Same-Day Delivery: Tactical Design

Alejandro Toriello

Stewart School of Industrial and Systems Engineering
Georgia Institute of Technology

joint with Alex Stroh, Alan Erera

Krannert School of Management
Purdue University
September 6, 2019
Motivation?
Motivation

Same Day Delivery in Manhattan

Order online by 11am. Get it by 7pm.
E-Retail

• E-retail is a large and growing sector of retail and overall economy.
 • About or above 10% of all US retail since 2013 (Forrester Research).
 • Average annual online spending to reach $2,000 per buyer in 2018 (Forrester Research).
 • Amazon alone accounts for almost half of US e-retail (eMarketer).
 • Amazon now second to Walmart in terms of global employment numbers (566K vs. 2.3M); both very active in e-retail (Fortune).

• No longer the future – this is the present.
E-Retail

Amazon Retail Ecommerce Sales
US, 2016-2019

Source: eMarketer, June 2018

www.emarketer.com
Same-Day Delivery

• Intense competition in e-retail, constant need for innovation – the customer wants it NOW.

• Same-day delivery (SDD) further erodes brick-and-mortar advantage. But...
Same-Day Delivery

- Intense competition in e-retail, constant need for innovation – the customer wants it NOW.

- Same-day delivery (SDD) further erodes brick-and-mortar advantage. But...
 - Extremely costly “last mile”.
 - Lower order numbers, fewer economies of scale.
 - Fewer than 1/4 of customers willing to pay, and then only small amount (McKinsey).
 - Flat fees (e.g. Amazon Prime) may help amortize costs.
Same-Day Delivery

What’s new?

- Traditional delivery: order acceptance, picking and packing *before* last-mile distribution.

- Overnight/next-day delivery, two-day delivery, cheaper/free regular delivery.
Same-Day Delivery

What’s new?

• Traditional delivery: order acceptance, picking and packing before last-mile distribution.
 • Overnight/next-day delivery, two-day delivery, cheaper/free regular delivery.

• Same-day delivery: simultaneous order acceptance, picking, packing and last-mile distribution.
 • This talk: Delivery by end of day/common order deadline.
 • Food/grocery delivery: order-specific delivery times, 30 minutes to two hours (Amazon Restaurants, GrubHub, Uber Eats, pizza delivery).
Same-Day Delivery

What’s new?

- Orders placed between 12pm and 2pm
- Orders placed between 2pm and 4pm
- Orders placed between 4pm and 6pm

Source: A. Erera
Same-Day Delivery

- Operational Models
 - Azi/Gendreau/Potvin (12,14), Campbell/Savelsbergh (05), Klapp/Erera/T. (18a,b,19), Ulmer (17a,b), Ulmer/Thomas (18), Ulmer/Thomas/Mattfeld (18), Voccia/Campbell/Thomas (17), ...
 - Can be used for tactical analysis, but complex and not transparent.
Same-Day Delivery

- Operational Models
 - Azi/Gendreau/Potvin (12,14), Campbell/Savelsbergh (05), Klapp/Erera/T. (18a,b,19), Ulmer (17a,b), Ulmer/Thomas (18), Ulmer/Thomas/Mattfeld (18), Voccia/Campbell/Thomas (17), ...
 - Can be used for tactical analysis, but complex and not transparent.

- Our Goal: Simple, “higher-level” model capturing typical system behavior.
 - What does the “average” SDD operating day look like?
Outline

Introduction

Tactical Model

Tactical Design Examples

Computational Validation

Ongoing Work and Conclusions
Tactical Dispatching Model

- Single depot with vehicle fleet serving fixed region.
- Orders appear at constant unit rate from 0 to N.
- All orders must be served, dispatches complete by $T > N$.
- Objective: Minimize total dispatching time.
Tactical Dispatching Model

Dispatch time

\[n \quad f(n) \]

- A dispatch to serve \(n \) orders takes \(f(n) \) time, where

\[
f(0) = 0, \quad f \text{ is increasing, concave, can “keep up”}.
\]
Tactical Dispatching Model

Dispatch time

- A dispatch to serve n orders takes $f(n)$ time, where
 \[f(0) = 0, \quad f \text{ is increasing, concave, can "keep up"}. \]
- Motivation: $f(n) = a + bn + c\sqrt{n}$ for $n > 0$, where
 - $c\sqrt{n}$ is a BHH (59) routing time approximation,
 - assuming order locations are randomly distributed.
Tactical Dispatching Model

Dispatch time

- A dispatch to serve \(n \) orders takes \(f(n) \) time, where
 \[
 f(0) = 0, \quad f \text{ is increasing, concave, can “keep up”}.
 \]

- Motivation: \(f(n) = a + bn + c\sqrt{n} \) for \(n > 0 \), where
 - \(c\sqrt{n} \) is a BHH (59) routing time approximation,
 - assuming order locations are randomly distributed.

- Continuous approximations widely used in logistics
 (Franceschetti/Jabali/Laporte 17), including urban logistics
 (Carlsson/Song 18, Figliozi 07, van Heeswijk/Mes/Schutten 17).
Tactical Dispatching Model

Dispatch time

- For example, for
 1. unit square service region, center depot,
 2. Manhattan distances,
 3. 30 customer locations sampled uniformly,

we estimate TSP length as $1.04\sqrt{n}$.

- Asymptotic constant in this case estimated at ≈ 0.89 (Johnson/McGeoch/Rothberg 96).
Tactical Dispatching Model

Dispatch time

• Realistic situation:
 1. 8 mile by 8 mile service region (center depot)
 2. 25 mph average vehicle speed, Manhattan distances
 3. an order every 6 minutes
 4. 5-minute dispatch setup, 2-minute delivery per order

• We convert this to

\[f(n) = \frac{5}{6} + \frac{1}{3n} + 3.3\sqrt{n} \times 6 \text{ minutes}. \]
Optimal Structure
Concavity abhors balance

Dispatches should be as unbalanced as possible:

- This looks nice,
Optimal Structure

Concavity abhors balance

Dispatches should be as unbalanced as possible:

- This looks nice,

- but this is better,
Optimal Structure

Concavity abhors balance

Dispatches should be as unbalanced as possible:

- This looks nice,

- but this is better,

- and so is this!
Consequences and Intuition

1. Decreasing dispatch lengths as day progresses.
 • Matches empirical observations in operational models (KET 18a,b).
Consequences and Intuition

1. Decreasing dispatch lengths as day progresses.
 - Matches empirical observations in operational models (KET 18a,b).

2. Dispatching (and each vehicle) start inactive, then become active and remain so for rest of day.
 - Useful for shift scheduling.
Consequences and Intuition

1. Decreasing dispatch lengths as day progresses.
 - Matches empirical observations in operational models (KET 18a,b).

2. Dispatching (and each vehicle) start inactive, then become active and remain so for rest of day.
 - Useful for shift scheduling.

3. A dispatch takes all currently unserved orders.
 - Vehicles can be “pre-loaded”.
 - Not necessarily true with geographic order discrimination.
Many Vehicles
Optimal policy

• Each vehicle
 1. takes all available orders,
 2. leaves such that its dispatch ends at T.

• Compute by solving equations of the form
Many Vehicles
Optimal policy

- Each vehicle
 1. takes all available orders,
 2. leaves such that its dispatch ends at \(T \).

- Compute by solving equations of the form

\[
t_1 + f(t_1) = T,
\]
Many Vehicles

Optimal policy

- Each vehicle
 1. takes all available orders,
 2. leaves such that its dispatch ends at T.

- Compute by solving equations of the form

 $$t_1 + f(t_1) = T, \quad t_2 + f(t_2 - t_1) = T,$$
Many Vehicles

Optimal policy

- Each vehicle
 1. takes all available orders,
 2. leaves such that its dispatch ends at T.

- Compute by solving equations of the form

 \[t_1 + f(t_1) = T, \quad t_2 + f(t_2 - t_1) = T, \quad t_3 + f(N - t_2) = T, \ldots \]
One Vehicle
Optimal policy

1. Each dispatch takes all available orders.
2. No waiting between dispatches.
3. Last dispatch returns at T.

* Minimum dispatch quantity for all dispatches except possibly last one.
One Vehicle

Optimal policy

1. Each dispatch takes all available orders.
2. No waiting between dispatches.
3. Last dispatch returns at T.

* Minimum dispatch quantity for all dispatches except possibly last one.
One Vehicle
Optimal policy

1. Each dispatch takes all available orders.
2. No waiting between dispatches.
3. Last dispatch returns at T.

* Minimum dispatch quantity for all dispatches except possibly last one.
One Vehicle

Optimal policy

1. Each dispatch takes all available orders.
2. No waiting between dispatches.
3. Last dispatch returns at T.

* Minimum dispatch quantity for all dispatches except possibly last one.

- Try solving progressively higher-order equations:

\[
\begin{align*}
 t_1 + f(N) &= T, \\
 t_1 + f(t_1) + f(N - t_1) &= T, \\
 t_1 + f(t_1) + f(f(t_1)) + f(N - t_1 - f(t_1)) &= T, \ldots
\end{align*}
\]
Tactical Design

Fleet sizing

1. 8×8 mile region, uniformly random locations.
2. An order every 8 minutes for 10 hours, 12-hour day.
3. Manhattan norm, 25 mph, 1 minute service per order.
Tactical Design

Fleet sizing

1. 8 × 8 mile region, uniformly random locations.
2. An order every 8 minutes for 10 hours, 12-hour day.
3. Manhattan norm, 25 mph, 1 minute service per order.

- Many Vehicles: Two dispatches, 64 and 11 orders.
- Single Vehicle: Two dispatches, 55 and 20 orders.
 - Dispatch time increase of only 4%!
Tactical Design

Choosing order cutoff N

- If revenue is linear in orders served, how long do we accept orders?
 - Assume fleet can be as large as necessary.
Tactical Design
Choosing order cutoff N

- If revenue is linear in orders served, how long do we accept orders?
 - Assume fleet can be as large as necessary.
- Optimal to maximally utilize dispatched vehicles:
Tactical Design
Choosing order cutoff N

- If revenue is linear in orders served, how long do we accept orders?
 - Assume fleet can be as large as necessary.
- Optimal to maximally utilize dispatched vehicles:
Tactical Design

Choosing order cutoff N

- If revenue is linear in orders served, how long do we accept orders?
 - Assume fleet can be as large as necessary.

- Optimal to maximally utilize dispatched vehicles:
Tactical Design

Choosing order cutoff N

- If revenue is linear in orders served, how long do we accept orders?
 - Assume fleet can be as large as necessary.
- Optimal to maximally utilize dispatched vehicles:

![Diagram showing optimal utilization of vehicles with time intervals t_1, t_2, t_3, and T.]

One vehicle: Can prove similar result for one, two dispatches.
Tactical Design

Other potential applications:

1. Service region partitioning.
 - Small areas served by single vehicle, or large area served by many?
Tactical Design

Other potential applications:

1. Service region partitioning.
 - Small areas served by single vehicle, or large area served by many?

2. Combining SDD and overnight deliveries.
 - Starting the day with orders accumulated.
Tactical Design

Other potential applications:

1. Service region partitioning.
 - Small areas served by single vehicle, or large area served by many?

2. Combining SDD and overnight deliveries.
 - Starting the day with orders accumulated.

3. Length of work day, size of service region, ...
Computational Validation

1. 8 × 8 mile service region (center depot)
2. 25 mph average vehicle speed, Manhattan distances
3. an order every 6 minutes, 12-hour day (T = 120)
4. 5-minute setup, 2 minutes per order
Computational Validation

1. 8 × 8 mile service region (center depot)
2. 25 mph average vehicle speed, Manhattan distances
3. an order every 6 minutes, 12-hour day ($T = 120$)
4. 5-minute setup, 2 minutes per order

- Choose $N = 105$ to fully utilize three vehicles (69, 25, 11).
- Model predicts 554 total minutes of dispatching time.
Computational Validation

Operational benchmark

• Poisson arrivals (6-min. rate), uniformly random locations.

• Compute TSP for all accumulated orders, dispatch when

 \[\text{setup + service time + TSP = remaining time.} \]

• Repeat three times (update cutoff operationally).
Computational Validation

Operational benchmark

- Poisson arrivals (6-min. rate), uniformly random locations.
- Compute TSP for all accumulated orders, dispatch when
 \[\text{setup} + \text{service time} + \text{TSP} = \text{remaining time}. \]
- Repeat three times (update cutoff operationally).

- 1,000 simulations
- 103.4 avg. orders served (predicted 105)
- 550 avg. minutes (predicted 554)
Ongoing Work: Choosing Service Region(s)

• For given T, choose both dispatch times and areas to maximize orders served.
 • Unit arrival rate per time, area unit.
 • Areas’ radii may change, but fixed geometry (e.g. circle).

• Dispatch time: $f(A, n) = c\sqrt{An}$
 • Serving orders in A over t takes $f(A, At) = cA\sqrt{t}$ time.
Ongoing Work: Choosing Service Region(s)

- One-vehicle, one-dispatch setting equivalent to

\[\max_{0 \leq t_1 \leq T} (T - t_1)\sqrt{t_1}, \quad t_1^* = T/3. \]
Ongoing Work: Choosing Service Region(s)

- One-vehicle, one-dispatch setting equivalent to
 \[\max_{0 \leq t_1 \leq T} (T - t_1)\sqrt{t_1}, \quad t_1^* = T/3. \]

- For one vehicle, two dispatches,
 \[t_1^* = T/9, \quad t_2^* = 5T/9 \quad A_1^* = 2A_2^*. \]
Ongoing Work: Choosing Service Region(s)

• One-vehicle, one-dispatch setting equivalent to

\[\max_{0 \leq t_1 \leq T} (T - t_1)\sqrt{t_1}, \quad t_1^* = T / 3. \]

• For one vehicle, two dispatches,

\[t_1^* = T / 9, \quad t_2^* = 5T / 9 \quad A_1^* = 2A_2^*. \]

Theorem

One-dispatch solution is 1/2-approximation of any solution with one vehicle, arbitrarily many dispatches.

• Empirically, two-dispatch solution is within about 1%.
Conclusions

- Expect unbalanced dispatches in SDD.
 - Decreasing dispatch lengths.
 - Divide day into inactive/active parts.

- Use policy structure for tactical design.
 - Fleet sizing, cutoff time, partitioning, ...
 - Accurate operational predictions (within 1%-1.5%).
Conclusions

• Expect unbalanced dispatches in SDD.
 • Decreasing dispatch lengths.
 • Divide day into inactive/active parts.

• Use policy structure for tactical design.
 • Fleet sizing, cutoff time, partitioning, ...
 • Accurate operational predictions (within 1%-1.5%).

• Future work:
 • Finite fleet of two or more.

atoriello@isye.gatech.edu
http://www.isye.gatech.edu/~atoriello3/