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1 Introduction

Let V be a finite configuration of voter ideal points in the Euclidean plane. For
given ε > 0 a point x ∈ <2 is in the ε-core if for all y 6= x, ||v−x|| ≤ ||v− y||+ ε
for a simple majority (at least |V |/2) of voters v ∈ V . Let ε(x) denote the the
least ε for which x is in the ε-core. Thus ε(x) = 0 if and only if x is a core point.
The least ε for which the ε-core is nonempty is denoted ε∗.

This paper provides a finite algorithm, given V , x, and ε, to determine
whether x is in the ε-core. By bisection search, this yields a convergent algo-
rithm, given V and x, to compute ε(x). If the function ε(x) were strictly convex
this would lead to a convergent algorithm to compute ε∗ and the corresponding
point. However, we prove that the function ε(x) is not convex in general.

2 Background

In the standard 2D spatial model of social choice, points in <2 represent policies.
Each voter is associated with a point in the plane which represents his ideal
point. When faced with two alternatives, i.e. points in the plane, a voter prefers
the alternative that is closer to his ideal point, with respect to the Euclidean
norm. This model is widely used in both theoretical and empirical studies of
committees, legislative bodies, and political parties.

A core point is one such that no other point is preferred to it by the group. If
a core point exists, it is the natural social choice outcome, from both normative
and descriptive perspectives. However, if majority voting is used to define the
group preferences, a core point usually does not exist [9, 14]. The absence of a
core leads normative researchers to propose other group preference voting rules
such as supermajority voting, and leads descriptive researchers to propose other
solution concepts such as the ε-core, the finagle point, the yolk, the strong or
Copeland point, and the uncovered set.

It is important to be able to compute these other solution concepts, both
to understand their properties and to enable empirical work. At present, the
state of the art is mixed. For the ε-core, a heuristic is given in [2], but little
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is known rigorously. The finagle point has been analytically determined for
|V | = 3 [15] but little else is known. For the yolk there is a polynomial algo-
rithm [11], a commercially available implementation [4], and an asymptotically
accurate approximation by a linear program [5]. For the strong point there is
a beautiful analytical formula [8] and a commercially available implementation
[4]. For the uncovered set, there is a grid-search estimation method [1], and
a similar commercially available brute force implementation [4], but little is
known mathematically (see [7]) except for bounds in terms of the yolk [6].

This paper addresses the problem of computing the ε-core. Motivation for
the concept of the ε-core is found in [3, 2, 13, 10, 12]; empirical support is
given in [10]. The predominant idea is that an incumbent proposal receives
an advantage, or “benefit of the doubt”[3] of ε > 0 over challenger proposals,
because of a cost of change, decision-making, or voting.

3 The algorithm

Geometric overview: For each voter v ∈ V draw a circle with center v whose
boundary contains x, i.e. of radius ||v − x||. The points inside the circle are
those v prefers to x. The winset of x is the set of points (excluding x itself)
that are contained in more than |V |/2 of the circle interiors. Shrink the radius
of each circle by ε. The point x is in the ε-core iff no point is contained in at
least |V |/2 of the shrunken circles.

Suppose y defeats x when x is given an ε advantage. Then there exists a
subset U of V , with |U | > |V |/2, such that for all u ∈ U , y is within the shrunk
circle with center u, i.e. ||y − u|| + ε < ||x − u|| ∀u ∈ U . By Helly’s theorem,
and because circle interiors are convex, and we are in <2, such a y exists iff each
triplet of shrunk circles has nonempty intersection. That is,

∃y : ||y − u||+ ε < ||x− u|| ∀u ∈ U (1)
⇔ ∀u1, u2, u3 ∈ U∃y : ||y − uj ||+ ε < ||x− uj ||, j = 1, 2, 3. (2)

This gives us a finite exact way to test whether x ∈ ε-core. Build the |V |
shrunk circles. Enumerate all subsets U of V of cardinality d|V |/2e. For each
such U , check every triplet of voters in U for nonempty intersection. Iff for some
U every triplet has nonempty intersection, x is not in the ε-core.

Triplets can be checked as follows. Define the shrunk circle radius of uj as
rj ≡ ||x− uj || − ε.

1. First, ensure that each pair of circle interiors intersects:

∀1 ≤ i < j ≤ 3 ||ui − uj || < ri + rj .

If not, the test fails.

2. Second, check to see if any circle center is contained in the intersection of
the other two circles:
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Figure 1: Rotate the radius by α to get an endpoint where the two circle
boundaries intersect

||u3 − u1|| < r1 and ||u3 − u2|| < r2;

and similarly for u2 and u1. If any of these is true, the test succeeds.

3. Third, at this stage the closest point from u3 to the closure of the intersec-
tion of the first two circles must be on the boundary of their intersection.
The boundary consists of two arcs which meet at two endpoints. Let e de-
note one of the endpoints. Consider the triangle with vertices u2, u1, and
e. Denote the angle at u2 by α. Since we know all three side lengths, we
know α from the law of cosines. Therefore, we compute the two endpoints
(x2, y2) and (x3, y3) of the boundary by the formulae:

cosα = (r22 + ||u1 − u2||2 − r21)/(2r2||u1 − u2||)

sinα =
√

1− cos2 α
(x1, y1) = (u1 − u2)r2/||u1 − u2||
(x2, y2) = u2 + (cosαx1 + sinαy1, cosαy1 − sinαx1)
(x3, y3) = u2 + (cosαx1 − sinαy1, cosαy1 + sinαx1).

See Figure 1. The vector x1, y1 points from u2 to u1 and has length r2.
The two endpoints are then found by rotating x1, y1 by α clockwise and
counterclockwise. If either endpoint is within the third circle, the three
circles have an intersection:

||(x2, y2)− u3|| < r3 or ||(x3, y3)− u3|| < r3.

4. Fourth and finally, if the algorithm gets to this step, the first two circles
have a nonempty intersection that does not contain the center of the third
circle. Also, neither endpoint of the intersection is contained in the third
circle. Therefore, if the third circle has a point in common with the
intersection of the two others, the closest point p from u3, the center of
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the third circle, to the closure of the intersection of the first two circles,
must lie on one of the open arcs that, together with the endpoints, compose
the boundary of the intersection. Hence,

p = ui + ri
u3 − ui

||u3 − ui||

either for i = 1 or i = 2. If either of these possible choices for p satisfies
||p − u3|| < r3 then the three circles have common intersection. If this
fourth test fails, the three circles possess no common intersection.

4 Implementation

An implementation in C for 3, 5, 7, and 9 voters is available on the author’s web-
site at http://www.isye.gatech.edu/̃ ctovey/. For given x and ε the procedure
for determining membership of x in the ε-core is as given in the previous section.
To minimize ε(x) the code performs local search repeatedly with decreasing step
sizes. That is, the code finds a local optimum with respect to an initial step
size, halves the step size, and restarts local search from the local optimum just
found, using the new smaller step size. The smallest step size used is less than
10−8 at which point the search terminates. The starting point for the search is
the center of mass of the voter ideal points, plus any offset desired by the user.
The offset is useful when searching for multiple local optima.

If desired, the code also produces a snapshot of ε(x) values around the local
optimum found, and tests for convexity amongst those values.

5 Nonconvexity of ε(x)

Here is a counterexample to convexity, in which the function ε(x) has at least
three local minima. There are 5 ideal points, at (4, 8); (6, 3); (11, 14); (1, 5); (9, 2.5).
There are local optima at 5.504, 4.998 and at 6.065, 5.935 and at 5.469, 4.525 with
ε() values 0.261 and 0.235 and 0.251 respectively. The figures below show the
locations of the ideal points (Figure 2), a 3D rendering of the function (Figure
3), and a contour map of the function (Figure 4). In the contour map, the
smallest level set is disconnected, which makes it clear that there are multiple
local minima.

In contrast, the yolk radius function r(x) is easily seen to be convex because
it is the maximum of a set of convex functions, the distances from x to median
lines [11].
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Figure 2: These 5 ideal points (solid circles) yield a nonconvex epsilon-function.
Open circles are local minima.
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