
A MINTO short course
�

Martin W�P� Savelsbergh

George L� Nemhauser

Georgia Institute of Technology

School of Industrial and Systems Engineering

Atlanta� GA ����������

�February �� �����

Introduction

MINTO is a software system that solves mixed�integer linear programs by a branch�and�
bound algorithm with linear programming relaxations� It also provides automatic con�
straint classi	cation� preprocessing� primal heuristics and constraint generation� More�
over� the user can enrich the basic algorithm by providing a variety of specialized appli�
cation routines that can customize MINTO to achieve maximum e
ciency for a problem
class� An overview of MINTO� discussing the design philosophy and general features�
can be found in Nemhauser� Savelsbergh and Sigismondi ������ a detailed description
of the customization options can be found in Savelsbergh and Nemhauser ������ and
an in�depth presentation of some of the system functions of MINTO can be found in
Savelsbergh ����� and Gu� Nemhauser and Savelsbergh �����a� ����b� ����a� ����b�
����c� General references on mixed�integer linear programming are Schrijver ����� and
Nemhauser and Wolsey ������

This short course illustrates many of MINTO�s capabilities and teaches the basic
MINTO customization process through a set of exercises� Most exercises require the
development of one or more application functions in order to customize MINTO so as
to be more e�ective on a class of problems� The exercises are presented in order of
increasing di
culty� This short course can be used to complement a standard course on
integer programming�

Because MINTO always works with a maximization problem �MINTO will auto�
matically convert a minimization problem to a maximization problem�� lower bounds
correspond to feasible solutions and upper bounds corresponds to LP relaxations�

At the end of each exercise� we list the relevant application functions�

�This research was supported by NSF Grant No� DMI��������

�



Exercise �� MINTO�s command line options

The run�time behavior of MINTO depends on the command line options� The command
line options allow the user to selectively activate or deactivate one or more system func�
tions� Fine tune MINTO� i�e�� determine which system functions should be activated and
which system functions should be deactivated� in order to achieve the best performance�
in terms of elapsed cpu time� for each of the problems in MINTO�s test set� Compare
the results with the results if MINTO is run with it�s default settings�

Exercise �� Truncate tree search

A simple way to turn an optimization algorithm based on branch�and�bound into an
approximation algorithm is to truncate the search tree� This is usually done by the use
of an optimality tolerance� Instead of fathoming a node if the upper bound is smaller
than or equal to the lower bound� a node is fathomed if the upper bound is smaller than
or equal to the lower bound plus some tolerance� Implement a truncated tree search
algorithm with an optimality tolerance of � percent and evaluate its performance on the
set of default problems provided with the distribution of MINTO� Investigate how these
results are a�ected by deactivating MINTO�s primal heuristic�

�appl fathom

Exercise �� Generalized upper bound constraints

Many integer programs with binary variables have generalized upper bound constraints

of the form
X

j�Qi

xj � � for i � �� ���� p�

where the Qi�s are disjoint subsets� Here we explore a branching scheme that has proved
to be a very e�ective way of handling these constraints and is widely used in mathematical
programming systems �it is also part of MINTO�s enhanced branching scheme��

Suppose in an LP relaxation we have � � xk � � for some k � Qi� Conventional
branching on xk is equivalent to xk � � and

P
j�Qinfkg

xj � �� since the latter equality is
implied by xk � �� Now unless there is a good reason for singling out xk as the variable
that is likely to be equal to �� the xk � � branch will probably contain relatively few
solutions as compared to the xk � � branch� If this is the case� almost no progress will
have been made since the node with xk � � corresponds to nearly the same feasible
region as that of its father�

�



It appears more desirable to try and divide the feasible region of the father more
evenly over the sons� To accomplish this� we consider the branching rule

X

j�Q�

i

xj � � or
X

j�QinQ
�

i

xj � ��

We can use this branching rule for any Q�
i � Qi such that � �

P
j�Q�

i

xj � ��
Implement the above discussed branching rule and evaluate its performance on the

P�problems in MINTO�s test set� Since MINTO�s enhanced branching incorporates
GUB branching it is necessary to deactivate enhanced branching when evaluating your
implementation of GUB branching�

�appl divide

Exercise �� Knapsack cover inequalities

Consider the set P of feasible solutions to a �� � knapsack problem� i�e��

P � fx � Bn �
X

j�N

ajxj � bg�

where� without loss of generality� we assume that aj � � for j � N �since �� � variables
can be complemented� and aj � b �since aj � b implies xj � ���

A set C � N is called a cover if
P

j�C aj � b� The cover is minimal if C is minimal
with respect to this property� For any cover C� the inequality

X

j�C

xj � jCj � �

is called a cover inequality and is valid for P �
Given a fractional point� the problem of 	nding an inequality that is violated by this

point or showing that no such inequality exists is called the separation problem�
For cover inequalities� we are given a point x� � Rn

� nBn� and we want to 	nd a C
�assuming that one exists� with

P
j�C aj � b and

P
j�C x

�
j � jCj � �� Introduce z � Bn

to represent the characteristic vector of the cover C that is yet to be determined� It
has to satisfy

P
j�N ajzj � b and

P
j�N x�jzj �

P
j�N zj � �� The second inequality is

equivalent to
P

j�N ��� x�j�zj � �� Thus� the separation problem is

� � minf
X

j�N

��� x�j �zj �
X

j�N

ajzj � b� z � Bng�

If � � �� then the inequality
P

j�C � jCj � � cuts o� x� and we call C a violated cover�
If � � �� then no violated cover exists�

�



Since every row in the constraint matrix of a ��� integer program de	nes a ���
knapsack problem� knapsack covers can be used in a branch�and�cut algorithm for the
solution of ��� integer programs�

Implement a branch�and�cut algorithm based on knapsack covers and evaluate its
performance on the P�problems p�����mps� p�����mps� and p�����mps� Compare the
performance of the following three algorithms� a plain LP�based branch�and�bound al�
gorithm� MINTO with its default settings� and your branch�and�cut algorithm�

�appl constraints

Exercise �� Economic lot sizing problem

The economic lot sizing problem considers production planning over a horizon of T pe�
riods� In period t� t � �� ���� T � there is a given demand dt that must be satis	ed by
production in period t and by inventory carried over from previous periods� There is a
set�up up cost ft associated with production in period t� Furthermore� the unit produc�
tion cost in period t is equal to ct� Let the production in period t be denoted by yt � IIR�
and let xt � f�� �g indicates whether the plant operates during period t� The economic
lot sizing problem is formulated as follows

min
X

��t�T

�ftxt � ctyt�

yt � �
X

��k�T

dk�xt t � �� ���� T

X

��k�t

yk �
X

��k�t

dk t � �� ���� T

xt � f�� �g yt � IIR

An example of an instance of the economic lot sizing problem and an optimal solution
to this instance is given in Table �� Let dpq �

P
p�k�q dk� A class of facet inducing

inequalities for the economic lot sizing problem� known as the �l� S��inequalities� is given
by

X

t�f������lgnS

yt �
X

t�S

dtlxt � d�l �l� S � f�� ���� lg�

Observe the following�
X

t�f������lgnS

yt �
X

t�S

dtlxt �
X

��t�l

minfyt� dtlxtg � d�l

�



Table �� Instance and optimal solution of the economic lot sizing problem

ft �� �� �� � � �
ct � � � � � �
dt � � � � � �

xt � � � � � �
yt � � � � � �

Design a separation algorithm based on the above observation and develop a branch�and�
cut algorithm based on this class of facet inducing inequalities� Evaluate the performance
of the branch�and�cut algorithm on some randomly generated instances of the economic
lot sizing problem�

�appl constraints� appl mps

Exercise �� Primal heuristics for node packing

A node packing in a graph G � �V�E� is a subset V � � V such that� for all u� v � V ��
the edge fu� vg is not in E� The node packing problem asks for the identi	cation of the
maximum cardinality node packing� The node packing problem can be formulated as
follows

max
X

v�V

xv

xu � xv � � �fu� vg � E

xi � f�� �g �v � V

where xv is a binary variable indicating whether node v is in the node packing �xv � ��
or not �xv � ���

Develop a random graph generator that generates graphs with di�erent densities
�the density of a graph is de	ned as the ratio of the number of edges in the graph
and the number of possible edges in the graph� and evaluate MINTO�s performance on
some randomly generated graphs of di�erent densities� Develop a primal heuristic that
converts an LP solution into a feasible node packing and compare its performance with
MINTO�s general purpose primal heuristic�

�appl mps� appl primal

�



Exercise 	� Linear ordering problem

The linear ordering problem is an NP�hard combinatorial optimization problem with
a large number of applications� including triangulation of the input�output matrices�
archaeological seriation� minimizing total weighted completion time in single�machine
scheduling� and aggregation of individual preferences�

The linear ordering problem can be stated as a graph theoretic problem as follows�
A tournament is a digraph such that for every two nodes u and v� the arc set contains
exactly one arc with endnodes u and v� i�e�� a tournament on n nodes is an orientation
of Kn� the complete graph on n nodes� Given a complete digraph Dn � �V�An� on n

nodes and arc weights cij for all arcs �ij� � An� the linear ordering problem is to 	nd a
maximum weight acyclic tournament �V� T � in Dn� This leads to the following integer
programming formulation

max
X

ij�A

cij�ij

�ij � �ji � � �i �� j

�ij � �jk � �ki � � �i �� j �� k

�ij � f�� �g �ij � A

One of the complications when solving this problem is the large number of ��cycle in�
equalities �ij� �jk��ki � � �O�n���� Therefore� in practice these inequalities are usually
enforced implicitly and only added when needed�

Develop and implement a branch�and�cut algorithm based on ��cycle inequalities and
compare its performance� on some randomly generated instances� with a plain LP�based
branch�and�bound algorithm that explicitly uses the ��cycle inequalities�

An important element of a branch�and�cut algorithm is the cut generation scheme
employed� A cut generation scheme speci	es� among other things� which and how many
violated cuts are added in a single iteration� Investigate the impact of some simple cut
generation schemes on the performance of the developed branch�and�cut algorithm�

Develop and implement a primal heuristic based on sorting that takes the current
LP solution and converts it into a linear ordering� Add this primal heuristic to your
branch�and�cut algorithm and evaluate its performance�

�appl constraints� appl feas� appl mps� appl primal

�



Exercise 
� Cutting stock problem

Materials such as paper� textiles� and metallic foil are manufactured in rolls of large
width� These rolls� referred to as raws� are later cut into rolls of small widths� called
�nals� A manufacturer produces raws of one standard width� The widths of the 	nals
are speci	ed by di�erent customers and may vary widely� When a complicated set of
orders has to be 	lled� the most economical way of cutting the existing raws into desired
	nals� i�e�� the way that uses a minimum number of raws� is rarely obvious� The problem
of 	nding such a way is known as the cutting stock problem� We consider the special case�
known as the binary cutting stock problem� where the demand for each 	nal is exactly
one�

The binary cutting stock problem can be thought of as instances of set partitioning�
In general� we are given a ground set of items� which are the 	nals widths in the binary
cutting stock problem� and we wish to 	nd the minimum cost partitioning of this ground
set by feasible subsets� feasible cutting patterns of the raws in the binary cutting stock
problem� Let W be the width of a raw and let wi be the width of 	nal i for i � I �
then a feasible cutting pattern corresponds to a subset S � I of widths that satis	esP

i�S wi � W �
One way of formulating this problem is to enumerate all feasible subsets� We represent

each subset by a ��� vector xk � where xik � � if item i is in feasible subset k and xik � �
otherwise� We express the problem as follows

min
X

k

yk

X

k

xikyk � � �i

yk � f�� �g�

where variable yk � � if feasible subset k is used in the partition and yk � � otherwise�
Observe that this problem has an exponential number of variables� Therefore� a column
generation approach is necessary to solve the LP relaxation of this model�

One can solve the above formulation over a subset of its columns� We refer to such
a formulation as a restricted master problem� Additional columns can be generated as
needed for the restricted master problem by solving a pricing problem� In this case the
pricing problem is a ��� knapsack problem

max
X

��i�n

�ixi

�



X

��i�n

wixi � W

xi � f�� �g

where the ��s are the optimal dual prices from the solution of the restricted master prob�
lem and variable xi � � if item i is present in the new feasible pattern� i�e�� new column�
and � otherwise� A column prices out favorably to enter the basis if its reduced cost
��� �x� is negative� This is equivalent to obtaining an objective function value greater
than or equal to � in the pricing problem� When the optimal solution to the pricing
problem has objective value less than one� the current solution to the LP relaxation of
the restricted master problem is optimal for the unrestricted master problem�

Develop a column generation algorithm for the solution of the LP relaxation of the
binary cutting stock problem� Keep in mind that the LP solver uses the simplex method
with bounded variables when it solves a linear program� Verify its correctness on some
small randomly generated instances�

�appl variables

Exercise �� Cut management and forced branching

Cut management is an important aspect of the successful application of branch�and�cut
algorithms� In branch�and�cut algorithms the size of the active formulation grows due to
the generation of violated cuts� Cut generation results in better bounds and therefore�
usually� in smaller search trees� However� if the size of the active formulations grows too
much� any decrease in overall solution time due to a smaller search tree may be o�set
by an even larger increase in overall solution times due to longer LP solution times�
Consequently it is important to manage cuts carefully�

To control the size of the active formulation MINTO monitors the dual variables
associated with all the global constraints that have been generated during the solu�
tion process� either by MINTO or by an application �note that MINTO only generates
global constraints�� and if the value of a dual variable has been equal to zero� imply�
ing the constraint is inactive� for ten consecutive iterations� MINTO will deactivate the
corresponding constraint� Deactivating a constraint means deleting it from the active
formulation and storing it in the cut pool� Every time the active formulation is solved
and a new linear programming solution exists� the constraints in the cut pool will be in�
spected to see if any of them are violated by the current solution� If so� these constraints
will be reactivated� Reactivating a constraint means adding it to the active formulation
and deleting it from the cut pool� The cut pool has a 	xed size and is maintained on

�



a 	rst�in�	rst�out basis� i�e�� if the pool over�ows the constraints that have been put in
the pool the earliest will be deleted� As soon as a cut is deleted from the cut pool it can
never be reactivated again �it may however be regenerated�� The parameter MIOCUT�
DELBND sets the the deactivation threshold� default threshold is ��� The parameter
MIOCUTPOOLSZ sets the size of the pool� default size is ����

Another issue related to cut generation is the frequency with which an attempt is
made to generate cuts� Obviously� cut generation takes time and it may be bene	cial
not to perform cut generation at every node of the search tree� The parameter MIO�
CUTFREQ sets the frequency with which an attempt is made to generate cuts� default
frequency is �� i�e�� cut generation at every node�

MINTO monitors the di�erence in objective function value from iteration to iteration�
If the total change in the objective function value over the last three iterations is less
than ��� percent� then MINTO forces branching� This feature is incorporated in MINTO
to handle the tailing�o� exhibited by many branch�and�cut algorithms�

Evaluate the e�ect forced branching and of the parameters de	ning the cut generation
scheme on the performance of MINTO on its standard test set�

�appl terminatenode

Exercise ��� Gomory cuts

Consider the integer program

min cx

subject to

Ax � b

x � �

x integer

and a fractional solution x to its linear relaxation� Consider a row r from the optimal
simplex tableau

xr �
X

j�N

yrjxj � br

where N is the set of nonbasic variables and in which br is fractional� A simple valid
inequality that cuts of the fractional solution is given by

Fr �
X

j�N

Frjxj

�



where Frj is the fractional part of yrj and Fr is the fractional part of br� This valid
inequality is known as a Gomory�cut� Implement a cutting plane algorithm based on
Gomory�cuts� Make sure that MINTO�s forced branching is deactivated�

Two warnings are in order� First� the set of nonbasic variables may contain slack
variables that have been introduced to bring the linear program into equality form�
Second� the LP solver uses the simplex method with bounded variables to solve linear
programs�

To get information on the optimal simplex tableau and the associated basis inverse
use MINTO�s pointer to the active linear program and the following undocumented
CPLEX functions�

int binvarow �struct cpxlp �lp� int i� double �z�

which computes the ith row of B��A� that is� the ith row of the tableau�

int binvrow �struct cpxlp �lp� int i� double �y�

which computes the ith row of the basis inverse�

int getbhead �struct cpxlp �lp� int �head� double �x�

which returns the basis header� giving the negative of all row indices of slacks with �
subtracted�

�appl constraints� appl terminatenode

References

Z� Gu� G�L� Nemhauser� and M�W�P� Savelsbergh� Cover Inequalities for ���

Integer Programs I� Computation� Report COC������� Georgia Institute of Technology�

Z� Gu� G�L� Nemhauser� and M�W�P� Savelsbergh� Cover Inequalities for ���

Integer Programs II� Complexity� Report COC������� Georgia Institute of Technology�

Z� Gu� G�L� Nemhauser� and M�W�P� Savelsbergh� Cover Inequalities for ���

Integer Programs III� Algorithms� Report COC����xx� Georgia Institute of Technology�

Z� Gu� G�L� Nemhauser� and M�W�P� Savelsbergh� Sequence Independent Lifting�
Report COC����xx� Georgia Institute of Technology�

Z� Gu� G�L� Nemhauser� and M�W�P� Savelsbergh� Lifted Flow Cover Inequalities

for Mixed ��� Integer Programs� Report COC����xx� Georgia Institute of Technology�

��



G�L� Nemhauser� M�W�P� Savelsbergh� G�S� Sigismondi ������� MINTO� a Mixed
INTeger Optimizer� Oper� Res� Letters �	� ������

G�L� Nemhauser and L�A� Wolsey ������� Integer and Combinatorial Optimization�
Wiley� New York�

M�W�P� Savelsbergh ������� Preprocessing and Probing for Mixed Integer Program�
ming Problems� ORSA J� on Computing 
� ��������

M�W�P� Savelsbergh� G�L� Nemhauser ������� Functional description of MINTO�

a Mixed INTeger Optimizer� Report COC������C� Georgia Institute of Technology�

A� Schrijver ������� Theory of linear and integer programming� Wiley� New York�

��


