
Analysis of Greedy Robot-Navigation Methods

Apurva Mugdal Craig Tovey
Georgia Institute of Technology

College of Computing
801 Atlantic Drive

Atlanta, GA 30332-0280, USA
{apurva, ctovey}@cc.gatech.edu

Sven Koenig
University of Southern California
Computer Science Department

941 W 37th Street
Los Angeles, CA 90089-0781, USA

skoenig@usc.edu

Abstract

Robots often have to navigate robustly despite incomplete information about the
terrain or their location in the terrain. In this case, they often use greedy methods to
make planning tractable. In this paper, we analyze two such robot-navigation methods.
The first method is Greedy Localization, which determines the location of a robot in
known terrain by always moving it to the closest location from which it will make an
observation that reduces the number of its possible locations, until it has reduced that
number as much as possible. We reduce the upper bound on the number of movements
of Greedy Localization from O(n

3
2) to O(n log n) on grid graphs and thus close to the

known lower bound of Ω(n log n/ log log n), where n is the number of (unblocked) vertices
of the graph that discretizes the terrain. The second method is Dynamic A* (D*),
which is used on several prototypes of both urban reconnaissance and planetary robots.
It moves a robot in initially unknown terrain from given start coordinates to given
goal coordinates by always moving the robot on a shortest presumed unblocked path
from its current coordinates to the goal coordinates, pretending that unknown terrain
is unblocked, until it has reached the goal coordinates or there are no more presumed
unblocked paths. We reduce the upper bound on the number of movements of D* from
O(n

3
2) to O(n log2 n) on arbitrary graphs and O(n log n) on planar graphs (including

grid graphs) and thus close to the known lower bound of Ω(n log n/ log log n), where
n is the number of (blocked and unblocked) vertices of the graph that discretizes the
terrain.

1 Introduction

Robot-navigation problems with incomplete information are challenging because nondeter-
minism results in a large number of contingencies. These problems include localization (where
the map is known but the location of the robot relative to the map is unknown and the ob-
jective is to move the robot until it has discovered its current location), and goal-directed

1

navigation in unknown terrain (where the location of the robot relative to the map is known
but the map is unknown and the objective is to move the robot to a given goal location). The
sensors on-board a robot can typically sense the terrain only near its current location, and
the robot thus has to interleave planning with movement to sense new parts of the terrain,
either to discover more about its current location or to discover more about the map.

In this paper, we analyze two robot-navigation methods that both interleave planning with
movement and use greedy (that is, myopic) planning approaches to make planning tractable.
The first method is Greedy Localization, which moves a robot in known terrain so that it
determines its initially unknown location. The second method is Dynamic A* (D*), which
moves a robot in initially unknown terrain from known start to known goal coordinates.
Both robot-navigation methods are simple to implement, easy to integrate into complete
robot architectures, and seem to result in small travel distances in practice. We analyze their
travel distances to understand whether the travel distances are indeed small in any kind of
terrain or whether they were small only because of properties of the terrains used to test
them experimentally. We model the terrain as graph (in practice, grid graphs are commonly
used) and then analyze the worst-case number of edge traversals as a function of the size
of the graph, measured by the number of its vertices n. Robots move so slowly that their
task-completion times are completely dominated by their travel times. Hence this criterion
is at least as important as the competitive ratio [6] because it is a guarantee on the task-
completion time. We reduce the upper bound on the worst-case number of edge traversals
of Greedy Localization from O(n

3
2) [11] to O(n log n) on grid graphs and thus close to the

best known lower bound of Ω(n log n/ log log n) [11]. With a completely different analysis, we

reduce the upper bound on the worst-case number of edge traversals of D* from O(n
3
2) [10]

to O(n log2 n) on arbitrary graphs and O(n log n) on planar graphs (including grid graphs)
and thus close to the best known lower bound of Ω(n log n/ log log n) [7], which holds even on
grid graphs [10].

