Vehicle Routing and Scheduling

Martin Savelsbergh
The Logistics Institute
Georgia Institute of Technology
Vehicle Routing and Scheduling

Part II: Algorithmic Enhancements
Handling Practical Complexities
In Construction Heuristics
Insertion Heuristics

Start with a set of unrouted stops

Are there any unrouted stops?

Yes: Select an unrouted stop

Insert selected stop in current set of routes

No: Done
Insertion

Initial

Intermediate

Final
Insertion Heuristics

- Efficient (fast)
- Effective (good quality solutions)
- Easy to implement
- Easy to extend
 - time windows
 - route duration
 - variable delivery quantities
 - ...
Insertion Heuristic

\[N = \{ \text{unassigned customers} \} \]
\[R = \{ \text{set of routes} \} \]
\[\text{WHILE } N \neq \emptyset \text{ DO} \]
\[p^* = -\infty \]
\[\text{FOR } j \in N \text{ DO} \]
\[\text{FOR } r \in R \text{ AND } (i-1,i) \in r \text{ DO} \]
\[\text{IF Feasible}(i,j) \text{ AND Profit}(i,j) > p^* \text{ THEN} \]
\[r^* = r, \ i^* = i, \ j^* = j, \ p^* = \text{Profit}(i,j) \]
\[\text{Insert}(i^*,j^*) \]
\[\text{Update}(r^*) \]
\[N = N \setminus \{ j^* \} \]
Insertion Heuristic

- Complexity is $O(n^3)$ if:
 - Feasible() is $O(1)$
 - Profit() is $O(1)$
 - Update() is at most $O(n^2)$

- Vehicle Routing Problem
 - Feasible: $d_j < Q - q_r$
 - Update: $q_r = q_r + d_j$
Time Windows

Arrival time may increase

How to quickly check feasibility?
Latest delivery time

depot

direct travel time

Latest time delivery can take place
Time windows

- **Notation:**
 - $[E_k, L_k]$ time window on start of delivery at k

- **Auxiliary information:**
 - e_k earliest time delivery can take place at k
 - l_k latest time delivery can take place at k
Time windows (cont.)

- Feasible()
 - $d_j < Q - q_r$
 - $e_j = \max\{E_j, e_{i-1} + t_{i-1,j}\}$ & $l_j = \min\{L_j, l_i - t_{j,i}\}$
 - $e_j < l_j$

- Update()
 - for $k=i-1$ to 0: $l_k = \min\{l_k, l_{k+1} - t_{k,k+1}\}$
 - for $k=i$ to $n+1$: $e_k = \max\{e_k, e_{k-1} + t_{k-1,k}\}$
Route duration

- **Notation:**
 - T planning horizon
 - L route duration limit

- **Auxiliary information:**
 - e_0 earliest start time route

 $$e_0 = \max\{0, e_{n+1} - L\}$$
 - l_{n+1} latest completion time route

 $$l_{n+1} = \min\{l_0 + L, T\}$$
Route duration (cont.)

- Auxiliary information
 - f_i total travel time from i until the end
 - b_i total travel time from the beginning until i
Route duration (cont.)

- Feasible()
 - \(e_{n+1} = \max\{e_{n+1}, e_j + t_{j,i} + f_i\} \), \(e_0 = \max\{e_0, e_{n+1} - L\} \)
 - \(l_0 = \min\{l_0, l_j - t_{i-1,j} - b_{i-1}\} \), \(l_{n+1} = \min\{l_{n+1}, l_0 + L\} \)
 - \(d_j < Q - q_r \)
 - \(e_j < l_j \)
 - \(e_0 < l_0 \) & \(l_{n+1} > e_{n+1} \)
Route duration (cont.)

- Update()
 - for k = i-1 to 0: \(l_k = \min\{l_k, l_{k+1} - t_{k,k+1}\} \)
 - for k = i to n+1: \(e_k = \max\{e_k, e_{k-1} + t_{k-1,k}\} \)
 - if \(e_0 \) updated
 - for k = 1 to i-1: \(e_k = \max\{e_k, e_{k-1} + t_{k-1,k}\} \)
 - If \(l_{n+1} \) updated
 - for k = n+1 to i: \(l_k = \min\{l_k, l_{k+1} - t_{k,k+1}\} \)
Handling Practical Complexities In Improvement Heuristics
2-change

Orientation of traversal is reversed!
Lexicographic search

2-changes
Global variables

- Total travel time $T(u_1,\ldots,u_k)$
 $$\text{sum}(i=1,\ldots,k-1) t(u_i, u_{i+1})$$

- Earliest delivery time $E(u_1,\ldots,u_k)$ at u_k
 assuming u_1 is left at the opening of its time window
 $$\max(i=1,\ldots,k) \{E_i + T(u_i,\ldots,u_k)\}$$

- Latest delivery time $L(u_1,\ldots,u_k)$ at u_1 such that the path remains feasible
 $$\min(i=1,\ldots,k) \{L_i - T(u_1,\ldots,u_i)\}$$
Path concatenation

- \(T(u_1, \ldots, u_k, v_1, \ldots, v_l) = T(u_1, \ldots, u_k) + t(u_k, v_1) + T(v_1, \ldots, v_l) \)
- \(E(u_1, \ldots, u_k, v_1, \ldots, v_l) = \max\{E(u_1, \ldots, u_k) + t(u_k, v_1) + T(v_1, \ldots, v_l), E(v_1, \ldots, v_l)\} \)
- \(L(u_1, \ldots, u_k, v_1, \ldots, v_l) = \min\{L(u_1, \ldots, u_k), L(v_1, \ldots, v_l) - T(v_1, \ldots, v_l) - t(u_k, v_1)\} \)
Path concatenation

Earliest delivery at v_1: $E(u_1, \ldots, u_k) + t(u_k, v_1)$

Earliest delivery at v_l: $E(u_1, \ldots, u_k) + t(u_k, v_1) + T(v_1, \ldots, v_l)$
Path concatenation

Latest delivery at u_k: $L(v_1, \ldots, v_l) - t(u_k, v_1)$

Latest delivery at u_1: $L(v_1, \ldots, v_l) - t(u_k, v_1) - T(u_1, \ldots, u_k)$
Observations

- The set of global variables makes it possible to test feasibility of an exchange in constant time.
- The lexicographic search strategy makes it possible to maintain the correct values for the set of global variables in constant time.
Lexicographic search

2-changes
The Dial-a-Ride Problem
Dial-a-Ride Problem

- Dispatch vehicles to pickup person/package at one location (origin) and deliver the person/package at another location (destination)
- Service related constraints
 - pickup window / delivery window
 - maximum wait time
 - maximum ride time
Service related constraints

- Pickup and delivery window
- Maximum wait time
 - Limit waiting time at a stop before departing
- Maximum ride time
 - Limit time between pickup and delivery
Feasibility testing

- Given a sequence of pickups and deliveries does there exist a feasible schedule satisfying pickup and delivery windows, maximum wait time, and maximum ride time constraints?
Example

- Waiting time limit: 10
- Ride time limit: 1.5 * ride time
Example

<table>
<thead>
<tr>
<th>Stop</th>
<th>Early</th>
<th>Late</th>
<th>Arrival</th>
<th>Departure</th>
<th>Waiting</th>
<th>Travel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1+</td>
<td>10.15</td>
<td>10.30</td>
<td>10.15</td>
<td>10.15</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>2+</td>
<td>10.45</td>
<td>11.00</td>
<td>10.35</td>
<td>10.45</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>1-</td>
<td>11.00</td>
<td>11.15</td>
<td>11.00</td>
<td>11.00</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>2-</td>
<td>11.20</td>
<td>11.40</td>
<td>11.10</td>
<td>11.20</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>3+</td>
<td>11.40</td>
<td>12.00</td>
<td>11.35</td>
<td>11.40</td>
<td>5</td>
<td>50</td>
</tr>
<tr>
<td>3-</td>
<td>12.30</td>
<td>13.00</td>
<td>12.30</td>
<td>12.30</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Example

<table>
<thead>
<tr>
<th>Stop</th>
<th>Early</th>
<th>Late</th>
<th>Arrival</th>
<th>Departure</th>
<th>Waiting</th>
<th>Travel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1+</td>
<td>10.15</td>
<td>10.30</td>
<td>10.15</td>
<td>10.15</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>2+</td>
<td>10.45</td>
<td>11.00</td>
<td>10.35</td>
<td>10.45</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>1-</td>
<td>11.00</td>
<td>11.15</td>
<td>11.00</td>
<td>11.00</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>2-</td>
<td>11.20</td>
<td>11.40</td>
<td>11.10</td>
<td>11.20</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>3+</td>
<td>11.40</td>
<td>12.00</td>
<td>11.35</td>
<td>11.40</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>4+</td>
<td>12.10</td>
<td>12.30</td>
<td>11.50</td>
<td>12.10</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>3-</td>
<td>12.30</td>
<td>13.00</td>
<td>12.50</td>
<td>12.50</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>4-</td>
<td>13.00</td>
<td>13.45</td>
<td>13.10</td>
<td>13.10</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Example

<table>
<thead>
<tr>
<th>Stop</th>
<th>Early</th>
<th>Late</th>
<th>Arrival</th>
<th>Departure</th>
<th>Waiting</th>
<th>Travel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1+</td>
<td>10.15</td>
<td>10.30</td>
<td>10.15</td>
<td>10.15</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>2+</td>
<td>10.45</td>
<td>11.00</td>
<td>10.35</td>
<td>10.45</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>1-</td>
<td>11.00</td>
<td>11.15</td>
<td>11.00</td>
<td>11.00</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>2-</td>
<td>11.20</td>
<td>11.40</td>
<td>11.10</td>
<td>11.20</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>3+</td>
<td>11.40</td>
<td>12.00</td>
<td>11.35</td>
<td>11.40</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>4+</td>
<td>12.10</td>
<td>12.30</td>
<td>11.50</td>
<td>12.10</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>3-</td>
<td>12.30</td>
<td>13.00</td>
<td>12.50</td>
<td>12.50</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>4-</td>
<td>13.00</td>
<td>13.45</td>
<td>13.10</td>
<td>13.10</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stop</th>
<th>Early</th>
<th>Late</th>
<th>Arrival</th>
<th>Departure</th>
<th>Waiting</th>
<th>Travel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1+</td>
<td>10.15</td>
<td>10.30</td>
<td>10.20</td>
<td>10.20</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>2+</td>
<td>10.45</td>
<td>11.00</td>
<td>10.40</td>
<td>10.50</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>1-</td>
<td>11.00</td>
<td>11.15</td>
<td>11.05</td>
<td>11.05</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>2-</td>
<td>11.20</td>
<td>11.40</td>
<td>11.15</td>
<td>11.25</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>3+</td>
<td>11.40</td>
<td>12.00</td>
<td>11.40</td>
<td>11.50</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>4+</td>
<td>12.10</td>
<td>12.30</td>
<td>12.00</td>
<td>12.10</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>3-</td>
<td>12.30</td>
<td>13.00</td>
<td>12.50</td>
<td>12.50</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>4-</td>
<td>13.00</td>
<td>13.45</td>
<td>13.10</td>
<td>13.10</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Feasibility testing

- Can be done in linear time ...

- Invariant property:
 - No feasible schedule can have an arrival or departure time earlier than the computed arrival and departure times
Feasibility checking

- Notation:
 - \([e_j, l_j]\) time window
 - \(\omega\) waiting time limit
 - \(\alpha t_{i+,i-}\) ride time limit
 - \(A_j\) arrival time
 - \(D_j\) departure time
 - \(L_j\) latest feasible departure time
Pass 1 - Forward

- Account for pickup and delivery windows and maximum waiting time constraints

- Normal updates
 - $A_j = D_{j-1} + t_{j-1,j}$
 - $D_j = \max\{e_j, A_j\}$
 - $L_j = \min\{l_j, L_{j-1} + t_{j-1,j} + \omega\}$
Pass 1 (cont.)

- Infeasibility
 - $A_j > l_j$
 - $L_j < e_j$
- Special update when $A_j + \omega < e_j$
 - $A_j = e_j - \omega$
 - $D_j = e_j$
Pass 2 - Backward

- Update arrival and departure times and “check” ride time constraints
 - Waiting time from j until the end of route W
- Normal updates
 - \(D_j = A_{j+1} - t_{j-1,j} \)
 - \(A_j = \max\{A_j, D_j - \omega\} \)
 - \(W = W + (D_j - A_j) \)
Pass 2 (cont.)

- **Infeasibility (pickup point \(j = i+ \))**
 - \(\Delta = (D_{i-} - D_{i+}) - \alpha t_{i+,i-} \)
 - \(D_{i+} + \Delta > L_{i+} \)
 - \(\Delta > W \)

- **Special update when \(\Delta > W \)**
 - \(D_j = D_j + \Delta \)
 - \(A_j = \max\{A_j, D_j - \omega\} \)
 - \(W = W - \Delta \)
Pass 3 - Forward

- Finalize arrival and departure times and check ride time constraints
- Normal updates
 - $A_j = D_{j-1} + t_{j-1,j}$
 - $D_j = \max\{A_j, D_j\}$
Pass 3 (cont.)

- Infeasibility (drop-off point $j = i-$)
 - $\Delta = (D_{i-} - D_{i+}) - \alpha t_{i+,i-}$
 - $D_{i-} > l_{i-}$
 - $\Delta > 0$
Discussion

- People transportation
 - delivery window \([0, l_j]\)
 - no pickup window
 - waiting time at pickup only
 - different ride time limits
 - consecutive stops at same location (waiting time per location rather than stop)

- Package transportation
 - no waiting time limits
Greedy Randomized Adaptive Search Procedure
Construction + Improvement

- Greedily create feasible set of routes
 - Improve feasible Set of routes
Simple enhancement

- Multi-start neighborhood search:
 - independent neighborhood searches
 - random starting solutions
Multi-start neighborhood search

Initialize: best = ∞

Ready to stop?

Yes

Done

No

Randomly create feasible set of routes

Improve feasible set of routes

Better than best?

Yes

Update best

No
Simple enhancement

- Iterated neighborhood search:
 - independent neighborhood searches
 - starting solutions obtained from a previous local optimum by a suitable perturbation method
Iterated neighborhood search

1. Initialize: best = ∞
2. Greedily create feasible set of routes
3. Ready to stop?
 - Yes: Done
 - No: Perturb feasible set of routes
4. Improve feasible set of routes
5. Better than best?
 - Yes: Update best
 - No: Go back to Ready to stop?
Greedy algorithm

- Constructs a solution one element at a time:
 - Define candidate elements
 - Apply greedy function to each candidate element
 - Rank candidate elements according to greedy function value
 - Add best ranked element to solution
Semi-greedy algorithm

- Constructs a solution one element at a time:
 - Define candidate elements
 - Apply greedy function to each candidate element
 - Rank candidate elements according to greedy function value
 - Place well-ranked elements in a restricted candidate list (RCL)
 - Select an element from the RCL at random and add it to the solution
Restricted Candidate List

- Cardinality based:
 - Place k best candidates in RCL

- Value based I:
 - Place all candidates having greedy value better than $\alpha \times \text{max value in RCL}$ (with $0 \leq \alpha \leq 1$)

- Value based II:
 - Place all candidates having greedy value better than $\text{min value} + \alpha \times (\text{max value} - \text{min value})$ in RCL (with $0 \leq \alpha \leq 1$)
Semi-greedy

Initialize: best = ∞

Ready to stop?
Yes
Done

No

Semi-greedily create feasible set of routes

Better than best?
Yes
Update best

No

Greedy Randomized Adaptive Search Procedure

Initialize: best = ∞

Ready to stop?

Yes

Done

No

Semi-greedily create feasible set of routes

Improve feasible set of routes

Better than best?

Yes

Update best

No
GRASP

- GRASP tries to capture good features of greedy & random constructions
- Iteratively
 - samples solution space using a greedy probabilistic bias to construct a feasible solution
 - applies local search to attempt to improve upon the constructed solution
Advanced Neighborhood Search
Neighborhood search - observations

- **Weakness:**
 - looks only one step ahead, and may get trapped in a bad local optimum

- **Strength:**
 - Fast and easy to implement
Neighborhood search - sophisticated enhancements

Goal:
- Increase quality of solution
- Do not increase time to find solution too much

- Tabu Search
- Large Scale Neighborhood Search
Tabu Search
Tabu Search

Local minimum

Global minimum
Tabu Search

- Strategy to escape from a local optimum and continue the search

- Implementation
 - Best move is always performed
 - Avoid cycling using short-term memory
 - Attributes of recent solutions stored in tabu list
 - Moves involving attributes in tabu list are discarded (tabu)
Short-term Memory

- Tabu list
 - Tabu list size - maximum number of attributes stored in the list (FIFO)
 - Tabu list tenure - maximum number of iterations attribute remains in the list
Short-term Memory

- Recency-based
 - Last t moves

- Frequency-based
 - Number of times a specific move is performed
 - Penalize moves with higher frequency
Intensification and Diversification

- Intensification
 - Intensify the search in promising regions
- Diversification
 - Diversify the search across contrasting regions
- Examples
 - Varying the tabu list size
 - Adjusting the cost structure
Observations

- Tabu search can be highly effective
- Tabu search can be prohibitively time consuming

Remedy: speed up neighborhood search
Granular Tabu Search

- Reduce the number of moves evaluated at each iteration
- Routing and scheduling problems:
 - Long connections are unlikely to be part of an optimal solution
Granular neighborhoods

- Restriction of ordinary neighborhoods
 - Consider only connections whose cost is below a threshold
 - Consider only moves involving promising connections
 - Threshold: $v \times (UB / n)$
 - v sparsification parameter
 - UB/n average cost of connection in solution
Granular neighborhoods

- Intensification/diversification tool
 - small $v \rightarrow$ intensification
 - large $v \rightarrow$ diversification
Vehicle routing problem

- Set of connections:
 - connections of the current and best solution
 - connections involving the depot
 - connections with costs less than threshold
- Connections used as move generators
Vehicle routing problem

- Savings heuristic
- 1-relocate, 2-relocate, swap, 2-change
- Tabu tenure: random in $[5,10]$
- Granularity based intensification/diversification
 - intensification: v in $[1,2]$
 - diversification: no improvement in $15*n$ iterations, then $v = 5$ for n iterations
Large-Scale Neighborhood Search
Compounded 1-relocate

- Given the TSP tour $T = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)$

- The new TSP tour $T' = (1, 2, 4, 5, 6, 3, 7, 9, 10, 8, 11)$
Compounded 1-relocate

- The size of the 1-relocate neighborhood is $O(n^2)$
- The size of the compounded independent 1-relocate neighborhood is $\Theta(1.7549^n)$ (Proof is by solving a recursion for the number of paths from 1 to n+1)
Compounded 1-relocate

Improvement Graph

T = (1,2,3,4,5,6,7,8,9,10,1):

Construct improvement graph

\[c_{1,2} = 0 \]
\[c_{2,7} = -(d_{2,3} + d_{3,4} + d_{6,7}) + (d_{2,4} + d_{6,3} + d_{3,7}) \]
\[c_{7,11} = -(d_{7,8} + d_{8,9} + d_{10,1}) + (d_{7,9} + d_{10,8} + d_{8,1}) \]
Improvement Graph

- Only forward arcs are allowed
- Node 1 is always kept fixed

- Find shortest path from 1 to n+1 in $O(n^2)$ time
- Negative cost shortest path implies an improving move
Compounded swap

- \(T = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 1) \)

Compounded swap neighborhood

- \(T' = (1, 2, 3, 5, 4, 6, 10, 8, 9, 7, 11, 1) \)
Compounded 2-change

- $T = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 1)$

Compounded 2-change neighborhood

- $T = (1, 2, 3, 5, 4, 6, 10, 9, 8, 7, 11, 1)$
Moreover ...

- $T = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1)$

Let
- \rightarrow represent 2-change move
- \Rightarrow represent swap move
- \Rightarrow represent 1-relocate move

- $T = (1, 2, 4, 3, 5, 7, 8, 6, 9, 12, 11, 10, 1)$
Vehicle routing problem

Instance

Solution
Two representations

vehicle 1

1_1 2_1 n_1

d

vehicle 2

1_2 2_2 n_2

vehicle m

1_m 2_m n_m

Multi tour representation
Two representations

Single tour representation
Single tour representation

- Improvement graph is analogous to the TSP improvement graph
- For every ordering of vehicle one obtains a different neighborhood
Multi tour representation

- The cost structure is not well defined for arc \((4_1, 2_3)\)
- Establish an alignment scheme to define and allow only forward arcs
Alignment schemes

Left adjusted

vehicle 1 1₁ 2₁ 3₁ 4₁ 5₁ 6₁ 7₁ 8₁
vehicle 2 d 1₂ 2₂ 3₂
vehicle 3 1₃ 2₃ 3₃ 4₃ 5₃ 6₃

Right adjusted

vehicle 1 1₁ 2₁ 3₁ 4₁ 5₁ 6₁ 7₁ 8₁
vehicle 2 d 1₂ 2₂ 3₂ 3₂
vehicle 3 1₃ 2₃ 3₃ 4₃ 5₃ 6₃

Arbitrarily adjusted
After applying the exchanges implied by the shortest path:
MT neighborhood

- Additional flexibility:
 - shortest path from left to right
 - shortest path from right to left

- Additional complexity:
 - moves no longer independent due to capacity and distance restriction

- Constructing improvement graph and finding shortest path take $O(n^2)$ time
Handling capacity constraints

- for each node keep a working capacity label of each vehicle as well as a distance label
- available capacity[k] = available capacity of vehicle k in current solution
- working capacity[i,k] = available capacity[k] + effects of changes corresponding to shortest path to i
- allow only feasible arcs with respect to working capacity in shortest path
Searching ST and MT neighborhoods

- Complexity of the search is $O(n^2 + nm)$
 - $O(n^2)$ for creating the improvement graph and running the shortest path algorithm
 - $O(nm)$ for updating the labels at each node once after all the incoming arcs to the node is considered