A MINTO short course !

Martin W.P. Savelsbergh

George L. Nemhauser

Georgia Institute of Technology
School of Industrial and Systems FEngineering
Atlanta, GA 30332-0205

(February 1, 1995)

Introduction

MINTO is a software system that solves mixed-integer linear programs by a branch-and-
bound algorithm with linear programming relaxations. It also provides automatic con-
straint classification, preprocessing, primal heuristics and constraint generation. More-
over, the user can enrich the basic algorithm by providing a variety of specialized appli-
cation routines that can customize MINTO to achieve maximum efficiency for a problem
class. An overview of MINTO, discussing the design philosophy and general features,
can be found in Nemhauser, Savelsbergh and Sigismondi [1994], a detailed description
of the customization options can be found in Savelshergh and Nemhauser [1994], and
an in-depth presentation of some of the system functions of MINTO can be found in
Savelsbergh [1994] and Gu, Nemhauser and Savelsbergh [1994a, 1994b, 1995a, 1995b,
1995¢]. General references on mixed-integer linear programming are Schrijver [1986] and
Nemhauser and Wolsey [1988].

This short course illustrates many of MINTO’s capabilities and teaches the basic
MINTO customization process through a set of exercises. Most exercises require the
development of one or more application functions in order to customize MINTO so as
to be more effective on a class of problems. The exercises are presented in order of
increasing difficulty. This short course can be used to complement a standard course on
integer programming.

Because MINTO always works with a maximization problem (MINTO will auto-
matically convert a minimization problem to a maximization problem), lower bounds
correspond to feasible solutions and upper bounds corresponds to LP relaxations.

At the end of each exercise, we list the relevant application functions.

!This research was supported by NSF Grant No. DMI-9410318

Exercise 1: MINTO’s command line options

The run-time behavior of MINTO depends on the command line options. The command
line options allow the user to selectively activate or deactivate one or more system func-
tions. Fine tune MINTOQ, i.e., determine which system functions should be activated and
which system functions should be deactivated, in order to achieve the best performance,
in terms of elapsed cpu time, for each of the problems in MINTOQO’s test set. Compare
the results with the results if MINTO is run with it’s default settings.

Exercise 2: Truncate tree search

A simple way to turn an optimization algorithm based on branch-and-bound into an
approximation algorithm is to truncate the search tree. This is usually done by the use
of an optimality tolerance. Instead of fathoming a node if the upper bound is smaller
than or equal to the lower bound, a node is fathomed if the upper bound is smaller than
or equal to the lower bound plus some tolerance. Implement a truncated tree search
algorithm with an optimality tolerance of 5 percent and evaluate its performance on the
set of default problems provided with the distribution of MINTO. Investigate how these
results are affected by deactivating MINTQ’s primal heuristic.

[appl_fathom)

Exercise 3: Generalized upper bound constraints

Many integer programs with binary variables have generalized upper bound constraints
of the form

ijgl fori=1,...,p,

JER:
where the);’s are disjoint subsets. Here we explore a branching scheme that has proved
to be a very effective way of handling these constraints and is widely used in mathematical
programming systems (it is also part of MINTO’s enhanced branching scheme).

Suppose in an LP relaxation we have 0 < 2 < 1 for some k € ;. Conventional

branching on xy, is equivalent to x; = 0 and ZjeQ,'\{k} x; = 0, since the latter equality is
implied by z; = 1. Now unless there is a good reason for singling out x; as the variable
that is likely to be equal to 1, the x; = 1 branch will probably contain relatively few
solutions as compared to the z; = 0 branch. If this is the case, almost no progress will
have been made since the node with xz; = 0 corresponds to nearly the same feasible
region as that of its father.

It appears more desirable to try and divide the feasible region of the father more
evenly over the sons. To accomplish this, we consider the branching rule

Z@:Oor Z z; = 0.

jEeQ} J€EQNQ;]

We can use this branching rule for any @} C @; such that 0 < ZjeQ} z; < 1.

Implement the above discussed branching rule and evaluate its performance on the
P-problems in MINTO’s test set. Since MINTO’s enhanced branching incorporates
GUB branching it is necessary to deactivate enhanced branching when evaluating your
implementation of GUB branching.

[appl_divide]

Exercise 4: Knapsack cover inequalities

Consider the set P of feasible solutions to a 0 — 1 knapsack problem, i.e.,

P:{xEB”:Za]wjgb},
JjEN
where, without loss of generality, we assume that a; > 0 for j € N (since 0 — 1 variables
can be complemented) and a; < b (since a; > b implies z; = 0).
A set (' € N is called a coverif) ;cca; > b. The cover is minimal if C is minimal
with respect to this property. For any cover C, the inequality

Yo <=1
jec
is called a cover inequality and is valid for P.

Given a fractional point, the problem of finding an inequality that is violated by this
point or showing that no such inequality exists is called the separation problem.

For cover inequalities, we are given a point 2* € R’ \ B”, and we want to find a '
(assuming that one exists) with >°.coa; > b and -, @7 > [C] — 1. Introduce z € B”
to represent the characteristic vector of the cover C' that is yet to be determined. It
has to satisfy > ey ajz; > band 30,y @5z; > > ey 27 — 1. The second inequality is
equivalent to 3~ n(1 — w?)zj' < 1. Thus, the separation problem is

(= min{Z(l — @7)2 Z a;z; > b,z € B"}.
JEN JEN
If ¢ < 1, then the inequality >~ ;.o <[C] — 1 cuts off 2* and we call C' a violated cover.
If { > 1, then no violated cover exists.

Since every row in the constraint matrix of a 0-1 integer program defines a 0-1
knapsack problem, knapsack covers can be used in a branch-and-cut algorithm for the
solution of 0-1 integer programs.

Implement a branch-and-cut algorithm based on knapsack covers and evaluate its
performance on the P-problems p0030.mps, p0040.mps, and p0201.mps. Compare the
performance of the following three algorithms: a plain LP-based branch-and-bound al-
gorithm, MINTO with its default settings, and your branch-and-cut algorithm.

[appl_constraints]

Exercise 5: Economic lot sizing problem

The economic lot sizing problem considers production planning over a horizon of T pe-
riods. In period ¢, t = 1,...,7T, there is a given demand d; that must be satisfied by
production in period t and by inventory carried over from previous periods. There is a
set-up up cost f; associated with production in period ¢. Furthermore, the unit produc-
tion cost in period ¢ is equal to ¢;. Let the production in period ¢t be denoted by 3 € R,
and let z; € {0, 1} indicates whether the plant operates during period ¢. The economic
lot sizing problem is formulated as follows

min Z (fexs + cye)

1<t<T
Y < (Z dk)xt t=1,..,T
1<k<T
S>> Y dp t=1,..T
1<k<t 1<k<t

z:€{0,1} s € R

An example of an instance of the economic lot sizing problem and an optimal solution
to this instance is given in Table 1. Let dp, = > <p<, dk. A class of facet inducing
inequalities for the economic lot sizing problem, known as the (I, .9)-inequalities, is given

by
Z Y + Zdtlﬂﬁt >dy YILSC{L,..,1}.

te{1,..,[}\S tes
Observe the following:

Syt D dary > Y min{ye, dyz} > dy

te{l,...,l}\S tes 1<e<i

Table 1: Instance and optimal solution of the economic lot sizing problem

filirle|11]6]9]6
e | 5] 3| 21|31
dy || 1] 3| 5(3|4]2
|| L] O L|L|0]0
AHEEBHE

Design a separation algorithm based on the above observation and develop a branch-and-
cut algorithm based on this class of facet inducing inequalities. Evaluate the performance
of the branch-and-cut algorithm on some randomly generated instances of the economic
lot sizing problem.

[appl_constraints, appl_mps]

Exercise 6: Primal heuristics for node packing

A node packing in a graph G = (V, F) is a subset V/ C V such that, for all u,v € V|
the edge {u,v} is not in E. The node packing problem asks for the identification of the
maximum cardinality node packing. The node packing problem can be formulated as
follows

max E Ty

veV
z,tx, <1 Y{u,v}ekF
z; €40,1} VYoeV

where z, is a binary variable indicating whether node v is in the node packing (2, = 1)
or not (z, = 0).

Develop a random graph generator that generates graphs with different densities
(the density of a graph is defined as the ratio of the number of edges in the graph
and the number of possible edges in the graph) and evaluate MINTO’s performance on
some randomly generated graphs of different densities. Develop a primal heuristic that
converts an LP solution into a feasible node packing and compare its performance with
MINTOQO’s general purpose primal heuristic.

[appl_mps, appl_primal]

Exercise 7: Linear ordering problem

The linear ordering problem is an NP-hard combinatorial optimization problem with
a large number of applications, including triangulation of the input-output matrices,
archaeological seriation, minimizing total weighted completion time in single-machine
scheduling, and aggregation of individual preferences.

The linear ordering problem can be stated as a graph theoretic problem as follows.
A tournament is a digraph such that for every two nodes u and v, the arc set contains
exactly one arc with endnodes u and v, i.e., a tournament on n nodes is an orientation
of K, the complete graph on n nodes. Given a complete digraph D, = (V,A4,,) on n
nodes and arc weights ¢;; for all arcs (¢j) € A,, the linear ordering problem is to find a
maximum weight acyclic tournament (V,T') in D,,. This leads to the following integer
programming formulation

max g €i;0i;

ijeA
bt di=1 Vit
bij+ o+ 0k <2 Vi£j#Ek
6;; €{0,1} Vije A

One of the complications when solving this problem is the large number of 3-cycle in-
equalities 8;; + ;1 + 6x; < 2 (O(n?)). Therefore, in practice these inequalities are usually
enforced implicitly and only added when needed.

Develop and implement a branch-and-cut algorithm based on 3-cycle inequalities and
compare its performance, on some randomly generated instances, with a plain LP-based
branch-and-bound algorithm that explicitly uses the 3-cycle inequalities.

An important element of a branch-and-cut algorithm is the cut generation scheme
employed. A cut generation scheme specifies, among other things, which and how many
violated cuts are added in a single iteration. Investigate the impact of some simple cut
generation schemes on the performance of the developed branch-and-cut algorithm.

Develop and implement a primal heuristic based on sorting that takes the current
LP solution and converts it into a linear ordering. Add this primal heuristic to your

branch-and-cut algorithm and evaluate its performance.

[appl_constraints, appl_feas, appl_mps, appl_primal]

Exercise 8: Cutting stock problem

Materials such as paper, textiles, and metallic foil are manufactured in rolls of large
width. These rolls, referred to as raws, are later cut into rolls of small widths, called
finals. A manufacturer produces raws of one standard width. The widths of the finals
are specified by different customers and may vary widely. When a complicated set of
orders has to be filled, the most economical way of cutting the existing raws into desired
finals, i.e., the way that uses a minimum number of raws, is rarely obvious. The problem
of finding such a way is known as the cutting stock problem. We consider the special case,
known as the binary cutting stock problem, where the demand for each final is exactly
one.

The binary cutting stock problem can be thought of as instances of set partitioning.
In general, we are given a ground set of items, which are the finals widths in the binary
cutting stock problem, and we wish to find the minimum cost partitioning of this ground
set by feasible subsets, feasible cutting patterns of the raws in the binary cutting stock
problem. Let W be the width of a raw and let w; be the width of final ¢ for ¢ € I,
then a feasible cutting pattern corresponds to a subset S C I of widths that satisfies
2ieswi < W.

One way of formulating this problem is to enumerate all feasible subsets. We represent
each subset by a 0-1 vector x, where x;;, = 1 if item ¢ is in feasible subset k and z;; = 0
otherwise. We express the problem as follows

minz Yk
&
S wipyr =1 Vi
&

i € {07 1}7

where variable y, = 1 if feasible subset k is used in the partition and yx = 0 otherwise.
Observe that this problem has an exponential number of variables. Therefore, a column
generation approach is necessary to solve the LP relaxation of this model.

One can solve the above formulation over a subset of its columns. We refer to such
a formulation as a restricted master problem. Additional columns can be generated as
needed for the restricted master problem by solving a pricing problem. In this case the
pricing problem is a 0-1 knapsack problem

max E T T,

1<i<n

Z wix; < W
1<i<n

z; €40,1}

where the 7’s are the optimal dual prices from the solution of the restricted master prob-
lem and variable x; = 1 if item ¢ is present in the new feasible pattern, i.e., new column,
and 0 otherwise. A column prices out favorably to enter the basis if its reduced cost
(1 — 7a) is negative. This is equivalent to obtaining an objective function value greater
than or equal to 1 in the pricing problem. When the optimal solution to the pricing
problem has objective value less than one, the current solution to the LP relaxation of
the restricted master problem is optimal for the unrestricted master problem.

Develop a column generation algorithm for the solution of the LP relazation of the
binary cutting stock problem. Keep in mind that the LP solver uses the simplex method
with bounded variables when it solves a linear program. Verify its correctness on some
small randomly generated instances.

[appl_variables]

Exercise 9: Cut management and forced branching

Cut management is an important aspect of the successful application of branch-and-cut
algorithms. In branch-and-cut algorithms the size of the active formulation grows due to
the generation of violated cuts. Cut generation results in better bounds and therefore,
usually, in smaller search trees. However, if the size of the active formulations grows too
much, any decrease in overall solution time due to a smaller search tree may be offset
by an even larger increase in overall solution times due to longer LP solution times.
Consequently it is important to manage cuts carefully.

To control the size of the active formulation MINTO monitors the dual variables
associated with all the global constraints that have been generated during the solu-
tion process, either by MINTO or by an application (note that MINTO only generates
global constraints), and if the value of a dual variable has been equal to zero, imply-
ing the constraint is inactive, for ten consecutive iterations, MINTO will deactivate the
corresponding constraint. Deactivating a constraint means deleting it from the active
formulation and storing it in the cut pool. Every time the active formulation is solved
and a new linear programming solution exists, the constraints in the cut pool will be in-
spected to see if any of them are violated by the current solution. If so, these constraints
will be reactivated. Reactivating a constraint means adding it to the active formulation
and deleting it from the cut pool. The cut pool has a fixed size and is maintained on

a first-in-first-out basis, i.e., if the pool overflows the constraints that have been put in
the pool the earliest will be deleted. As soon as a cut is deleted from the cut pool it can
never be reactivated again (it may however be regenerated). The parameter MIOCUT-
DELBND sets the the deactivation threshold; default threshold is 50. The parameter
MIOCUTPOOLSYZ sets the size of the pool; default size is 250.

Another issue related to cut generation is the frequency with which an attempt is
made to generate cuts. Obviously, cut generation takes time and it may be beneficial
not to perform cut generation at every node of the search tree. The parameter MIO-
CUTFREQ sets the frequency with which an attempt is made to generate cuts; default
frequency is 1, i.e., cut generation at every node.

MINTO monitors the difference in objective function value from iteration to iteration.
If the total change in the objective function value over the last three iterations is less
than 0.5 percent, then MINTO forces branching. This feature is incorporated in MINTO
to handle the tailing-off exhibited by many branch-and-cut algorithms.

Evaluate the effect forced branching and of the parameters defining the cut generation
scheme on the performance of MINTO on its standard test set.

[appl_terminatenode]

Exercise 10: Gomory cuts

Consider the integer program
min cz

subject to
Az =b
x>0
x integer

and a fractional solution z to its linear relaxation. Consider a row r from the optimal
simplex tableau

Ty + Z YrsZy = 57’
JEN
where N is the set of nonbasic variables and in which b, is fractional. A simple valid
inequality that cuts of the fractional solution is given by

F.> Y Fjz;
JEN

where F}; is the fractional part of y,; and F} is the fractional part of b.. This valid
inequality is known as a Gomory-cut. Implement a cutting plane algorithm based on
Gomory-cuts. Make sure that MINTO’s forced branching is deactivated.

Two warnings are in order. First, the set of nonbasic variables may contain slack
variables that have been introduced to bring the linear program into equality form.
Second, the LP solver uses the simplex method with bounded variables to solve linear
programs.

To get information on the optimal simplex tableau and the associated basis inverse

use MINTO’s pointer to the active linear program and the following undocumented
CPLEX functions:

int binvarow (struct cpxlp #*1lp, int i, double *z)

which computes the ith row of B~ A, that is, the ith row of the tableau;
int binvrow (struct cpxlp *1lp, int i, double *y)

which computes the ¢th row of the basis inverse;

int getbhead (struct cpxlp *1lp, int *head, double *x)

which returns the basis header, giving the negative of all row indices of slacks with 1
subtracted.

[appl_constraints, appl_terminatenode]

References

7. Gu, G.L. NEMHAUSER, AND M.W.P. SAVELSBERGH. Cover Inequalities for 0-1
Integer Programs I: Computation. Report COC-94-09, Georgia Institute of Technology.

7. Gu, G.L. NEMHAUSER, AND M.W.P. SAVELSBERGH. Cover Inequalities for 0-1
Integer Programs II: Complexity. Report COC-94-10, Georgia Institute of Technology.

7. Gu, G.L. NEMHAUSER, AND M.W.P. SAVELSBERGH. Cover Inequalities for 0-1
Integer Programs I1I: Algorithms. Report COC-95-xx, Georgia Institute of Technology.

7. Gu, G.L. NEMHAUSER, AND M.W.P. SAVELSBERGH. Sequence Independent Lifting.
Report COC-95-xx, Georgia Institute of Technology.

7. Gu, G.LL. NEMHAUSER, AND M.W.P. SAVELSBERGH. Lifted Flow Cover Inequalities
for Mized 0-1 Integer Programs. Report COC-95-xx, Georgia Institute of Technology.

10

G.L. NEMHAUSER, M.W.P. SAVELSBERGH, G.S. SIGISMONDI (1994). MINTO, a Mixed
INTeger Optimizer. Oper. Res. Letters 15, 47-58.

G.L. NEMHAUSER AND L.A. WoLSEY (1988). Integer and Combinatorial Optimization,
Wiley, New York.

M.W.P. SAVELSBERGH (1994). Preprocessing and Probing for Mixed Integer Program-
ming Problems. ORSA J. on Computing 6, 445-454.

M.W.P. SAVELSBERGH, G.L. NEMHAUSER (1994). Functional description of MINTO,
a Mized INTeger Optimizer. Report COC-91-03C, Georgia Institute of Technology.

A. SCHRIVER (1986). Theory of linear and integer programming. Wiley, New York.

11