2 Greedy Localization

*** The notation for Greedy Localization is different from the one used for D*, e.g. the start
vertex in one case is x0 and in the other v0. (CAT: I prefer it that way.)I also don’t like that
sets sometimes have superscripts and sometimes subscripts (CAT: it would be slightly nicer
to be consistent, but it is not common in math journal articles to be so nice. If we were
writing a book it would be more important. The truth is, I didn’t want to bother. Also I am
used to the notation as is so it is easier for me to proofread as is.

The localization problem on grid graphs is defined as follows. The robot moves with no
actuator uncertainty on a grid graph G with the usual north-south-east-west orientation.
Each cell is either traversable (unblocked) or untraversable (blocked). The perimeter of G
consists of blocked cells. The robot is initially situated in an unblocked cell of G. The robot
has an on-board compass and a map (including orientation and traversability information).
However, the robot does not know in which cell of G it is located. The robot possesses sensors
that detect with certainty which of the neighboring cells (N,S,E,W) are blocked. The robot

2

can move from its current cell to any adjacent unblocked cell. The robot has localized when
it has made a series of moves such that the sensory information acquired during those moves
is sufficient to determine the robot’s location, or to determine that the location can not be
determined (if for example the robot determined that it was within one of a pair of isomorphic
connected components of G). At each move, the robot is permitted to use all the sensory
information acquired so far to help decide which direction to move next. The localization
problem is localize in a minimum number of movements. We assume in the following that the
sensors of the robot always detect which of its four neighboring cells are blocked and perhaps
also the blockage status of additional cells.

Greedy Localization maintains the set of cells that the robot can be in given all observations
that it has made so far. It always makes the robot execute a shortest sequence of movements
so that all observations that it has made after the sequence of movements are guaranteed to
reduce the number of cells that the robot can be in. It terminates once the robot cannot
reduce the number any more. If the number is one after termination then the robot is
localized, otherwise it cannot localize. Greedy Localization was pioneered by Nourbakhsh
in robot programming classes where Nomad 150 mobile robots had to navigate mazes that
were built with three-foot high and forty inch long cardboard walls [5]. Similar strategies are
used in more complex environments where robots use probability distributions over locations
rather than sets of locations to be able to deal with sensor noise, and the greedy localization
methods then move the robots to decrease the entropy of the probability distribution rather
than the cardinality of the set [3].

2.1 Worst-Case Travel Bound

Researchers often analyze localization methods using online criteria, by comparing the travel
distance of a robot to the distance that would be traveled by an omniscient robot that knows
its location at the outset and seeks only to verify that location. Dudek, Romanik, and
Whitesides [2], for example, find a best possible online ratio of |H| − 1, where H is computed
from the start location of the robot with long range sensors in a polygonal model. We, on
the other hand, analyze the worst-case travel distance of Greedy Localization in the following
because a small worst-case travel distance guarantees that it cannot perform very badly, which
is more important than the “regret” measured by the competitive ratio. Our analysis makes
heavy use of a lemma from [12].

We model the grid as a grid graph G = (V, E) whose vertices correspond to the unblocked
cells. The start vertex of the robot is x0. The observation that the robot makes in a vertex
is the same as the observation that it makes in the corresponding cell. Two vertices are
connected via an edge iff they correspond to neighboring cells. The number of edge traversals
of the robot on the grid graph then is the same as its travel distance on the grid.

Theorem 1 Greedy Localization traverses at most |V | + 2|V | ln |V | edges on grid graphs
G = (V, E).

Proof: At each step in the algorithm, the robot is at a particular vertex in the graph, even

3

though the robot does not know which one it is. For the purposes of analysis, we follow the
robot’s motions as they actually occur in the graph. During iteration i, the robot follows
a shortest path from vertex xi−1 to vertex xi so that the observation in xi is guaranteed to
reduce the number of vertices that the robot can be in. This implies that xi is closest to
xi−1 among all informative vertices, where a vertex is informative if the observation from the
vertex is guaranteed to reduce the number of vertices that the robot can be in. Note that
uninformative vertices remain uninformative. Let d(x, x′)G denote the distance from vertex
x to vertex x′ in graph G and define li = d(xi−1, xi)G. The main intuition behind the proof
of the theorem is the fact that no vertex within a large distance of xi−1 can be informative
if li is large. Thus, the number of large li and thus also the number of edge traversals of
Greedy Localization must be small. We use marking sequences to formalize this intuition. A
marking sequence on graph G = (V, E) is a sequence of triples {vi, ri, M i} for i = 1, 2, . . .,
whose integers ri ≥ 0, vertices vi ∈ V , and sets M i ⊆ V satisfy the following properties:

1. vi 6∈ M i,

2. M1 = ∅ and M i ⊂ M i+1, and

3. d(v, vi)G ≤ ri implies v ∈ M i+1.

The cost of the marking sequence is
∑

i(1+ri). Vertices v are considered to be marked at step
i iff v ∈ M i. Our key construct then is as follows: Greedy Localization forms an associated
marking sequence where ri = li − 1, vi = xi−1, and M i+1 is the set of uninformative vertices
after the robot has reached and made an observation from vi. The number of edge traversals
of Greedy Localization equals the cost of the associated marking sequence since 1 + ri = li.
Note that the marking sequence is less restrictive than Greedy Localization because vi need
not be at distance 1 + ri from vi+1. Instead, the marking sequence consists of a sequence of
choices of an unmarked vertex vi and a radius ri. All vertices within distance ri of vi (and
possibly additional vertices) are marked, and the marking sequence continues.

Lemma 1 The cost of any marking sequence is no larger than |V |+ 2|V | ln |V | on connected
graphs G = (V, E).

Proof sketch: It follows from the triangle inequality that there exists a maximum cost
marking sequence that only marks one vertex, namely vi, per step. For if another vertex v
were also marked, one could replace the step with two more expensive steps that mark only
vi and v, respectively. By viewing the marking sequence as a sequence of disjoint balls of
radius ri in the metric space of graph distances, the graph’s connectivity limits the number
of radii that are at least t to 2|V |/t. The O(|V | ln |V |) bound follows. Full details are given
in [12].

Greedy Localization constrains the movements of the robot to be in a connected component
of the graph. Hence, the lemma applies and the theorem is proved.

Note that our proof is not specific to robots with short-range sensors that operate on two-
dimensional grid graphs in which each cell’s potential neighbors are located N,S,E,W. Our

4

proof does require that uninformative vertices remain uninformative. This is the case, for
example, if the set of vertices that the robot can be in when it is in some vertex x is always
included in the set of vertices that the robot could have been in when it was in the same vertex
x earlier. Thus our theorem holds also, for example, for higher-dimensional or differently
connected grid graphs and is completely independent of the kind of sensors used by the
robot.

3 D*

*** Apurva needs to confirm whether the number of vertices refers to all vertices or just the
unblocked ones. (CAT: I checked with Apurva, and he confirms what I said in my email.
The number of vertices refers to all vertices, whether blocked or unblocked, in the connected
component of the graph, together with all adjacent blocked vertices.)

Consider again a two-dimensional grid with blocked and unblocked cells. Its perimeter consists
of blocked cells. The start cell of the robot is unblocked. The robot knows its start cell and
orientation and has to move to a given goal cell. It does not know initially which cells
are blocked. The robot can move from its current cell north, east, south or west to any
neighboring cell. The movement succeeds if the cell is unblocked. There is no actuator or
sensor uncertainty. The robot can use all observations it has made so far (corresponding to
the partial map that it has learned so far) to decide to which neighboring cell to move next.
The goal acquisition problem is move to the goal cell in a minimum number of movements.
We assume in the following that the sensors of the robot always detect only whether the cell
that it attempts to move to is blocked.

D* maintains the partial map that the robot has learned so far. It always makes the robot
execute a shortest sequence of movements from its current cell to the goal cell under the
optimistic assumption that cells are unblocked that have not been observed to be blocked. It
terminates once the robot has reached the goal cell or no such sequences of movements exist
any longer (in which case the robot cannot reach the goal cell). Whenever the robot observes
a blocked cell on its current path, D* needs to replan, which can be implemented efficiently
[8] and easily [4]. D* has been used outdoors on an autonomous high-mobility multi-wheeled
vehicle that navigated 1,410 meters to the goal location in an unknown area of flat terrain
with sparse mounds of slag as well as trees, bushes, rocks, and debris [9]. As a result of this
demonstration, D* is now widely used in the DARPA Unmanned Ground Vehicle (UGV)
program, for example, on the UGV Demo II vehicles. D* is also being integrated into Mars
Rover prototypes, tactical mobile robot prototypes and other military robot prototypes for
urban reconnaissance.

3.1 Analysis

We analyze the worst-case travel distance of D* in the following. We model the grid as a grid
graph whose vertices correspond to the cells. Thus, vertices can be blocked or unblocked.

5

Two vertices are connected via an edge iff they correspond to neighboring cells. However,
our analysis holds for graphs in general, not just grid graphs. We therefore generalize the
problem as follows:

Consider a graph G = (V, E) with blocked and unblocked vertices. We assume without
loss of generality that the graph is connected (otherwise we can consider only the connected
component of the graph that contains the start vertex). The start vertex v0 of the robot is
unblocked. The robot always knows its current vertex – all vertices can be uniquely identified,
unlike the situation in localization problems – and has to move to a given goal vertex t. It
does not know initially which vertices are blocked. The robot can attempt to move from its
current vertex to any neighboring vertex. If the neighboring vertex is unblocked, then the
robot moves to it. If the neighboring vertex is blocked, however, then the robot remains in its
current vertex. In both cases, the robot observes whether the neighboring vertex is blocked.
D* always moves the robot along a shortest presumed unblocked path from its current vertex
to the goal vertex. A path is presumed unblocked if it does not contain vertices that the robot
knows to be blocked. Whenever the robot observes that a vertex is blocked, it recalculates
another shortest presumed unblocked path from its current vertex to the goal vertex and
repeats the process. D* terminates once the robot has reached the goal vertex or can no
longer find a presumed unblocked path from its current vertex to the goal vertex.

*** need to add a small comment to the following that it is not a problem if x′
i does not exist

because bi = t (CAT: I don’t think this is necessary)

We use the following notation: At the beginning of iteration i, the robot is at vertex vi−1 and
Ei is the set of edges that are not incident on a vertex known to be blocked at that time.
Note that E1 = E. The robot then plans a shortest path Pi in graph H i = (V, Ei) from vertex
vi−1 to t, starts to follow it, and then stops at vertex vi either because vi = t or because the
vertex bi following vi on Pi is blocked. In the latter case, let v′i denote the vertex following bi

on Pi. The robot eventually stops in vertex vk either because vk = t or because there are no
longer any presumed unblocked paths from vk to t. Thus, k ≤ |V |. Let d(x, x′)G denote the
distance from vertex x to vertex x′ in graph G. If x and x′ are not in the same connected
component of G then d(x, x′)G = ∞.

Let v0, v1, . . . , vk be a run of the method (this captures a run up to ties in shortest viable
paths). The total distance traveled by the robot is:

C =
k∑

i=1

d(vi−1, vi)
Hi

.

3.2 Telescoping

Lemma 2 D* traverses at most |V | + ∑k−1
i=1 d(vi, v

′
i)

Hi+1
edges on arbitrary connected graph

G = (V, E).

Proof: Since vi lies on the shortest path Pi from vi−1 to t in H i, by the principle of optimality,

6

C =
k∑

i=1

d(vi−1, vi)
Hi

=
k∑

i=1

(d(vi−1, t)
Hi − d(vi, t)

Hi

)

= d(v0, t)
H1 − d(vk, t)

Hk

+
k−1∑
i=1

(d(vi, t)
Hi+1 − d(vi, t)

Hi

)

≤ |V |+
k−1∑
i=1

(d(vi, t)
Hi+1 − d(vi, t)

Hi

).

(The last inequality uses the inequality d(v0, t)
H1

< |V | since G = (V, E) = (V, E1) = H1 is
connected.)

Consider an arbitrary i with 1 ≤ i < k. The robot planned a shortest path Pi in H i from
vi−1 via vi, bi, and v′i to t. Thus, the subpath of Pi from v′i to t is a shortest path in H i from
v′i to t. Since it does not contain any edges incident on bi, it is also a shortest path in H i+1

from v′i to t and thus d(v′i, t)
Hi+1

= d(v′i, t)
Hi

. Thus, it holds by the triangle inequality that

d(vi, t)
Hi+1 ≤ d(vi, v

′
i)

Hi+1

+ d(v′i, t)
Hi+1

= d(vi, v
′
i)

Hi+1

+ d(v′i, t)
Hi

.

According to the definition of v′i, we have d(vi, t)
Hi

= 2 + d(v′i, t)
Hi

for 1 ≤ i < k. Thus,
C ≤ |V |+∑k−1

i=1 (d(vi, t)
Hi+1−d(vi, t)

Hi
) ≤ |V |+∑k−1

i=1 ((d(vi, v
′
i)

Hi+1
+d(v′i, t)

Hi
)− (d(v′i, t)

Hi
+

2)) ≤ |V |+ ∑k−1
i=1 d(vi, v

′
i)

Hi+1
.

3.3 Time Reversal and Weighted Edges

Consider the following function:

CYCLE-WEIGHT(T,S): Input: a tree T = (V, E) and an ordered list S = {ej : 1 ≤
j ≤ k} of distinct edges from the complete graph on V , such that S ∩ E = φ. Define
the weight wi of edge ei to be the length of a shortest cycle that contains ei in the graph
Ti = (V, E ∪ {ej : i ≤ j ≤ k}). Output:

∑k
i=1 wi.

We now show that
∑k−1

i=1 d(vi, v
′
i)

Hi+1 ≤ CYCLE-WEIGHT(T, S) for a suitably constructed
tree T and S = {ej = (vj, bj) : 1 ≤ j < k}.

*** do we need to worry about bk? In other words, does it matter how D* stopped: whether
at the goal, because it noticed the goal to be blocked, or because it noticed some other vertex
to be blocked which reduced the number of presumed unblocked paths to zero? (CAT: we
don’t have to worry about it. It does not exist, that is, we don’t define it and we don’t use
it.)

7

The basic idea relating the edge weights in CYCLE-WEIGHT to the d(vi, v
′
i)

Hi+1
values

can be understood by considering a special case. Assume that Hk is connected except for
the isolated vertices b1, b2, . . . , bk−1. Reverse the time perspective so that the robot motion
adds edges, first the edges incident on bk−1, then the edges incident on bk−2, and so on.
Pick T to be a spanning tree of the graph (V, Ek ∪ {(bj, v

′
j) : 1 ≤ j < k}) and S to be

{ej = (vj, bj) : 1 ≤ j < k}. Then, it holds that wi ≥ 2 + d(vi, v
′
i)

Hi+1
for 1 < i < k since every

cycle that contains ei = (vi, bi) in Ti must also contain (bi, v
′
i). Consequently, it holds that∑k−1

i=1 d(vi, v
′
i)

Hi+1 ≤ ∑k−1
i=1 wi = CYCLE-WEIGHT(T, S).

Unfortunately this simple construction does not work in the general case since multiple con-
nected components may be formed when the edges incident on a blocked vertex are removed.
To get around this problem, we define the graphs Fk, Fk−1, . . . , F1 as follows:

• Let Fk be a spanning forest of Hk.

• For 1 ≤ i < k, let Ci
1, C

i
2, . . . , C

i
ki

be the connected components of H i+1 which get
merged with bi in H i, with the restriction that v′i ∈ Ci

1. Select a wi
j ∈ Ci

j for 1 ≤ j ≤ ki

such that wi
j is a neighbor of bi in G, with the restriction that wi

1 = v′i. Let Fi result
from Fi+1 by adding the edges {(bi, w

i
j) : 1 ≤ j ≤ ki}.

The following lemma is immediate:

Lemma 3 For 1 ≤ i ≤ k and all vertices u and v, Fi is acyclic; d(u, v)Fi < ∞ iff d(u, v)Hi <
∞; and d(u, v)Fi ≥ d(u, v)Hi

.

Proof: By induction.

*** CAT: I prefer the above. It would be OK to say, By downwards induction on i. But we
may not say, by induction on i.

We are now ready to prove the bound.

Lemma 4 Let H1, H2, . . . , Hk be a sequence of graphs as defined above. Let T = F1 and
S = {ei = (bi, vi) : 1 ≤ i ≤ k − 1}. Then

∑k−1
i=1 d(vi, v

′
i)

Hi+1 ≤ CYCLE-WEIGHT(T, S).

Proof: According to Lemma 3, Fi+1 and H i+1 have the same connected components. The
subgraph of F1 induced by Ci

1 is connected since Ci
1 is a component of H i+1. The edges ej for

i < j < k are contained in Ci
1 since vj, v

′
j, bj ∈ Ci

1 for all i < j < k. Thus, the graph obtained
by contracting all vertices of Ci

1 in Ti+1 is acyclic. Since Ti is obtained from Ti+1 by adding
ei, every cycle that contains ei = (vi, bi) in Ti must also contain (bi, v

′
i). Thus, wi is equal to

2 plus the distance between vi and v′i in the subgraph G′ of Ti induced by Ci
1. But G′ is also

a subgraph of H i+1 and hence it holds that wi ≥ 2+d(vi, v
′
i)

Hi+1
. Consequently, it holds that∑k−1

i=1 d(vi, v
′
i)

Hi+1 ≤ ∑k−1
i=1 wi = CYCLE-WEIGHT(T, S).

8

3.4 An Extremal Problem on Graphs

We now bound CYCLE-WEIGHT((V, E), S) in terms of |V | and |S|. Let Ew = {ei; wi ≥ w}
be the set of edges with weight at least w. Recall that the girth of a graph is the length of
its shortest cycle. Define Γ(n,w) (respectively ΓP (n, w)) to denote the maximum number of
edges in a graph (respectively planar graph) with n vertices and a girth of at least w. The
following lemma relates Ew and Γ(n,w).

Lemma 5 |Ew| ≤ Γ(|V |, w)− |V |+ 1 for all CYCLE-WEIGHT((V, E), S) and all w.

*** We need to justify the = in |E ∪ Ew| = |E| + |Ew|! (CAT: Sven is correct. I put
disjointedness into the definition of cycle-weight. We always thought it but we never wrote
it!)

Proof: Consider the graph Tw = (V, E ∪ Ew). We claim that Tw has a girth of at least w.
To see this, assume that it does not and thus has a cycle C of length w′ < w. Since (V, E)
is a tree, at least one edge of C must belong to Ew. Consider the edge ej ∈ Ew ∩ C with
the smallest j. Then Tj contains C and thus wj ≤ w′ < w. On the other hand, wj ≥ w
since ej ∈ Ew, which is a contradiction. Thus, Tw has a girth of at least w. This implies that
Γ(|V |, w) ≥ |E ∪ Ew| = |E|+ |Ew| = |V | − 1 + |Ew| and the lemma follows.

Corollary 1 |Ew| ≤ ΓP (|V |, w) − |V | + 1 for all CYCLE-WEIGHT((V, E), S) such that
(V, E ∪ S) is planar, and all w.

Proof: In the proof of lemma 5, Tw is planar because it is a subgraph of planar graph
V, E ∪ S). Hence Γ(|V |, w) may be replaced by ΓP (|V |, w).

We now bound CYCLE-WEIGHT((V, E), S) by making use of bounds on Γ(n, w), a well
studied problem in extremal combinatorics. We first consider the case that the graph (V, E∪S)
is planar.

*** The following is an absolute misuse of the terminology that we have introduced because
*** of the definition of gamma - we can’t introduce a restriction of the graphs in the definition
*** of gamma afterwards. We need to clean this up. (CAT: cleaned up above. We also misuse
gamma to mean both the max and a valid upper bound on the max. I fixed that too.)

Lemma 6 ΓP (n, w) ≤ wn
w−2

for all n and w.

*** I have no idea about the following (don’t know what faces are etc.)

Proof: Since the sum of the lengths of all faces of any planar graph G = (V, E) is at most
2|E| and every face has a length of at least w, the number of its faces can be at most 2|E|/w.
The bound of the lemma follows from substituting this relationship in Euler’s formula.

9

Note that the weight of any edge in S is at most |V |. Define Ew,2w = {ei ∈ S : w ≤ w < 2w}.
Then, by corollary 1 and lemma 6 it holds that

*** In the following, we really need a floor on the upper bound of the sum but I guess we can

get away without it (CAT: yes, yes) *** Someone needs to check that (2i|V |
2i−2

−|V |+1) ≤ 3|V |/2i.
(CAT: I checked. It needs i big enough. It also needs |V | big enough. I fixed it.)

CYCLE-WEIGHT((V, E), S) ≤
log |V |∑
i=1

2i+1|E2i,2i+1|

≤ O(|S|) +
log |V |∑
i=3

2i+1|E2i|

≤ O(|S|) +
log |V |∑
i=3

2i+1(ΓP (|V |, 2i)− |V |+ 1)

≤ O(|S|) +
log |V |∑
i=3

2i+1(
2i|V |
2i − 2

− |V |+ 1)

≤ O(|S|) +
log |V |∑
i=3

2i+1 4|V |/2i

= O(|S|) +
log |V |∑
i=3

8|V |

= O(|S|) + O(|V | log |V |).

We now repeat the analysis for general graphs. In this case, we use a recent result by Alon,
Hoory and Linial that states that any graph G = (V, E) with average degree d > 2 has a
girth of at most logd−1 |V | [1], resulting in the following lemma.

Lemma 7 Γ(n, w) ≤ n(n
1
w + 1)/2 for all n and w.

Proof: Consider any graph G = (V, E) with |V | = n, |E| ≥ |V |+ 1 and a girth of at least w.
Then, its average degree is d = 2|E|/n > 2 and thus, according to the result by Alon, Hoory
and Linial, w ≤ log2|E|/n−1 n. Solving this inequality for |E| yields the lemma.

This lemma allows us to bound CYCLE-WEIGHT((V, E), S) for general graphs. Using cal-

culus, we can show that w(|V |(|V | 1
w − 1)) = O(|V | log |V |) for |V | ≥ w > log2 |V |. Using this

fact with lemmata 5 and 7, we have

CYCLE-WEIGHT((V, E), S) =
∑

i:wi≤log2 |V |
wi +

∑
i:wi>log2 |V |

wi

≤ |S| log2 |V |+
log |V |∑

i=2 log log |V |
2i+1|E2i,2i+1|

10

≤ |S| log2 |V |+
log |V |∑

i=2 log log |V |
2i+1|E2i|

≤ |S| log2 |V |+
log |V |∑

i=2 log log |V |
2i+1(Γ(|V |, 2i)− |V |+ 1)

= |S| log2 |V |+
log |V |∑

i=2 log log |V |
2i+1(|V |(|V |

1

2i − 1)/2 + 1)

= |S| log2 |V |+
log |V |∑

i=2 log log |V |
O(|V | log |V |)

= O((|V |+ |S|) log2 |V |).

