R. D. Foley May 1, 2017 Name:

ISyE 2027D Test 2

Calculators, notes, and books are not allowed. Put your name on both sides of this sheet. Please stop when time is up. You may leave terms like $\binom{52}{5}$ and e^{-2} in your answers.

- 1. (30 points) Suppose traffic is light, and the speeds of cars going by a police car stopped on the side of the road are i.i.d. random variables.
 - (a) What would be a reasonable guess for the distribution of the number of cars that go by in the next hour?
 - (b) What would be a reasonable guess for the distribution of the number of cars that go by until a driver is given a speeding ticket?
 - (c) What would be a reasonable guess for the distribution of the number of red cars out of the next 15 cars?
- 2. (30 points) Suppose that a random variable X has c.d.f. given by $F(s) = s^2/4$ for $0 \le s \le 2$.
 - (a) Compute the mean of X,
 - (b) Compute the median of X,
 - (c) Compute $\mathbb{P}\{1/3 < X \leq 1/2\},\$
 - (d) Compute $\mathbb{P}\{X = 1/2\},\$
 - (e) Compute the mean of 1/X,
 - (f) How could you generate X from a uniform (0, 1) random variable U?
- 3. (30 points) Suppose that (X, Y) has a joint p.m.f. $\mathbb{P}{X = i, Y = j} = ij/15$ for integers i and j with $i \ge 1$, $j \ge 1$, and $i + j \le 4$; otherwise, the probability is zero.
 - (a) Compute the marginal probability $\mathbb{P}\{X = 2\}$.
 - (b) Compute the conditional probability $\mathbb{P}\{X = 2 \mid Y = 1\}$.
 - (c) Compute $\mathbb{E}[X \land Y]$.
- 4. The covariance of X_i and X_j is given by the i, jth element in the following matrix where i and j can be 1 or 2. For example, the covariance of X₁ and X₁ is given by the upper left element of the following matrix.
 - $\begin{bmatrix} 9 & 5 \\ 5 & 16 \end{bmatrix}$
 - (a) What is the $Cov(X_2, X_1 + X_2)$?
 - (b) What is the $Cov(8X_1, 5X_2)$?
 - (c) What is the variance of $X_1 + X_2$?
- 5. (30 points) Assume that a picker needs to pick 100 orders. The processing times for the orders are i.i.d. with mean 2.3 minutes and variance 1/4 minute².
 - (a) Accurately approximate the probability that the picker finishes picking all 100 orders within 4 hours.
 - (b) Accurately approximate the probability that the picker finishes picking all 100 orders within 237.5 minutes.
 - (c) Determine a (useful) upper bound on the probability that the total time to pick all 100 hours is outside of the interval (200, 260).