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Abstract

The classic instability theorems of Euclidean voting theory definitively treat

all cases except that of an even number of voters in 2 dimensions. For

that case, all that has been known is that the set of stable configurations is

neither measure zero nor measure one. We prove that instability occurs with

probability converging rapidly to 1 as the population increases.
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1. Instability in Two Dimensions

1.1. Introduction.

The Downsian or spatial model of voting under Euclidean or quadratic

concave preferences is a widely used model of group choice and has found

extensive empirical application as well, particularly in 2 dimensions (11; 6,

e.g.). The work of Plott (10), McKelvey (9; 7; 8), Rubenstein (12), Schofield

(13), Banks (2), Saari (3), and Banks, Duggan, and LeBreton (1) has shown

that the probability of equilibrium is 0 in three or more dimensions, and in

two dimensions when the number of voters is odd. To be more precise, the
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set of configurations for which equilibrium exists is measure 0 for these cases.

In contrast, one dimension always admits of an equilibrium. The case of 2

dimensions with an even number of voters has never been resolved. All that

is known is that the set of configurations for which equilibrium exists, and

the set for which equilibrium does not exist, both have positive measure.

(The first fact can be established by considering 2n−1 points at the vertices

of a regular polygon on 2n−1 vertices, and one point at the polygon’s center.

The center point is an equilibrium, and small perturbations of the 2n points

do not disturb the equilibrium. The second fact is established by considering

2n points at the vertices of a regular 2n-gon. No equilibrium exists, and

nonexistence is unaffected by small perturbations of the 2n points.) In this

paper we show that the probability of equilibrium converges to 0 exponen-

tially rapidly in this case, if voters are sampled i.i.d. from any nonsingular

distribution.

1.2. Definitions.

In the 2D Euclidean spatial model of voting, n voter ideal points are

located in <2 and voters prefer policies (points) closer to their ideal points

under the Euclidean norm. This model is equivalent to the more general case

of convex quadratic preferences, (see (4)). An equilibrium point is one that

can not be dislodged by majority vote. That is, y is an equilibrium point iff

there does not exist x such that strictly more than n
2

of the ideal points are

closer to x than to y, under the Euclidean norm.

The case of n even differs from other cases because the answer is not

simply zero or one. Therefore, the probability measure from which voter

ideal points are sampled could affect the answer. However, it will turn out
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that, aside from a nonsingularity condition, the particular measure matters

little.

We say that probability measure µ on <2 is nonsingular if for every line

L, µ(L) = 0. Nonsingularity is a weaker condition than absolute continuity

with respect to Lebesgue measure; for example, the uniform distribution on

the edge of a circle satisfies the former but not the latter condition.

1.3. Main Result.

Theorem 1.1. Let µ be any nonsingular probability distribution on <2. Let

2m voter ideal points be sampled independently at random according to µ.

The probability the resulting configuration possesses an equilibrium is less

than √
8πm

em− 1
12m

. (1)

Corollary 1.2. Under the assumptions of Theorem 1, as m → ∞, equilib-

rium does not occur a.e.

Proof. Since µ is nonsingular, with probability 1 no three points are collinear.

Similarly, with probability 1 no three lines formed by pairs of points intersect

at a point. Therefore with probability 1, if there is an equilibrium point it

occurs at a voter ideal point. Let v1, . . . , v2m denote the ideal points.

Let E denote the event that v1 is an equilibrium point. We bound Pr(E).

Consider the vertical line in the plane passing through v1. By nonsingularity,

the probability is 0 that the line passes through another ideal point. If there

are more than m ideal points to the left (respectively right) of the line,

v1 is not an equilibrium point, because it would be defeated by a proposal

immediately to its left (respectively right). Define E1 to be the event that
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there are m points on one side of the line and m − 1 on the other. Then

Pr(E) = Pr(E1)Pr(E|E1). Now Pr(E1) = 2
2m

= 1
m

because the horizontal

component of v1 would have to be either the mth or m + 1th largest out of

2m values.

We now bound Pr(E|E1). By symmetry, we may assume, when we con-

dition on the event E1, that there are m − 1 points to the left of the line

and m to the right. See Figure 1. Pin the line at v1 and color the two rays

emanating from v1 black and white. Keeping the line pinned at v1 rotate

the line clockwise 180 degrees. The white ray traverses the area to the right

and the black ray the area to the left of the original vertical line. As the line

rotates, it crosses over the other vi in the plane. The only way for v1 to be

an equilibrium is if the first crossing is white, the next crossing is black, and

so on until the last crossing is white. For if there were two consecutive white

(black) crossings, more than n/2 ideal points would lie in the open half-plane

defined by a line through v1, whence v1 would not be a core point (4). Let

E2 denote the event that the crossings are interleaved, i.e., alternate in color.

Then Pr(E|E1) = Pr(E2|E1)Pr(E|E1

⋂
E2) = Pr(E2|E1).

The key step now is to condition on the locations of all the black crossings.

We will show that regardless of their locations, Pr(E2|E1) is small. The

half-plane where the white crossings will occur is divided into sectors. (See

Figure 1). These sectors are defined by the black crossings, which we have

conditioned on. For perfect interleaving, exactly one of the m white crossings

must fall into each sector 1, 2, · · · ,m. Let pj denote the probability that a

voter point drawn from µ falls into sector 1 ≤ j ≤ m, conditioned on the event

that it falls into one of these sectors. Then
∑m−1

j pj = 1, and the probability
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of perfect interleaving is (m)!
∏m

j=1 pj. By Jensen’s inequality, this quantity

is maximized over the possible values of p1 . . . pm when pj = 1
m
∀j, in which

case it equals (m)!/(m)m.

Therefore Pr(E) ≤ 2
2m
m!/mm. By symmetry, the same bound holds

for the probability that Vi is an equilibrium, for each 2 ≤ i ≤ 2m. The

probability that there exists an an equilibrium point is therefore bounded by

2m 2
2m
m!/mm ≤

√
8πme

1
12m
−m by the extended Stirling approximation (5).

For the corollary, let Im be the indicator function that equals 1 if there

is an equilibrium and equals 0 if there is not. Consider the infinite sum

over m of (1): it obviously converges because of the e−m term. Therefore,

with probability 1, limsupm→∞ Im = 0, and the corollary follows by the

Borel-Cantelli Theorem .

Theorem 1 is a rather powerful result, as it allows the sampling to occur

from any nonsingular distribution µ. For very small m the probability of an

equilibrium point may be fairly large. For instance the probability is 1 when

there are two or four voters (m = 1, 2). So Theorem 1 may be counterintuitive

to those familiar with the behavior of small cases. But convergence is rapid.

For 12 voters the probability bound given by (1) is approximately 2%.
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Figure 1: The three points to the left of the vertical line define the m=4 sectors
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