We now state these results as lemma.

Lemma 8 CYCLE-WEIGHT((V, E), S) = O((|V |+ |S|) log2 |V |). If the graph (V, E ∪ S) is
planar, CYCLE-WEIGHT((V, E), S) = O(|V | log |V |).

3.5 Worst-Case Travel Bound

We are now ready to prove an upper bound on the worst-case travel distance of D*.

Theorem 2 D* traverses O(|V | log |V |) edges on connected graphs G = (V, E). It traverses
O(|V | log2 |V |) edges on connected planar graphs G = (V, E).

Proof: According to Lemmata 2 and 4, D* traverses at most 3|V | + ∑k−1
i=1 d(vi, v

′
i)

Hi+1 ≤
3|V |+CYCLE-WEIGHT((V, E ′), S) edges, where |S| < |V | and (V, E ′∪S) is a subgraph of G.
According to Lemma 8, it holds that CYCLE-WEIGHT((V, E ′), S) = O((|V |+|S|) log2 |V |) =
O(|V | log2 |V |) and, if G and thus (V, E ′ ∪ S) are planar, CYCLE-WEIGHT((V, E ′), S) =
O(|V | log |V |). The theorem follows.

4 Conclusions

The robot-navigation methods that we have analyzed in this paper, Greedy Localization
and D*, are appealingly simple and easy to implement from a robotics point of view and
appealingly complicated to analyze from a mathematical point of view. Our results, likewise,
are satisfying in two ways. First, our tighter upper bounds on their worst-case travel distances
guarantee that they cannot perform badly at all. Second, the gaps between the best known
lower and upper bounds are now quite small, namely O(log log n) for Greedy Localization on
grid graphs and D* on planar graphs (including grid graphs), and O(log n log log n) for D*
on arbitrary graphs.

11

References

[1] N. Alon, S. Hoory, and N. Linial. The moore bound for irregular graphs. Graph and Combina-
torics, 18(1):53–57, 2002.

[2] G. Dudek, K. Romanik, and S. Whitesides. Localizing a robot with minimum travel. In
Proceedings of the 6th Annual ACM-SIAM Sympsosium on Discrete Algorithms, pages 437–
446, 1995.

[3] D. Fox, W. Burgard, and S. Thrun. Active markov localization for mobile robots. Robotics and
Autonomous Systems, 25:195–207, 1998.

[4] S. Koenig and M. Likhachev. Improved fast replanning for robot navigation in unknown terrain.
In Proceedings of the International Conference on Robotics and Automation, pages 968–975,
2002.

[5] I. Nourbakhsh. Robot Information Packet. Distributed at the AAAI-96 Spring Symposium on
Planning with Infomplete Information for Robot Problems, 1996.

[6] D. Sleator and R. Tarjan. Amortized efficiency of list update and paging rules. Communications
of the ACM, 28(2):202–208, 1985.

[7] Y. Smirnov. Hybrid Algorithms for On-Line Search and Combinatorial Optimization Problems.
PhD thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh (Pennsylva-
nia), 1997. Available as Technical Report CMU-CS-97-171.

[8] A. Stentz. The focussed D* algorithm for real-time replanning. In Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence, pages 1652–1659, 1995.

[9] A. Stentz and M. Hebert. A complete navigation system for goal acquisition in unknown
environments. Autonomous Robots, 2(2):127–145, 1995.

[10] C. Tovey, S. Greenberg, and S. Koenig. Improved analysis of D*. In Proceedings of the Inter-
national Conference on Robotics and Automation, page (in press), 2003.

[11] C. Tovey and S. Koenig. Gridworlds as testbeds for planning with incomplete information. In
Proceedings of the National Conference on Artificial Intelligence, pages 819–824, 2000.

[12] C. Tovey and S. Koenig. Improved analysis of greedy mapping. In Proceedings of the Interna-
tional Conference on Intelligent Robots and Systems, page (in press), 2003.

12

