
Functional description of MINTO�

a Mixed INTeger Optimizer

Version ���

Martin W�P� Savelsbergh ���

George L� Nemhauser ���

Georgia Institute of Technology

School of Industrial and Systems Engineering

Atlanta� GA ����������

USA

martin�savelsbergh�isye�gatech�edu
george�nemhauser�isye�gatech�edu

�March �� �����

Contents

�

Functional description of MINTO�

a Mixed INTeger Optimizer

Version ���

Martin W�P� Savelsbergh

George L� Nemhauser

Georgia Institute of Technology

School of Industrial and Systems Engineering

Atlanta� GA ����������

USA

Abstract

MINTO is a software system that solves mixed�integer linear programs by a branch�and�

bound algorithm with linear programming relaxations� It also provides automatic constraint

classi�cation� preprocessing� primal heuristics and constraint generation� Moreover� the user can

enrich the basic algorithm by providing a variety of specialized application routines that can

customize MINTO to achieve maximum e�ciency for a problem class� This paper documents

MINTO by specifying what it is capable of doing and how to use it�

� Introduction

MINTO �Mixed INTeger Optimizer� is a tool for solving mixed integer linear programming �MIP�
problems of the form	

max
X

j�B

cjxj

X

j�I

cjxj

X

j�C

cjxj

X

j�B

aijxj

X

j�I

aijxj

X

j�C

aijxj � bi i � �� � � � �m

� � xj � � j � B

lxj � xj � uxj j � I �C

xj � IIZ j � B � I

xj � IR j � C

where B is the set of binary variables� I is the set of integer variables� C is the set of continuous
variables� the sense � of a constraint can be �� �� or �� and the lower and upper bounds may be
negative or positive innity or any rational number�

A great variety of problems of resource allocation� location� distribution� production� scheduling�
reliability and design can be represented by MIP models� One reason for this rich modeling capability
is that various nonlinear and non�convex optimization problems can be posed as MIP problems�

�

Unfortunately this robust modeling capability is not supported by a comparable algorithmic
capability� Existing branch�and�bound codes for solving MIP problems are far too limited in the
size of problems that can be solved reliably relative to the size of problems that need to be solved�
especially with respect to the number of integer variables� and they perform too slowly for many
real�time applications� To remedy this situation� special purpose codes have been developed for
particular applications� and in some cases experts have been able to stretch the capabilities of the
general codes with ad hoc approaches� But neither of these remedies is satisfactory� The rst is very
expensive and time�consuming and the second should be necessary only for a very limited number
of instances�

Our idea of what is needed to solve large mixed�integer programs e�ciently� without having to
develop a full�blown special purpose code in each case� is an e�ective general purpose mixed integer
optimizer that can be customized through the incorporation of application functions� MINTO is
such a system� Its strength is that it allows users to concentrate on problem specic aspects rather
than data structures and implementation details such as linear programming and branch�and�bound�

The heart of MINTO is a linear programming based branch�and�bound algorithm� It can be
implemented on top of any LP�solver that provides capabilities to solve and modify linear programs
and interpret their solutions� The current version can either be built on top of the CPLEX callable
library� version ��� and up� on top of Optimization Subroutine Library �OSL�� version ��� and up�
or on top of XPRESS�MP Optimisation Subroutine Library �XOSL�� version ���� and up�

To be as e�ective and e�cient as possible when used as a general purpose mixed�integer optimizer�
MINTO attempts to	

� improve the formulation by preprocessing and probing�

� construct feasible solutions�

� generate strong valid inequalities�

� perform variable xing based on reduced prices�

� control the size of the linear programs by managing active constraints�

To be as �exible and powerful as possible when used to build a special purpose mixed�integer opti�
mizer� MINTO provides various mechanisms for incorporating problem specic knowledge� Finally�
to make future algorithmic developments easy to incorporate� MINTO�s design is highly modular�

This document focuses on the mechanisms for incorporating problem structure and only contains
a minimal description of the general purpose techniques mentioned above�

The mechanisms for incorporating problem structure and customizing MINTO are discussed in
Sections �� �� �� �� and � under information� application� control� bypass� and miscellaneous
functions� Section � explains how to run MINTO and Sections � and � present the overall system
design and a brief description of the system functions� Section �� discusses the development of
applications that call MINTO recursively� Sections ��� ��� ��� and �� discuss environment variables�
direct access to the linear program� programming considerations and computational results� Finally�
Section �� contains some remarks on availability and future releases�

Release ��� of MINTO was prompted by the addition of XPRESS�MP as an alternative LP
solver� a complete rewrite of the preprocessor� the addition of improved and more �exible branching
schemes� and the port to Windows NT�

�

� Running MINTO

The following command should be used to invoke MINTO	

minto ��xo � � � m � � � t � � � be � � � E � � � p � � � hcikgfrRB � � � sn � � � a� � name � �

As a default� MINTO assumes that the mixed integer program that has to be solved is specied in
MPS�format in a le � name � �mps in the current working directory� It is also possible to generate
the mixed integer program directly within MINTO using the application function appl mps� see
Section ���� However� even in that case� MINTO requires a name to be specied on the command
line� MINTO always opens a le �� name � �log� to write out information that may be useful to
determine the cause of a premature exit� in case this occurs� Furthermore� this name will be used
as the problem name� which would otherwise have been specied in the MPS�le�

The run�time behavior of MINTO depends on the command line options� The meanings of the
various command line options are given in Table �� The command line options allow the user to
deactivate selectively one or more system functions and to specify the amount of output desired�

option e�ect
x assume maximization problem

o � �� �� �� �� level of output
m � ��� � maximum number of nodes to be evaluated
t � ��� � maximum cpu time in seconds

b deactivate bound improvement
e � �� �� �� �� �� �� type of branching
E � �� �� �� �� �� type of node selection
p � �� �� �� �� level of preprocessing and probing

h deactivate primal heuristic
c deactivate clique generation
i deactivate implication generation
k deactivate knapsack cover generation
g deactivate GUB cover generation
f deactivate �ow cover generation
r deactivate row management
R deactivate restarts
B � �� �� � � type of forced branching
s deactivate all system functions

n � �� �� � � activate a names mode
a activate use of advance basis

Table �	 Command line options

MINTO assumes that the mixed integer program that has to be solved represents a minimization
problem unless the x command line option is specied� in which case MINTO assumes it represents
a maximization problem�

�

Regardless of whether MINTO has found an optimal solution or not� it will abort after evaluating
��������� nodes� The m � ��� � command line option can be used to change the maximum number
of nodes to be evaluated�

Regardless of whether MINTO has found an optimal solution or not� it will abort after ���������
cpu seconds� The t � ��� � command line option can be used to change the maximum cpu time�

In default mode MINTO produces very little output� The o � �� �� �� � � command line option
can be used to change the amount of output generated by MINTO� There are four output levels	 no
���� very little ���� normal ���� and extensive ����

In default mode MINTO performs preprocessing and limited probing if the number of binary
variables is not too large� For a description of preprocessing and probing� and all other system
functions� see Section �� The p � �� �� �� � � command line option can be used to change the
amount of preprocessing and probing done by MINTO� There are four levels	 no preprocessing
and no probing ���� preprocessing but no probing ���� preprocessing and limited probing ���� and
preprocessing and extensive probing ���� Probing� although potentially very e�ective� can be time
very consuming� especially for problems with many binary variables�

A branching scheme is specied by two rules	 a branching variable selection rule and a node
selection rule� In default mode MINTO uses its own adapative variable selection and node selection
rules� The e � �� �� �� �� �� � � command line option can be used to specify a branching variable
selection rule� There are six variable branching selection rules	 maximum infeasibility ���� penalty
based ���� strong branching ���� pseudocost based ���� adaptive ���� and SOS branching ���� The
E � �� �� �� �� � � command line option can be used to specify a node selection rule� There are
ve node selection rules	 best bound ���� depth rst ���� best projection ���� best estimate ���� and
adaptive ����

MINTO attempts to generates cuts to improve the formulation during the evaluation of a node�
As a consequence� there is a risk of �tailing�o��� Therefore� MINTO monitors the progress resulting
form cut generation� If the amount of progress does not warrant cut generation anymore� MINTO
forces branching� The B � �� �� � � command line option can be used to specify a forcing strategy�
There are three strategies	 no forcing at all ���� no forcing at the root but forcing at the other nodes
���� and forcing at all nodes ����

In default mode MINTO does not associate names with variables and constraints� The n �

�� �� � � command line option can be used to indicate that an application does want to associate
names with variables ���� constraints ���� or with both variables and constraints ����

In default mode MINTO does not load an advanced basis when it starts evaluating a new node�
but relies on the LP solver to determine a good starting basis� In most cases� this works very well�
State�of�the�art LP solver keep the basis associated with the last solved LP and employ sophisticated
techniques to convert it to a good starting basis for the current LP� Furthermore� loading an advanced
basis usually results in refactorization operations by the LP solver� which may take a substantial
amount of time� Finally� it is not at all obvious what constitutes a good advanced basis if row or
column generation techniques are applied in the solution process� The a command line option can
be used to activate the use of an advance basis� In that case� MINTO will use the basis associated
with the last LP solved in the parent node to create an advanced basis�

�

� System design

It is well known that problem specic knowledge can be used advantageously to increase the perfor�
mance of the basic linear programming branch�and�bound algorithm for mixed integer programming�
MINTO attempts to use problem specic knowledge on two levels to strengthen the LP�relaxation�
to obtain better feasible solutions and to improve branching�

At the rst level� system functions use general structures� and at the second level application
functions use problem specic structures� A call to an application function temporarily transfers
control to the application program� which can either accept control or decline control� If control
is accepted� the application program performs the associated task� If control is declined� MINTO
performs a default action� which in many cases will be �do nothing�� The user can also exercise
control at the rst level by selectively deactivating system functions�

Figure � and � give �ow charts of the underlying algorithm and the associated application func�
tions� To di�erentiate between actions carried out by the system and those carried out by the
application program� there are di�erent �boxes�� System actions are in solid line boxes and appli�
cation program actions are in dashed line boxes� A solid line box with a dashed line box enclosed is
used whenever an action can be performed by both the system and the application program� Finally�
to indicate that an action has to be performed by either the system or the application program�
but not both� a box with one half in solid lines and the other half in dashed lines is used� If an
application program does not carry out an action� but one is required� the system falls back to a
default action� For instance� if an application program does not provide a division scheme for the
branching task� the system will apply the default branching scheme�

Formulations
The concept of a formulation is fundamental in describing and understanding MINTO� MINTO is
constantly manipulating formulations	 storing a formulation� retrieving a formulation� modifying a
formulation� duplicating a formulation� handing a formulation to the LP�solver� providing informa�
tion about the formulation to the application program� etc� We will always use the following terms
to refer to elements of a formulation	 objective function� constraint� coe�cient� sense� right�hand
side� variable� lower bound� and upper bound�

It is benecial to distinguish four types of formulations� The original formulation is the for�
mulation specied in the � problemname � �mps le� The initial formulation is the formulation
associated with the root node of the branch�and�bound tree� It may di�er from the original formu�
lation as MINTO automatically tries to improve the initial formulation using various preprocessing
techniques� such as detection of redundant constraints and coe�cient reduction� The current formu�
lation is an extension of the original formulation and contains all the variables and all the global and
local constraints associated with the node that is currently being evaluated� The active formulation
is the formulation currently loaded in the LP�solver� It may be smaller that the current formulation
due to management of inactive constraints�

It is very important that an application programmer realizes that the active formulation does not
necessarily coincide with his mental picture of the formulation� since MINTO may have generated
additional constraints� temporarily deactivated constraints� or xed one or more variables�

Constraints

�

GetProblem

Preprocess

Select

Preprocess

LP

DeleteVars

Do PriceVars n

PriceVars

SuccessyAddVars

zlp>zbest
n

Integral y

PrimalHeuristic Feasiblen

Successn PrimalHeuristic

zprim>zbest
n zprim>zbest

n

Update Update

Fathom Fathom

zlp>zbest
n

ModifyBounds

DeleteCons

Do GenerateCons n

GenerateCons Feasiblen

SuccessyAddCons zprim>zbest
n

PrimalHeuristic Update

Success y Fathom

Branch

Figure �	 The underlying algorithm

�

appl_mps

appl_preprocess

appl_rank

appl_preprocess

appl_delvariables

appl_terminatelp n

appl_variables

y

n

y

appl_primal appl_feasiblen

n appl_primal

n n

appl_fathom appl_fathom

n

appl_bounds

appl_delconstraints

appl_terminatenode n

appl_constraints appl_feasiblen

y n

y appl_fathom

appl_divide

Figure �	 The application functions

�

MINTO distinguishes various constraint classes as dened in Table �� These constraint classes are
motivated by the constraint generation done by MINTO and the branching scheme adopted by
MINTO� To present these constraint classes� it is convenient to distinguish the binary variables�
We do this by using the symbol y to indicate integer and continuous variables� Each class is an
equivalence class with respect to complementing binary variables� i�e�� if a constraint with term ajxj
is in a given class then the constraint with ajxj replaced by aj�� � xj� is also in the class� For
example

P
j�B� xj �

P
j�B� xj � � � jB�j is in the class BINSUM�UB� where we think of B� as

the set of complemented variables�

class constraint
MIXUB

P
j�B ajxj

P
j�I�C ajyj � a�

MIXEQ
P

j�B ajxj

P

j�I�C ajyj � a�
NOBINUB

P
j�I�C ajyj � a�

NOBINEQ
P

j�I�C ajyj � a�
ALLBINUB

P
j�B ajxj � a�

ALLBINEQ
P

j�B ajxj � a�

SUMVARUB
P

j�I��C� ajyj � akxk � �

SUMVAREQ
P

j�I��C� ajyj � akxk � �

VARUB ajyj � akxk � �
VAREQ ajyj � akxk � �
VARLB ajyj � akxk � �

BINSUMVARUB
P

j�Bnfkg ajxj � akxk � �

BINSUMVAREQ
P

j�Bnfkg ajxj � akxk � �

BINSUM�VARUB
P

j�Bnfkg xj � akxk � �

BINSUM�VAREQ
P

j�Bnfkg xj � akxk � �

BINSUM�UB
P

j�B xj � �
BINSUM�EQ

P
j�B xj � �

Table �	 Constraint classes

Besides constraint classes� MINTO also distinguishes two constraint types	 global and local�
Global constraint are valid at any node of the branch�and�bound tree� whereas local constraints are
only valid in the subtree rooted at the node where the constraints are generated�

Constraints can be in one of three states	 active� inactive� or deleted� Active constraints are part
of the active formulation� Inactive constraints have been deactivated but may be reactivated at a
later time� Deleted constraints have been removed altogether�

Variables
When solving a linear program MINTO allows for column generation� In other words� after a
linear program has been optimized� MINTO asks for the pricing out of variables not in the current
formulation� If any such variables exists and price out favorably they are included in the formulation
and the linear program is reoptimized�

�

Branching
The unevaluated nodes of the branch�and�bound tree are kept in a list and MINTO always selects
the node at the head of the list for processing� However� there is great �exibility here� since MINTO
provides a mechanism that allows an application program to order the nodes in the list in any way�
As a default� MINTO keeps the list ordered by LP values� which results in a best�bound search of
the branch�and�bound tree�

� System Functions

MINTO�s system functions are used to perform preprocessing� probing� constraint generation and
reduced price variable xing� to enhance branching� and to produce primal feasible solutions� They
are employed at every node of the branch�and�bound tree� However� their use is optional� A more
detailed description of some of the system functions embedded in MINTO can be found in the papers
listed in the references�

In preprocessing� MINTO attempts to improve the LP�relaxation by identifying redundant con�
straints� detecting infeasibilities� tightening bounds on variables and xing variables using optimality
and feasibility considerations� For constraints with only ��� variables� it also attempts to improve the
LP�relaxation by coe�cient reduction� For example a constraint of the form a�x�
a�x�
a�x� � a�
may be replaced by a�x�
a�x�
�a����x� � a��� for some � � � that preserves the set of feasible
solutions�

In probing� MINTO searches for logical implications of the form xi � � implies yj � vj and
stores these in an �implication� table� Furthermore� MINTO uses the logical implications between
binary variables to build up a �clique� table� i�e�� MINTO tries to extend relations between pairs of
binary variables to larger sets of binary variables�

After a linear program is solved and a fractional solution is obtained� MINTO tries to exclude
these solutions by searching the implication and clique table for violated inequalities� and by search�
ing for violated lifted knapsack covers� violated lifted GUB covers� and violated lifted simple gen�
eralized �ow covers� Lifted knapsack covers are derived from pure ��� constraints and are of the
form

X

j�C�

xj

X

j�C�

�jxj

X

j�BnC

�jxj � jC�j � �

X

j�C�

�j �

where C � C��C� with C� �� 	 a minimal set such that
P

j�C aj � a�� Lifted GUB cover inequalities
have the same form� but are derived from a structure consisting of a single knapsack constraint and
a set of non�overlapping generalized upper bound constraints� Generalized �ow covers are derived
from

X

j�N�

yj �
X

j�N�

yj � a�

yj � ajxj � j � N� �N�

and are of the form
X

j�C�

�yj
 �� � aj�
���� xj�� � a�

X

j�C�

aj

X

j�L

�xj

X

j�N�n�L�C��

yj �

��

with �C�� C��
 �N�� N�� a minimal set such that
P

j�C� aj �
P

j�C� aj � a� � � � � and

L
 N� nC��
After solving a linear program MINTO searches for non�basic ��� variables whose values may be

xed according to the magnitude of their reduced price� It also tries to nd feasible solutions using
recursive rounding of the optimal LP�solution�

MINTO uses a hybrid branching scheme� Under certain conditions it will branch on a clique
constraint� If not� it chooses a variable to branch on based on a priority order it creates�

� Information Functions

For the sequel� it is assumed that the reader has a working knowledge of the C programming language�

��� Current formulation

Information about the current formulation can be obtained through the inquiry functions	 inq form�
inq obj� inq constr� and inq var� and their associated variables info form� info obj� info constr�
and info var�

Each of these inquiry functions updates its associated variable so that the information stored
in that variable re�ects the current formulation� The application program can then access the
information by inspecting the elds of the variable�

The rationale behind this approach is that we want to keep memory management fully within
MINTO� �Note that since only nonzero coe�cients are stored� the memory required to hold the
objective function and constraints varies��

As it is impossible for the application program to keep track of the indices of the active con�
straints� due to constraint generation and constraint management done by MINTO� the only fail�safe
method for accessing constraint related information is to refer to constraints through names rather
than indices� However� in some cases� for instance when an application program only wants to
inspect constraints of the original formulation �which are not a�ected by constraint generation and
constraint management�� using names would be rather cumbersome�

To overcome these di�culties� the following scheme has been adopted for MINTO� All information
access for variables and constraints is done through indices� For variables the valid indices are in the
range � up to the number of variables� and for constraints the valid indices are in the range � up to
the number of constraints� However� to provide a fail�safe access mechanism� MINTO has� besides
the default no�names operating mode� a names operating mode� in which names are associated with
each variable and each constraint� �This feature is only available in versions ��� and up��

����� inq form

This function retrieves the number of variables and the number of constraints of the current formu�
lation�

A call to inq form�� initializes the variable info form that has the following structure	

typedef struct info�form �

��

int form�vcnt� �� number of variables in the formulation ��

int form�ccnt� �� number of constraints in the formulation ��

� INFO�FORM�

The following example shows how inq form can be used to print the size of the current formulation�

��

� E�SIZE�C

��

�include 	stdio�h

�include �minto�h�

��

� WriteSize

��

void

WriteSize �

�

inq�form ��

printf ��Number of variables� �d�n�� info�form�form�vcnt�

printf ��Number of constraints� �d�n�� info�form�form�ccnt�

�

����� inq var

This function retrieves the variable name� variable class� the objective function coe�cient� the num�
ber of constraints in which the variable appears with a nonzero coe�cient� and for each of these
constraints the index of the constraint and the nonzero coe�cient� the status of the variable� the
lower and upper bound associated with the variable� additional information on the bounds of the
variable� and� if the variable type is continuous and the variable appears in a variable lower or upper
bound constraint� the index of the associated binary variable and the associated bound�

Variable class is one of	 CONTINUOUS� INTEGER� and BINARY� Variable status is one of AC�
TIVE� INACTIVE� or DELETED� Variable information is one of	 ORIGINAL�MODIFIED BY BRANCHING�
MODIFIED BY MINTO� and MODIFIED BY APPL�

parameters
index	 An integer containing the index of the variable�
colinfo	 A boolean indicating whether the column associated with the variable should be re�

trieved or not� i�e�� YES or NO�

A call to inq var�� initializes the variable info var that has the following structure	

typedef struct info�var �

char �var�name� �� name� if any ��

��

char var�class� �� class� CONTINUOUS� INTEGER� or BINARY ��

double var�obj� �� objective function coefficient ��

int var�nz� �� number of constraints with nonzero coefficients ��

int �var�ind� �� indices of constraints with nonzero coefficients ��

double �var�coef� �� actual coefficients ��

int var�status� �� ACTIVE� INACTIVE� or DELETED ��

double var�lb� �� lower bound ��

double var�ub� �� upper bound ��

VLB �var�vlb� �� associated variable lower bound ��

VUB �var�vub� �� associated variable upper bound ��

int var�lb�info� �� ORIGINAL� MODIFIED�BY�MINTO�

MODIFIED�BY�BRANCHING� or MODIFIED�BY�APPL ��

int var�ub�info� �� ORIGINAL� MODIFIED�BY�MINTO�

MODIFIED�BY�BRANCHING� or MODIFIED�BY�APPL ��

� INFO�VAR�

typedef struct �

int vlb�var� �� index of associated ��� variable ��

double vlb�val� �� value of associated bound ��

� VLB�

typedef struct �

int vub�var� �� index of associated ��� variable ��

double vub�val� �� value of associated bound ��

� VUB�

Due to MINTO�s philosophy to use as few functions as possible from the LP�solver and MINTO�s
row oriented internal data structures� retrieving the column associated with a variable may be very
time consuming� Furthermore� in many cases an application uses inq var only to obtain information
on the bounds or the type of a variable� In such situations� there is no need to retrieve the column
associated with the variable� Therefore� we have introduced the boolean colinfo to indicate whether
or not the column associated with the variable should be retrieved� Setting colinfo to NO may result
in an increased performance of an application�

The following example shows how inq var can be used to print the variables that are xed in the
current formulation�

��

� E�FIXED�C

��

�include 	stdio�h

�include �minto�h�

��

��

� WriteFixed

��

void

WriteFixed �

�

int j�

for �inq�form �� j � �� j 	 info�form�form�vcnt� j�� �

inq�var �j� NO�

if �info�var�var�lb
 info�var�var�ub � EPS �

printf ��Variable �d is fixed at �f�n�� j� info�var�var�lb�

�

�

�

����� inq obj

This function retrieves the number of variables that appear in the objective function with a nonzero
coe�cient� and for each of these variables the index of the variable and the nonzero coe�cient�

The same information can be obtained by successive calls to inq var� however using inq obj is
much more e�cient�

A call to inq obj�� initializes the variable info obj that has the following structure	

typedef struct �

int obj�nz� �� number of variables with nonzero coefficients ��

int �obj�ind� �� indices of variables with nonzero coefficients ��

double �obj�coef� �� actual coefficients ��

� INFO�OBJ�

The following example shows how inq obj can be used to print the variables with a nonzero objective
coe�cient�

��

� E�OBJ�C

��

�include 	stdio�h

�include �minto�h�

��

� WriteObj

��

void

��

WriteObj �

�

int j�

inq�obj ��

for �j � �� j 	 info�obj�obj�nz� j�� �

printf ��Variable �d has objective coefficient �f�n��

info�obj�obj�ind�j�� info�obj�obj�coef�j��

�

�

����� inq constr

This function retrieves the constraint name� constraint class� the number of variables that appear
in the constraint with a nonzero coe�cient� and for each of these variables the index of the variable
and the nonzero coe�cient� the sense of the constraint� the right hand side of the constraint� the
status of the constraint� the type of the constraint� and additional information on the constraint�

Constraint class is one of	 MIXUB� MIXEQ� NOBINARYUB� NOBINARYEQ� ALLBINARYUB�
ALLBINARYEQ� SUMVARUB� SUMVAREQ� VARUB� VAREQ� VARLB� BINSUMVARUB� BIN�
SUMVAREQ� BINSUM�VARUB� BINSUM�VAREQ� BINSUM�UB� or BINSUM�EQ� Constraint
status is one of	 ACTIVE� INACTIVE� or DELETED� Constraint type is one of	 LOCAL or
GLOBAL� Constraint information is one of ORIGINAL� GENERATED BY BRANCHING� GEN�
ERATED BY MINTO� and GENERATED BY APPL�

parameters
index	 An integer containing the index of the constraint�

A call to inq constr�� initializes the variable info constr that has the following structure	

typedef struct info�constr �

char �constr�name� �� name� if any ��

int constr�class� �� classification� ��� ��

int constr�nz� �� number of variables with nonzero coefficients ��

int �constr�ind� �� indices of variables with nonzero coefficients ��

double �constr�coef� �� actual coefficients ��

char constr�sense� �� sense ��

double constr�rhs� �� right hand side ��

int constr�status� �� ACTIVE� INACTIVE� or DELETED ��

int constr�type� �� LOCAL or GLOBAL ��

int constr�info� �� ORIGINAL� GENERATED�BY�MINTO�

GENERATED�BY�BRANCHING� or GENERATED�BY�APPL ��

� INFO�CONSTR�

The following example shows how inq constr can be used to print the types of the constraints in
the current formulation�

��

��

� E�TYPE�C

��

�include 	stdio�h

�include �minto�h�

��

� WriteType

��

void

WriteType �

�

int i�

for �inq�form �� i � �� i 	 info�form�form�ccnt� i�� �

inq�constr �i�

printf ��Constraint �d is of type �s�n��

i� info�constr�constr�type �� GLOBAL � �GLOBAL� � �LOCAL��

�

�

��� inq prob

This function retrieves the name of the problem that is being solved� i�e�� the name found in the
NAME section of the � problem name � �mps le that was read when MINTO was invoked�

The following example shows how inq prob can be used to print the name of the problem being
solved�

��

� E�NAME�C

��

�include 	stdio�h

�include �minto�h�

��

� WriteName

��

void

WriteName �

�

��

printf ��Problem name� �s�n�� inq�prob ��

�

A more elaborate example showing how the inquiry functions can be used to print everything there
is to know about the current formulation can be found in Appendix A�

��� Active formulation

Information about the LP�solution to the active formulation and information about the best primal
solution are available to the application� whenever appropriate� through the parameters passed to
the application functions�

Additional information about the active formulation and the LP�solution can be obtained through
the inquiry functions lp vcnt� lp ccnt� lp slack� lp pi� lp rc� and lp base� MINTO gets the
required information directly from the LP�solver� Therefore� the user is referred to the manual of
the LP�solver for a precise denition of the return values� �For example� the manual of the LP�solver
denes the meaning of the values of the dual variables in case the linear program is infeasible��

����� lp vcnt

This function returns the number of variables in the active formulation� i�e�� the number of variables
currently loaded in the LP�solver�

����� lp ccnt

This function returns the number of constraints in the active formulation� i�e�� the number of con�
straints currently loaded in the LP�solver�

����� lp slack

This function returns the slack or surplus of the constraint� If the index is invalid or the associated
constraint is inactive� the return value will be INF�

parameters
index	 An integer containing the index of the constraint�

����� lp pi

This function returns the dual value of the constraint� If the index is invalid or the associated
constraint is inactive� the return value will be INF�

parameters
index	 An integer containing the index of the constraint�

��

����� lp rc

This function returns the reduced cost of the variable� If the index is invalid� the return value will
be INF�

parameters
index	 An integer containing the index of the variable�

����	 lp base

This function retrieves the status of each variable� i�e�� BASIC� ATLOWER� ATUPPER� or NON�
BASIC and each constraint� i�e�� CBASIC� or CNONBASIC�

A call to lp base�� initializes the variable info base that has the following structure	

typedef struct info�base �

int �base�vstat� �� array with the status of each variable ��

int �base�cstat� �� array with the status of each constraint ��

� INFO�BASE�

��� Names mode

Applications generating constraints� either in appl constraints or appl divide� may have a di�cult
time keeping track of the indices of these constraints� MINTO may generate system inequalities�
MINTO may deactivate or delete global constraints� and MINTO may rearrange global and local
constraints�

To provide an easy and fail�safe mechanism for retrieving information about certain constraints�
MINTO provides a names�mode� When MINTO is invoked with names�mode active� each of the
constraints generated by the application has to be given a �unique� name� Afterwards the index of a
constraint can be retrieved with one of two utility functions lp cix and minto cix� Both functions
require a name as parameter and return an index� For example� the slack of a constraint with name
cname can be retrieved by lp slack �lp cix �cname�� and information on a constraint with name
cname can be retrieved by inq cons �minto cix �cname��� A similar mechanism is provide for
retrieving information about variables�

����� lp vix

This function returns the index of the variable with the specied name in the active formulation� If
the name does not exist� the return value will be ERROR� if the variable is inactive the return value
will be DEACTIVATED�

parameters
vname	 A character pointer to the name of the variable�

��

����� minto vix

This function returns the index of the variable with the specied name in the current formulation�
If the name does not exist� the return value will be ERROR� if the variable is inactive the return
value will be INACTIVE�

parameters
vname	 A character pointer to the name of the variable�

����� lp cix

This function returns the index of the constraint with the specied name in the active formulation�
If the name does not exist� the return value will be ERROR� if the constraint is inactive the return
value will be INACTIVE�

parameters
cname	 A character pointer to the name of the constraint�

����� minto cix

This function returns the index of the constraint with the specied name in the current formulation�
If the name does not exist� the return value will be ERROR� if the constraint is inactive the return
value will be INACTIVE�

parameters
cname	 A character pointer to the name of the constraint�

��� Process statistics

When MINTO nishes it writes out some statistics on the solution process� such as the number of
evaluated nodes� the number of generated lifted knapsack cover inequalities� and the elapsed cpu
time� The process solution statistics functions allow an application to monitor this information
during the execution of the algorithm�

����� stat evnds

This function returns the number of evaluated nodes�

����� stat maxnds

This function returns the maximumnumber of nodes that has been in the list of unevaluated nodes�

����� stat avnds

This function returns the average number of nodes that has been in the list of unevaluated nodes�

��

����� stat depth

This function returns the maximum depth of the search tree�

����� stat lpcnt

This function returns the number of linear programs that has been solved�

����	 stat gap

This function returns the integrality gap�

����
 stat maxlprows

This function returns the maximum number of rows that has been in the active linear program�

����� stat maxlpcols

This function returns the maximum number of columns that has been in the active linear program�

����� stat cliquecnt

This function returns the number of clique inequalities that has been generated�

����� stat implicationcnt

This function returns the number of implication inequalities that has been generated�

������ stat knapcovcnt

This function returns the number of lifted knapsack cover inequalities that has been generated�

������ stat gubcovcnt

This function returns the number of lifted GUB cover inequalities that has been generated�

������ stat sknapcovcnt

This function returns the number of surrogate lifted knapsack cover inequalities that has been
generated�

������ stat �owcovcnt

This function returns the number of lifted �ow cover inequalities that has been generated�

������ stat time

This function returns the elapsed cpu time�

��

� Application Functions

A main program� sometimes called a driver� and a set of application functions �either the default
or any other� has to be compiled and linked with the MINTO library in order to produce an
executable version of MINTO� The application functions give the user the opportunity to incorporate
problem specic knowledge and thereby increase the overall performance� A default set of application
functions is part of the distribution of MINTO� The incorporation of these default functions turns
MINTO into a general purpose mixed integer optimizer�

Internally MINTO always works with a maximization problem� If the original formulation de�
scribes a minimization problem� MINTO will change the signs of all the objective function coe��
cients� As a consequence� one has to be careful when interpreting values such as the reduced cost of
a variable�

MINTO only stores the nonzero coe�cients of variables and constraints� Therefore� a set of
variables can and will always be specied by three arrays	 vrst� vind� vcoef� Vind and vcoef
contain the indices and values of nonzero coe�cients respectively� Vrst�i� indicates the position of
the rst nonzero coe�cient of the ith variable in the arrays vind� and vcoef� vrst�i
 �� indicates
the rst position after the last nonzero coe�cient of the ith variable in the arrays vind and vcoef�
Note that this implies that if a set of k variables is specied vrst�k� has to be dened� Similarly� a
set of constraints can and will always be specied by three arrays	 crst� cind� ccoef� Cind and ccoef
contain the indices and values of nonzero coe�cients respectively� Crst�i� indicates the position of
the rst nonzero coe�cient of the ith constraint in the arrays cind� and ccoef� crst�i
 �� indicates
the rst position after the last nonzero coe�cient of the ith constraint in the arrays cind and ccoef�
Note that this implies that if a set of k constraints is specied� then crst�k� has to be dened�

��� minto

This function invokes MINTO and takes as arguments the problem name and a string with run�time
options� For a description of the run�time options see Section ��

parameters
name	 A string containing the problem name�
options	 A string containing the run�time options�

When MINTO nishes� it stores the optimal solution in a variable info opt that has the following
structure	

typedef struct info�opt �

int opt�stat� �� exit status� optimal� time or node limit� quit ��

double opt�value� �� value of optimal solution ��

int opt�nzcnt� �� number of nonzero�s in optimal solution ��

int �opt�ix� �� indices of nonzero�s in optimal solution ��

double �opt�val� �� values of nonzero�s in optimal solution ��

� INFO�OPT�

Similar to the inquiry functions� the calling program can access the optimal solution by inspecting
the elds of the variable�

��

The following example shows how to call MINTO and print the optimal solution�

��

� MINTO�C

��

�include 	stdio�h

�include �minto�h�

��

� Minto

��

void

main �

�

int i�

��

� Solve the mixed integer program specified in �example�mps�� which is

� a maximization problem� and provide �extensive� output�

��

minto ��example�� ��x �o���

��

� Write out the optimal solution ourselves

��

printf ��Optimal value� �f�n�� info�opt�opt�value�

for �i � �� i 	 info�opt�opt�nzcnt� i�� �

printf ��Value��d� � �f�n�� info�opt�opt�ix�i�� info�opt�opt�val�i��

�

�

��� appl mps

This function allows the application to initialize the original formulation itself� It has to return either
YES� in which case MINTO assumes that it has to initialize the original formulation by reading an
MPS le and it therefore ignores the parameters� or NO� in which case MINTO assumes that the
application initializes the original formulation itself and that it is available through the parameters
vcnt� ccnt� nzcnt� vobj� vlb� vub� vtype� csense� crhs� vrst� vind� vcoef� vstorsz� vstore� vname�
cstorsz� cstore� and cname�

parameters

��

id	 An integer containing the identication of the active MINTO copy�
vcnt	 An integer to hold the number of variables�
ccnt	 An integer to hold the number of constraints�
nzcnt	 An integer to hold the number of nonzero�s�
vobj	 A pointer to hold an array of doubles to hold the objective coe�cients of the variables�
vlb	 A pointer to hold an array of doubles to hold the lower bounds on the variables�
vub	 A pointer to hold an array of doubles to hold the upper bounds on the variables�
vtype	 A pointer to hold an array of characters to hold the types of the variables� i�e�� �C�� �B��

or �I��
csense	 A pointer to hold an array of characters to hold the senses of the constraints� i�e�� �L��

�E�� or �G��
crhs	 A pointer to hold an array of doubles to hold the right hand sides of the constraints�
vrst	 A pointer to hold an array of integers to hold the starting positions of the columns

associated with the variables in the arrays vind� and vcoef�
vind	 A pointer to hold an array of integers to hold the indices of the nonzero coe�cients�
vcoef	 A pointer to hold an array of doubles to hold the nonzero coe�cients�
vstorsz	 A pointer to hold an integer to hold the total number of characters �including the null

characters� in the names of the variables�
vstore	 A pointer to hold an array of characters to hold the names of the variables�
vname	 A pointer to hold an array of character pointers to hold the starting positions of the

names of the variables in the array vstore�
cstorsz	 An integer to hold the total number of characters �including the null characters� in the

names of the constraints�
cstore	 A pointer to hold an array of characters to hold the names of the constraints�
cname	 A pointer to hold an array of character pointers to hold the starting positions of the

names of the constraints in the array cstore�

By default� MINTO assumes that it has to initialize the original formulation by reading an MPS
le available in the current working directory� However� for some applications� it is much more
convenient to generate the original formulation directly within MINTO� However� MINTO still
requires a problem name to be specied on the command line� This name will serve as both problem
name and lename� MINTO always opens a logle �filename�log� to write out information that
may be useful to determine the cause of a premature exit� in case this occurs�

Note that the application has to allocate memory for all the arrays needed to hold the original
formulation �with the standard C memory allocation function calloc�� that the coe�cient matrix
has to be specied column�wise� and that even in the case that an application does not want to use
names� the arrays associated with variable and constraint names are nonempty� For every name� at
least the null character has to be given�

The following example shows how appl mps can be used to initialize the original formulation� all
variables are binary� all objective coe�cients are ���� all senses are �� all right hand sides are ����
the coe�cient matrix is an identity matrix� and neither variables nor constraints have names�

��

� E�MPS�C

��

��

�include 	stdio�h

�include �minto�h�

�define SIZE ��

��

� appl�mps

��

unsigned

appl�mps �id� vcnt� ccnt� nzcnt� vobj� vlb� vub� vtype� csense� crhs�

vfirst� vind� vcoef�

vstorsz� vstore� vname� cstorsz� cstore� cname

int id� �� identification of active minto ��

int �vcnt� �� number of variables ��

int �ccnt� �� number of constraints ��

int �nzcnt� �� number of nonzero�s ��

double ��vobj� �� objective coefficients of the variables ��

double ��vlb� �� lower bounds on the variables ��

double ��vub� �� upper bounds on the variables ��

char ��vtype� �� types of the variables� i�e�� �C�� �B�� or �I� ��

char ��csense� �� senses of the constraints� i�e�� �L�� �E�� or �G� ��

double ��crhs� �� right hand sides of the constraints ��

int ��vfirst� �� starting positions of the columns of the variables ��

int ��vind� �� indices of the nonzero coefficients ��

double ��vcoef� �� nonzero coefficients ��

int �vstorsz� �� total number of characters in the names of the variables ��

char ��vstore� �� names of the variables ��

char ���vname� �� starting positions of the names of the variables ��

int �cstorsz� �� total number of characters in the names of the constraints ��

char ��cstore� �� names of the constraints ��

char ���cname� �� starting positions of the names of the constraints ��

�

int i� j�

double ��vobj�

double ��vlb�

double ��vub�

char ��vtype�

char ��csense�

double ��crhs�

int ��vfirst�

��

int ��vind�

double ��vcoef�

char ��vstore�

char ���vname�

char ��cstore�

char ���cname�

�vcnt � SIZE�

�ccnt � SIZE�

�nzcnt � SIZE�

�vobj � �double � calloc ��vcnt� sizeof �double�

�vlb � �double � calloc ��vcnt� sizeof �double�

�vub � �double � calloc ��vcnt� sizeof �double�

�vtype � �char � calloc ��vcnt� sizeof �char�

�csense � �char � calloc ��ccnt� sizeof �char�

�crhs � �double � calloc ��ccnt� sizeof �double�

�vfirst � �int � calloc ��vcnt��� sizeof �int�

�vind � �int � calloc ��nzcnt� sizeof �int�

�vcoef � �double � calloc ��nzcnt� sizeof �double�

for ��vfirst��� � �� j � �� j 	 �vcnt� j�� �

�vobj�j� � ����

�vlb�j� � ����

�vub�j� � ����

�vtype�j� � �B��

�vfirst�j��� � j���

�vind�j� � j�

�vcoef�j� � ����

�

for �i � �� i 	 �ccnt� i�� �

�csense�i� � �L��

�crhs�i� � ����

�

�vstorsz � �vcnt�

�cstorsz � �ccnt�

�vstore � �char � calloc ��vstorsz� sizeof �char�

�cstore � �char � calloc ��cstorsz� sizeof �char�

�vname � �char �� calloc ��vcnt� sizeof �char ��

�cname � �char �� calloc ��ccnt� sizeof �char ��

��

for �j � �� j 	 �vcnt� j�� �

�vstore�j� � �����

�vname�j� � ���vstore�j��

�

for �i � �� i 	 �ccnt� i�� �

�cstore�i� � �����

�cname�i� � ���cstore�i��

�

�vobj � �vobj�

�vlb � �vlb�

�vub � �vub�

�vtype � �vtype�

�csense � �csense�

�crhs � �crhs�

�vfirst � �vfirst�

�vind � �vind�

�vcoef � �vcoef�

�vstore � �vstore�

�vname � �vname�

�cstore � �cstore�

�cname � �cname�

return �NO�

�

��� appl init

This function provides the application with an entry point in the program to perform some initial
actions� It has to return either STOP� in which case MINTO aborts� or CONTINUE� in which case
MINTO continues�

parameters
id	 An integer containing the identication of the active MINTO copy�

The following example shows how appl init can be used to open a log le�

��

� E�INIT�C

��

�include 	stdio�h

�include �minto�h�

��

FILE �fp�log�

��

� appl�init

��

unsigned

appl�init �id

int id� �� identification of active minto ��

�

if ��fp�log � fopen ��EXAMPLE�LOG�� �w� �� NULL �

fprintf �stderr� �Unable to open EXAMPLE�LOG�n��

return �STOP�

�

fprintf �fp�log� �Solving problem �s with MINTO�n�� inq�prob ��

return �CONTINUE�

�

��� appl initlp

This function provides the application with an entry point in the program to indicate whether column
generation will be used for the solution of the linear programming relaxations� MINTO ignores the
return value�

parameters
id	 An integer containing the identication of the active MINTO copy�
colgen	 An integer to indicate whether column generation will be used� i�e�� TRUE of FALSE

