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Reflected Processes – what are they?

G
d(x) φ

G is the closure of some connected domain in R
n

d(·) is a vector field specified on the boundary ∂G
d(x) is a cone for every x ∈ ∂G, graph of d(·) is closed

φ satisfies some specified interior dynamics
Want φ(t) ∈ G for all t ∈ [0,∞)
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The Skorokhod Problem – Multidimensional Version

Given (G,d(·)), for any continuous ψ, find a continuous φ such that

G

1 φ(t) = ψ(t) + η(t) ∈ G
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4 η(t) =
∫ t

0 γ(s)d |η|(s), with γ(s) ∈ d(φ(s)) d |η| a.e.

Γ denotes the map that takes ψ to φ (when well-defined).

Note: If X is a martingale, then Z = Γ(X ) is a semimartingale.

semimartingale = local martingale + bounded variation
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The Harrison-Reiman RBM

General Framework
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N-dimensional Nonnegative Orthant Framework

1 φ(t) = ψ(t) + Rθ(t) ∈ G; where R is an N × N matrix
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N-dimensional Nonnegative Orthant Framework

1 φ(t) = ψ(t) + Rθ(t) ∈ G; where R is an N × N matrix
2 θi non-decreasing function, i = 1, . . . ,N
3

∫ ∞
0 φi(t)dθi(t) = 0, i = 1, . . .N;
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Diffusion approximations for open single-class
networks

Observation: Open single-class networks are modelled by
reflection matrices R that are Minkowski
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Peterson (’91) established diffusion approximations of multiclass
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reflection matrices R that are Minkowski

Theorem (Harrison-Reiman, ’81)
R Minkowski matrix ⇒ Γ well-defined and continuous

Theorems (Reiman ’84, Chen-Mandelbaum ’91)
Rigorously shown that diffusion limits of open single-class
networks are RBMs in R

N
+ with Minkowski reflection matrices R

What about multi-class networks?

Peterson (’91) established diffusion approximations of multiclass
feedforward networks; associated Γ is continuous
All multi-class queueing networks need not be modelled by Γ that
are continuous
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Semimartingale Reflected Brownian Motions (SRBM)

When Γ well-defined, RBM can be defined pathwise;
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Semimartingale Reflected Brownian Motions (SRBM)

When Γ well-defined, RBM can be defined pathwise;

Otherwise, can define RBMs in the weak sense (using the
submartingale formulation)

In the orthant framework, R completely-S is necessary and
sufficient for existence of solutions to the SP;
(Bernard-El Kharroubi, ’91)

But R completely-S does not guarantee uniqueness;

Completely-S condition is necessary and sufficient for existence
and uniqueness (in distribution) of SRBM
(Reiman-Williams ’88, Taylor-Williams)
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Multiclass Queueing Networks to SRBM

The Bramson-Williams Framework (’98)
State Space Collapse + Completely-S

⇓
Heavy traffic limit theorem for the multi-class queueing network
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Examples Outside this Framework

Example 1: Generalized Processor Sharing
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ESP describing mapping from inputs to the queue content
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Examples Outside this Framework

Example 1: Generalized Processor Sharing
The 3-dimensional GPS Model
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Solutions to the SP do not exist for all (right) continuous paths
Does not satisfy Completely-S condition
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Examples Outside this Framework

Example 2: FIFO Tandem Queue with Deadlines (Reed)
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Submartingale Formulation vs. Skorokhod Problem
Approach

Submartingale ProblemSkorokhod Problem

Pros

Cons existence and uniqueness

Can be used to analyze 
arbitrary processesyields pathwise uniqueness

Constructs strong solutions;

Can only be used to 
analyze semimartingales

Provides only weak 
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The Extended Skorokhod Map

Definition of the ESP on (G,d(·)) (R ’06)

For any continuous ψ find a continuous φ such that
1 φ(t) = ψ(t) + η(t) ∈ G;

2 η(t) − η(s) ∈ co
[

⋃

u∈(s,t] d(φ(u))
]

∀0 ≤ s < t <∞,

where co(A) = closure of the convex hull of A and
d(x)

.
= {0} for x ∈ G◦;

K. Ramanan (Carnegie Mellon University) includes joint work with Weining Kang and Martin Reiman (Carnegie Mellon UnivReflected Brownian Motions, Dirichlet Processes and Queueing Networks 13 / 23



The Extended Skorokhod Map

Definition of the ESP on (G,d(·)) (R ’06)

For any continuous ψ find a continuous φ such that
1 φ(t) = ψ(t) + η(t) ∈ G;

2 η(t) − η(s) ∈ co
[

⋃

u∈(s,t] d(φ(u))
]

∀0 ≤ s < t <∞,

where co(A) = closure of the convex hull of A and
d(x)

.
= {0} for x ∈ G◦;

Γ : ψ 7→ φ called the Extended Skorokhod Map (ESM)
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2 η(t) − η(s) ∈ co
[

⋃

u∈(s,t] d(φ(u))
]

∀0 ≤ s < t <∞,

where co(A) = closure of the convex hull of A and
d(x)

.
= {0} for x ∈ G◦;

Γ : ψ 7→ φ called the Extended Skorokhod Map (ESM)

Note: If X is a martingale, then Z = Γ(X ) is not necessarily a
semimartingale

K. Ramanan (Carnegie Mellon University) includes joint work with Weining Kang and Martin Reiman (Carnegie Mellon UnivReflected Brownian Motions, Dirichlet Processes and Queueing Networks 13 / 23



Properties of the Extended Skorokhod Problem (ESP)

Theorem
(R. ’00, ’06)

If (φ, η) solve the SP for ψ, then (φ, η) solve the ESP for ψ

If (φ, η) solve the ESP for ψ and |η|(t) <∞ ∀t , then (φ, η) solve
the SP

The graph of the ESM Γ is closed.
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Properties of the Limiting Diffusion

