
Approximation of the Yolk by the LP Yolk

Richard McKelvey∗

Division of Humanities and Social Sciences
California Institute of Technology

Pasadena, Ca 91125

Craig A. Tovey†

ISyE and College of Computing‡

Georgia Institute of Technology
Atlanta Ga 30332

June 13, 1991
revised May, 1993; November, 2005; July 24, 2009

Abstract

If n points are sampled independently from an absolutely contin-
uous distribution with support a convex subset of <2, then the center
and radius of the ball determined by the bounding median lines (the
LP yolk) converge with probability one to the center and radius of the
yolk. The linear program of [9] is therefore an effective heuristic for
computing the yolk in large samples. This result partially explains the
results of numerical experiments in [8], where the bounding median
lines always produced a radius within 2% of the yolk radius.
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1 Introduction

If {x1, x2, ..., xn} ⊆ <m are n points in an m dimensional Euclidian space,
the “yolk” is defined to be the ball with smallest radius which intersects all
median hyperplanes in the sample. The “LP yolk” is defined to be the ball
with the smallest radius which intersects all “bounding” median hyperplanes,
where a bounding median hyperplane is defined to be one that passes through
at least m of the sample points. A linear programming formulation is given
in [9] to compute the LP yolk (hence the name), and in the same article it
is claimed that this computation will also yield the yolk. However [13] give
counterexamples in which the yolk and the LP yolk are different.

In this paper, we show that in a two dimensional space the result in [9] is
approximately correct, in the following sense: We assume that the points xi
are drawn independently from a measure µ, where µ is absolutely continuous
with respect to Lebesgue measure, and its support, S, is convex. Then we
show that with probability one, as the sample size tends to infinity, the LP
yolk converges to the yolk.

2 Notation

Let X = {x ∈ <2 : ||x|| = 1} be the set of unit length vectors in <2. For
any x ∈ X, and c ∈ <, we define H(x, c) = {z ∈ <2 : x · z = c} to be
the hyperplane (line) normal to x which passes through the point cx. Define
H+(x, c) = {z ∈ <2 : x · z ≥ c} and H−(x, c) = {z ∈ <2 : x · z ≤ c} to be the
positive and negative closed half spaces defined by H(x, c).

For any x ∈ X, a distributional median line for µ is defined by the unique
c ∈ < for which µ[H+(x, c)] ≥ 1/2 and µ[H−(x, c)] ≥ 1/2. The existence
follows from absolute continuity of µ, and the uniqueness follows from the
support, S, of µ being convex. For any vector x ∈ X, let hx denote the
unique distributional median hyperplane normal to x.

Similarly, for any integer n and any sample {x1, x2, ..., xn} ⊆ <2 of size n
a sample median line is defined by any c ∈ < for which |{i : xi ∈ H+(x, c)}| ≥
n/2 and |{i : xi ∈ H−(x, c)}| ≥ n/2. There always exists a median line in
any direction x. If n is odd, then it is unique. We assume n is odd. For any
vector x ∈ X, let hnx denote the unique sample median hyperplane normal
to x.

For any sets A ⊆ <2, and B ⊆ <2, let d(A,B) denote the distance

2



between the sets. For any x ∈ X, and δ > 0, we define B(x, δ) = {y ∈ <2 :
d({y}, hx) ≤ δ} to be the δ band normal to x around (and parallel to) hx.
For any x ∈ X, y ∈ <2, and θ > 0, define

W (y, x, θ) =
⋃

x′∈X,x′·x≤cos(θ)

H(x′, x′ · y)

to be the union of all lines passing through y, normal to a vector at an angle
less than or equal to θ from x. This is a double wedge of angle 2θ parallel to
hx through y. For any δ, θ > 0, and compact subset U ⊂ <2, define

G(θ, δ, U) = inf
x∈X,y∈B(x,δ)∩U

µ(W (y, x, θ))

to be the greatest lower bound of the measure of a θ wedge normal to x
originating in the intersection of U and some band B(x, δ).

3 Results

We start with three technical lemmata. The first says that for a large enough
sample the sample median lines in any direction approach (uniformly) the
corresponding distributional median lines. The second shows that the min-
imum measure, µ, over all wedges of angle θ normal to x originating at a
point within δ of hx is greater than 0. The third lemma says that for δ small
enough, and for any θ, with probability one, in a large enough sample, every
such wedge will contain at least one sample point.

Lemma 3.1 For any δ > 0, with probability one, as n → ∞, hnx ⊆ B(x, δ)
for all x ∈ X.

Proof: For all x ∈ X, let cx define the distributional median line, hx =
H(x, cx). Then the class of sets {H−(x, cx + δ)}x∈X = {H+(x, cx− δ)}x∈X is
of polynomial discrimination, with the µ measure of all elements in the class
bounded strictly above 1/2. It follows from results of [11, p. 18] (see [15] for
detail) that with probability one, for a large enough sample, for all x ∈ X,
|{i : xi ∈ H+(x, cx − δ)}| ≥ n/2 and |{i : xi ∈ H−(x, cx + δ)}| ≥ n/2. Thus,
d(hnx, hx) < δ for all x ∈ X. I. e., hnx ⊆ B(x, δ). [Alternatively, we could
apply the Glivenko-Cantelli Lemma for fixed x, and then use compactness of
X to get the result.] �
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Lemma 3.2 For any θ > 0, and nonempty compact U , there exists δ > 0
such that G(θ, δ, U) > 0.

Proof: First note that µ(W (y, x, θ)) is a continuous function of all its argu-
ments. This follows directly from absolute continuity of µ. Also note that
G(θ, δ, U) is nondecreasing in θ because θ1 ≤ θ2 ⇒ W (y, x, θ1) ⊆ W (y, x, θ2).
Hence it suffices to prove the Lemma for θ < π/4.

Second, let C(p, ε) ≡ {z|d(z, p) < ε} denote the circle of radius ε around
p. We claim that there exists ε > 0 such that for all x ∈ X, there exists a
point px ∈ hx such that C(px, ε) is contained in the region of support of µ.
To see this, for any x ∈ <2 define φ(x) = min(d(x, Sc), 1), where Sc is the
complement of S. Now φ is a continuous function on <2, and Γ(x) = hx is
lower hemicontinuous (in fact continuous) correspondence from X to <2. For
any x ∈ X define M(x) = sup{φ(y) : y ∈ Γ(x)}. It follows from convexity of
S, and from absolute continuity of µ that M(x) > 0 for all x ∈ X. It follows
from the maximum theorem in [3, p. 115, Theorem 1] that M(x) is lower semi
continuous. Since X is compact, it follows that M(x) achieves its minimum,
which must be strictly greater than 0. Setting ε less than this minimum, this
establishes the existence of a circle of guaranteed minimum radius for each
median hyperplane hx, within which the density of µ is positive.

Third, let δ = ε/2. Let x be arbitrary. Let C denote the circle C(px, ε).
Let y be any point y ∈ B(x, δ). The point y has wedge W (y, x, θ), which
intersects C (see Figure 1) in a region of variable size: for instance, when y
is sufficiently far from C its wedge is large and contains all of C. Even when
y is close to or in C, however, this region W (y, x, θ) ∩ C must have area at
least 1

2
δ2 sin 2θ. This is because its area is least when y ∈ C, but even in

these cases (see Figure 1) W ∩ C always contains an isosceles triangle with
sides δ and apex angle 2θ. (The altitude of the triangle from the apex is
parallel to hx.)

Since C is contained in the support of µ, and µ is absolutely continuous
with respect to Lebesgue measure, and W∩C has positive Lebesgue measure,
we have µ(W (y, x, θ)) ≥ µ(W (y, x, θ) ∩ C) > 0.

For any x ∈ X, compact U , and δ, θ > 0, define

G(x, θ, δ, U) = inf
y∈B(x,δ)∩U

µ(W (y, x, θ))

Now fix U and fix x ∈ X. Recall θ > 0 is already fixed, and δ > 0
is as constructed above. Since µ(W (y, x, θ)) is continuous on the compact
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Figure 1: W (y, x, θ)∩C(px, ε) The dark triangle has two sides length δ that
meet at acute angle θ
.

set B(x, δ) ∩ U , it attains its minimum. Since (as we have just shown) it is
strictly positive, this implies that

inf
y∈B(x,δ)∩U

µ(W (y, x, θ) > 0.

A fortiori, the result follows for all y ∈ B(x, δ).
Summarizing, for any θ > 0 and compact U we have constructed δ > 0

such that G(x, θ, δ, U) > 0 for any x ∈ X. But now by the theorem of the
maximum it follows that G(x, θ, δ, U) is a continuous function of x which
is everywhere positive. Since X is compact, it follows that G(θ, δ, U) =
minx∈X G(x, θ, δ, U) > 0. �

Lemma 3.3 For any θ > 0, and any compact U , there is a δ > 0 such
that with probability one, as n → ∞ every wedge W (y, x, θ), for every y ∈
B(x, δ) ∩ U , for all x ∈ X, contains at least one point.

Proof: This follows from results in [11], (along the lines of Theorem 5, [15]),
using the fact that the class of sets W (y, x, θ) is of polynomial discrimination,
with measure bounded uniformly away from 0 (by Lemma 2). �

Now let n points (n odd) be drawn from µ. For any z ∈ <2, let rn(z)
denote the radius of a z centered yolk for the sample, and lrn(z) denote the
radius of a z centered LP yolk for the sample. Let the sample yolk have
center cn and radius rn, and let the sample LP yolk have center lcn and
radius lrn. Note that since n odd implies there is a unique median in every
direction, the sample yolk and LP yolk centers are unique. Let r(z) denote
the z centered radius of the distributional yolk (i. e., the yolk for µ). Finally,
let r and c denote the distributional yolk radius and center, respectively.

Next, we show that the centers of the sample yolk and sample LP yolk
are both almost surely within a bounded distance of c. This will enable us
to work within the compact set U of Lemma 2.
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Lemma 3.4 Let ξ > 0. Then as n→∞, w.p.1, eventually

1. lrn ≤ rn ≤ r + ξ;

2. cn ∈ C(c, 2r + 2ξ);

3. lcn ∈ C(c, 4r + 4ξ).

Proof: Let U1 denote the distributional yolk C(c, r) which intersects all lines
hx. Let U2 be a circle of slightly more than twice the radius, C(c, 2r + 2ξ).
Applying Lemma 1 with δ = ξ we have hnx ⊆ B(x, ξ) ∀x ∈ X a.s. Therefore
d(c, hnx) ≤ r + ξ ∀x ∈ X a.s., since by construction d(c, hx) ≤ r ∀x. Thus
rn ≤ r + ξ a.s., though of course cn is not necessarily equal to c. Every
bounding median line is a median line, whence lrn ≤ rn. This proves part 1
of the lemma.

For any point p outside U2, we have d(p, c) > 2r+2ξ. Consider xp ≡ p−c
||p−c|| ,

the normalized vector between p and c. Its sample normal median hyperplane
hnxp

satisfies d(c, hnxp
) ≤ r+ ξ, and is perpendicular to line segment pc. Hence

d(p, hnxp
) > 2r + 2ξ − (r + ξ) = r + ξ ≥ rn. Hence there is a sample median

hyperplane farther than rn from p, whence p can not be the sample yolk
center. This proves part 2 of the lemma.

Now let U4 ≡ C(c, 4r + 4ξ). For the last part of the lemma we must
prove that as n → ∞, lcn ∈ U4 a.s. As in the preceding paragraph, for
any p 6∈ U4 consider xp = p−c

||p−c|| . Applying Lemma 1 with δ = ξ, we find

d(p, hnxp
) > 3r + 3ξ. If hnxp

were a bounding median line our proof would be
complete, for we would know lrn(p) ≥ d(p, hnxp

) > 3r+ 3ξ ≥ r+ ξ ≥ lrn, and
p could not be lcn.

Unfortunately, hnxp
might pass through only one sample point, denoted z.

We have two cases.
Case 1: z ∈ U2. Apply Lemma 3 to z with θ = π/6, with compact set

U2. Lemma 3 then says we can “wiggle” hnxp
, holding it tacked at z, and we

will bump into another sample point before the line has rotated more than θ.
Observe that the wiggled median line remains median when it bumps into a
second point. So we get a bounding median line h̃nxp

passing through z and
at angle less than π/6 from hnxp

.

A direct geometric calculation shows d(p, h̃nxp
) > lrn, whence p can not

be the LP yolk center lcn. (Moreover, by uniform convergence this applies
to all p 6∈ U4).
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Figure 2: distance from p to median line h̃nxp
exceeds lrn

The calculation is: Let t be the intersection of segment pc and h̃nxp
, and

let s be the closest point on h̃nxp
to p (see Figure 2). Let α denote the angle

between hnxp
and h̃nxp

. Since α ≤ π/6, we have d(p, s) ≥
√

3d(p, t)/2. Also,
let q be the intersection of segment pc with hnxp

. By Lemma 1, d(q, c) ≤ r+ξ.

By assumption z ∈ U2 so d(z, q) ≤ 2(r + ξ). Then α ≤ π/6 implies d(t, q) ≤
d(z, q)/

√
3 ≤ 2(r + ξ)/

√
3. So d(t, c) ≤ (r + ξ)(1 + 2√

3
).

Since p 6∈ U4, d(p, c) > 4(r + ξ). So d(p, t) > (4 − 1 − 2√
3
)(r + ξ) =

(3−2/
√

3)(r+ξ). Therefore, d(p, h̃nxp
) ≡ d(p, s) ≥ (

√
3/2)(3−2/

√
3)(r+ξ) =

(3
√

3/2 − 1)(r + ξ) > 1.5(r + ξ) > lrn a.s. and we are done with case 1.
For case 2, where z 6∈ U2, observe that by convexity of support there

exists, independent of choice of p and x, a circle C(c, δ) contained in the
support of µ, because c is the distributional yolk center. With probability 1,
as n→∞, eventually there exists at least one sample point within δ of c. So
we can “wiggle” hnxp

towards c, holding it tacked at z, and bump into another
sample point before going more than δ past c. A simple calculation shows that
z 6∈ U2 renders z sufficiently far from c that the resulting bounding median
line h̃nxp

is far enough away from p. In particular, for the subcase where hnxp

separates c and p, we have d(z, c) > 2(r + ξ), d(p, h̃nxp
) > d(z, pc) > r + ξ as

desired. The other case, where hnxp
is on the other side of c from p, is similar.

This ends the proof of the lemma. �
The next result establishes that lrn(z) and rn(z) approach each other

pointwise with probability one as the sample size tends to infinity.

Theorem 3.5 For all ξ > 0, and for all z ∈ U4 ≡ C(c, 4(r+ξ)), limn→∞(lrn(z)−
rn(z)) = 0 a.s.

Proof: For any 0 < η < 1, pick θ > 0 to satisfy cos(θ) ≥ η. Apply Lemma
2 with this θ and compact U = U4, to get a δ small enough to satisfy the
conclusion of the lemma. For any given sample of size n, and for any z ∈ <2,

7



if lrn(z) is not equal to rn(z) then from [14], there must be one (or more)
points y at distance rn(z) from z, with the property that the line through
y, normal (perpendicular) to the line segment between z and y, is a median
line. Pick one such point y. Let x = (y − z)/||y − z|| be the unit length
vector in direction y− z. Let h = hnx be the sample median line normal to x,
passing through y. Now h must be parallel to hx. As n→∞, we also know
from Lemma 1, with probability 1, that eventually h is within δ of hx. This
means y is in the slice B(x, δ).

We can also bound the distance of y to c. Since z ∈ U4 by the hypothesis
of the theorem, trivially d(z, c) ≤ 4(r + ξ). Now, the distance from z to y
is rn(z). By Lemma 1, rn(z) ≤ 5(r + ξ) ∀z ∈ U4, eventually. Therefore
d(c, y) ≤ d(z, y) + d(z, c) ≤ 5(r+ ξ) + 4(r+ ξ) = 9(r+ ξ). We conclude that
y ∈ U9 = C(c, 9(r + ξ)).

Putting the last two paragraph’s conclusions together, this means that y
and h meet the conditions of Lemma 3, with respect to the compact set U9.

By Lemma 3, for increasing n we are guaranteed with probability 1 that
every wedge W (y, x, θ), where y ∈ B(x, δ) ∩ U9 has at least one point in
it. Thus, we can wiggle h by no more than θ and bump into another point.
Observe that when we wiggle h, keeping it tacked at y, it (the hyperplane)
remains a median hyperplane (with respect to the sampled points) until and
including the instant we “bump into” another point. Call the wiggled median
line h̃. Clearly, h̃ is a bounding median line. Let h̃ be normal to x′ ∈ X. It
follows that the radius of the z centered LP yolk must be at least as large as
the distance from z to h̃. This is the length of the projection of y − z onto
x′. Hence, using y − z = x · ||y − z||, we get

lrn(z) ≥ x′ · (y − z) = (x′ · x)||y − z||

≥ cos(θ)||y − z|| = cos(θ)rn(z) ≥ ηrn(z)

It follows that for any desired 0 < η < 1, as the sample size grows, eventu-
ally lrn(z) ≥ ηrn(z) w.p.1. Since it follows by definition that lrn(z) ≤ rn(z),
it follows that with probability one, limn→∞(lrn(z) − rn(z)) = 0. Finally, it
should be noted that for a given η, the same sample size will work for all z.
�

Our main theorem is that as the sample size goes to infinity, the LP
yolk approaches the yolk with probability one. More specifically, we show
that the LP yolk center approaches the yolk center, and the LP yolk radius
approaches the yolk radius.
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Theorem 3.6 Under the conditions for Lemmas 1 and 2,

Pr[ lim
n→∞

(lcn − cn) = 0] = 1,

and
Pr[ lim

n→∞
(lrn − rn) = 0] = 1.

Proof: To start, we prove that rn(z) approaches r(z) uniformly in z with
probability 1 as n goes to infinity. By Lemma 1, for arbitrary z ∈ <2 and δ >
0 there exists N such that for all n ≥ N , with probability one, d(hnx), hx) ≤ δ
for all x. By definition d(z, hx) ≤ r(z) for all x. By the triangle inequality
d(z, hnx) ≤ r(z)+δ for all x, whence by definition rn(z) ≤ r(z)+δ. Exchanging
the roles of r(z) and rn(z), we obtain r(z) ≤ rn(z) + δ from d(z, hnx) ≤ rn(z)
for all x. Hence rn(z)→ r(z).

Next, by Lemma 4, lcn ∈ U4 and cn ∈ U4, which permits us to focus on
z ∈ U4. That is,

rn = min
z∈U4

rn(z)

and
lcn = min

z∈U4
lrn(z).

Further, from Theorem 4, rn(z)→ lrn(z) ∀z ∈ U4 uniformly with proba-
bility 1 as n goes to infinity. So for any δ > 0, and 0 < η < 1, with probability
1 as n goes to infinity, we have simultaneously for all z ∈ U4,

r(z)− δ ≤ rn(z) ≤ r(z) + δ

and
ηrn(z) ≤ lrn(z) ≤ rn(z)

Define D(δ) = {z ∈ U4 : r(z)− δ ≤ r+ δ} and E(δ, η) = {z ∈ U4 : η · (r(z)−
δ) ≤ r+δ}. Since r(x) is a convex function and U4 is compact, these sets are
convex, compact sets. Then by Lemma 4, for all δ, η, c ∈ D(δ) ⊆ E(δ, η),
cn ∈ D(δ), and lcn ∈ E(δ, η). Further, for any ε > 0 we can find δ > 0,
0 < η < 1 for which the radius of E(δ, η), (and hence D(δ)) is less than ε. It
follows that with probability one, limn→∞lcn = limn→∞cn = c. This shows
the first result.

To get the second result, just note that, since by Lemma 4 lcn ∈ U4, the
last displayed equation implies that ηrn(lcn) ≤ lrn(lcn) = lrn ≤ rn(lcn) which
implies (lrn− rn(lcn))→ 0 as n→∞. But by definition, lrn ≤ rn ≤ rn(lcn).
Thus, lrn − rn(lcn) ≤ rn − rn(lcn) ≤ 0. So with probability one, (lrn → rn)
as n→∞. �
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4 Conclusions and computational issues

We remark that the support of µ could have “holes” and the result could still
hold true. We only use the convexity of support in proving the existence of
uniform size balls of positive density on the median lines (in Lemma 2), and
to get a positive density ball at the distributional yolk center (in Lemma 4).

The yolk, its computation, and its theoretical properties have persisted
as areas of application and investigation. See for example [10, 1, 2] and [12]
for uses with regard to the uncovered set, strategic voting, and new solution
concepts. The result here permits us, with a fair degree of safety, to replace
the more cumbersome algorithm of [14] by a linear program, with only slight
loss in accuracy under many circumstances in two dimensions.

The linear programming formulation of [9] has the remarkably attractive
computational feature of having only three variables. So its dual will have
only three constraints and should be extremely easy to solve with off-the-
shelf software, since the number of constraints in a linear program is the
most crucial parameter affecting computation time.

How many variables will the dual have? Let n be the number of points.
Then there are at most

(
n
2

)
limiting lines (passing through two points). Of

these, only the medians will contribute variables in the dual. To determine
the maximum possible number of such median lines is the notorious k-set
problem in two dimensions. The best known upper bound on the number
of median lines is O(n4/3) [4]. There exist configurations of n points that

have Ω(n log n) median lines [5]); this has been improved to Ω(nec
√

logk) for
some constant c. Computational experience suggests between 2n and 3n as
the typical number. If we take a liberal upper bound of 4n, based on com-
putational experience with actual data, then a standard commercial linear
programming package such as CPLEX, running on a PC, could solve an LP
of this type in less than a second, for problems with several thousand points.
Data from the U.S. House and Senate or any of the European parliaments
and assemblies would therefore be easy to process. There would of course
have to be a preprocessing step to eliminate non-median bounding lines.

The LP yolk provides a lower bound approximation of the yolk, in the
sense that lrn ≤ rn. Given the LP yolk one can also easily find an upper
bound approximation, namely C(lcn, rn(lcn)). ( As shown in [14] the value
rn(lcn) can be computed in time O(n2). Indeed all that is needed once
the LP has been solved is to check all lines normal to the line segments
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(lcn, xi), and take the maximum length of a segment whose normal line is a
median line.) Theorem 6 assures that the yolk radius is tightly bracketed,
lrn ≤ rn ≤ rn(lcn), the second inequality being close because lcn is close to
cn.

We remark that it is an open question, theoretically speaking, as to how
often the LP yolk exactly coincides with the yolk. In [8] Koehler reviews
his computational experiments of [7]. For n odd, only once in hundreds of
cases is the LP yolk not the same as the yolk. For n even, this so-called
“Tovey anomaly” of a non-limiting median line not passing through the LP
yolk occurs 15 times as often, but still not with high frequency. Joseph
Godfrey has developed CyberSenate software [6] for two-dimensional spatial
voting that calculate an impressive variety of solution concepts, including the
yolk for any configuration of ideal points (with n up to several thousand).
Godfrey’s software also detects Tovey anomalies. A reviewer reports that
for normally distributed data, Tovey anomalies are very rare, but are not
uncommon for empirically realistic bimodal distributions representing two
nearly balanced party caucuses. In particular, they occur 20% to 25% of the
time if the majority and minority clusters have 51 and 50 points, respectively.

Finally, we remark that it is an open question how large a gap is possible
between the LP yolk and the yolk. Wider gaps have been found for n even
than for n odd [13], but no upper bounds are known.
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