MINTO solves the initial linear program using a primal simplex method and all subsequent linear
programs using a dual simplex method� One reason for using the dual simplex method is that
the dual simplex method approaches the optimal value of the linear program from above and thus
provides a valid upper bound at every iteration� not only on the linear programming solution� but
also on the mixed integer programming solution� Therefore� the solution of the linear program can
be terminated as soon as this upper bound drops below the current lower bound� because at that
point the node can be fathomed by bounds� However� if the linear program is solved using column
generation� the values no longer provide valid upper bounds and the solution of the linear program
cannot be terminated earlier� It is for this reason that MINTO needs to know whether the linear
programs are solved using column generation or not�

The following example shows how appl initlp can be used to indicate that column generation will
be used to solve the linear programming relaxations�

��

��

� E�INITLP�C

��

�include 	stdio�h

�include �minto�h�

��

� appl�initlp

��

unsigned

appl�initlp �id� colgen

int id� �� identification of active minto ��

int �colgen� �� indicator ��

�

�colgen � TRUE�

return �CONTINUE�

�

��� appl preprocessing

This function provides the application with an entry in the program to perform preprocessing based
on the original formulation� It has to return either STOP� in which case assumes infeasibility has
been detected� or CONTINUE� in which case MINTO continues� The function appl preprocessing
is called once after the original formulation has been read and at each node of the search tree before
the evaluation of the node begins�

parameters
id	 An integer containing the identication of the active MINTO copy�

In general� MINTO only stores data in the information variables associated with the inquiry functions
and never looks at them again� i�e�� communication between MINTO and the application program
is one�way only� However� in appl preprocessing a set of modication functions can be used by
the application program to turn this one�way communication into a two�way communication� A call
to a modication function signals that the associated variable has been changed by the application
and that MINTO should retrieve the data and update its internal administration�

set var
This function signals that the application program has changed the contents of the info var variable
and that MINTO should get the data of the variable and update its internal administration� MINTO
only accepts changes of the bounds of a variable�

parameters

��

index	 An integer containing the index of the variable�

set obj
This function signals that the application program has changed the contents of the info obj variable
and that MINTO should get the data of the variable and update its internal administration�

set constr
This function signals that the application program has changed the contents of the info constr
variable and that MINTO should get the data of the variable and update its internal administration�
MINTO only accepts changes of the coe�cients and the status� If the status is changed to DELETE�
the constraint will be removed from the original formulation�

parameters
index	 An integer containing the index of the constraint�

For internal reasons� the preprocessing at the start of the evaluation of a node of the search tree is
limited to changing bounds on variables�

The following example shows how appl preprocessing can be used to identify and delete redundant
rows from the original formulation�

��

� E�PREP�C

��

�include 	stdio�h

�include �minto�h�

��

� appl�preprocessing

��

unsigned

appl�preprocessing �id

int id� �� identification of active minto ��

�

int i� j�

double minlhs� maxlhs� coef�

inq�form ��

for �i � �� i 	 info�form�form�ccnt� i�� �

minlhs � maxlhs � �double ��

inq�constr �i�

for �j � �� j 	 info�constr�constr�nz� j�� �

inq�var �info�constr�constr�ind�j�� NO�

��

if ��coef � info�constr�constr�coef�j�
 EPS �

minlhs �� coef � info�var�var�lb�

maxlhs �� coef � info�var�var�ub�

�

else �

minlhs �� coef � info�var�var�ub�

maxlhs �� coef � info�var�var�lb�

�

�

if �info�constr�constr�sense �� �G� ��

minlhs
 info�constr�constr�rhs � EPS �

info�constr�constr�status � DELETE�

set�constr �i�

�

if �info�constr�constr�sense �� �L� ��

maxlhs 	 info�constr�constr�rhs � EPS �

info�constr�constr�status � DELETE�

set�constr �i�

�

�

�

��� appl node

This function provides the application with an entry point in the program after MINTO has selected
a node from the set of unevaluated nodes of the branch�and�bound tree and before MINTO starts
processing the node� It has to return either STOP� in which case MINTO aborts� or CONTINUE�
in which case MINTO continues�

parameters
id	 An integer containing the identication of the active MINTO copy�
depth	 A long containing the depth in the branch�and�bound tree of the node that has been

selected for evaluation�

creation	 A long containing the creation number of the node that has been selected for evaluation�

zprimal	 A double containing the value of the primal solution�
xprimal	 An array of doubles containing the values of the variables associated with the primal

solution�

The following example shows how appl node can be used to implement a simple stopping rule�

��

� E�NODE�C

��

��

�include 	stdio�h

�include �minto�h�

�define GAPSIZE ���

extern FILE �fp�log�

��

� appl�node

��

unsigned

appl�node �id� depth� creation� zprimal� xprimal

int id� �� identification of active minto ��

int depth� �� node identification� depth ��

int creation� �� node identification� creation ��

double zprimal� �� value of primal solution ��

double �xprimal� �� value of the variables ��

�

double gap � stat�gap ��

if �gap 	 GAPSIZE �

fprintf �fp�log� �Terminated as gap ��f is smaller than �f�n�� gap� GAPSIZE�

return �STOP�

�

else �

fprintf �fp�log� �Evaluating node ��ld��ld�n�� depth� creation�

return �CONTINUE�

�

�

��	 appl variables

This function allows the application to generate one or more additional variables� It has to return
either FAILURE� in which case MINTO assumes that no additional variables were found� or no
attempt was made to generate any and it therefore ignores the parameters nzcnt� vcnt� vobj� vlb�
vub� vrst� vind� and vcoef� or SUCCESS� in which case MINTO assumes that additional variables
have been found by the application and that they are available through the parameters nzcnt� vcnt�
vobj� vlb� vub� vrst� vind� and vcoef�

parameters
id	 An integer containing the identication of the active MINTO copy�

��

zlp	 A double containing the value of the LP solution�
xlp	 An array of doubles containing the values of the variables�
zprimal	 A double containing the value of the primal solution�
xprimal	 An array of doubles containing the values of the variables associated with the primal

solution�

nzcnt	 An integer to hold the number of nonzero coe�cients to be added to the current for�
mulation�

vcnt	 An integer to hold the number of variables to be added to the current formulation�
vclass	 An array to hold the classication of variables to be added to the current formulation�

i�e�� BINARY� INTEGER� CONTINUOUS�

vobj	 An array of doubles to hold the objective function coe�cients of the variables to be
added�

vlb	 An array of doubles to hold the lower bounds on the values of the variables to be added�

vub	 An array of doubles to hold the upper bounds on the values of the variables to be
added�

vrst	 An array of integers to hold the positions of the rst nonzero coe�cients of the variables
to be added�

vind	 An array of integers to hold the row indices of the nonzero coe�cients of the variables
to be added�

vcoef	 An array of doubles to hold the values of the nonzero coe�cients of the variables to be
added�

vname	 An array of character pointers to hold the names of the variables to be added�
sdim	 An integer to hold the length of the arrays vobj� varlb� varub� and vrst�
ldim	 An integer to hold the length of the arrays vind and vcoef�

For reasons having to do with memory management� the application has to allocate the memory�
using calloc� to hold the name associated with a variable� MINTO will free that memory after it has
installed the name in its internal administration�

The following example shows how appl variables can be used to implement a column generation
scheme for the solution of the linear program�

��

� E�VARS�C

��

�include 	stdio�h

�include �minto�h�

��

� appl�variables

��

��

unsigned

appl�variables �id� zlp� xlp� zprimal� xprimal� nzcnt� vcnt� vclass� vobj� varlb�

varub� vfirst� vind� vcoef� vname� sdim� ldim

int id� �� identification of active minto ��

double zlp� �� value of the LP solution ��

double �xlp� �� values of the variables ��

double zprimal� �� value of the primal solution ��

double �xprimal� �� values of the variables ��

int �nzcnt� �� variable for number of nonzero coefficients ��

int �vcnt� �� variable for number of variables ��

char �vclass� �� array for classifications of vars added ��

double �vobj� �� array for objective coefficients of vars added ��

double �varlb� �� array for lower bounds of vars added ��

double �varub� �� array for upper bounds of vars added ��

int �vfirst� �� array for positions of first nonzero coefficients ��

int �vind� �� array for indices of nonzero coefficients ��

double �vcoef� �� array for values of nonzero coefficients ��

char ��vname� �� array for names of vars added ��

int sdim� �� length of small arrays ��

int ldim� �� length of large arrays ��

�

int j�

int col�nz�

int �col�ind�

double �col�coeff�

int col�class�

double col�obj�

double col�lb�

double col�ub�

inq�form ��

col�ind � �int � calloc �info�form�form�ccnt� sizeof �int�

col�coeff � �double � calloc �info�form�form�ccnt� sizeof �double�

�vcnt � ��

�nzcnt � ��

while �get�column ��col�nz� �col�class� col�ind� col�coeff� �col�obj� �col�lb� �col�ub �

if ��nzcnt � col�nz
 ldim �

continue�

�

��

vfirst��vcnt� � �nzcnt�

vclass��vcnt� � col�class�

vobj��vcnt� � col�obj�

varlb��vcnt� � col�lb�

varub���vcnt��� � col�ub�

for �j � �� j 	 col�nz� j�� �

vind��nzcnt� � col�ind�j��

vcoef���nzcnt��� � col�coeff�j��

�

if ��vcnt �� sdim �

break�

�

�

vfirst��vcnt� � �nzcnt�

free �col�ind�

free �col�coef�

return ��vcnt
 � � SUCCESS � FAILURE�

�

unsigned

get�column �col�nz� col�class� col�ind� col�coeff� col�obj� col�lb� col�ub

int �col�nz�

int �col�class�

int �col�ind�

double �col�coeff�

double �col�obj�

double �col�lb�

double �col�ub�

�

��

� This function tries to generate a column� It returns � if it

� successful and � otherwise

��

�

��
 appl delvariables �NOT IMPLEMENTED�

This function allows the application to delete one or more of the previously generated variables
from the active formulation� i�e�� the formulation currently loaded in the LP�solver� It has to return
either FAILURE� in which case MINTO assumes that no variables have to be deleted and it therefore

��

ignores the parameters vcnt and vind� or SUCCESS� in which case MINTO assumes that variables
have to be deleted and that these variables are available through the parameters vcnt and vind�

parameters
id	 An integer containing the identication of the active MINTO copy�
vcnt	 An integer to hold the number of variables to be deleted from the current formulation�
vind	 An array of integers to hold the indices of the variables to be deleted from the current

formulation�

Note that variables are deleted from the active formulation� Therefore indices are considered to be
relative to the active formulation� Note also that it is only possible to delete previously generated
variables� either by MINTO or by the application� It is not possible to delete variables from the
initial formulation�

The following example shows how appl delvariables can be used to examine all active variables
and delete all variables whose reduced cost is greater than a certain tolerance� MINTO will ignore
all indices referring to variables from the initial formulation�

��

� E�DELVARS�C

��

�include 	stdio�h

�include �minto�h�

�define TOLERANCE ���

��

� appl�delvariables

��

unsigned

appl�delvariables �id� vcnt� vind

int id� �� identification of active minto ��

int �vcnt� �� variable for number of variables to be deleted ��

int �vind� �� array for indices of the variables to be deleted ��

�

int j�

�vcnt � ��

for �j � �� j 	 lp�vcnt �� j�� �

if �lp�rc �j
 TOLERANCE �

vind���vcnt��� � j�

�

�

��

return �SUCCESS�

�

�� appl terminatelp

This function allows the application to terminate the solution of the current linear program without
having reached an optimal solution� i�e�� before all variables have been priced out� It has to return
either NO� in which case MINTO assumes that the application wants to continue the solution of the
current linear program and it therefore ignores the parameter zub� or YES� in which case MINTO
assumes that the application wants to terminate the solution of the current linear program and that
an alternative upper bound is provided through the parameter zub� If zub is set to �INF� MINTO
assumes that the active problem is infeasible and that the node can be fathomed�

parameters
id	 An integer containing the identication of the active MINTO copy�
zlp	 A double containing the value of the LP solution�
xlp	 An array of doubles containing the values of the variables�
zub	 A double to hold the alternative upper bound�

���� appl primal

This function allows the application to provide MINTO with a lower bound and possibly an asso�
ciated primal solution� It has to return either FAILURE� in which case MINTO assumes that no
lower bound was found by the application or no attempt was made to nd one and it therefore
ignores the parameters zpnew� xpnew� and xpstat� or SUCCESS� in which case MINTO assumes
that a lower bound has been found by the application and that it is available through the parameter
zpnew and that an associated primal solution is available through the parameter xpnew if xpstat is
set to TRUE�

parameters
id	 An integer containing the identication of the active MINTO copy�
zlp	 A double containing the value of the LP solution�
xlp	 An array of doubles containing the values of the variables�
intlp	 An integer that indicates whether the LP solution is integral� i�e�� TRUE or FALSE�
zprimal	 A double containing the value of the current primal solution�
xprimal	 An array of doubles containing the values of the variables associated with the current

primal solution�

zpnew	 A double to hold the value of the new primal solution�
xpnew	 An array of doubles to hold the values of the variables associated with the new primal

solution�

xpstat	 An integer to indicate the existence of a solution vector� i�e�� TRUE or FALSE�

��

The following example shows how appl primal can be used to provide feasible solutions given a
fractional LP solution of a node packing problem�

��

� E�PRIMAL�C

��

�include 	stdio�h

�include �minto�h�

�define UNDEFINED ��

�define FREE �

�define FIXED �

��

� The graph is represented as a forward star in the arrays adjnodes and

� edges

��

extern int �adjnodes�

extern int �adjedges�

��

� appl�primal

��

unsigned

appl�primal �id� zlp� xlp� intlp� zprimal� xprimal� zpnew� xpnew� xpstat

int id� �� identification of active minto ��

double zlp� �� value of the LP solution ��

double �xlp� �� values of the variables ��

int intlp� �� integrality status of LP solution ��

double zprimal� �� value of the primal solution ��

double �xprimal� �� values of the variables ��

double �zpnew� �� variable for new value of lower bound ��

double �xpnew� �� array for new values of the variables ��

int �xpstat� �� variable for status of associated solution ��

�

register int j� k�

int ix�

int �mark�

double maxxlp�

if �intlp �� TRUE �

��

return �FALSE�

�

�xpstat � TRUE�

�zpnew � ����

inq�form ��

inq�obj ��

mark � �int � calloc �info�form�form�vcnt� sizeof �int�

for ��� �

ix � UNDEFINED� maxxlp � ����

for �j � �� j 	 info�form�form�vcnt� j�� �

if �mark�j� �� FREE �

if �xlp�j�
 maxxlp �

maxxlp � xlp�j��

ix � j�

�

�

�

if �ix �� UNDEFINED �

break�

�

else �

mark�ix� � FIXED�

xpnew�ix� � ����

�zpnew �� info�obj�obj�coef�ix��

for �k � adjnodes�ix�� k 	 adjnodes�ix���� k�� �

mark�adjedges�k�� � FIXED�

xpnew�adjedges�k�� � ����

�

�

�

free �mark�

return �SUCCESS�

�

��

���� appl feasible

This function allows the application to verify that a solution to the active formulation satisfying
the integrality conditions does indeed constitute a feasible solution� It has to return either YES� in
which case MINTO assumes that the solution is feasible and therefore terminates processing this
node� or NO� in which case MINTO assumes that the solution is not feasible and therefore continues
processing this node�

parameters
id	 An integer containing the identication of the active MINTO copy�
zlp	 A double containing the value of the LP solution�
xlp	 An array of doubles containing the values of the variables�

The following example shows how appl feasible can be used to accommodate partial formulations�
In the linear ordering problem one usually deals with the ��cycle inequalities �ij
 �jk
 �ki � �
implicitly� i�e� they may be generated only when they violate an LP�solution� The following code
assumes the set of variables is �ij for i� j � �� ���� n� i �� j and veries whether the given solution is
feasible or not�

��

� E�FEAS�C

��

�include 	stdio�h

�include �minto�h�

�define INDEX�I�J �

��I � �n�� � ���J 	 �I � �J � �J��

��

� appl�feasible

��

unsigned

appl�feasible �id� zlp� xlp

int id� �� identification of active minto ��

double zlp� �� value of the LP solution ��

double �xlp� �� values of the variables ��

�

int i� j� k� n�

double diff�

inq�form �� n � info�form�form�vcnt�

for �i � �� i 	 n� i�� �

��

for �j � �� j 	 n� j�� �

for �k � �� k 	 n� k�� �

if �i �� j �� i �� k �� j �� k �

diff � xlp�INDEX�i�j� � xlp�INDEX�j�k� � xlp�INDEX�k�i� � �

if �diff
 EPS �

return �NO�

�

�

�

�

�

return �YES�

�

���� appl fathom

This function allows the application to provide an optimality tolerance to terminate or prevent the
processing of a node of the branch�and�bound tree even when the upper bound value associated
with the node is greater than the value of the primal solution� It has to return either FAILURE�
in which case MINTO assumes that �further� processing of the node is still required� or SUCCESS�
in which case MINTO assumes that �further� processing of the node is no longer required� For an
active node� processing is terminated� for an unevaluated node� MINTO deletes it from the list of
nodes to be processed�

parameters
id	 An integer containing the identication of the active MINTO copy�
zlp	 A double containing the value of the LP solution�
zprimal	 A double containing the value of the primal solution�

The following two examples show how the function appl fathom can be used to implement opti�
mality tolerances� The rst example shows how to incorporate the fact that objective coe�cients
are all integer� The second example shows how to build a truncated branch�and�bound algorithm
that generates a solution that is within a certain percentage of optimality�

��

� E�FATHOM�C

��

�include 	stdio�h

�include �minto�h�

��

� appl�fathom

��

��

unsigned

appl�fathom �id� zlp� zprimal

int id� �� identification of active minto ��

double zlp� �� value of the LP solution ��

double zprimal� �� value of the primal solution ��

�

if �zlp � zprimal 	 � � EPS �

return �SUCCESS�

�

else �

return �FAILURE�

�

�

��

� E�FATHOM�C

��

�include 	stdio�h

�include �minto�h�

�define TOLERANCE ����

��

� appl�fathom

��

unsigned

appl�fathom �id� zlp� zprimal

int id� �� identification of active minto ��

double zlp� �� value of the LP solution ��

double zprimal� �� value of the primal solution ��

�

if �zlp 	 TOLERANCE � zprimal � EPS �

return �SUCCESS�

�

else �

return �FAILURE�

�

�

��

���� appl bounds

This function allows the application to modify the bounds of one or more variables� It has to return
either FAILURE� in which case MINTO assumes that no bounds have to be changed and it therefore
ignores the parameters vcnt� vind� vtype� and vvalue� or SUCCESS� in which case MINTO assumes
that there are variables for which the bounds have to be changed and that the relevant information
is available through the parameters vcnt� vind� vtype� and vvalue�

parameters
id	 An integer containing the identication of the active MINTO copy�
zlp	 A double containing the value of the LP solution�
xlp	 An array of doubles containing the values of the variables�
zprimal	 A double containing the value of the primal solution�
xprimal	 An array of doubles containing the values of the variables associated with the primal

solution�

vcnt	 An integer to hold the number of variables for which bounds have to be modied�
vind	 An array of integers to hold the indices of the variables for which bounds have to be

modied�

vtype	 An array of characters to hold the types of modication to be performed� i�e�� lower
bound �L� or upper bound �U��

vvalue	 An array of doubles to hold the new values for the bounds�
bdim	 An integer containing the length of the arrays vind� vtype� and vvalue�

The following example shows how appl bounds can be used to implement reduced cost xing�

��

� E�BNDS�C

��

�include 	stdio�h

�include �minto�h�

��

� appl�bounds

��

unsigned

appl�bounds �id� zlp� xlp� zprimal� xprimal� vcnt� vind� vtype� vvalue� bdim

int id� �� identification of active minto ��

double zlp� �� value of the LP solution ��

double �xlp� �� values of the variables ��

double zprimal� �� value of the primal solution ��

double �xprimal� �� values of the variables ��

int �vcnt� �� variable for number of variables ��

��

int �vind� �� array for indices of variables ��

char �vtype� �� array for type of bounds ��

double �vvalue� �� array for value of bounds ��

int bdim� �� size of arrays ��

�

int j�

double lb� ub�

�vcnt � ��

��

� Retrieve basis information

��

lp�base ��

��

� Loop through all variables

��

inq�form ��

for �j � �� j 	 info�form�form�vcnt� j�� �

if �info�base�base�vstat�j� �� BASIC �

inq�var �j� NO�

if �info�var�var�class �� CONTINUOUS �

lb � info�var�var�lb�

ub � info�var�var�ub�

if �lb
 ub � EPS �

continue�

�

if �xlp�j� 	 lb � EPS �� zlp � lp�rc �j 	 zprimal � EPS �

vind��vcnt� � j�

vtype��vcnt� � �U��

vvalue���vcnt��� � lb�

�

if ��vcnt �� bdim �

break�

�

if �xlp�j�
 ub � EPS �� zlp � lp�rc �j 	 zprimal � EPS �

��

vind��vcnt� � j�

vtype��vcnt� � �L��

vvalue���vcnt��� � ub�

�

if ��vcnt �� bdim �

break�

�

�

�

�

return ��vcnt
 � � SUCCESS � FAILURE�

�

���� appl constraints

This function allows the application to generate one or more violated constraints� It has to return
either FAILURE� in which case MINTO assumes that no violated constraints were found� or no
attempt was made to generate any and it therefore ignores the parameters nzcnt� ccnt� crst� cind�
ccoef� and ctype� or SUCCESS� in which case MINTO assumes that additional constraints have been
found by the application and that they are available through the parameters nzcnt� ccnt� crst� cind�
ccoef� and ctype�

parameters
id	 An integer containing the identication of the active MINTO copy�
zlp	 A double containing the value of the LP solution�
xlp	 An array of doubles containing the values of the variables�
zprimal	 A double containing the value of the primal solution�
xprimal	 An array of doubles containing the values of the variables associated with the primal

solution�

nzcnt	 An integer to hold the number of nonzero coe�cients to be added to the current for�
mulation�

ccnt	 An integer to hold the number of constraints to be added to the current formulation�
crst	 An array of integers to hold the positions of the rst nonzero coe�cients of the con�

straints to be added�

cind	 An array of integers to hold the indices of the nonzero coe�cients of the constraints to
be added�

ccoef	 An array of doubles to hold the values of the nonzero coe�cients of the constraints to
be added�

csense	 An array of characters to hold the senses of the constraints to be added�
crhs	 An array of doubles to hold the right hand sides of the constraints to be added�
ctype	 An array of integers to hold the types of the constraints to be added� i�e�� GLOBAL or

LOCAL�

��

cname	 An array of character pointers to hold the names of the constraints to be added�
sdim	 An integer containing the length of the arrays crst� csense� crhs� and ctype�
ldim	 An integer containing the length of the arrays cind and ccoef�

For reasons having to do with memory management� the application has to allocate the memory�
using calloc� to hold the name associated with a constraint� MINTO will free that memory after it
has installed the name in its internal administration�

The following example shows how appl constraints can be used to develop a cutting plane algo�
rithm based on minimal covers for knapsack constraints�

��

� E�CONS�C

��

�include 	stdio�h

�include �minto�h�

�define INDEX�I�J �

��I � �n�� � ���J 	 �I � �J � �J��

��

� appl�constraints

��

unsigned

appl�constraints �id� zlp� xlp� zprimal� xprimal� nzcnt� ccnt� cfirst�

cind� ccoef� csense� crhs� ctype� cname� sdim� ldim

int id� �� identification of active minto ��

double zlp� �� value of the LP solution ��

double �xlp� �� values of the variables ��

double zprimal� �� value of the primal solution ��

double �xprimal� �� values of the variables ��

int �nzcnt� �� variable for number of nonzero coefficients ��

int �ccnt� �� variable for number of constraints ��

int �cfirst� �� array for positions of first nonzero coefficients ��

int �cind� �� array for indices of nonzero coefficients ��

double �ccoef� �� array for values of nonzero coefficients ��

char �csense� �� array for senses ��

double �crhs� �� array for right hand sides ��

int �ctype� �� array for the constraint types� LOCAL or GLOBAL ��

int ��cname� �� array for the names ��

int sdim� �� length of small arrays ��

int ldim� �� length of large arrays ��

��

�

int i� j� k� n�

double diff�

�ccnt � ��

�nzcnt � ��

inq�form �� n � info�form�form�vcnt�

for �i � �� i 	 n� i�� �

for �j � �� j 	 n� j�� �

for �k � �� k 	 n� k�� �

if �i �� j �� i �� k �� j �� k �

diff � xlp�INDEX�i�j� � xlp�INDEX�j�k� � xlp�INDEX�k�i� � �

if �diff
 EPS �

cfirst��ccnt� � �nzcnt�

cind��nzcnt� � INDEX�i�j�

ccoef���nzcnt��� � ����

cind��nzcnt� � INDEX�j�k�

ccoef���nzcnt��� � ����

cind��nzcnt� � INDEX�k�i�

ccoef���nzcnt��� � ����

csense��ccnt� � �L��

crhs��ccnt� � ���

ctype���ccnt��� � GLOBAL�

if ��ccnt �� sdim !! �nzcnt
 ldim � � �

goto EXIT�

�

�

�

�

�

�

EXIT�

cfirst��ccnt� � �nzcnt�

return ��ccnt
 � � SUCCESS � FAILURE�

�

���� appl delconstraints

This function allows the application to delete one or more of the previously generated constraints
from the active formulation� i�e�� the formulation currently loaded in the LP�solver� It has to re�

��

turn either FAILURE� in which case MINTO assumes that no constraints have to be deleted and it
therefore ignores the parameters ccnt and cind� or SUCCESS� in which case MINTO assumes the
constraints have to be deleted and that these constraints are available through the parameters ccnt
and cind�

parameters
id	 An integer containing the identication of the active MINTO copy�
ccnt	 An integer to hold the number of constraints to be deleted from the active formulation�
cind	 An array of integers to hold the indices of the constraints to be deleted from the active

formulation�

Note that constraints are deleted from the active formulation� Therefore indices are considered to
be relative to the active formulation� Note also that it is only possible to delete previously generated
constraints� either by MINTO or by the application� It is not possible to delete constraints from the
initial formulation�

The following example shows how appl delconstraints can be used to examine all active con�
straints every tenth iteration and delete all the constraints whose slack is greater than a certain
TOLERANCE� MINTO will ignore all indices referring to constraints from the initial formulation�

��

� E�DELCONS�C

��

�include 	stdio�h

�include �minto�h�

�define TOLERANCE ���

static int lpcounter � ��

��

� appl�delconstraints

��

unsigned

appl�delconstraints �id� ccnt� cind

int id� �� identification of active minto ��

int �ccnt� �� variable for number of constraints to be deleted ��

int �cind� �� array for indices of the constraints to be deleted ��

�

int i�

if ���lpcounter � �� �� � �

return �FAILURE�

��

�

else �

�ccnt � ��

for �i � �� i 	 lp�ccnt �� i�� �

if �lp�slack �i 	 �TOLERANCE !! lp�slack �i
 TOLERANCE �

cind���ccnt��� � i�

�

�

return ��ccnt
 � � SUCCESS � FAILURE�

�

�

���� appl terminatenode

This function allows the application to take over control of tailing�o� detection and set the threshold
value used by MINTO to detect tailing�o�� It has to return either NO� in which case MINTO
assumes that the application does not want to replace the default value of the threshold by its own
and it therefore ignores the parameter threshold� or YES� in which case MINTO assumes that the
application wants to replace the default value of the threshold by its own and that this value is
available through the parameter threshold� If threshold is set to �INF� MINTO assumes that the
active problem is infeasible and that the node can be fathomed�

parameters
id	 An integer containing the identication of the active MINTO copy�
zlp	 A double containing the value of the LP solution�
change	 A double containing the total change in the value of the LP solution over the last three

iterations�

threshold	 A double to hold the threshold to be used to detect tailing�o�

When MINTO processes a node� it monitors the changes in the value of the LP solutions from
iteration to iteration� If it detects that the total change in the value of the LP solution in the last
three iterations is less than ��� percent� i�e�� ����� times the value of the current LP solution� it
forces MINTO to branch�

The following example shows how appl terminatenode can be used to override MINTO�s default
scheme and continue generating constraints as long as violated constraints are identied

��

� E�TERMND�C

��

�include 	stdio�h

�include �minto�h�

��

��

� appl�terminatenode

��

unsigned

appl�terminatenode �id� zlp� change� threshold

int id�

double zlp�

double change�

double �threshold�

�

�threshold � ����

return �YES�

�

���	 appl divide

This function allows the application to provide a partition of the set of solutions by either spec�
ifying bounds for one or more variables� or generating one or more constraints� or both� It has
to return either FAILURE� in which case MINTO assumes that the application wants to use the
default division scheme and it therefore ignores the parameters� or SUCCESS� in which case MINTO
assumes that the application constructed a partition which is available through the parameters� or
INSUFFICIENT� signaling that more memory� i�e�� larger arrays� is required to store the partition�
in which case MINTO increases the available memory and calls the function again�

parameters
id	 An integer containing the identication of the active MINTO copy�
depth	 A long containing the depth in the tree of the node that has been selected for evaluation�

creation	 A long containing the creation number of the node that has been selected for evaluation�

zlp	 A double containing the value of the LP solution�
xlp	 An array of doubles containing the values of the variables�
zprimal	 A double containing the value of the primal solution�
xprimal	 An array of doubles containing the values of the variables associated with the primal

solution�

ncnt	 An integer to hold the number of nodes in the division�
vcnt	 An array of integers to hold the number of variables for which a bound is specied for

each node�

vind	 An array of integers to hold the indices of the variables for which a bound is specied�
vtype	 An array of characters to hold the types of bounds� i�e�� lower bound �L� or upper bound

�U��

vvalue	 An array of doubles to hold the values of the bounds�

��

nzcnt	 An integer to hold the total number of nonzero coe�cients in the constraints generated
for each node�

ccnt	 An array of integers to hold the number of constraints generated for each node�
crst	 An array of integers to hold the positions of the rst nonzero coe�cients of the con�

straints generated�

cind	 An array of integers to hold the indices of the nonzero coe�cients of the constraints
generated�

ccoef	 An array of doubles to hold the values of the nonzero coe�cients of the constraints
generated�

csense	 An array of characters to hold the senses of the constraints generated�
crhs	 An array of doubles to hold the right hand sides of the constraints generated�
cname	 An array of character pointers to hold the names of the constraints to be added�
bdim	 An integer containing the length of the arrays vind� vtype� and vvalue�
sdim	 An integer containing the length of the arrays ccnt� crst� csense� and crhs�
ldim	 An integer containing the length of the arrays cind and ccoef�

The default division scheme partitions the set of solutions into two sets by specifying bounds for
the integer variable with fractional part closest to ���� In the rst set of the partition� the selected
variable is bounded from above by the round down of its value in the current LP�solution� In the
second set of the partition the selected variable is bounded from below by the round up of its value
in the current LP solution� Note that if the integer variable is binary� this corresponds to xing the
variable to zero and one respectively�

Each node of the branch�and�bound tree also receives a �unique� identication� This identication
consists of two numbers	 depth and creation� Depth refers to the level of the node in the branch�
and�bound tree� Creation refers to the total number of nodes that have been created in the branch�
and�bound process� The root node receives identication ������

The two following examples show how appl divide can be used to implement the default branching
scheme� In the rst example� the variable is xed by specifying new bounds� In the second example�
the variable is xed by specifying new constraints�

��

� E�DIVIDE�C

��

�include 	stdio�h

�include 	math�h

�include �minto�h�

��

� appl�divide

��

��

unsigned

appl�divide �id� depth� creation� zlp� xlp� zprimal� xprimal�

ncnt� vcnt� vind� vtype� vvalue�

nzcnt� ccnt� cfirst� cind� ccoef� csense� crhs� cname�

bdim� sdim� ldim

int id� �� identification of active minto ��

long depth� �� identification� depth ��

long creation� �� identification� creation ��

double zlp� �� value of the LP solution ��

double �xlp� �� values of the variables ��

double zprimal� �� value of the primal solution ��

double �xprimal� �� values of the variables ��

int �ncnt� �� variable for number of nodes ��

int �vcnt� �� array for number of variables ��

int �vind� �� array for indices of variables ��

char �vtype� �� array for type of bounds ��

double �vvalue� �� array for value of bounds ��

int �nzcnt� �� variable for number of nonzero coefficients ��

int �ccnt� �� array for number of constraints ��

int �cfirst� �� array for positions of first nonzero coefficients ��

int �cind� �� array for indices of nonzero coefficients ��

double �ccoef� �� array for values of nonzero coefficients ��

char �csense� �� array for senses ��

double �crhs� �� array for right hand sides ��

char ��cname� �� array for names ��

int bdim� �� size of bounds arrays ��

int sdim� �� size of small arrays ��

int ldim� �� size of large arrays ��

�

register int i�

register double frac� diff�

int index � ���

double mindiff � �double ��

for �inq�form �� i � �� i 	 info�form�form�vcnt� i�� �

if �inq�var �i� NO� info�var�var�class �� CONTINUOUS �

frac � xlp�i� � floor �xlp�i��

if �frac
 EPS �� frac 	 � � EPS �

diff � fabs �frac � ����

if �diff 	 mindiff �

mindiff � diff�

index � i�

�

�

��

�

�

�ncnt � �

vcnt��� � ��

vcnt��� � ��

vind��� � index�

vtype��� � �U��

vvalue��� � �double ��

vind��� � index�

vtype��� � �L��

vvalue��� � �double ��

ccnt��� � ��

ccnt��� � ��

return �SUCCESS�

�

��

� E�DIVIDE�C

��

�include 	stdio�h

�include 	math�h

�include �minto�h�

��

� appl�divide

��

unsigned

appl�divide �id� depth� creation� zlp� xlp� zprimal� xprimal�

ncnt� vcnt� vind� vtype� vvalue�

nzcnt� ccnt� cfirst� cind� ccoef� csense� crhs� cname�

bdim� sdim� ldim

int id� �� identification of active minto ��

long depth� �� identification� depth ��

long creation� �� identification� creation ��

double zlp� �� value of the LP solution ��

��

double �xlp� �� values of the variables ��

double zprimal� �� value of the primal solution ��

double �xprimal� �� values of the variables ��

int �ncnt� �� variable for number of nodes ��

int �vcnt� �� array for number of variables ��

int �vind� �� array for indices of variables ��

char �vtype� �� array for type of bounds ��

double �vvalue� �� array for value of bounds ��

int �nzcnt� �� variable for number of nonzero coefficients ��

int �ccnt� �� array for number of constraints ��

int �cfirst� �� array for positions of first nonzero coefficients ��

int �cind� �� array for indices of nonzero coefficients ��

double �ccoef� �� array for values of nonzero coefficients ��

char �csense� �� array for senses ��

double �crhs� �� array for right hand sides ��

double ��cname� �� array for names ��

int bdim� �� size of bounds arrays ��

int sdim� �� size of small arrays ��

int ldim� �� size of large arrays ��

�

register int i�

register double frac� diff�

int index � ���

double mindiff � �double ��

for �inq�form �� i � �� i 	 info�form�form�vcnt� i�� �

if �inq�var �i� NO� info�var�var�class �� CONTINUOUS �

frac � xlp�i� � floor �xlp�i��

if �frac
 EPS �� frac 	 � � EPS �

diff � fabs �frac � ����

if �diff 	 mindiff �

mindiff � diff�

index � i�

�

�

�

�

�ncnt � �

vcnt��� � ��

vcnt��� � ��

�nzcnt � �

��

ccnt��� � ��

ccnt��� � ��

cfirst��� � ��

cind��� � index�

ccoef��� � �double ��

csense��� � �L��

crhs��� � �double ��

cfirst��� � ��

cind��� � index�

ccoef��� � �double ��

csense��� � �G��

crhs��� � �double ��

cfirst� � � �

return �SUCCESS�

�

���
 appl rank

This function allows the application to specify the order in which the nodes of the branch�and�
bound tree are evaluated� It has to return either FAILURE� in which case MINTO assumes that the
application wants to use the default rank function and it therefore ignores the parameter rank� or
SUCCESS� in which case MINTO assumes that the rank for the current node is available through the
parameter rank� or REORDER� in which case MINTO assumes that the application has switched
to a di�erent rank function� In this case� MINTO reorders the list of unevaluated nodes� Before
reordering� each node receives a new rank by successive calls to appl rank�

parameters
id	 An integer containing the identication of the active MINTO copy�
depth	 A long containing the depth in the branch�and�bound tree of the node that has been

selected for evaluation�

creation	 A long containing the creation number of the node that has been selected for evaluation�

zlp	 A double containing the value of the LP solution�
zprimal	 A double containing the value of the primal solution�
rank	 A double to hold the rank to be associated with the current node�

The unevaluated nodes of the branch�and�bound tree are kept in a list� The nodes in the list are

��

in order of decreasing rank values� When new nodes are generated either by the default division
scheme or the division scheme specied by the appl divide function� each of them receives a rank
value provided either by the default rank function or by the function provided by the appl rank
function� The rank value of the node is used to insert it at the proper place in the list of unevaluated
nodes� When a new node has to be selected� MINTO will always take the node at the head of the
list�

The default rank function takes the LP value associated with the node as rank� which results in
a best�bound search of the branch�and�bound tree�

The following example shows how appl rank can be used to implement the strategy that starts
with depth�rst and switches to best�bound as soon as a primal feasible solution has been found�

��

� E�RANK�C

��

�include 	stdio�h

�include �minto�h�

static unsigned switched � FALSE�

��

� appl�rank

��

unsigned

appl�rank �id� depth� creation� zlp� zprimal� rank

int id� �� identification of active minto ��

long depth� �� node identification� depth ��

long creation� �� node identification� creation ��

double zlp� �� value of the LP solution ��

double zprimal� �� value of the primal solution ��

double �rank� �� rank value ��

�

if �switched �� TRUE �

�rank � zlp�

return �SUCCESS�

�

else �

if �zprimal 	 ���� � EPS � �INF �

�rank � �double creation�

return �SUCCESS�

�

else �

�rank � zlp�

��

switched � TRUE�

return �REORDER�

�

�

�

��� appl exit

This function provides the application with an entry point in the program to perform some nal
actions� MINTO ignores the return value�

parameters
id	 An integer containing the identication of the active MINTO copy�
zopt	 A double containing the value of the nal solution�
xopt	 An array of doubles containing the values of the variables associated with the nal

solution�

If no solution vector exists the second parameter will be NULL� The following example shows how
the function appl exit can be used to write the optimal solution to a log le and afterwards close
the log le�

��

� E�EXIT�C

��

�include 	stdio�h

�include �minto�h�

extern FILE �fp�log�

��

� appl�exit

��

unsigned

appl�exit �id� zopt� xopt

int id� �� identification of active minto ��

double zopt� �� value of the final solution ��

double �xopt� �� values of the variables ��

�

int j�

fprintf �fp�log� �OPTIMAL SOLUTION VALUE� �f�n�� zopt�

if �xopt �

��

fprintf �fp�log� �OPTIMAL SOLUTION��n��

for �inq�form �� j � �� j 	 info�form�form�vcnt� j�� �

fprintf �fp�log� �x��d� � �f�n�� j� xopt�j��

�

�

fclose �fp�log�

return �CONTINUE�

�

���� appl quit

This function provides the application with an entry point in the program to perform some nal
actions if execution is terminated by a �ctrl��C signal� MINTO ignores the return value�

parameters
id	 An integer containing the identication of the active MINTO copy�
zopt	 A double containing the value of the nal solution�
xopt	 An array of doubles containing the values of the variables associated with the nal

solution�

If no solution vector exists the second parameter will be NULL�

� Control Functions

MINTO provides more detailed control over the run�time behavior of MINTO through a set of
control functions� Each of these control functions can be called any time during the solution process
and activates or deactivates one of the system functions�

	�� ctrl clique

This function activates or deactivates generation of clique constraints�

parameters
indicator	 An unsigned integer to hold a status indicator that controls the generation of clique

constraints� i�e�� ON or OFF�

	�� ctrl implication

This function activates or deactivates generation of implication constraints�

parameters

��

indicator	 An unsigned integer to hold a status indicator that controls the generation of implica�
tion constraints� i�e�� ON or OFF�

	�� ctrl knapcov

This function activates or deactivates generation of lifted knapsack covers�

parameters
indicator	 An unsigned integer to hold a status indicator that controls the generation of lifted

knapsack covers� i�e�� ON or OFF�

	�� ctrl gubcov

This function activates or deactivates generation of lifted GUB covers�

parameters
indicator	 An unsigned integer to hold a status indicator that controls the generation of lifted

knapsack covers� i�e�� ON or OFF�

	�� ctrl �owcov

This function activates or deactivates generation of simple and extended generalized �ow covers�

parameters
indicator	 An unsigned integer to hold a status indicator that controls the generation of simple

and extended generalized �ow covers� i�e�� ON or OFF�

	�� ctrl output

This function sets the output level�

parameters
indicator	 An unsigned integer to hold the level of output to be set� i�e�� ���� or ��

MINTO also provides more detailed control over the run�time behavior of the LP�solver through a
set of control functions� Each of these control functions can be called any time during the solution
process and changes the parameters of the LP�solver� For a precise denition of the meaning of the
parameters� the user is referred to the manual of the LP�solver� �At the moment only available for
CPLEX based versions of MINTO��

	�	 ctrl lpmethod

This function selects the type of simplex algorithm that is used to solve the active formulation�

parameters

��

selector	 An integer specifying the type of simplex algorithm� i�e�� PRIMAL� DUAL� BARRIER�
BARRIERCROSS� HYBNETWORKPRIMAL� or HYBNETWORKDUAL�

Note that in the default setting MINTO solves the rst linear program with the primal simplex
method and all subsequent linear programs with the dual simplex method� The barrier and network
methods are only available for the CPLEX Version ��� and up� The rst barrier method �BARRIER�
does not perform a cross�over at the end and therefore does not terminate with a basic solution�
The second barrier method �BARRIERCROSS� does perform a cross�over at the end and therefore
terminates with a basic solution� The hybrid network methods extract an embedded network� call
the network optimizer to obtain an optimal basis to the network� and then optimize the entire lin�
ear program using a primal �HYBNETWORKPRIMAL� or dual �HYBNETWORKDUAL� simplex
method�

	�
 ctrl lppresolve

This function indicates whether the presolver embedded in the LP solver should be activated or
deactivated�

parameters �CPLEX�
selector	 An integer specifying whether to activate or to deactivate the LP presolver� i�e�� PRE�

SOLVE or NOPRESOLVE�

Note that in the default setting of MINTO the presolver embedded in the LP solver is not activated�

	� ctrl lppricing

This function selects the pricing algorithm that is used to solve the active formulation�

parameters �CPLEX ����
selector	 An integer specifying the pricing algorithm� i�e�� REDUCED COST� NORM �

REDUCED COST� HYBRID REDUCED COST� STEEPEST EDGE� or STEEP�
EST EDGE SLACK NORMS�

parameters �CPLEX ��� and up�
algorithm	 An integer specifying the type of simplex algorithm� i�e�� PRIMAL or DUAL�
selector	 An integer specifying the pricing algorithm� i�e�� for the primal simplex algorithm RE�

DUCED COST� REDUCED COST DEVEX� DEVEX� STEEPEST EDGE SLACK �
NORMS� or FULL and for the dual simplex algorithm AUTO� STANDARD DUAL�
STEEPEST EDGE� STEEPEST EDGE SLACK� or STEEPEST EDGE NORMS�

	��� ctrl lppricinglist

This function sets the size of the pricing list maintained by the LP�solver�

parameters �CPLEX�
size	 An integer specifying the size of the pricing list�

��

	��� ctrl lpperturbconst

This function sets the constant used the LP�solver when it perturbs the active linear program�

parameters �CPLEX�
value	 A double specifying the value of the perturbation constant�

	��� ctrl lpperturbmethod

This function selects the perturbation method used by the LP�solver�

parameters �CPLEX�
selector	 An integer specifying the perturbation method� i�e�� BEGINNING or AUTOMATIC�

	��� ctrl lprefactorfreq

This function sets the refactorization frequency�

parameters �CPLEX�
freq	 An integer specifying the frequency of refactorization�

� Bypass functions

MINTO provides advanced low level control over the �ow of control through a set of bypass functions�
Each of these control functions can be called any time during the solution process and determines
whether or not certain system activities are carried out or not� These functions a�ect the main �ow
of control and should be used very carefully�

�� bypass lp

This function allows an application to bypass the solution of the active formulation�

parameters
indicator	 An unsigned integer to hold a status indicator that controls the deactivation of the LP

solver� i�e�� ON or OFF�

In branch�and�price algorithms� the initial formulation associated with a node is usually determined
only when the node is selected for processing as opposed to when the node is created� The reason
is that many new variables may have been created between the time the node was created and the
time it is selected for processing and that some of these variables have to be deleted �xed at zero��

Note that bypassing the solution of the active LP does not mean that there is no current LP
solution� The current LP solution does exist and is equal to the last LP solution� except in the case
a new node has been selected� In the case a new node has been selected the value of the LP solution

��

is equal to the value of the LP solution associated with the parent node and the LP solution consists
of zeroes for all variables�

�� bypass fathom

This function allows an application to bypass the test to determine if the processing of the current
node can be terminated�

parameters
indicator	 An unsigned integer to hold a status indicator that controls the deactivation of the

fathom test� i�e�� ON or OFF�

If an application program wants to evaluate the e�ect of some �temporary� modications to the
active formulation on the LP solution� the fathoming tests have to be deactivated to make sure that
the application has the opportunity to undo the temporary modications�

�� bypass integral

This function allows an application to bypass the test to determine if the current LP solution is
integral�

parameters
indicator	 An unsigned integer to hold a status indicator that controls the deactivation of the

integrality test� i�e�� ON or OFF�

The function appl primal is intended to provide the application an opportunity to take a fractional
LP solution and use it to nd an integral solution� Consequently� when MINTO nds that the current
LP solution is integral� it does not call appl primal� However� there are also situations in which
an application may want to take an integral LP solution and use it to nd an improved integral
solution� Note that if the integrality test is bypassed the integrality test should be incorporated in
appl primal�

	 Miscellaneous Functions

�� wrt prob

This function writes the active formulation� i�e�� the formulation currently loaded in the LP�solver
to a specied le in MPS�format�

parameters
fname	 A character string specifying the name of the le to which the active formulation should

be written�

The following example shows how wrt prob can be used to write the active formulation to a le�

��

� E�WRITE�C

��

��

�include 	stdio�h

�include �minto�h�

��

� WriteActive

��

void

WriteActive �

�

wrt�prob ��active�mps��

�

�
 Calling MINTO recursively

In many branch�and�cut and branch�and�price algorithms the separation and pricing problems are
themselves di�cult mixed integer programs� MINTO �versions ��� and up� supports the development
of such algorithms� since it can be called recursively�

Each time MINTO is called it checks to see if it is called recursively� i�e�� from within another
running copy of MINTO� If MINTO has not been called recursively� it assigns itself the identication
�� If on the other hand it has been called recursively� it assigns itself the next available identication�
i�e�� the identication of the calling copy of MINTO plus one� Consequently� MINTO�s identication
represents the depth of the recursion�

The recursion depth gives users the opportunity to develop multiple customized versions of
MINTO at the same time� The rst parameter passed to every application function is the identica�
tion of the currently active copy of MINTO� This allows the implementation of application functions
that perform di�erent actions based upon the recursion depth� as the following examples show

��

� E�INIT�C

��

�include 	stdio�h

�include �minto�h�

��

� appl�init

��

unsigned

appl�init �id

int id�

��

�

switch �id �

case ����

printf ��Initializing master problem�n��

break�

case ����

printf ��Initializing subproblem�n��

break�

default�

printf ��ERROR in appl�init �id
 ��n��

exit ���

�

return �CONTINUE�

�

��

� E�CONS�C

��

�include 	stdio�h

�include �minto�h�

��

� appl�constraints

��

unsigned

appl�constraints �id� zlp� xlp� zprimal� xprimal�

nzcnt� ccnt� cfirst� cind� ccoef� csense� crhs� ctype� cname� sdim� ldim

int id� �� identification of active minto ��

double zlp� �� value of the LP solution ��

double �xlp� �� values of the variables ��

double zprimal� �� value of the primal solution ��

double �xprimal� �� values of the variables ��

int �nzcnt� �� variable for number of nonzero coefficients ��

int �ccnt� �� variable for number of constraints ��

int �cfirst� �� array for positions of first nonzero coefficients ��

int �cind� �� array for indices of nonzero coefficients ��

double �ccoef� �� array for values of nonzero coefficients ��

char �csense� �� array for senses ��

double �crhs� �� array for right hand sides ��

int �ctype� �� array for the constraint types� LOCAL or GLOBAL ��

char ��cname� �� array for names ��

int sdim� �� length of small arrays ��

��

int ldim� �� length of large arrays ��

�

switch �id �

case ����

��

� Invoke MINTO to solve the separation problem� This assumes that

� other application functions� such as appl�mps �� have been set up

� properly to define the separation problem�

��

minto ��separation�� ��s��

��

� Print the solution

��

printf ��Optimal value separation problem� �f�n�� info�opt�opt�value�

for �i � �� i 	 info�opt�opt�nzcnt� i�� �

printf ��Value��d� � �f�n�� info�opt�opt�ix�i�� info�opt�opt�val�i��

�

��

� The remainder of the code should interpret the solution and� if

� appropriate� convert it to a violated inequality that can then be

� passed back to MINTO�

��

break�

case ����

break�

default�

printf ��ERROR in appl�constraints �id
 ��n��

exit ���

�

return �CONTINUE�

�

�� Direct access to the active LP

When MINTO is used in cooperation with the CPLEX linear optimizer� direct acces to the active LP
is provided through pointers �mintoenv� of type �CPXENVptr� and �mintolp� of type �CPXLPptr��

��

This feature adds a lot of �exibility� but should be handled with extreme care because direct changes
to the CPLEX database are not re�ected in MINTO�s internal administration� If at all possible� the
application programmer is advised to make changes using the functions provided by MINTO�

The following example shows how to obtain the number of variables and constraints in the active
linear program directly from CPLEX�

��

� E�LP�C

��

�include 	stdio�h

�include �minto�h�

�include �cplex�h�

��

� appl�node

��

unsigned

appl�node �id� depth� creation� zprimal� xprimal� ecnt� gap

int id� �� identification of active minto ��

int depth� �� node identification� depth ��

int creation� �� node identification� creation ��

double zprimal� �� value of primal solution ��

double �xprimal� �� value of the variables ��

int ecnt� �� number of evaluated nodes ��

double gap� �� gap between primal and LP solution value ��

�

printf ��Number of variables in active lp� �d�n�� CPXgetnumcols �mintoenv� mintolp�

printf ��Number of constraints in active lp� �d�n�� CPXgetnumrows �mintoenv� mintolp�

return �CONTINUE�

�

�� Environment variables

MINTO provides some control over its activities through the use of environment variables� Most of
the environment variables a�ect memory management and row management activities�

MIOPERMS As a default MINTO assumes that the complete path of the MINTO permission
le is � usr etc minto�perms�� If the MIOPERMS environment variable exists MINTO assumes the
complete path of the MINTO permission le is given by the MIOPERMS environment variable�

MIOSDIM� MIOLDIM� MIOBDIM MINTO tries to keep memory management fully within

��

MINTO� Therefore� the arrays passed to an application function to hold information to be passed
back to MINTO have a xed length� either �sdim�� �ldim� or �bdim�� These lengths can be changed
by setting the corresponding environment variable�

MIOSTORAGE For e�ciency MINTO maintains all its data structures in internal memory� Con�
sequently� MINTO requires a huge amount of internal memory when� for some problem instance�
the branch�and�bound tree gets really big� Setting the environment variable MIOSTORAGE to �
will direct MINTO to store part of its data structures externally to free up internal memory� This
considerably reduces the maximum amount of memory in use at any time� but it also increases the
running time �experiments have indicated a moderate increase of about ��� percent��

MIOROWSZ� MIOCOLSZ� MIONZSZ� MIOCHARSZ For e�ciency CPLEX requires that
the memory necessary to store the active constraint matrix at any moment during the solution pro�
cess is allocated at the start of the solution process� i�e�� memory for the initial constraint matrix
as well as memory for rows and columns that may be added during the solution process� Once
this memory has been allocated� it cannot be changed� As MINTO supports branch�and�cut and
branch�and�price algorithms� it allocates� besides the memory necessary to store the initial con�
straint matrix� memory for MIOROWSZ and MIOCOLSZ extra rows and columns� MIONZSZ extra
nonzero coe�cients� and MIOCHARSZ extra row and column name characters� These default sizes
can be changed by setting the corresponding environment variables� For example� if no columns will
be generated� then MIOCOLSZ can be set to zero� Do not set MIOCHARSZ to zero� even if no
names are associated with rows and columns because CPLEX always stores the string termination
character �n��� Default values are MIOROWSZ	 ������ MIOCOLSZ	 ������ MIONZSZ ������� and
MIOCHARSZ	 ������

MIOCUTPOOLSZ� MIOCUTDELBND To control the size of the active formulation MINTO
monitors the dual variables associated with all the global constraints that have been generated dur�
ing the solution process� either by MINTO or by an application �note that MINTO only generates
global constraints�� and if the value of a dual variable has been equal to zero� implying the constraint
is inactive� for ten consecutive iterations� MINTO will deactivate the corresponding constraint� De�
activating a constraint means deleting it from the active formulation and storing it in the cut pool�
Every time the active formulation is solved and a new linear programming solution exists� the con�
straints in the cut pool will be inspected to see if any of them are violated by the current solution�
If so� these constraints will be reactivated� Reactivating a constraint means adding it to the active
formulation and deleting it from the cut pool� The cut pool has a xed size and is maintained on
a rst�in�rst�out basis� i�e�� if the pool over�ows the constraints that have been in the pool the
longest will be deleted� As soon as a cut is deleted from the cut pool it can never be reactivated
again� The environment variable MIOCUTPOOLSZ sets the size of the pool� default size is ����
The environment variable MIOCUTDELBND sets the the deactivation threshold� default threshold
is ���

MIOCUTFREQ Another issue related to cut generation is the frequency with which an attempt
is made to generate cuts� Obviously� cut generation takes time and it may be benecial not to

��

perform cut generation at every node of the search tree� The environment variable MIOCUTFREQ
sets the frequency with which an attempt is made to generate cuts� default frequency is �� i�e�� cut
generation at every node�

MIOPRIMALFREQ Determining primal feasible solutions is of crucial importance for the per�
formance of branch�and�bound algorithms� MINTO uses a diving heuristic to try and nd feasible
solutions� Obviously� the diving heuristic takes time and it is therefore impractical to invoke it at
every node of the search tree� The environment variable MIOPRIMALFREQ sets the frequency
with which the diving heuristic is invoked� default frequency is ��� i�e�� the diving heuristic invoked
every �� nodes�

DSPACE As a default� MINTO creates a �dspace� of size ������� �OSL version only�� Setting the
environment variable DSPACE will direct MINTO to create a �dspace� of the size specied by the
value of the environment variable DSPACE�

�� Programming considerations

The include le minto�h is� and should always be� included in all sources of application functions�
since it contains constant denitions� type denitions� external variable declarations� and function
prototypes�

The variables and arrays containing information about the LP�solution associated with the active
formulation and information about the best primal solution� which are passed as parameters to the
application functions� are the ones maintained by MINTO for its own use� They should never be
modied� they should only be examined�

MINTO allocates memory dynamically for the arrays that are passed as parameters to an appli�
cation function� However� from an application program point of view they are xed length arrays�
When appropriate� the current lengths of the arrays are also passed as parameters� It is the re�
sponsibility of the application program to ensure that memory is not overrun� MINTO will abort
immediately if it detects a memory violation�

�� Test problems

The distribution of MINTO contains a set of �� test problems� The main purpose of the test
problems is to verify whether the installation of MINTO has been successful� However� MINTO�s
performance on this set of test problems also demonstrates its power as a general purpose mixed
integer optimizer� Table � shows the problem characteristics� Table � shows the LP value� the IP
value� and the number of evaluated nodes and total cpu time when MINTO is run in its default
setting� These runs have been made on an IBM RS ���� model ��� using CPLEX ��� as LP�solver�
We have observed variations in performance when running MINTO with OSL as LP�solver and when
under di�erent architectures� because di�erent branch�and�bound trees are generated�

��

NAME !cons !vars !nonzeros !cont !bin !int
EGOUT �� ��� ��� �� �� �
VPM� ��� ��� ��� ��� ��� �
FIXNET� ��� ��� ���� ��� ��� �
KHB����� ��� ���� ���� ���� �� �
SET�AL ��� ��� ���� ��� ��� �
LSEU �� �� ��� � �� �
BM�� �� �� ��� � �� �
P���� ��� ��� ���� � ��� �
P���� ��� ��� ���� � ��� �
P���� ��� ���� ���� � ���� �

Table �	 Characteristics of the test problems

NAME LP value IP value !nodes cpu secs
EGOUT ������ ������ � ����
VPM� ����� ����� ���� �����
FIXNET� �������� �������� � ����
KHB����� ����������� ������������ �� ����
SET�AL �������� �������� �� ����
LSEU ������ ������� ��� ����
BM�� ����� ����� ��� �����
P���� ��������� ��������� �� �����
P���� ������ ������� � ����
P���� ������� ������� �� �����

Table �	 Results for the test problems

��

�� Availability and Future Releases

MINTO ��� is available on SUN SPARC stations �with either SunOS or Solaris as operating system��
IBM RS ���� workstations� HP Apollo workstations� DEC Alpha workstations� Silicon Graphics
workstations� and on IBM compatible PCs with an Intel ��� or higher processor� It runs on top of
CPLEX ���� and ���� on top of OSL ��� and ���� or on top of XPRESS�MP version �����

MINTO is an evolutionary system and therefore version ��� is not a nal product� We see the
development of MINTO as an evolutionary process� that should lead to a robust and �exible mixed
integer programming solver� It�s modular structure makes it easy to modify and expand� especially
with regard to the addition of new information and application functions� Therefore we encourage
the users of this release to provide us with comments and suggestions for future releases�

Developments in future releases may include parallel implementations� more e�cient cut genera�
tion routines� additional classes of cuts� explicit column generation routines� better primal heuristics
and di�erent strategies for getting upper bounds� such as Lagrangian relaxation�

References

G�L� Nemhauser� M�W�P� Savelsbergh� G�C� Sigismondi ������� MINTO� a Mixed INTeger
Optimizer� Oper� Res� Letters ��� ������

M�W�P� Savelsbergh ������� Preprocessing and Probing for Mixed Integer Programming Prob�
lems� ORSA J� Comput �� ��������

Z� Gu� G�L� Nemhauser� M�W�P� Savelsbergh ������� Cover Inequalities for ��� Linear Pro�
grams	 Computation� INFORMS J� Comput� ��� ��������

Z� Gu� G�L� Nemhauser� M�W�P� Savelsbergh ������� Cover Inequalities for ��� Linear Pro�
grams	 Complexity� INFORMS J� Comput�� to appear�

Z� Gu� G�L� Nemhauser� M�W�P� Savelsbergh ������� Cover Inequalities for ��� Linear Pro�

grams� Algorithms� in preparation�

Z� Gu� G�L� Nemhauser� M�W�P� Savelsbergh ������� Sequence Independent Lifting� Report
LEC������ Georgia Institute of Technology�

Z� Gu� G�L� Nemhauser� M�W�P� Savelsbergh ������� Lifted Flow Cover Inequalities for Mixed
��� Integer Programs� Math� Programming� to appear�

J� Linderoth� M�W�P� Savelsbergh ������� A Computational Study of Search Strategies for
Mixed Integer Programming� INFORMS J� Comput�� to appear�

A� Atamturk� G�L� Nemhauser� M�W�P� Savelsbergh ������� Using Con�ict Graphs in In�
teger Programming� European J� Oper� Res�� to appear�

��

Appendix A� Inquiry functions

��

� E�UTIL�C

��

�include �minto�h�

�ifdef PROTOTYPING

void WriteFormulation �void�

char � ConvertCClass �int�

char � ConvertCType �int�

char � ConvertCInfo �int�

char � ConvertVClass �int�

char � ConvertVInfo �int�

char � ConvertStatus �int�

�else

void WriteFormulation ��

char � ConvertCClass ��

char � ConvertCType ��

char � ConvertCInfo ��

char � ConvertVClass ��

char � ConvertVInfo ��

char � ConvertStatus ��

�endif

��

� WriteFormulation

�

� WriteFormulation is an example of the use of the inquiry functions

� provided by MINTO to access the formulation in the current node

� of the branch�and�bound tree�

��

void

WriteFormulation �

�

int i� j�

printf ���n�nCURRENT FORMULATION��n��

printf ��NAME� �s�n�� inq�prob ��

printf ��OBJECTIVE�n��

for �inq�obj �� j � �� j 	 info�obj�obj�nz� j�� �

��

printf �� �f �d�n�� info�obj�obj�coef�j�� info�obj�obj�ind�j��

�

printf ��CONSTRAINTS�n��

for �inq�form �� i � �� i 	 info�form�form�ccnt� i�� �

printf ���d��n�� i�

inq�constr �i�

if �info�constr�constr�name �

printf �� NAME � �s�n�� info�constr�constr�name�

�

else �

printf �� NAME � no name�n��

�

for �j � �� j 	 info�constr�constr�nz� j�� �

printf �� �f �d�n�� info�constr�constr�coef�j�� info�constr�constr�ind�j��

�

printf �� SENSE � �c�n�� info�constr�constr�sense�

printf �� RHS � �f�n�� info�constr�constr�rhs�

printf �� CLASS � �s�n�� ConvertCClass �info�constr�constr�class�

printf �� TYPE � �s�n�� ConvertCType �info�constr�constr�type�

printf �� STATUS � �s�n�� ConvertStatus �info�constr�constr�status�

printf �� INFO � �s�n�� ConvertCInfo �info�constr�constr�info�

�

printf ��VARIABLES�n��

for �i � �� i 	 info�form�form�vcnt� i�� �

printf ���d��n�� i�

inq�var �i� TRUE�

if �info�var�var�name �

printf �� NAME � �s�n�� info�var�var�name�

�

else �

printf �� NAME � no name�n��

�

for �j � �� j 	 info�var�var�nz� j�� �

printf �� �f �d�n�� info�var�var�coef�j�� info�var�var�ind�j��

�

printf �� OBJ � �f�n�� info�var�var�obj�

printf �� CLASS � �s�n�� ConvertVClass �info�var�var�class�

printf �� STATUS � �s�n�� ConvertStatus �info�var�var�status�

printf �� LB � �f�n�� info�var�var�lb�

printf �� UB � �f�n�� info�var�var�ub�

printf �� INFO LB � �s�n�� ConvertVInfo �info�var�var�lb�info�

printf �� INFO UB � �s�n�� ConvertVInfo �info�var�var�ub�info�

if �info�var�var�vlb �

printf �� VLB ��f� �d��n��

��

info�var�var�vlb�
vlb�val�

info�var�var�vlb�
vlb�var�

�

else �

printf �� NO VLB�n��

�

if �info�var�var�vub �

printf �� VUB ��f� �d��n��

info�var�var�vub�
vub�val�

info�var�var�vub�
vub�var�

�

else �

printf �� NO VUB�n��

�

�

printf ���n��

�

static char �bs�u � �BINSUM�UB��

static char �bs�e � �BINSUM�EQ��

static char �bs�vu � �BINSUM�VARUB��

static char �bs�ve � �BINSUM�VAREQ��

static char �bsvu � �BINSUMVARUB��

static char �bsve � �BINSUMVAREQ��

static char �svu � �SUMVARUB��

static char �sve � �SUMVAREQ��

static char �vu � �VARUB��

static char �ve � �VAREQ��

static char �vl � �VARLB��

static char �mixu � �MIXUB��

static char �mixe � �MIXEQ��

static char �nbu � �NOBINUB��

static char �nbe � �NOBINEQ��

static char �abu � �ALLBINUB��

static char �abe � �ALLBINEQ��

��

� ConvertCClass ��

�

� Convert the constraint class into a printable string�

��

char �

��

ConvertCClass �class

int class�

�

switch �class �

case BINSUM�UB�

return �bs�u�

case BINSUM�EQ�

return �bs�e�

case BINSUM�VARUB�

return �bs�vu�

case BINSUM�VAREQ�

return �bs�ve�

case BINSUMVARUB�

return �bsvu�

case BINSUMVAREQ�

return �bsve�

case SUMVARUB�

return �svu�

case SUMVAREQ�

return �sve�

case VARUB�

return �vu�

case VAREQ�

return �ve�

case VARLB�

return �vl�

case MIXUB�

return �mixu�

case MIXEQ�

return �mixe�

case NOBINUB�

return �nbu�

case NOBINEQ�

return �nbe�

case ALLBINUB�

return �abu�

case ALLBINEQ�

return �abe�

�

�

static char �local � �LOCAL��

static char �global � �GLOBAL��

��

��

� ConvertCType ��

�

� Convert the constraint type into a printable string�

��

char �

ConvertCType �type

int type�

�

switch �type �

case LOCAL�

return �local�

case GLOBAL�

return �global�

�

�

static char �original � �ORIGINAL��

static char �genminto � �GENERATED�BY�MINTO��

static char �genbranch � �GENERATED�BY�BRANCHING��

static char �genappl � �GENERATED�BY�APPL��

��

� ConvertCInfo ��

�

� Convert the constraint status into a printable string�

��

char �

ConvertCInfo �info

int info�

�

switch �info �

case ORIGINAL�

return �original�

case GENERATED�BY�MINTO�

return �genminto�

case GENERATED�BY�BRANCHING�

return �genbranch�

case GENERATED�BY�APPL�

return �genappl�

�

�

��

static char �cont � �CONTINUOUS��

static char �bin � �BINARY��

static char �integ � �INTEGER��

��

� ConvertVClass ��

�

� Convert the variable class into a printable string�

��

char �

ConvertVClass �class

int class�

�

switch �class �

case CONTINUOUS�

return �cont�

case BINARY�

return �bin�

case INTEGER�

return �integ�

�

�

static char �modminto � �MODIFIED�BY�MINTO��

static char �modbranch � �MODIFIED�BY�BRANCHING��

static char �modappl � �MODIFIED�BY�APPL��

��

� ConvertVInfo ��

�

� Convert the constraint status into a printable string�

��

char �

ConvertVInfo �info

int info�

�

switch �info �

case ORIGINAL�

return �original�

case MODIFIED�BY�MINTO�

return �modminto�

��

case MODIFIED�BY�BRANCHING�

return �modbranch�

case MODIFIED�BY�APPL�

return �modappl�

�

�

static char �act � �ACTIVE��

static char �inact � �INACTIVE��

static char �del � �DELETED��

��

� ConvertStatus ��

�

� Convert the constraint status into a printable string�

��

char �

ConvertStatus �status

int status�

�

switch �status �

case ACTIVE�

return �act�

case INACTIVE�

return �inact�

case DELETED�

return �del�

�

�

��

