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Abstract

The ε-core in Euclidean spatial voting is the set of points that cannot be dis-
lodged by a point more than ε closer to a simple majority of voter ideal points.
If ε is greater than the yolk radius of the set, then the ε-core is nonempty.
If ε exceeds twice the yolk radius, then there are no global intransitivities
and any sequence of proposals starting from x will reach the ε-core from x in
at most ||x||/(2ε− r) steps. An analogous result assures convergence of any
supermajority voting sequence, subject to restrictions including a minimum
distance between proposals. The results are valid in any dimension.



1 Introduction

A classic result of Kramer (1977) for the Euclidean spatial model shows

that repeated proposals by competing vote-maximizing parties will produce

sequences converging to the minmax (Simpson-Kramer) set. This “dynam-

ical convergence” helps establish the importance of the minmax set: the

solution set not only possesses attractive normative properties (Simpson

(1969),Kramer (1977),Slutsky (1979)); it also possesses dynamically attrac-

tive properties in that natural forces of majority voting tend to drive a group

decision towards it.

Similarly, Miller (1980) (and Miller (1983)) has shown that under a variety

of agenda settings, the outcome of (strategic) majority voting will lie in the

uncovered set, and this dynamical property is crucial to this solution set’s

importance.

Ferejohn et al. (1984) found a dynamical property for another solution

set, the yolk. They showed, roughly speaking, that if proposals are made at

random with majority voting, then the incumbent proposal will frequently

be contained in the yolk.

All these results are of the same type: they demonstrate that some voting

process, taking place over time, leads the group decision towards a particular

solution set. The aim of this paper is to derive a dynamical result of this

type for a new solution set, the ε-core. This solution set has been proposed

recently by Salant and Goodstein (1990) to fit empirical data better, and

by Tovey (1991b) to incorporate some “friction” into the spatial model. The

idea is that the incumbent or status quo has some amount, ε> 0, of advantage

versus the alternatives. Voters will vote for an alternative only if it is at least
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ε better (closer) than the incumbent. The parameter ε can be interpreted as

a measure of friction, resistance to change, or incumbency advantage. This

solution set is equivalent to the concept of an ε-equilibrium or an ε-core in

game theory (Shubik and Wooders (1983),Wooders (1983)), and shares much

of the same motivation.

In this paper the yolk is used not as a solution set, but as an asymmetry

measure for configurations of voter ideal points. The larger the yolk radius,

the more skewed is the configuration.

The main result (Theorem 1) states that if ε is sufficiently large compared

with the yolk radius, then there are no global intransitivities. Moreover, any

sequence of proposals starting from x will reach the ε-core in a number of

steps which is a function of ε, the yolk radius, and the distance from x to

the yolk center. The result holds for any number of voters in any number of

dimensions.

A crucial feature of Theorem 1 is its linkage between the “skewness” of

the configuration of voter ideal points (as measured by the yolk radius), and

the degree of stability enjoyed by the voting process. From Theorem 1 we

may infer a plausible qualitative prediction that if the frictions or resistance

to change represented by ε increase, then the likelihood of stability, and

speed of convergence, will increase. On the other hand, the more skewed the

voter configuration, the slower and less likely is convergence. If we are to

construct an effective predictive theory of social choice, our models should

accomodate this range of observed group behavior (from rapid convergence

to equilibrium, to instability), and should link these outcomes with mea-

surable characteristics of the group (such as distributional characteristics of

individual preferences).
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It is worth emphasizing that Theorem 1 gives an explicit upper bound on

the number of steps needed to reach equilibrium. This aspect of the result

is unusually strong. As the examples in section 3 illustrate, the absence of

global intransitivities is not in itself sufficient to assure finite or even infinite

convergence.

On the other hand, a significant weakness of the results in this paper lies

in the assumption of sincere voting. It would be very interesting to see if

the results could be carried through in some form if strategic behavior were

incorporated into the model.

In section 2 we formally state the definitions, assumptions, and prove the

main convergence result for the ε-core.

In section 3 we reexamine Kramer’s result. The convergence there is

not fully satisfactory in two ways: first, if two parties were to follow the

vote-maximizing strategy, each could make arbitrarily small steps and there

might be no appreciable movement away from the initial position; second, if

a point in the minmax set ever were reached, the process would jump out of

the minmax set on the next step.

The aim of section 3 is to develop an alternative dynamical convergence

result for the minmax set, that does not suffer from these two problems. We

attempt to find an analogous version of Theorem 1 for supermajority voting,

that guarantees that any sequence of proposals will reach a supermajority

core point in a finite number of steps, determined a priori. We show by

several examples that this is not possible without making several more con-

straining assumptions. The main result of the section is Theorem 5: if we

assume supermajority voting at a level a bit higher than the minmax level,

require a minimum distance between proposals, and make one additional
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regularity assumption, then any sequence of proposals must reach the core

within a certain number of steps.

2 Paths to the ε-core

First we give the necessary definitions.

The set V is any finite collection of (not necessarily distinct) points in

<m. These are the ideal or bliss points of the voters. The proposal space is

assumed to be all of <m. Throughout we will let ||y|| denote the length or

Euclidean norm of a vector y ∈ <m.

We suppose that there is some voting rule such as simple majority by

which the voters can decide between two alternatives. The voting rule must

be decisive, but it need not be neutral: one of the alternatives is designated

the incumbent, the other is the proposed alternative, and the voting rule need

not treat the two alike. For example, if the two alternatives receive exactly

the same number of votes, then under simple majority voting the incumbent

is the winner.

Next comes the crucial definition of a sequence of proposals. Imagine any

iterative process where the initial incumbent proposal is x; an alternative y

is proposed and the voters decide between y and x. If y defeats x then y

becomes the new incumbent proposal, and the process has completed a step

or iteration. If an incumbent that can not be defeated is reached, the process

terminates. Regardless of the means by which alternatives are proposed, the

history of the process is summarized by the sequence of proposals {x, y, . . .}

where each point in the sequence defeats its predecessor.

Thus, we define a sequence of proposals as any sequence of points {x1, x2, . . .}
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such that alternative xi+1 would defeat incumbent xi ∀i > 1. We say that the

sequence starts at x1. If for some j the point xj cannot be defeated then the

sequence terminates at xj. The point xj is called a core point (with respect

to the operant voting rule) because it cannot be dislodged. For example, if

voting is according to simple majority rule, then a proposal sequence, if it

terminates, does so at a Condorcet point.

Our assumption regarding the actions of the voters is stated next.

Assumption I: a voter with ideal point v ∈ <m will vote for a proposal y ∈ <m

iff the incumbent proposal xi satisfies ||xi − v|| > ||y − v||+ ε.

The ε-core is the set of x ∈ <m such that if x is the incumbent, then

x can not be defeated by simple majority rule when voting is according to

Assumption I. When ε = 0 a point in the ε-core would be a Condorcet point

with respect to majority voting in the classic Euclidean model. Usually there

are no such points (Plott (1967)). But, for any V the ε-core is nonempty for

sufficiently large ε.

Nonemptiness is perhaps the very least one would desire of a solution

concept. An additional desirable property is global transitivity, which essen-

tially means the absence of cycles (intransitivities). We define it formally in

terms of a proposal sequence: a voting rule has no global intransitivities iff

there does not exist a sequence of proposals {xi : i = 1, . . .} and an integer

j > 1 such that xj = x1. In other words, it is not possible for a sequence

of proposals to return to a point. This property is important because if it

fails to hold then a voting process could cycle indefinitely even if the core

were nonempty. As we will see in Section 3, however, global transitivity is

not sufficient to guarantee even infinite convergence to the core.
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We also need to define the yolk of the configuration V . Let h denote

any (full-dimensional) hyperplane in <m, and let h+ and h− denote the two

closed halfspaces into which h divides <m. Then h is a median hyperplane of

V iff |V ∩ h+| ≥ |V |/2 and |V ∩ h−| ≥ |V |/2. That is, each closed halfspace

must contain at least half the voter ideal points.

A yolk of V is a ball in <m of smallest radius that intersects every median

hyperplane of V . The yolk was originally developed by McKelvey (1986) for

|V | odd and is unique in that case. Following Koehler (1990) and Stone and

Tovey (1992) we permit an even number of voters as well. In this case (see

Tovey (1992)) the yolk may not be unique, although its radius is unique.

In the theorem that follows the statement is true for any yolk. The only

property that we use is that the yolk intersects all median hyperplanes of V .

As indicated in Section 1, the yolk radius r is a measure of how skewed V is.

If r = 0 then V is symmetric in the sense of Plott (1967) or McKelvey and

Schofield (1987). The greater r the more skewed is V .

We can now state the main result of the paper.

Theorem 1. Let V be any set of voter ideal points in <m, with yolk center

and radius c and r, respectively. Suppose voting occurs according to Assump-

tion I.

(i) If ε > r then the (ε-) core is nonempty.

(ii) If ε > 2r then there are no global intransitivities and moreover, for all

x ∈ <m, any sequence of proposals starting at x must reach a core point in

at most

⌈
||x− c|| − r
ε− 2r

⌉
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steps, where dae denotes the least integer greater than or equal to a.

Proof: If the dimension m = 1 the proof is trivial. Hereafter we take m ≥ 2.

(i) If ε > r then c is in the ε-core. For consider any alternative y to the

incumbent yolk center c. Let

ỹ = c+ r

(
y − c
||y − c||

)
.

The point ỹ lies on the surface of the yolk and is collinear with y and c. Note

that ỹ may lie between y and c, or y may lie between ỹ and c, but c is not

between y and ỹ.

The halfplane h tangent to the yolk at ỹ defines a closed halfspace h+

containing the yolk. On the one hand, all voters whose ideal points are in h+

will vote for c. But on the other hand, the halfspace h+ contains the yolk,

and therefore contains at least |V |/2 ideal points. (If h+ contains the yolk of

V then h+ contains the median hyperplane of V which is parallel to h.) Thus

no proposal y brought against c can muster more than |V |/2 votes, whence

c is undefeated.

(ii) Now suppose incumbent proposal x is defeated by proposal y and

ε > 2r. Our principal claim is that y must be at least (ε− 2r) closer to the

yolk center c than x is. That is, we claim ||y − c|| ≤ ||x − c|| − ε + 2r. For

readability we let d(x, y) denote the distance ||x− y|| between x and y.

Let S denote the hyperboloid defined as

S ≡ {s ∈ <m|d(x, s) = d(y, s) + ε}.

The hyperboloid S separates <m \S into two open regions: let S+ denote

that open region containing the point y. Note that by Assumption I, the
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Figure 1: The plane containing x, y, c, and z around here

voters who vote for y over x are precisely those whose ideal points are located

in S+.

If c ∈ S+ or c ∈ S then d(y, c) ≤ d(x, c) − ε ≤ d(x, c) − ε + 2r and our

claim would be proved. So suppose c is on the other side of S.

At any point in S there is a supporting hyperplane of S and an associated

unit length normal vector. Let z be the point in S whose unit normal vector

points to the yolk center c. That is, its normal vector is (c− z)/||c− z||. Let

h denote the supporting hyperplane of S at z and let h+ denote the closed

halfspace defined by h containing y.

Since h+ contains S+ and y defeats x, we have |V ∩h+| ≥ |V ∩S+| > |V |/2.

Therefore, either h or some hyperplane parallel to h which intersects S+ is a

median of V . This fact, together with the property that (c− z) is normal to

h, implies that d(z, c) ≤ r.

We now restrict our attention to the 2 dimensional plane generated (as

the affine hull) by x, y, and c. It is clear that z lies on this plane as well. See

Figure 2.

We have shown that d(c, z) ≤ r. Also, by the definition of S, we have

d(z, y) = d(z, x)− ε.

By the triangle inequality and the preceding,

d(c, y) ≤ d(c, z) + d(z, y) ≤ d(z, x)− ε+ r.

Also by the triangle inequality,
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d(z, x) ≤ d(z, c) + d(c, x) ≤ d(c, x) + r =⇒ d(y, c) ≤ d(x, c)− ε+ 2r.

This proves the claim. Every iteration of the Condorcet voting process

brings us at least (ε− 2r) closer to the yolk center c.

Since ε − 2r > 0, we have immediately from the claim that there are

no global intranstivities. Also it follows that the process will terminate in

dd(x, c)/(ε− 2r)e or fewer steps.

To improve the bound to the statement of the theorem, we notice that

when ε > 2r, the entire yolk is contained in the ε-core. This follows from an

argument almost exactly the same as in the proof of (i), above.

As a consequence, the voting process is sure to terminate once the incum-

bent is within distance r of c. If K is the necessary number of steps, then K

integer and

d(x, c)−K(ε− 2r) ≤ r

implies we may take

K =

⌈
||x− c|| − r
ε− 2r

⌉
as desired.

3 On Kramer’s result and paths to suprama-

jority cores

One of the attractive features of Theorem 1 is the convergence to the core

in a finite number of steps. In contrast, Kramer’s dynamical process does

not necessarily converge. For in that process, two parties alternate making
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proposals. Each party proposes that y ∈ <m which maximizes the number of

votes y would get against incumbent proposal x. It is easy to see that if y is

such a point with respect to x, then so is their midpoint, (y + x)/2. Indeed

the latter point is a more conservative choice if for example there is any un-

certainty about V . Therefore, the distance between successive proposals can

be arbitrarily small and convergence may fail even in the limit (see Theorem

3). Kramer’s process is also not fully satisfactory because if the incumbent

were the minmax set, then the succeeding proposal would not. That is, if

the process does get into the minmax set, it may pop back out in the next

step.

In this section we explore the possibility of an alternative minmax set

dynamical convergence result which is more satisfactory in these respects.

We will eventually succeed, but only by losing much of what was desirable

in Kramer’s model.

The first condition we examine is intended to prohibit arbitrarily small

steps. We consider convergence properties of simple majority voting under a

simple condition related to Assumption I:

Assumption II: Voters vote sincerely. Any proposal xi+1 offered against in-

cumbent proposal xi must satisfy ||xi − xi+1|| > δ. If a voter is indifferent

between xi+1 and xi the vote is cast for the incumbent.

This assumption enforces a minimum distance between proposals. It is

suggested informally at least as early as Tullock (1967). It can be thought of

as an institutional restriction; see also Tovey (1991b) for a formal treatment.

Any point x that would be undominated under Assumption II would be

in the ε-core with ε = δ/2. Clearly the converse is false in general. From the
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Figure 2: Cycle with Large Steps goes around here

standpoint of core existence, Assumption II is thus weaker than Assumption

I when ε = δ/2. The dynamical convergence properties that follows from

Assumption II are unfortunately much weaker, as Theorem 2 shows.

Theorem 2. Let V be any set of voter ideal points in <m, m ≥ 2, with yolk

center and radius c and r, respectively. Suppose voting occurs according to

Assumption II, with the winner determined by simple majority.

(i) If δ > 2r then the core is nonempty.

(ii) For all δ > 0 there may be global intransitivities. Indeed for all r > 0

there exists V with yolk radius r, such that for all δ > 0 transitivity fails.

Proof: (i) This follows by exactly the same argument of part (i) of Theorem

1.

(ii) Let V contain three points at the vertices of an equilateral triangle (note

m ≥ 2) with center 0. In particular V consists of the points (0, 2), (
√

3,−1),

and (−
√

3,−1). See Figure 2. Let M > 1 be arbitrary. Situate 3 points,

a,b, and c just off the rays emanating from the origin through the triangle

vertices. In particular a = {1, 2M}; b = {(M − 1/2)
√

3,−(M + 1/2)}; c =

{−M
√

3− 1/2,
√

3/2−M}.

Obviously a defeats c defeats b defeats a, and these points can be made

arbtrarily distant from each other by increasing M . Moreover the set V can

be scaled down to have arbitrarily small yolk radius without affecting the

outcomes.