Theorem
(’R ’06 and Kang-’R ’08)

The reflected diffusion Z associated with the GPS ESP is a
semimartingale on the interval [0, τ0], where

τ0 = inf{t ≥ 0 : Z (t) = 0}

but Z is not a semimartingale on [0,∞)

K. Ramanan (Carnegie Mellon University) includes joint work with Weining Kang and Martin Reiman (Carnegie Mellon UnivReflected Brownian Motions, Dirichlet Processes and Queueing Networks 15 / 23



Properties of the Limiting Diffusion

Theorem
(’R ’06 and Kang-’R ’08)

The reflected diffusion Z associated with the GPS ESP is a
semimartingale on the interval [0, τ0], where

τ0 = inf{t ≥ 0 : Z (t) = 0}

but Z is not a semimartingale on [0,∞)

2-d + BM case: follows from Williams (’85)
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Dirichlet Processes

Definition
A process Z is a Dirichlet process if it admits the decomposition

Z = M + A

M local martingale and A a continuous process with A(0) = 0 that has
zero quadratic variation,

i.e., for any sequence of partitions {Πn} of [0, t ],

lim
n→∞

|Πn| → 0 ⇒
∑

ti∈Πn

|A(ti+1) − A(ti)|
2 (P)
→ 0.
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A process Z is a Dirichlet process if it admits the decomposition

Z = M + A

M local martingale and A a continuous process with A(0) = 0 that has
zero quadratic variation,

i.e., for any sequence of partitions {Πn} of [0, t ],

lim
n→∞

|Πn| → 0 ⇒
∑

ti∈Πn

|A(ti+1) − A(ti)|
2 (P)
→ 0.

Note:
If A is a process of a.s. finite variation on bounded intervals, Z is a

continuous semimartingales.
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A Dirichlet Process Characterization of RBMs

Setup
Given (G,d(·)), b, σ Lip. cont and σ uniformly elliptic.

Suppose there exists a Markov, weak solution (Z ,B),Ft to the
associated SDER and let Y = Z − X :

X (t) = z +

∫ t

0
b(Z (s)) ds +

∫ t

0
σ(Z (s)) dB(s).
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Theorem W. Kang and ’R, (’08)
If there exist p ≥ 2 and q ≥ 2 such that for every 0 ≤ s, t ≤ T ,
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,

then Z is a Dirichlet process.
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Suppose there exists a Markov, weak solution (Z ,B),Ft to the
associated SDER and let Y = Z − X :

X (t) = z +

∫ t

0
b(Z (s)) ds +

∫ t

0
σ(Z (s)) dB(s).

Theorem W. Kang and ’R, (’08)
If there exist p ≥ 2 and q ≥ 2 such that for every 0 ≤ s, t ≤ T ,

E [|Y (t) − Y (s)|p|Fs] ≤ E

[

sup
u∈s,t]

|X (u) − X (s)|qFs

]

,

then Z is a Dirichlet process.
In particular, this holds when the ESM is Hölder continuous or if the
directions satisfy the so-called generalized completely-S condition.
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Sketch of the Proof

Z (t) = Z (0) + B(t) + Y (t).

B standard Brownian motion, Y is the regulating process
Need to show

∑

ti∈Πn

|Y (ti) − Y (ti−1)|
p P
→ 0, as||Πn|| → 0.

Define
ζm = inf{t > 0 : |Z (t)| ≥ m}.

By localization suffices to show that

∑

ti∈Πn

|Y (ti ∧ ζ
m) − Y (ti−1 ∧ ζ

m)|
p P
→ 0, as||Πn|| → 0.
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Sketch of the Proof (contd.)

ε

ε/2
1τ

τ2
σ1

0σ  = 0

• control p-variation on [τi , σi) using semimartingale property away
from origin; show summable;
• obtain estimates on p-variation on [σi , τi+1) in terms of time spent in
ε/2-nbhd of 0; show it disappears, on sending ε→ 0, by instantaneous
reflection property
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Properties of the GPS ESP

Theorem
(R ’06, Dupuis-’R ’98)

The GPS ESM is Lipschitz continuous

Proof Involves Constructing an Associated Norm;

Combines convex duality and algebra; vertices of B form the root
system for the Lie albegra An−1 of the Lie group sℓn
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Revisiting the GPS Model

1

2

c

Nα

N

α

α1

2

Order sources so that

λ1

α1
≥
λ2

α2
≥ . . . ≥

λN

αN
,

and define

J .
= max

{

j ≤ N :
λj

αj
=
λ1

α1

}

.
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A Heavy Traffic Limit Theorem for the GPS Model

Theorem
(R.-Reiman ’03, R.-Reiman ’06)

Suppose the heavy traffic condition holds:

J
∑

j=1

λj =
J

∑

j=1

αj = 1.

The appropriately scaled workload process in the GPS model
converges weakly to the pathwise unique solution of a reflected

diffusion in R
J
+ associated with the GPS ESP with weights

α̃i =
αi

∑

i≤J αi
.

and modified covariance (identified explicitly).
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A Heavy Traffic Limit Theorem for the GPS Model

Theorem
(R.-Reiman ’03, R.-Reiman ’06)

Suppose the heavy traffic condition holds:

J
∑

j=1

λj =
J

∑

j=1

αj = 1.

The appropriately scaled workload process in the GPS model
converges weakly to the pathwise unique solution of a reflected

diffusion in R
J
+ associated with the GPS ESP with weights

α̃i =
αi

∑

i≤J αi
.

and modified covariance (identified explicitly).
The reflected diffusion is a Dirichlet process.

Lies outside the Bramson+Williams and cont. mapping frameworks
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