
MINTO� a Mixed INTeger Optimizer

George L� Nemhauser

Martin W�P� Savelsbergh

Gabriele C� Sigismondi

Georgia Institute of Technology� Atlanta

Abstract

MINTO is a software system that solves mixed�integer linear programs by a

branch�and�bound algorithm with linear programming relaxations� It also provides

automatic constraint classi�cation� preprocessing� primal heuristics and constraint

generation� Moreover� the user can enrich the basic algorithm by providing a variety

of specialized application routines that can customize MINTO to achieve maximum

e�ciency for a problem class�

Keywords� Integer programming� branch�and�bound� software

� Introduction

MINTO �Mixed INTeger Optimizer� is a tool for solving mixed integer linear program�
ming �MIP� problems of the form�

max
X

j�B

cjxj �
X

j�I

cjxj �
X

j�C

cjxj

X

j�B

aijxj �
X

j�I

aijxj �
X

j�C

aijxj � bi i � �� � � � � m

� � xj � � j � B

lxj � xj � uxj j � I � C

xj � IIZ j � B � I

xj � IR j � C

where B is the set of binary variables	 I is the set of integer variables	 C is the set of
continuous variables	 the sense � of a constraint can be �	 �	 or �	 and the lower and
upper bounds may be negative or positive in
nity or any rational number�

A great variety of problems of resource allocation	 location	 distribution	 production	
scheduling	 reliability and design can be represented by MIP models� One reason for this
rich modeling capability is that various nonlinear and non�convex optimization problems
can be posed as MIP problems�

�



Unfortunately this robust modeling capability is not supported by a comparable
algorithmic capability� Existing branch�and�bound codes for solving MIP problems are
far too limited in the size of problems that can be solved reliably relative to the size
of problems that need to be solved	 especially with respect to the number of integer
variables� and they perform too slowly for many real�time applications� To remedy this
situation	 special purpose codes have been developed for particular applications	 and in
some cases experts have been able to stretch the capabilities of the general codes with ad
hoc approaches� But neither of these remedies is satisfactory� The 
rst is very expensive
and time�consuming and the second requires people who are experts in both the software
package and the application area�

Our idea of what is needed to solve large mixed�integer programs eciently	 without
having to develop a full�blown special purpose code in each case	 is an e�ective general
purpose mixed integer optimizer that can be customized through the incorporation of
application functions� MINTO is such a system� Its strength is that it allows users to
concentrate on problem speci
c aspects rather than data structures and implementation
details such as linear programming and branch�and�bound�

The heart of MINTO is a linear programming based branch�and�bound algorithm�
It can be implemented on top of any LP solver that has the capability to modify and
re�solve linear programs and interpret their solutions� The current version can either
be built on top of the CPLEXTM callable library �CPLEX Optimization �����	 version
��� and up	 or on top of the Optimization Subroutine Library �OSL� �IBM Corporation
�����	 version ����

To be as e�ective and ecient as possible when used as a general purpose mixed�
integer optimizer	 MINTO attempts to�

� improve the formulation by preprocessing and probing�

� construct feasible solutions�

� generate strong valid inequalities�

� perform variable 
xing based on reduced prices�

� control the size of the linear programs by managing active constraints�

To be as �exible and powerful as possible when used to build a special purpose mixed�
integer optimizer	 MINTO provides various mechanisms for incorporating problem spe�
ci
c knowledge� Finally	 to make future algorithmic developments easy to incorporate	
MINTO�s design is highly modular�

This paper provides an introduction to MINTO� Much more detail is given in the
functional description of MINTO �Savelsbergh and Nemhauser ������

�



The mechanisms for incorporating problem structure and customizing MINTO are
discussed in Sections �	 �	 and � under information	 application	 and miscellaneous
and control functions� Sections � and � present the overall system design and a brief
description of the system functions� Section � gives some computational results and	

nally	 Section � contains some remarks on availability and future releases�

� System design

It is well known that problem speci
c knowledge can be used advantageously to increase
the performance of the basic linear programming branch�and�bound algorithm for mixed
integer programming� MINTO attempts to use knowledge on two levels to strengthen
the LP�relaxation	 to obtain better feasible solutions and to improve branching� At the

rst level	 system functions use general structures	 and at the second level application
functions use problem speci
c structures� A call to an application function temporarily
transfers control to the application program	 which can either accept control or decline
control� If control is accepted	 the application program performs the associated task� If
control is declined	 MINTO performs a default action	 which in many cases will be �do
nothing�� The user can also exercise control at the 
rst level by selectively deactivating
system functions�

Figures � and � give �ow charts of the underlying algorithm and associated appli�
cation functions� To di�erentiate between actions carried out by the system and those
carried out by the application program	 there are di�erent �boxes�� System actions are
in solid line boxes and application program actions are in dashed line boxes� A solid
line box with a dashed line box enclosed is used whenever an action can be performed
by both the system and the application program� Finally	 to indicate that an action has
to be performed by either the system or the application program	 but not both	 a box
with one half in solid lines and the other half in dashed lines is used� If an application
program does not carry out an action	 but one is required	 the system falls back to a de�
fault action� For instance	 if an application program does not provide a division scheme
for the branching task	 the system will apply the default branching scheme�

Formulations

The concept of a formulation is fundamental in describing and understanding MINTO�
MINTO is constantly manipulating formulations� storing	 retrieving	 modifying	 dupli�
cating	 handing a formulation to the LP solver	 providing information about a formula�
tion to the application program	 etc� We will always use the following terms to refer to
elements of a formulation� objective function	 constraint	 coecient	 sense	 right�hand
side	 variable	 lower bound	 and upper bound�

It is bene
cial to distinguish four types of formulations� The original formulation is

�



GetProblem

Preprocess

Select

Preprocess

LP

DeleteVars

Do PriceVars n

PriceVars

SuccessyAddVars

zlp>zbest
n

Integral y

PrimalHeuristic Feasiblen

Successn PrimalHeuristic

zprim>zbest
n zprim>zbest

n

Update Update

Fathom Fathom

zlp>zbest
n

ModifyBounds

DeleteCons

Do GenerateCons n

GenerateCons Feasiblen

SuccessyAddCons zprim>zbest
n

PrimalHeuristic Update

Success y Fathom

Branch

Figure �� The underlying algorithm

�



appl_mps

appl_preprocess

appl_rank

appl_preprocess

appl_delvariables

appl_terminatelp n

appl_variables

y

n

y

appl_primal appl_feasiblen

n appl_primal

n n

appl_fathom appl_fathom

n

appl_bounds

appl_delconstraints

appl_terminatenoden

appl_constraints appl_feasiblen

y n

y appl_fathom

appl_divide

Figure �� The application functions

�



the formulation speci
ed in the � problemname � �mps 
le� The initial formulation
is the formulation associated with the root node of the branch�and�bound tree� It may
di�er from the original formulation as MINTO automatically tries to improve the ini�
tial formulation using various preprocessing techniques	 such as detection of redundant
constraints and coecient reduction� The current formulation is an extension of the orig�
inal formulation and contains all the variables and all the global and local constraints
associated with the node that is currently being evaluated� The active formulation is
the formulation currently loaded in the LP solver� It may be smaller that the current
formulation due to management of inactive constraints�

It is very important that an application programmer realizes that the active for�
mulation does not necessarily coincide with his mental picture of the formulation	 since
MINTO may have generated additional constraints	 temporarily deactivated constraints	
or 
xed one or more variables�

MINTO always works with a maximization problem� Therefore	 if the original for�
mulation describes a minimization problem	 MINTO will change the signs of all the
objective function coecients� This is also re�ected in the remainder of this functional
description� everything is written with maximization in mind�

Constraints

MINTO distinguishes various constraint classes as de
ned in Table �	 see also Nemhauser	
Savelsbergh	 and Sigismondi ������� These constraint classes are motivated by the con�
straint generation done by MINTO and the branching scheme adopted by MINTO� To
present these constraint classes	 it is convenient to distinguish the binary variables� We
do this by using the symbol y to indicate integer and continuous variables� Each class
is an equivalence class with respect to complementing binary variables	 i�e�	 if a con�
straint with term ajxj is in a given class then the constraint with ajxj replaced by
aj�� � xj� is also in the class� For example

P
j�B� xj �

P
j�B� xj � � � jB�j is in the

class BINSUM�UB	 where we think of B� as the set of complemented variables�
Besides constraint classes	 MINTO also distinguishes two constraint types� global and

local� Global constraints are valid at any node of the branch�and�bound tree	 whereas
local constraints are only valid in the subtree rooted at the node where the constraints
are generated�

Constraints can be in one of three states� active	 inactive	 or deleted� Active con�
straints are part of the active formulation� Inactive constraints have been deactivated
but may be reactivated at a later time� Deleted constraints have been removed alto�
gether�

Variables

When solving a linear program MINTO allows for column generation� In other words	
after a linear program has been optimized	 MINTO asks for the pricing out of variables

�



class constraint

MIXUB
P

j�B ajxj �
P

j�I�C ajyj � a�
MIXEQ

P
j�B ajxj �

P
j�I�C ajyj � a�

NOBINARYUB
P

j�I�C ajyj � a�
NOBINARYEQ

P
j�I�C ajyj � a�

ALLBINARYUB
P

j�B ajxj � a�
ALLBINARYEQ

P
j�B ajxj � a�

SUMVARUB
P

j�I��C� ajyj � akxk � �

SUMVAREQ
P

j�I��C� ajyj � akxk � �
VARUB ajyj � akxk � �
VAREQ ajyj � akxk � �
VARLB ajyj � akxk � �

BINSUMVARUB
P

j�Bnfkg ajxj � akxk � �

BINSUMVAREQ
P

j�Bnfkg ajxj � akxk � �

BINSUM�VARUB
P

j�Bnfkg xj � akxk � �

BINSUM�VAREQ
P

j�Bnfkg xj � akxk � �

BINSUM�UB
P

j�B xj � �

BINSUM�EQ
P

j�B xj � �

Table �� Constraint classes

not in the current formulation� If any such variables exists and price out favorably they
are included in the formulation and the linear program is reoptimized�

Branching

The unevaluated nodes of the branch�and�bound tree are kept in a list and MINTO
always selects the node at the head of the list for processing� However	 there is great
�exibility here	 since MINTO provides a mechanism that allows an application program
to order the nodes in the list in any way� As a default MINTO always adds new nodes
at the head of the list	 i�e�	 a last�in 
rst�out strategy which corresponds to a depth�
rst
search of the branch�and�bound tree�

� System Functions

MINTO�s system functions are used to perform preprocessing	 probing	 constraint gen�
eration and reduced price variable 
xing	 to enhance branching	 and to produce primal
feasible solutions� They are employed at every node of the branch�and�bound tree� How�
ever	 their use is optional�

�



In preprocessing �Savelsbergh �����	 MINTO attempts to improve the LP�relaxation
by identifying redundant constraints	 detecting infeasibilities	 tightening bounds on vari�
ables and 
xing variables using optimality and feasibility considerations� For constraints
with only ��� variables	 it also attempts to improve the LP�relaxation by coecient re�
duction� For example a constraint of the form a�x�� a�x�� a�x� � a� may be replaced
by a�x� � a�x� � �a� � ��x� � a� � � for some � � � that preserves the set of feasible
solutions�

In probing �Savelsbergh �����	 MINTO searches for logical implications of the form
xi � � implies yj � vj and stores these in an �implication� table� Furthermore	 MINTO
uses the logical implications between binary variables to build up a �clique� table	 i�e�	
MINTO tries to extend relations between pairs of binary variables to larger sets of binary
variables�

After a linear program is solved and a fractional solution is obtained	 MINTO tries
to exclude these solutions by searching the implication and clique table for violated
inequalities	 and by searching for violated lifted knapsack covers and violated generalized
�ow covers �Nemhauser and Wolsey ������ Lifted knapsack covers are derived from pure
��� constraints and are of the form

X

j�C�

xj �
X

j�C�

�jxj �
X

j�BnC

�jxj � jC�j � � �
X

j�C�

�j �

where C � C��C� with C� �� 	 a minimal set such that
P

j�C aj � a�� Generalized �ow
covers are derived from

X

j�N�

yj �
X

j�N�

yj � a�

yj � ajxj � j � N� �N�

and are of the form
X

j�C�

�yj � ��� aj�
���� xj�� � a� �

X

j�C�

aj �
X

j�L

�xj �
X

j�N�n�L�C��

yj �

with �C�� C�� 
 �N�� N�� a minimal set such that
P

j�C� aj �
P

j�C� aj � a� � � � �
and L 
 N� n C��

After solving a linear program MINTO searches for nonbasic ��� variables whose
values may be 
xed according to the magnitude of their reduced price� It also tries to

nd feasible solutions using recursive rounding of the optimal LP solution�

MINTO uses a hybrid branching scheme� Under certain conditions it will branch on
a clique constraint� If not	 it chooses a variable to branch on based on a priority order
it creates�

�



� Information Functions

Information about the current formulation can be obtained through the inquiry functions�
inq form	 inq obj	 inq constr	 and inq var	 and their associated variables info form�

info obj� info constr	 and info var�
Each of these inquiry functions updates its associated variable so that the information

stored in that variable re�ects the current formulation� The application program can
then access the information by inspecting the 
elds of the variable�

The rationale behind this approach is that we want to keep memory management
fully within MINTO� �Note that since only nonzero coecients are stored	 the memory
required to hold the objective function and constraints varies��

inq form This function retrieves the number of variables and the number of constraints
of the current formulation�

inq var This function retrieves the variable class	 the objective function coecient	 the
number of constraints in which the variable appears with a nonzero coecient	 and
for each of these constraints the index of the constraint and the nonzero coecient	 the
status of the variable	 the lower and upper bound associated with the variable	 additional
information on the bounds of the variable	 and	 if the variable type is continuous and
the variable appears in a variable lower or upper bound constraint	 the index of the
associated binary variable and the associated bound�

Variable class is one of� CONTINUOUS	 INTEGER	 and BINARY� Variable status is
one of ACTIVE	 INACTIVE	 or DELETED� Variable information is one of� ORIGINAL	
MODIFIED BY BRANCHING	 MODIFIED BY MINTO	 and MODIFIED BY APPL�

inq obj This function retrieves the number of variables that appear in the objective
function with a nonzero coecient	 and for each of these variables the index of the
variable and the nonzero coecient� The same information can be obtained by successive
calls to inq var	 however using inq obj is much more ecient�

inq constr This function retrieves the constraint class	 the number of variables that
appear in the constraint with a nonzero coecient	 and for each of these variables the
index of the variable and the nonzero coecient	 the sense of the constraint	 the right
hand side of the constraint	 the status of the constraint	 the type of the constraint	 and
additional information on the constraint�

The constraint classes are given in Table �� Constraint status is one of� ACTIVE	
INACTIVE	 or DELETED� Constraint type is one of� LOCAL or GLOBAL� Con�
straint information is one of ORIGINAL	 GENERATED BY BRANCHING	 GENER�

�



ATED BY MINTO	 and GENERATED BY APPL�

Information about the LP solution to the active formulation and information about the
best primal solution are available to the application	 whenever appropriate	 through the
parameters passed to the application functions�

Additional information about the active formulation and the LP solution can be ob�
tained through the inquiry functions lp vcnt	 providing the number of active variables	
lp ccnt	 providing the number of active constraints	 lp slack	 providing the slack or
surplus of a constraint	 lp pi	 providing the dual value of a constraint	 lp rc	 providing
the reduced cost of a variable	 and lp base providing the status of a variable	 i�e�	 BA�
SIC	 ATLOWER	 ATUPPER	 or NONBASIC�

Applications generating constraints	 either in appl constraints or appl divide	 may
have a dicult time keeping track of the indices of these constraints� MINTO may gener�
ate system inequalities	 MINTO may deactivate or delete global constraints	 and MINTO
may rearrange global and local constraints� To provide an easy and fail�safe mechanism
for retrieving information about certain constraints	 MINTO provides a names�mode�
When MINTO is invoked with names�mode active	 each of the constraints generated by
the application has to be given a �unique� name� Afterwards the index of a constraint
can be retrieved with one of two utility functions lp cix and minto cix� A similar
mechanism is provide for retrieving information about variables�

� Application Functions

A set of application functions �either the default or any other� has to be compiled and
linked with the MINTO library in order to produce an executable version of MINTO�
These functions give the application program the opportunity to incorporate problem
speci
c knowledge and thereby increase the overall performance� A default set of appli�
cation functions is part of the distribution of MINTO� The incorporation of these default
functions turns MINTO into a general purpose mixed integer optimizer�

appl mps This function allows the application to initialize the original formulation itself�
As a default	 MINTO assumes that it has to initialize the original formulation by

reading an MPS 
le available in the current working directory� However	 for some appli�
cations	 it is much more convenient to generate the original formulation directly within
MINTO�

appl init This function provides the application with an entry point in the program to
perform some initial actions�

��



appl initlp This function provides the application with an entry point in the program
to initialize the LP solver and to indicate whether column generation will be used for
the solution of the linear programming relaxations�

As a default	 MINTO solves the initial linear program using a primal simplex method
and all subsequent linear programs using a dual simplex method� One reason for using
the dual simplex method is that the dual simplex method approaches the optimal value
of the linear program from above and thus provides a valid upper bound at every iter�
ation� Therefore	 the solution of the linear program can be terminated as soon as this
upper bound drops below the current lower bound	 because at that point the node can be
fathomed by bounds� However	 if the linear program is solved using column generation	
the values no longer provide valid upper bounds and the solution of the linear program
cannot be terminated earlier� It is for this reason that MINTO needs to know whether
the linear programs are solved using column generation or not�

appl preprocessing This function provides the application with an entry in the pro�
gram to perform some preprocessing based on the original formulation�

In general	 MINTO only stores data in the information variables associated with the
inquiry functions and never looks at them again	 i�e�	 communication between MINTO
and the application program is one way only� However	 in appl preprocessing a set of
modi
cation functions can be used by the application program to turn this one way com�
munication into a two way communication� A call to one of the modi
cation functions
set var� set obj and set constr signals that the associated variable has been changed
by the application and that MINTO should retrieve the data and update its internal
administration�

appl node This function provides the application with an entry point in the program
after MINTO has selected a node from the set of unevaluated nodes of the branch�and�
bound tree and before MINTO starts processing the node� It has to return either STOP	
in which case MINTO aborts	 or CONTINUE	 in which case MINTO continues�

appl exit This function provides the application with an entry point in the program to
perform some 
nal actions�

appl quit This function provides the application with an entry point in the program to
perform some 
nal actions if execution is terminated by a �ctrl��C signal�

appl primal This function allows the application to provide MINTO with a lower bound
and possibly an associated primal solution�

appl fathom This function allows the application to provide an optimality tolerance to
terminate or prevent the processing of a node of the branch�and�bound tree even when

��



the upper bound value associated with the node is greater than the value of the primal
solution�

appl feasible This function allows the application to verify that a solution to the active
formulation satisfying the integrality conditions does indeed constitute a feasible solu�
tion�

appl bounds This function allows the application to modify the bounds of one or more
variables�

appl variables This function allows the application to generate one or more additional
variables�

appl delvariables This function allows the application to delete one or more of the pre�
viously generated variables from the active formulation	 i�e�	 the formulation currently
loaded in the LP solver�

appl terminatelp This function allows the application to terminate the solution of the
current linear program without having reached an optimal solution	 i�e�	 before all vari�
ables have been priced out�

appl constraints This function allows the application to generate one or more violated
constraints�

appl delconstraints This function allows the application to delete one or more of the
previously generated constraints from the active formulation	 i�e�	 the formulation cur�
rently loaded in the LP solver�

appl terminatenode This function allows the application to take over control of tailing�
o� detection and set the threshold value used by MINTO to detect tailing�o��

appl divide This function allows the application to provide a partition of the set of
solutions by either specifying bounds for one or more variables	 or generating one or
more constraints	 or both�

The default division scheme partitions the set of solutions into two sets by specifying
bounds for the integer variable with fractional part closest to ���� In the 
rst set of the
partition	 the selected variable is bounded from above by the round down of its value
in the current LP solution� In the second set of the partition the selected variable is
bounded from below by the round up of its value in the current LP solution� Note that
if the integer variable is binary	 this corresponds to 
xing the variable to zero and one
respectively�

��



Each node of the branch�and�bound tree also receives a �unique� identi
cation� This
identi
cation consists of two numbers� depth and creation� Depth refers to the level of
the node in the branch�and�bound tree� Creation refers to the total number of nodes that
have been created in the branch�and�bound process� The root node receives identi
cation
��	���

appl rank This function allows the application to specify the order in which the nodes
of the branch�and�bound tree are evaluated�

The unevaluated nodes of the branch�and�bound tree are kept in a list� The nodes in
the list are in order of increasing rank values� When new nodes are generated either by
the default division scheme or the division scheme speci
ed by the appl divide function	
each of them receives a rank value provided either by the default rank function or by
the function provided by the appl rank function� The rank value of the node is used
to insert it at the proper place in the list of unevaluated nodes� When a new node has
to be selected	 MINTO will always take the node at the head of the list�

The default rank function takes the LP�value associated with the node as rank	 which
results in a best�bound search of the branch�and�bound tree�

� Miscellaneous and Control Functions

Two miscellaneous function inq prob and wrt prob provide the capability to retrieve
the name of the problem that is being solved and to write the active formulation	 i�e�	
the formulation currently loaded in the LP solver	 to a speci
ed 
le in MPS�format�

MINTO provides more detailed control over the run�time behavior of MINTO through
the control functions ctrl clique� ctrl implication� ctrl knapcov� ctrl �owcov and
ctrl output� Each of these control functions can be called any time during the solution
process and activates or deactivates one of the system functions�

MINTO also provides more detailed control over the run�time behavior of the LP
solver through the control functions ctrl lpmethod	 ctrl lppricing	 ctrl lppricinglist	
ctrl lpperturbmethod	 and ctrl lprefactorfr� Each of these control functions can be
called any time during the solution process and changes the parameters of the LP solver�

� Test problems

The distribution of MINTO contains a set of �� test problems� The main purpose of
the test problems is to verify whether the installation of MINTO has been successful�
However	 MINTO�s performance on this set of test problems also demonstrates its power
as a general purpose mixed integer optimizer� Table � shows the problem characteristics�
Table � shows the LP value	 the IP value	 and the number of evaluated nodes and total

��



cpu time when MINTO is run as a plain branch�and�bound code with all system functions
deactivated	 and when MINTO is run in its default setting� These runs have been made
on an IBM RS����� using OSL as the LP solver� We have observed substantial variation
in performance when running the system under di�erent architectures because di�erent
branch�and�bound trees are generated�

� Availability and Future Releases

MINTO ��� is available on SUN SPARC stations with CPLEX ���	 or ��� installed	 IBM
RS����� workstations with either CPLEX ��� or ��� or OSL ��� installed	 and on HP
Apollo workstations with CPLEX ��� or ��� installed�

MINTO is an evolutionary system and therefore version ��� is not a 
nal product�
We see the development of MINTO as an evolutionary process	 leading to a robust and
�exible mixed integer programming solver� Its modular structure makes it easy to modify
and expand	 especially with regard to the addition of new information and application
functions� Therefore we encourage the users of this release to provide us with comments
and suggestions for future releases�

We envision that future releases will have stronger support for applications using
column generation� Other developments in future releases may include parallel imple�
mentations	 more ecient cut generation routines	 additional classes of cuts	 explicit
column generation routines	 better primal heuristics and di�erent strategies for getting
upper bounds	 such as Lagrangian relaxation�

We welcome suggestions for improving MINTO as well as other comments�

	 References

CPLEX Optimization� Inc� ������� Using the CPLEXTM Linear Optimizer

IBM Corporation ������� Optimization Subroutine Library� Guide and Reference�

G�L� Nemhauser and L�A� Wolsey ������� Integer Programming and Combinatorial

Optimization� Wiley	 Chichester�

G�L� Nemhauser� M�W�P� Savelsbergh� G�S� Sigismondi ������� Constraint Clas�
si
cation for Mixed Integer Programming Formulations� COAL Bulletin ��	 �����

M�W�P� Savelsbergh and G�L� Nemhauser ������� Functional description of MINTO�

a Mixed INTeger Optimizer� Report COC������A	 Georgia Institute of Technology�

M�W�P� Savelsbergh ������� Preprocessing and probing for mixed integer program�
ming problems� ORSA J� on Computing	 to appear�

��



NAME �cons �vars �nonzeros �cont �bin �int

EGOUT �� ��� ��� �� �� �
VPM� ��� ��� ��� ��� ��� �
FIXNET� ��� ��� ���� ��� ��� �
KHB����� ��� ���� ���� ���� �� �
SET�AL ��� ��� ���� ��� ��� �
LSEU �� �� ��� � �� �
BM�� �� �� ��� � �� �
P���� �� �� �� � �� �
P���� ��� ��� ���� � ��� �
P���� ��� ��� ���� � ��� �

Table �� Characteristics of the test problems

minto �s �m������ minto

NAME LP value IP value �nodes cpu secs IP value �nodes cpu secs

EGOUT ������� ������� ����� ��� ������� � �
VPM� ������� ������ ������ ���� ������ ��� ��
FIXNET� ������� ������� ������ ���� ������� �� ��
KHB����� ��������� ���������� ����� ���� ���������� �� �
SET�AL ������� ������� ������ ���� ������� �� ��
LSEU ������ ������ ����� ���� ������ ��� ��
BM�� ������� ���� ���� �� ���� ��� ��
P���� ������ ������ ���� �� ������ � �
P���� ������ ������ ���� ��� ������ ��� ��
P���� ������� ������� ������ ���� ������� �� ��

Table �� Results for the test problems

��


