type if, for each station, the mean processing

times for all classes at a station are the same. Here we extend this definition to batch

processing networks. A batch processing network is said to be of Kelly type if Bkµk

are the same for all classes k at each station.

Corollary 9.2.1. Assume that the usual traffic condition is satisfied in a FIFO batch

processing network of Kelly type. The batch network is rate stable.

Proof. It was proven in Bramson [2] that the standard FIFO fluid model of Kelly type

is weakly stable under the usual traffic condition. Since the FIFO dispatch policy is

normal, the corollary follows from Theorem 6.4.1.

Proof of Proposition 9.2.1. For the standard FIFO processing network,

Dk(t + Wj(t)) = Zk(0) + Ak(t), k = 1, . . . , K, (9.2.5)

where Wj(t) is the (immediate) workload at station j at time t, from which standard

fluid model equations (9.2.1) and (9.2.2) are derived. (See, Harrison and Nguyen [19]

and Bramson [2].)

For a batch processing network, the definition of immediate workload for a server

needs to be properly defined. Similar to the definition in a standard network, we

86

define Wj(t) to be the amount of total processing time that server j needs to spend

to finish all the jobs that are currently at the station, assuming no more arrivals are

allowed to the station after t. We now would like to establish a relationship that is

analogous to (9.2.5). Two inequalities will be presented, one upper bound and the

other lower bound. To explain these bounds, we take a closer look at time interval

[t, t + Wj(t)]. Recall that there are Uj(t) jobs at station j at time t. Some of these

jobs (first type) are currently in service. Some (second type) will be served full batch

with other jobs that are currently at the station. The remaining ones (third type)

will be served either non-full batch or together with jobs that arrive after time t.

Note that it is possible for a job that arrives after time t to be processed before type

2 jobs. This job necessarily joins a batch with type 3 jobs, taking advantage of the

early arrival of a type 3 job. The lower bound is given by

Zk(0) + Ak(t)−Bk < Dk(t + Wj(t)) for t ≥ 0, k = 1, . . . , K. (9.2.6)

This bound follows from the fact that by time t + Wj(t), all first and second types of

jobs have left. To describe the upper bound, we let τj(t) be the total processing time

of type 3 jobs. We claim that

Dk(t + Wj(t)− τj(t)) < Zk(0) + Ak(t) + Bk, k = 1, . . . , K. (9.2.7)

To check (9.2.7), in [t, t + Wj(t) − τj(t)], the server j cannot process more than

Zk(t) + Bk class jobs. Thus, we have (9.2.7).

Assume that X̄rn converges to a fluid limit X̄ as n →∞. To show that X̄ satisfies

(9.2.3) and (9.2.4), because of (9.2.6) and (9.2.7) it suffices to show that

W̄ rn
j (·) →

∑

kC(j)

mk

Bk
Z̄k(·) (9.2.8)

87

and

τ̄ rn
j (·) → 0, (9.2.9)

where for r > 0, W̄ r(t) = W (rt)/r and τ̄ r(t) = τ(rt)/r.

Let time t ≥ 0 be fixed. Let Fk(t) be the number of class k batches that can

be formed from Zk(t) jobs that are at station j at time t. If class k is currently

not in service, one can check that Fk(t) = dZk(t)/Bke in this case, where dxe is the

smallest integer that is as big as a nonnegative number x. If class k is currently in

service, Fk(t)−1 is the number of class k batches that can be formed from remaining

jobs that are in class k at time t, excluding those currently in service. Thus, Fk(t) =

1+d(Zk(t)−δk(t))/Bke, where δk(t) is the size of the batch that is currently in service

at time t. By our definition of immediate workload, we have

Wj(t) =
∑

k∈C(j)

Vk (Sk(Tk(t)) + Fk(t))− t + Yj(t). (9.2.10)

So

W̄ rn
j (t) =

∑

k∈C(j)

V̄ rn
k

(

S̄rn
k (T̄ rn

k (t)) + F̄ rn(t)
)

− t + Ȳ rn
j (t)

where, as usual, V̄ rn(·), F̄ rn(·), and F̄ rn(·) are fluid scalings of V (·), S(·), and F (·),

respectively. Since Z̄rn
k (·) → Z̄k(·) and δk(t) ≤ Bk for all t ≥ 0, we have F̄ rn

k (·) →

Z̄k(·)/Bk. As before, the uniform convergence on compact sets (u.o.c.) is used.

Because as n →∞, S̄rn
k (·) → S̄k(·), V̄ rn

k (·) → V̄k(·), T̄ rn
k (·) → T̄k(·), and Ȳ rn

j (·) →

Ȳj(·), where S̄k(t) = µkt and V̄k(t) = mkt for t ≥ 0, we have

V̄ rn
k

(

S̄rn
k (T̄ rn

k (t)) + F̄ rn(t)
)

→ T̄k(t) + mkZ̄k(t)/Bk, u.o.c. (9.2.11)

Hence,

W̄ rn
j (t) →

∑

k∈C(j)

T̄k(t) +
∑

k∈C(j)

mk

Bk
Z̄k(t) + t− Ȳj(t), u.o.c.

88

By (7.2.5), we have
∑

k∈C(j) T̄k(t) + t− Ȳj(t) = 0. Thus,

W̄ rn
j (t) →

∑

k∈C(j)

mk

Bk
Z̄k(t), u.o.c.,

proving (9.2.8).

By the definition of τj(t), we have

τj(t) ≤
∑

k∈C(j)

[Vk (Sk(Tk(t)) + Fk(t))− Vk (Sk(Tk(t)) + Fk(t)− 1)] .

So

τ̄ rn
j (t) ≤

∑

k∈C(j)

[V̄ rn
k (S̄rn

k (T̄ rn
k (t)) + F̄ rn

k (t))− V̄ rn
k (S̄rn

k (T̄ rn
k (t)) + F̄ rn

k (t)− 1)]. (9.2.12)

As in (9.2.11), we have

V̄ rn
k

(

S̄rn
k (T̄ rn

k (t)) + F̄ rn(t)− 1
)

→ T̄k(t) + mkZ̄k(t)/Bk, u.o.c. (9.2.13)

as n →∞. Convergence (9.2.9) follows from (9.2.12), (9.2.11), and (9.2.13).

9.3 Generalized Round Robin Policies

For a standard network, a generalized round robin (GRR) dispatch policy associated

with weight parameter β = (β2, ..., βK) is defined as follows. Here each βk is a positive

real number. Recall that C(j) is the set of classes at station j. We assume that the

set is ordered and the order is fixed. To describe the policy, we first assume that βk’s

are integers. Server j visits the ordered list of classes cyclically: once it enters class

k, it serves exactly βk jobs or exhausts the class k jobs; at the end of this period, it

enters the next class on the list (or the first class if class k is the last class on the

89

list). For a class k at the station, a cycle starting from k is defined to be the period

between the time the server first enters the class and the time it reenters the class.

Any class (fixed) at a station can initiate cycles. When βk’s are integers, the nominal

allocation in a cycle to class k is exactly βk, although that allocation is redistributed

when the class has fewer than βk jobs during the class k service period.

Now we let βk’s be arbitrary positive real numbers. The GRR dispatch policy

works as before except that the nominal allocation to class k during a cycle needs

to be adjusted. For each cycle n, let ak(n) denote the nominal allocation to class k

during cycle n and bk(n) be the residual allocation to class k after cycle n. They are

defined recursively as follows:

ak(n + 1) = bbk(n) + βkc, (9.3.1)

bk(n + 1) = bk(n) + βk − ak(n + 1), (9.3.2)

for n = 0, 1, . . ., where bk(0) = 0 and, as before, bxc denotes the integer part of a

real number x. A GRR dispatch policy is among the family of fair queueing policies

widely studied in computer network literature; see, for example, Demers, Keshav and

Shenker [15] or Parekh and Gallager [31].

The additional standard fluid model equation (7.2.11) takes the form

˙̂Tk(t) ≥
βk(mk/Bk)

∑

`∈C(j) β`(m`/B`)
, k = 1, 2, · · · , K (9.3.3)

for each time t such that T̂k(t) is differentiable and Ẑk(t) > 0. The intuitive expla-

nation of (9.3.3) is as follows: the average cycle length is at least
∑

`∈C(j) β`(m`/B`).

When there are enough jobs in class k, the average time spent in class k during a

cycle is βkmk/Bk. Thus, when there are enough jobs in class k, server j spends at

least βk(mk/Bk)
[

∑

`∈C(j) β`(m`/B`)
]−1

amount of effort in class k.

90

Now we describe the induced batch policy corresponding to the GRR dispatch

policy associated with vector β = (β2, ..., βK) > 0. Here ak(n) denotes the nominal

number of full class k batches to be served during cycle n. It is defined recursively

through

ak(n + 1) = bbk(n) + βk/Bkc, (9.3.4)

bk(n + 1) = bk(n) + βk/Bk − ak(n + 1) (9.3.5)

for n = 0, 1, . . . with bk(0) = 0. When server j enters class k at cycle n, it attempts

to serve up to ak(n) full batches if it can. Then it moves to the next class. If βk/Bk’s

are integers, the nominal number of class k batches during a cycle is βk/Bk.

Again, for the GRR batch fluid model, it turns out that the additional fluid model

equation (7.2.9) takes the same form as (9.3.3). We offer the following proposition.

Proposition 9.3.1. For each fluid limit X̄ of the batch processing network operating

under the induced GRR batch policy, we have

˙̄Tk(t) ≥
(βk/Bk)mk

∑

`∈C(j)(β`/B`)m`
, (9.3.6)

for all time t such that T̄k(t) is differentiable and Z̄k(t) > 0, k = 1, 2, · · · , K.

The proof is provided at the end of this section.

Proposition 9.3.2. Any GRR dispatch policy is a normal policy.

Proof. Let X̄ be a fluid solution to the batch fluid model under the induced GRR

batch policy. Let X̂ be a fluid solution constructed from X̄ by (8.0.9)-(8.0.7). Then at

any time t such that Ẑk(t) > 0 and ˙̂Zk(t) exists, we have Z̄k(t) > 0 and ˙̄Zk(t) exists.

91

Thus by Proposition 8.0.4 and (9.3.6), we have

˙̂Tk(t) = ˙̄Tk(t) ≥
(βk/Bk)mk

∑

`∈C(j)(β`/B`)m`
.

Thus, X̂ satisfies (9.3.3) and, hence, is a standard fluid model solution.

Corollary 9.3.1. Let β = (β2, ..., βK) be a vector of positive real numbers. Assume

that for each class k,
(βk/Bk)mk

∑

l∈C(j)(β`/B`)m`
≥ λkmk/Bk. (9.3.7)

Then the batch processing network operating under the induced GRR batch policy with

weight β is rate stable.

Proof. Let X̂ be a standard fluid model solution with Ẑ(0) = 0. Under conditions

(9.3.3) and (9.3.7), ˙̂Dk(t) ≥ λk for time t such that Ẑk(t) > 0 and X̂ is differential at

t. It follows the proof of Proposition x of Bramson [4] that Ẑ(t) = 0 for t ≥ 0. Thus,

the standard GRR fluid model is weakly stable. Since any GRR dispatch policy is

normal, the corollary follows from Theorem 6.4.1.

Notice that condition (9.3.7) is equivalent to

λk





∑

`∈C(j)

(β`/B`)m`



 < βk, k = 1, . . . , K.

The latter form of the condition has the following intuitive interpretation: the average

number of job arrivals to class k during a cycle is less than the number of class k jobs

that can be served during a cycle. When the usual traffic condition is satisfied, one

can find a weight parameter β that satisfies the condition.

92

Proof of Proposition 9.3.1. Let X̄ be a fluid limit of the batch processing network

with the corresponding sequence rn →∞ such that X̄(·) = limn→∞ X̄rn(·). We would

like to show that (9.3.6) holds for X̄.

Let u > 0 be a time such that T̄ (·) is differential and Z̄k(u) > 0. By the continuity

of Z̄, there exists a δ > 0 such that Z̄k(s) > 0 for s ∈ (u − δ, u + δ). It suffices to

show that
T̄k(t)− T̄k(s)

t− s
≥ (βk/Bk)mk

∑

l∈C(j)(β`/B`)m`

for any u− δ < s < t < u + δ. Since X̄rn → X̄ as n →∞, it is enough to show that

lim
n→∞

Tk(rnt)− Tk(rns)
rn(t− s)

≥ (βk/Bk)mk
∑

l∈C(j)(β`/B`)m`
. (9.3.8)

To study the limit in (9.3.8), we focus the batch processing network in the time

interval [rns, rnt] for large n. Let Cn be the number of cycles that are initiated and

completed in the time interval. Note that time rns may be in the middle of a cycle

that was initiated before time rns, and time rnt may be in the middle of a cycle that

ends after rnt. Following the same argument as in Proposition 9.1.1, one can choose

n large enough and δ small enough such that

Zk(t′) > βk + Bk for t′ ∈ (rns, rnt). (9.3.9)

Thus, class k always forms full batches in any one of the Cn cycles in (rns, rnt).

Define G`(t′) to be the number of class ` batches completed by time t′. Then

V`(G`(t′)) is the time spent by server j = σ(`) to complete these batches. We then

have

Tk(rnt)− Tk(rns) ≥ Vk(Gk(rnt))− Vk(Gk(rns) + 1).

The difference between the two sides is due to the remaining processing time of batch

Gk(rns) and the time already spent on batch Gk(rnt) + 1. By (9.3.9), there are at

93

least bCnβk/Bkc class k batches that have been initiated and completed in (rns, rnt).

Thus,

Tk(rnt)− Tk(rns) ≥ Vk(Gk(rns) + 1 + bCnβ/Bkc)− Vk(Gk(rns) + 1).

Similarly, since server j = σ(k) has been busy in (rns, rnt), we have

rnt− rns ≤
∑

`∈C(j)

V`(G`(rnt) + 1)− V`(G`(rns)).

Because there are at most Cn + 2 cycles that have been initiated or completed in

(rns, rnt) (Cn full cycles and 2 partial cycles), class ` has at most b(Cn + 2)β`/B`c

batches that have been served (completed or initiated) in (rns, rnt), G`(rnt)−G`(rns) ≤

b(Cn + 2)β`/B`c. Hence,

rnt− rns ≤
∑

`∈C(j)

V` (G`(rns) + b(Cn + 2)β`/B`c)− V`(G`(rns)).

Therefore, we have the following inequality:

Tk(rnt)− Tk(rns)
rn(t− s)

≥ C−1
n [Vk(Gk(rns) + 1 + bCnβ/Bkc)− Vk(Gk(rns) + 1)]

∑

`∈C(j) C−1
n [V` (G`(rns) + b(Cn + 2)β`/B`c)− V`(G`(rns))]

.

(9.3.10)

We now claim that

lim
n→∞

C−1
n [Vk(Gk(rns) + 1 + bCnβ/Bkc)− Vk(Gk(rns) + 1)] = βkmk/Bk. (9.3.11)

The claim follows from assumption (6.1.1) and an extension of the strong-law-of-

large-numbers (see, for example, Lemma 5.2.1 of Jennings [21]), provided that

lim sup
n→∞

Gk(rns)/Cn < ∞. (9.3.12)

Since Gk(rns) ≤ Sk(rns) and limn→∞ Sk(rns)/rn → µk, (9.3.12) follows from

lim inf
n→∞

Cn

rn
> 0, (9.3.13)

94

which means that Cn increases at least at the same rate as rn.

To prove (9.3.13), for each class ` ∈ C(j), because server j can visit class ` at most

Cn + 2 times in (rns, rnt) and each time the server can work at most (β` + B`) class

` jobs, we have

lim inf
n→∞

(Cn + 2)(β` + B`)
rn

≥ lim
n→∞

D`(rnt)−D`(rns)
rn

=
D̄k(t)− D̄k(s)

t− s

= µk
T̄k(t)− T̄k(s)

t− s
,

where the last equality follows from (7.2.8). Moving µ` to the other side and summing

up for ` ∈ C(j), we have




∑

`∈C(j)

m`(β` + B`)



 lim inf
n→∞

Cn/rn =
∑

`∈C(j)

(T̄`(t)− T̄`(s)) = t− s,

where the last equality follows from (7.2.5) and (7.2.6). Hence (9.3.13) is true, and

thus (9.3.11) holds.

Similarly, for each class ` ∈ C(j), we can prove

lim
n→∞

C−1
n [V` (G`(rns) + b(Cn + 2)β`/B`c)− V`(G`(rns))] = β`m`/B`. (9.3.14)

Inequality (9.3.8), and hence the proposition, follows from (9.3.11), (9.3.14) and

(9.3.10).

95

Part III

Simulation Studies

96

Chapter 10

Simulation Studies

In this chapter, we are going to conduct a series of simulation studies to show that

1) the DPPS policies not only can guarantee the maximal throughput, they can

also give very good other performance measures such as the average cycle time and

variance of cycle time; 2) the algorithm to produce induced batch policies can indeed

generate efficient batch policies as long as the original dispatch policies are efficient;

3) a similar algorithm to produce induced setup policies can also generate efficient

setup policies as long as the original dispatch policies are efficient. Note that study

of setup policies as well as their relationship with corresponding dispatch policies are

beyond the scope of this thesis. The algorithm to produce an induced setup policy

from a dispatch policy is studied by Jennings [21]. We will introduce the algorithm

in Section 10.4.

10.1 A Three-Product-Five-Station Network

In this section, we will introduce a queueing network model which is our basic test

bed. In this model, there are three products labeled as Product 1, Product 2 and

Product 3, respectively. There are five stations, indexed from 1 to 5. Some stations

have only one machine while other stations have more than one machine. When a

97

Step Prod 1 proc time (hour) Prod 2 proc time (hour) Prod 3 proc time (hour)
1 0.1 0.11 0.1
2 0.75 0.08 0.36
3 0.18 0.1 0.24
4 0.25 0.12 0.2
5 0.5 0.3 0.09
6 0.05 0.08 0.48
7 0.45 0.51 0.05
8 0.15 0.36 0.32
9 0.16 0.05 0.1
10 0.08 0.24 0.12
11 0.15 0.15 0.54
12 0.05 0.36 0.1
13 0.8 0.16 0.28
14 0.05 0.12 0.08
15 0.2 0.05 0.08

Table 1: mean processing time

station has more than one machine, we assume that all machines are homogeneous.

In other words, all machines at a station have same average processing rate if they

work on the same type of jobs. In this model, station 2 has three machines and

station 4 has two machines. All other stations have only one machine. Each product

has a route as depicted in Figure 3. Following are the routes for all products.

Product 1 route: 1 → 2 → 3 → 4 → 5 → 1 → 2 → 3 → 4 → 5 → 1 → 3 → 4 → 5 → 1.

Product 2 route: 1 → 3 → 4 → 5 → 2 → 1 → 2 → 3 → 5 → 4 → 1 → 2 → 4 → 3 → 5.

Product 3 route: 1 → 2 → 4 → 5 → 1 → 2 → 5 → 4 → 3 → 1 → 2 → 4 → 3 → 1 → 5.

The processing time of each class is specified in Table 1. In next several subsec-

tions, we are going to present simulation studies based on this basic model. First

of all, we will compare the performances of different dispatch policies in this model

98

Station 1

Station 2

Station 3

Station 4

Station 5

P1 P2

P3

Figure 3: a three-product-five-station network

without batch and setup features. Secondly, we will add batch feature at the second

station and modify processing time accordingly. In this modified model, we are going

to show that by using induced batch policy algorithm, we can convert an efficient

dispatch policy into an efficient batch policy. The purpose of this simulation study

is to show that the induced batch policy not only can preserve the stability prop-

erty of the original dispatch policy, but also can inherit other good features of the

original dispatch policy, such as short average cycle time and small variance of cycle

time. Finally, besides the batch feature of station 2, we also add setup feature at

Stations 1, 3 and 5. By using this model, we show that with both batch operations

99

and setup delays in the system, the improvement of performance by good policies

such as DPPS policies over other commonly used policy such as FIFO combined with

Setup Avoidance policy is even more significant.

10.2 Simulation Study of Dispatch Policies

Here, we are going to compare the performance of a DPPS policy, FIFO policy and

a LWUU policy on the three-product-five-station network. Before presenting the

simulation results, we need to specify the parameters of the DPPS policy and LWUU

policy in the simulation. For the DPPS policy, for each server i we select Ln =

mink∈C(i)
mk

Zk(tn)Ui(tn) in cycle n. Within a cycle, the order that a server picks up

a job is according to a rule called quota exhausted round robin which is specified

as following. For each station, all classes served by this station are sorted in a list

according to pre-fixed order. The server picks the first class in the list and all machines

in that station continuously work for this class until 1) there is no more job in the

class or 2) the quota of that class is used up. If one of the conditions is satisfied, the

station picks the next class in the list. If it reaches the end of the list, it moves to the

first class in the list. This procedure ends either there is no more job or there is no

more quota in each class, which implies that the cycle ends. Then the station updates

the quota and a new cycle begins. The LWUU policy is specified as following. For

each product p, βp = 1, and for each class (p, j), ξp,j = 0.

As mentioned in Section 10.1, the average processing time of each step is listed

in Table 1. We assume that the distributions of processing times are exponential.

We also assume that the arrival processes are uncontrollable, and that interarrival

100

FIFO LWUU DPPS
Prod RP CT STD CT STD CT STD
1 1.0 69.9 19.8 46.6 9.7 41.6 14.8
2 2.0 67.6 19.6 39.4 19.7 28.5 9.3
3 1.5 68.2 19.6 57.0 17.5 33.3 10.4

STN S1 S21 S22 S23 S3 S41 S42 S5
Proc% 93.2 90.4 90.4 90.4 91.5 95.1 95.0 95.6

RP: mean interarrival time; CT: mean cycle time; STD: standard deviation

Table 2: simulation result of case 1

times are also exponential distributed. We compare the performance measures under

various traffic intensities by changing each product mean interarrival time. We will

start from a high arrival rate for each product and gradually reduce the arrival rate.

Table 2 is the simulation results when the mean interarrival time of three products

are 1 hour, 2 hours and 1.5 hours, respectively. The first part of Table 2 gives the

mean cycle times and cycle time standard deviations. The second part gives the

utilization for each machine. As one can see from the table, the DPPS policy has

the best performance. The cycle times of all products under the policy DPPS are

consistently much less than those under the FIFO policy, as much as 58%.

In the second case, mean interarrival times for Product 1, Product 2, and Produce

3 are changed to 1 hour, 2.2 hours and 1.65 hours, respectively. Again the performance

of the DPPS policy is much better than FIFO policy as shown at Table 3.

In the third case, the mean interarrival times for Product 1, Product 2, and

Produce 3 are changed to 1.1 hour, 2.7 hours and 2 hours, respectively. Similar to

previous two cases, the performance of the DPPS policy is still significantly better

101

FIFO LWUU DPPS
Prod RP CT STD CT STD CT STD
1 1.0 41.3 14.2 29.7 7.6 26.2 10.4
2 2.2 39.7 13.9 21.6 15.8 18.9 6.3
3 1.65 40.3 14.3 43.0 16.8 22.1 7.5

STN S1 S21 S22 S23 S3 S41 S42 S5
Proc% 89.3 85.9 85.9 85.9 86.7 91.9 91.9 92.5

Table 3: simulation result of case 2

FIFO LWUU DPPS
Prod RP CT STD CT STD CT STD
1 1.1 17.7 7.2 17.0 5.5 13.1 5.1
2 2.7 16.5 7.1 11.4 9.1 10.3 3.8
3 2 16.9 7.3 17.6 9.4 11.9 4.3

STN S1 S21 S22 S23 S3 S41 S42 S5
Proc% 77.7 74.1 74.2 73.8 74.5 80.8 80.8 81.6

Table 4: simulation result of case 3

than FIFO as showed at Table 4. From these three cases, we can see that the DPPS

policy has the best performance among three policies.

10.3 Simulation Study of Batch Policies

In this section, the model used in the previous section is modified. Batch operation

is added to the second station. The machines at the second station can process a

batch of jobs simultaneously. The maximum batch size is 10. The average processing

time of a batch is ten times as the processing time of a single job without the batch

102

feature. From FIFO policy and the DPPS policy used in the previous section, we

can get induced batch policies by applying the algorithm discussed in Part II. We

call them FIFO batch policy and DPPS batch policy. We compare the performance

of the DPPS batch policy with the performance of the FIFO batch policy. For those

stations without batch operation, we use corresponding dispatch policy. The mean

interarrival times for Product 1, Product 2 and Product 3 are 1.05 hours, 2.2 hours,

and 1.65 hours, respectively. Table 5 gives the performance measures of both DPPS

batch policy and FIFO batch policy. As we can see, the DPPS batch policy is still

significantly better than FIFO batch policy in terms of shorter average cycle time

and smaller cycle time standard deviation.

Policy Prod 1 Prod 2 Prod 3 Total WIP
FIFO 88.5 95.9 93.4 192.7
DPPS 63.5 67.6 71.6 130.6
Improve 28.3% 29.6% 23.4% 32.2%

STN S1 S21 S22 S23 S3 S41 S42 S5
Proc% 86.9 83.9 84.3 83.7 85.0 89.1 89.0 89.7

Table 5: simulation result of the batch network

10.4 Simulation Study of Batch and Setup Policies

In this section, the model used in the previous section is modified again. The second

station’s batch operation feature is kept and is the same as specified in the previous

section. However, all servers at station 1, station 3 and station 4 have setup delays

when they switch from serving one class to another. The mean setup delays of the

103

machines at the station 1 are 0.5 hour and the setup delays of all machines at station

3 and 5 are 0.3 hours. The procedure of converting a dispatch policy to a setup

policy is defined as following. More details can be found in Jennings [21]. Each class

is assigned an integer `. The original dispatch policy is used to determine which class

to work on. Once a class is selected, the station serves as much as ` jobs from the class

depending on whether there are ` jobs waiting at the station. After finishing those `

jobs, the station uses the dispatch policy to choose another class. We will compare the

performance of the DPPS policy and the FIFO policy. For the DPPS policy, machines

with batch operation will use the induced DPPS batch policy and machines with setup

delays will use the induced DPPS setup policy. For the FIFO policy, machines with

batch operation will use induced FIFO batch policy, and machines with setup delays

will use a policy combining FIFO dispatch policy with setup avoidance. A policy

combining FIFO with setup avoid works as following. When a station needs to decide

which class to work on next, it uses FIFO dispatch policy to select a class. Then the

station simply finishes all jobs in that class before it switches to another class.

Prod Rate FIFO CT DPPS CT % FIFO STD DPPS STD %
1 0.95 241.1 146.6 39% 48.7 25.6 47%
2 0.408 276.0 157.1 43% 63.8 35.3 45%
3 0.541 275.0 165.8 40% 61.7 32.5 47%

Policy STN S1 S21 S22 S23 S3 S41 S42 S5
FIFO Proc% 83.2 80.7 80.6 80.5 80.4 86.5 86.5 87.4
FIFO Setup% 16.6 0 0 0 6.2 0 0 6.1
DPPS Proc% 83.2 80.6 80.5 80.7 80.4 86.6 86.5 87.5
DPPS Setup% 16.8 0 0 0 10.3 0 0 10.27

Table 6: simulation result of the batch and setup network with smaller arrival rates

104

We study two cases under different arrival rates. For case one, the mean interar-

rival times of Product 1, Product 2, and Product 3 are 1.05 hours, 2.45 hours, and

1.85 hours, respectively. The first part of Table 6 displays the mean cycle times and

cycle time standard deviations. One can see that the DPPS policy and its induced

batch and setup policy have significantly better performance than FIFO and setup

avoid policy, on both mean cycle time and cycle time deviation. The second part of

Table 6 displays the percentage of time each server spending on processing and setup.

In case two, the arrival rates are increased. Now the the interarrival times for

Product 1, Product 2, and Product 3 are 1 hour, 2.2 hours, and 1.65 hours, re-

spectively. In this case, FIFO combining with setup avoidance is no longer stable,

meaning that one can not achieve the maximal throughput by using FIFO and setup

avoidance, while the DPPS policy and its induced batch and setup policy are still

stable. The performance under the DPPS policies is shown in Table 7. One can see

that its mean cycle times are increased compared with the lower arrival rates under

DPPS. However, they are almost the same as the cycle times of FIFO in the case of

the lower arrival rates. In other words, DPPS policies can achieve higher throughput

while keeping the cycle time almost the same as those of FIFO policy with smaller

throughput.

Prod Rate DPPS CT DPPS STD
1 1 253.3 38.6
2 0.455 275.6 51.6
3 0.606 290.6 50.2

Table 7: simulation result of the batch and setup network with higher arrival rate

105

Chapter 11

Conclusions and Future Work

We have shown that DPPS policies are stable for all queueing networks with traffic

intensity less than one. Also through simulation we demonstrate that DPPS policies

have good performances such as short average cycle time. DPPS policies have other

advantages. First, to deploy the policy, one does not need to know arrival rate for

each class. In practice this information may be not in accurate or even impossible to

obtain. Secondly, DPPS policies are very flexible. For each cycle, a DPPS policy only

specifies quota for each class. As for the sequence of serving each job, one can apply

any heristic algorithm or optimization method to determine. Since a DPPS policy

already guarantees stability, throughput rate is always maximized.

In each cycle, DPPS policies calculate quota purely based on the local information.

In this sense DPPS policies are distributed dispatch policies. Distributed dispatch

policies are simple and easy to implement. However sometime we may want to use

more information such as the number of jobs in downstream or upstream buffers as

what we did in LWUU policies and LWTU policies. Actually we can modify DPPS

policies by changing the way we calculate quota for each class during each cycle. In

stead of using local queue length, we can allocate each class’s quota proportional to

upstream imbalance. The remaining scheme is still same as DPPS policy. One future

research direction is to investigate whether such policy is still stable for all queueing

106

networks with traffic intensity less than one as well as how other performance measures

can be improved.

LWUU policies and LWTU policies are proved to be stable for deterministic route

queueing networks. One natural question is that how such policies to be extended to

probability routing queueing networks and whether such policies are still stable.

For batch networks, we give an algorithm to convert a dispatch policy into a batch

policy. We show that if original dispatch policy is stable for a particular standard

network and the dispatch policy is a normal policy, then the induced batch policy

is also stable for the batch networks. In the case that the nominal utilization for

some station is well below one and the maximum batch sizes at the station are large,

full batch policies may not be desirable. Suppose that one can choose bk’s with

1 ≤ bk ≤ Bk such that

∑

k∈C(j)

λk(mk/bk) ≤ 1, j = 1, . . . , J.

One can relax full batch policies by allowing any class k with at least bk jobs to be

treated as nonempty. Whenever a server selects the next class to form a batch, all

“nonempty” classes are eligible to be chosen. Once a class k is chosen, the server

loads up to Bk jobs for the batch. The size of the batch may be smaller than Bk, but

it is at least bk. Note that while Bk represents a physical restriction from a piece of

equipment, bk comes from a management decision. Once b = (b1, . . . , bK)′ is chosen

and fixed, an analogous theory based on fluid models can be developed to prove the

stability of the relaxed batch policies.

Another possible extension is that we can slightly modify our definition of “empty”

buffer in our policy converting algorithm. For each class k, we can assign a time

107

window length Wk. Now we define “empty” buffer as following. In the batch network,

any class k with fewer than Bk jobs is considered to be “empty”. However, if class k

has been below Bk longer than Wk and Zk(t) > 0, then class k is again considered as

“non-empty”. Under new definition of “empty” buffer, sometime non-full batch can

still have a chance to be served. It is interesting to investigate under what conditions

an induced batch policy converted using such an algorithm can still preserve the

stability property of an original dispatch policy.

108

Bibliography

[1] Bramson, M. Instability of FIFO queueing networks. Annals of Applied Proba-

bility 4, 414–431 (1994).

[2] Bramson, M. Convergence to equilibria for fluid models of FIFO queueing net-

works. Queueing Systems: Theory and Applications 22, 5–45 (1996).

[3] Bramson, M. Convergence to equilibria for fluid models of head-of-the-line pro-

portional processor sharing queueing networks. Queueing Systems: Theory and

Applications 23, 1–26 (1997).

[4] Bramson, M. Stability of two families of queueing networks and a discussion of

fluid limits. Queueing Systems: Theory and Applications 28, 7–31 (1998).

[5] Bramson, M. Stablility of earliest-due-date, first-served queueing networks.

(2000). Preprint.

[6] Chen, H. Fluid approximations and stability of multiclass queueing networks I:

Work-conserving disciplines. Annals of Applied Probability 5, 637–665 (1995).

[7] Chen, H. and Zhang, H. Diffusion approximations for re-entrant lines with a

first-buffer-first-served priority discipline. Queueing Systems: Theory and Appli-

cations 23, 177–195 (1997).

109

[8] Chen, H. and Zhang, H. Stability of multiclass queueing networks under FIFO

service discipline. Mathematics of Operations Research 22, 691–725 (1997).

[9] Chen, H. and Zhang, H. Stability of multiclass queueing networks under priority

service disciplines. Operations Research 48, 26–37 (2000).