Theorem 2 shows that while Assumption II may be strong enough to
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assure a nonempty core, it is too weak to eliminate global intransitivities.

So we have no assurance that a sequence of proposals will ever reach or even

approach the core. We next consider supermajority voting. Theorem 3 shows

that supermajority voting is a little stronger than Assumption II: it assures

a nonempty core and eliminates global intransitivities. However, it is not

enough to guarantee infinite convergence.

Assumption III: Voters vote sincerely. Any proposal xi+1 offered against

incumbent proposal xi must receive more than α|V | votes to defeat xi. If a

voter is indifferent between xi+1 and xi the vote is cast for the incumbent.

The set of points which can not be defeated when voting takes place

under Assumption III is called the α-core. The smallest value α∗ for which

the α-core is nonempty is known as the minmax number.

Theorem 3:Suppose voting takes place according to Assumption III with

α ≥ α∗. Then there are no global intransitivities, but a sequence of proposals

may fail to reach the α-core, even in the limit.

Proof: By assumption there exists at least one core point w ∈ <m. Suppose

y defeats x. Let h denote the hyperplane normal to and bisecting the segment

xy, and let h+ denote the open halfspace defined by h which contains y.

According to Assumption III, there must be more than α|V | ideal points in

h+. That is, |V ∩ h+| > α|V |.

We claim that w ∈ h+. For if not, the point w+ τ(y− x), for sufficiently

small τ > 0, would defeat w just as y defeats x. Therefore, as in Theorem 1,

d(y, w) < d(x,w) and there can be no global intransitivities.

The last part of the theorem is trivial. Place all the ideal points at 0
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and let the proposal sequence be a set of points colinear with 0 such that

||xi|| = 1 + 2−i.

The example that frustrates hopes of convergence in Theorem 3 violates

the minimum inter-proposal distance property of Assumption II. This sug-

gests using both Assumptions II and III in the hope of achieving a “nice”

convergence property as in Theorem 1. Unfortunately, combining Assump-

tions II and III is still not quite enough.

Theorem 4: Suppose voting takes place according to both Assumption II

and Assumption III with α ≥ α∗. Then there are no global intransitivities,

but for all δ > 0 a sequence of proposals may fail to reach the α-core, even

in the limit.

Proof: By Theorem 3 there are no intransitivities. We modify the con-

struction of Theorem 2 to show the failure of convergence. Place a single

voter ideal point at 0, and place 2 ideal points at each of the three triangle

vertices of V in figure 2. Let α = 4/7 so a proposal needs 5 votes to defeat

an incumbent. The point at 0 is undefeated. The cycle a beats c beats b

beats a is no longer intact, because the voter at 0 is indifferent among a, b,

and c.

For sufficiently large M let x0 = a(M + 1)/M ;x1 = b(M + 1/2)/M ;x2 =

c(M + 1/4)/M ;x3 = a(M + 1/8)/M ; · · ·. Then ||xi+1|| < ||xi||, and so xi is

defeated by xi+1, but every point in the sequence is arbitrarily far from the

α-core.

It is possible to add one more condition to those of Theorem 4 and finally
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achieve finite convergence. The necessary definition and condition follow.

Let x, r ∈ <m; ||r|| = 1; τ ∈ <; τ > 0. Let W (x, r, τ) = {y ∈ <m|x · r ≤

y · r ≤ x · r + τ}, which may be visualized as a wafer of width τ wedged

between two parallel hyperplanes whose normal vector is r.

Assumption IV: There exists τ > 0, a point z ∈ <m, and an integer β such

that z is in the (α − β/|V |)-core, and such that for all ||r|| = 1, we have

|V ∩W (z, r, τ)| ≤ β.

Geometrically, this assumption says that there is a point z which is a core

point with respect to a smaller supramajority number α̂ < α, and there is a

width τ > 0 such that none of the wafers supported by z contain too many

(a fraction α− α̂) points of V .