[10] Dai, J. G. On positive Harris recurrence of multiclass queueing networks: A

unified approach via fluid limit models. Annals of Applied Probability 5, 49–77

(1995).

[11] Dai, J. G. Stability of fluid and stochastic processing networks. MaPhySto

Miscellanea Publication, No. 9, 1999. Centre for Mathematical Physics and

Stochastics.

[12] Dai, J. G. and Meyn, S. P. Stability and convergence of moments for multiclass

queueing networks via fluid limit models. IEEE Transactions on Automatic

Control 40, 1889–1904 (1995).

[13] Dai, J. G. and VandeVate, J. The stability of two-station multi-type fluid net-

works. Operations Research 48, 721–744 (2000).

[14] Dai, J. G. and Weiss, G. Stability and instability of fluid models for re-entrant

lines. Mathematics of Operations Research 21, 115–134 (1996).

[15] Demers, A., Keshav, S., and Shenker, S. Analysis and simulation of a fair queue-

ing algorithm. Proc. Sigcomm 19(4), 1–12 (1989).

[16] El-Taha, M. and Stidham Jr., S. Sample-Path Analysis of Queueing Systems.

Kluwer, 1999.

110

[17] Gut, A. Stopped Random Walks: Limit Theorems and Applications. Springer,

1988.

[18] Harrison, J. M. Brownian models of queueing networks with heterogeneous cus-

tomer populations. Proceedings of the IMA Workshop on Stochastic Differential

Systems (1988). Springer.

[19] Harrison, J. M. and Nguyen, V. Brownian models of multiclass queueing net-

works: Current status and open problems. Queueing Systems: Theory and Ap-

plications 13, 5–40 (1993).

[20] Hasenbein, J. J. Necessary conditions for global stability of multiclass queueing

networks. Operations Research Letters 21, 87–94 (1997).

[21] Jennings, O. B. Multiclass Queueing Networks with Setup Delays: Stability Anal-

ysis and Heavy Traffic Approximation. PhD thesis, School of ISyE, Georgia

Institute of Technology, 2000.

[22] Jennings, O. B. On the stability of multiclass queueing networks with setups.

Preprint, 2000.

[23] Kumar, P. R. Re-entrant lines. Queueing Systems: Theory and Applications 13,

87–110 (1993).

[24] Kumar, P. R. and Seidman, T. I. Dynamic instabilities and stabilization methods

in distributed real-time scheduling of manufacturing systems. IEEE Transactions

on Automatic Control AC-35, 289–298 (1990).

111

[25] Kumar, S. and Kumar, P. R. Fluctuation smoothing policies are stable for

stochastic reentrant lines. Discrete Event Dynamical Systems 6, 361–370 (1996).

[26] Kumar, S. and Zhang, H. Stability of reentrant lines with batch servers. Preprint,

2000.

[27] Lu, S. H. and Kumar, P. R. Distributed scheduling based on due dates and buffer

priorities. IEEE Transactions on Automatic Control 36, 1406–1416 (1991).

[28] Maglaras, C. Discrete-review policies for scheduling stochastic networks: fluid

asymptotic optimality. Annals of Applied Probability (1998). Submitted.

[29] Maglaras, C. Dynamic scheduling in multiclass queueing networks: stability un-

der discrete-review policies. Queueing Systems: Theory and Applications (1998).

Submitted.

[30] Maglaras, C. and Kumar, S. Capacity realization in stochastic batch-processing

networks using discrete review policies. Preprint, 1999.

[31] Parekh, A. K. and Gallager, R. G. A generalized processor sharing approach to

flow control in integrated services networks: the single-node case. IEEE/ACM

Transaction on Networking 1, 344–357 (1993).

[32] Rybko, A. N. and Stolyar, A. L. Ergodicity of stochastic processes describing

the operation of open queueing networks. Problems of Information Transmission

28, 199–220 (1992).

[33] Seidman, T. I. ‘First come, first served’ can be unstable! IEEE Transactions on

Automatic Control 39, 2166–2171 (1994).

112

[34] Shu, L., Tom, T., and Donald, C. W. Minimum invertory variability schedule

with applications in semiconductor fabrication. IEEE Transactions on Semicon-

ductor Manufacturing 9, 145–149 (1996).

[35] Stolyar, A. L. On the stability of multiclass queueing networks: a relaxed suffi-

cient condition via limiting fluid processes. Markov Processes and Related Fields

1, 491–512 (1995).

113

Vita

Caiwei Li was born in Yin Xian, Zhejiang Province, China. After completing high

school at Yinxian middle school, Caiwei entered Huazhong University of Science and

Technology to conduct undergraduate study. After getting his bachelor degree, Caiwei

was admitted to Chinese Academy of Sciences in Beijing as a graduate student. There

he received a Master of Science degree. After that he went to Georgia Institute of

Technology in Atlanta, Georgia to pursue his Ph.d degree.

114