Though Assumption IV looks awkward, it is essentially a regularity re-

quirement. It can be easily satisfied if the ideal points V are in general

position by setting β = m, selecting z as the minmax point, and setting

α = α∗ + β/|V |. A set of points in <m is in general position if no k-

dimensional hyperplane contains more than k points, i.e., no 2 points are

coincident, no 3 points are collinear, etc., for all 1 ≤ k < m.

For example, if the U.S. Senate in 2 dimensions is in general position,

and has α∗ ≤ 64.5 (see Caplin and Nalebuff (1988) and Tovey (1991a)), then

α = 2/3 satisfies Assumption IV.

Theorem 5: Suppose voting takes place according to all the Assumptions II,

III, and IV. Then there are no intransitivities, and moreover, for all x ∈ <m,

any sequence of proposals starting at x must reach an α-core point in
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⌈
||x− z||2

2δτ

⌉
or fewer steps.

Proof: The first statement is a corollary to Theorem 3. As usual, suppose y

defeats x, and let h denote the hyperplane bisecting the line segment between

x and y. Then as proved in Theorem 3, z is in the open halfspace h+ defined

by h containing y.

But now consider the “wafer” W (z, r, τ) where r = (x − y)/||x − y||: it

contains at most β ideal points. If the wafer intersects h, then h+ \W (z, r, τ)

contains more than α|V | − β ideal points, contradicting Assumption IV that

z is in the (α− β/|V |)-core. Therefore W (z, r, τ) does not intersect h.

It follows that the distance from z to h is greater than τ .

We now restrict our attention to the 2 dimensional triangle defined by

vertices x, y, and z. Let L denote the length of the altitude from side xy to

vertex z. From the last paragraph we know that this altitude intersects the

side at distance ζ, ζ > τ from the midpoint of the side. Then

||x− z||2 = L2 + (||x− y||/2 + ζ)2;

||y − z||2 = L2 + (||x− y||/2− ζ)2.

Subtracting and applying ||x− y|| ≥ δ from Assumption 2, we get

||x− z||2 − ||y − z||2 = 4ζ||x− y||/2 ≥ 2δτ

.
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Thus the square of the distance from x to z must decrease by an amount

independent of x. Therefore a core point must be reached in ||x − z||2/2δτ

steps as claimed.

As with Theorem 1, the qualitative predictions of Theorem 5 are plau-

sible. Convergence should be faster as the minimum inter-proposal distance

δ increases, and as τ , which is a kind of ill-conditioning number, increases.

Also note that Theorem 5 requires α somewhat greater than α∗ in order to

assure the stronger convergence, which again is plausible. Overall, Theorem

5 has disappointingly strong conditions, but Theorems 2–4 imply that weaker

conditions along these lines would not suffice.

As stated in the introduction, these results do not take voter sophisti-

cation (strategic voting, deciding whether to vote) into account, and such

extensions would be quite interesting.

Theorem 5 applies to a heavily modified version of Kramer’s model of

party competition: parties still make proposals to maximize their votes

against the incumbent, but the voting rule is α-majority rather than sim-

ple majority, proposals must be at least δ apart, and regularity condition IV

must hold. And then, we only get convergence to the α-core, not the α∗-core.

It would be interesting to see if finite convergence to the α∗-core could

be obtained for a model more similar to Kramer’s than that given here. One

would only have to prove convergence for all the vote-maximizing proposal

sequences, instead of for all proposal sequences. However, I do not know

how to proceed. One problem is that the proposal sequence in the proof of

Theorem 3 is vote maximizing. Therefore Assumption III does not suffice.

Another problem is that if the parties maximize votes, supramajority voting
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would not affect the actual sequence until and unless it reaches the core.

Therefore it seems impossible that Assumption II would suffice to guarantee

convergence, because the vote maximizing process could begin at (or reach)

a point at distance less than δ from the minmax point.

In conclusion, the ε-core enjoys powerful convergence properties if ε is

large enough compared with the asymmetry of the voter configuration. Of

particular interest are the explicitly bounded finite convergence, and the qual-

itative predictions involving (possibly) measurable quantities. With supra-

majority voting, the core acquires a similar powerful convergence property,

but only if several additional restrictions are enforced.
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