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Abstract

In data analysis concerning the investigation of the relationship between a dependent variable Y
and an independent variable X , one may wish to determine whether this relationship is monotone
or not. This determination may be of interest in itself, or it may form part of a (nonparametric)
regression analysis which relies on monotonicity of the true regression function. In this paper
we generalize the test of positive correlation by proposing a test statistic for monotonicity based
on /tting a parametric model, say a higher-order polynomial, to the data with and without the
monotonicity constraint. The test statistic has an asymptotic chi-bar-squared distribution under
the null hypothesis that the true regression function is on the boundary of the space of monotone
functions. Based on the theoretical results, an algorithm is developed for evaluating signi/cance
of the test statistic, and it is shown to perform well in several null and nonnull settings. Exten-
sions to /tting regression splines and to misspeci/ed models are also brie4y discussed. c© 2002
Elsevier Science B.V. All rights reserved.

Keywords: Monotone regression; Large samples theory; Testing monotonicity; Chi-bar-squared
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1. Introduction

The general setting of this paper is that of the regression of scalar Y on scalar X
over the interval [a; b]. In many practical situations, the researcher may be tempted to
assume monotonicity of the regression function and subsequently to design an estima-
tion procedure based on this assumption. The natural question is whether the available
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data support this assumption. In other words, is it possible to test for monotonicity,
statistically?
In this paper we approach that problem in a framework of a parametric setting,

namely that of a multiple linear regression with given regressor functions; and with
the true regression function being a member of the class of candidate /tting functions
(i.e., with the model being correctly speci/ed). A more general theory would cover
the case of testing for monotonicity when the model is misspeci/ed. This case will be
referred to brie4y in the sequel and would be a subject of further investigation.
There has been a fair amount of interest in the numerical and statistical aspects of

monotonic regression in recent years. We mention some examples from the literature.
In isotonic regression, the data are /tted by a function from an appropriate class of
isotonic (or monotonic) functions. A thorough discussion of this method is presented
in Barlow et al. (1972) and Robertson et al. (1988). Since no structural assumptions
apart from monotonicity are made, the derived estimator is then a piecewise linear
function which, of course, is not “smooth”.
In contrast, the method of (regression) splines provides a smooth representation of

the data by piecewise polynomial functions with a speci/ed degree of diHerentiabil-
ity (see, for example, a survey paper by Wegman and Wright (1983) and references
therein). Practical and numerical aspects of smoothing random data by splines under
monotonicity constraints have been studied in a number of publications (for example,
Wright and Wegman, 1980; Utreras, 1985; Ramsay, 1988, 1998).
As mentioned above, we concentrate on the situation where the regression function

f(x)=E(Y |X =x) belongs to a known parametric family of continuously diHerentiable
functions. We then address the problem of testing whether f(x) is monotonically in-
creasing (decreasing) on the given interval [a; b]. It will be shown that a test statistic,
derived from the diHerence between a monotone and unrestricted least-squares /t, has
asymptotically a chi-bar-squared distribution. This result will provide us with a way to
approximate a quantitative measure of signi/cance of the monotonicity constraints (cf.
Hastie and Tibshirani, section “Why monotone?” in the discussion of Ramsay, 1988,
p. 451). In a sense, the testing procedure presented in this article is a generalization
of testing the sign of the slope of a simple linear regression curve.
In a recent paper Bowman et al. (1998) suggested a nonparametric approach to test-

ing regression monotonicity. Their method is analogous to Silverman’s test (1983) of
multimodality in density estimation and is based on the size of a critical bandwidth
which is required to force the estimated regression function to be monotone. Boot-
strapping is used to calculate the null distribution of the test statistic. Our approach
is diHerent in several respects. It would be certainly of interest to compare these two
approaches numerically.

2. Theoretical background

In this section, we describe our basic assumptions and derive some theoretical results.
Consider the regression model

Yi = f(Xi; 
0) + �i; (2.1)



E. Doveh et al. / Journal of Statistical Planning and Inference 107 (2002) 289–306 291

where f :R × Rk → R is a known function and (Xi; Yi), i = 1; : : : ; n, are independent
and identically distributed observations from the bivariate distribution of (X; Y ). It is
assumed that the model is such that Xi and the errors �i are independent, E(�i) = 0;
var(�i)= �2, i=1; : : : ; n; and that the true value, 
0, of the parameter vector 
 belongs
to a subset of Rk .
Unless states otherwise, we assume that the function f(x; 
) is linear in 
. That is,

f(x; 
):=
1g1(x) + · · ·+ 
kgk(x) = 
 Tg(x); (2.2)

where 
=(
1; : : : ; 
k)T and g(x)=(g1(x); : : : ; gk(x))T, and the functions g1(x); : : : ; gk(x)
are supposed to be known. (We assume that vectors are written as columns, by AT

we denote the transpose of matrix (vector) A and use g′(x) and g′′(x) to denote the
vector of componentwise /rst- and second-order derivatives of g(x), respectively.) Two
important examples are: (i) polynomial regression with gj(x) = xj−1; j = 1; : : : ; k; and
(ii) spline regression with gj(x) given by basis splines depending on chosen knots
and a given order. Unless stated otherwise, we assume that the basis functions gj(x);
j = 1; : : : ; k, are twice continuously diHerentiable.
Let us remark that the linearity assumption (2.2) is made for the sake of simplicity.

The cases where f(x; 
) is nonlinear and smooth can be investigated in a similar way,
we will discuss that later.
We are interested in testing monotonicity of the regression function f(·; 
0). Specif-

ically, we consider testing whether this function is monotonically increasing (or rather
nondecreasing) on a given interval [a; b]. Since the function f(·; 
) is diHerentiable,
it is nondecreasing on the interval [a; b] if and only if the derivative 9f(x; 
)=9x is
nonnegative for all x∈ [a; b]. Therefore, the monotonicity condition is equivalent to the
statement that 
0 belongs to the parameter set

�:=
{

∈Rk : @f(x; 
)=9x¿ 0 for all x∈ [a; b]

}
: (2.3)

Consequently, we arrive at testing the null hypothesis H0: 
0 ∈� against the unre-
stricted alternative H1: 
0 ∈Rk .
Now let us consider the restricted (
̂= 
̂n) and the unrestricted (
̃= 
̃n) minimizers

of the function

S(
):=
n∑

i=1

[Yi − f(Xi; 
)]2: (2.4)

That is, 
̂:=argmin
∈� S(
) and 
̃:=argmin
∈Rk S(
). We consider the following test
statistic:

T :=S(
̂)− S(
̃) = min

∈�

S(
)− min

∈Rk

S(
): (2.5)

The statistic T measures a discrepancy between the monotone and unrestricted least-
squares /t of the data. Of course, if the errors �i have normal distribution N(0; �2),
then the statistic T becomes the log-likelihood ratio test statistic for testing the null
hypothesis H0 against the alternative H1. It is reasonable to reject the null hypothesis
for large values of T . In order to calculate the corresponding signi/cance levels, we
evaluate now the asymptotic (large sample) distribution of T .
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Note that the function S(
) can be written in the form

S(
) = (Y − A
)T(Y − A
); (2.6)

where A is the n × k matrix with (i; j)-element aij:=gj(Xi); i = 1; : : : ; n; j = 1; : : : ; k;
and Y is the n × 1 vector Y = (Y1; : : : ; Yn)T. It is well known that the unrestricted
least-squares estimator 
̃ is given by


̃= (ATA)−1ATY; (2.7)

assuming, of course, that the matrix ATA is nonsingular. Moreover, the statistic T can
be written in the form

T =min

∈�

(
̃− 
)T(ATA)(
̃− 
): (2.8)

This follows immediately from the well-known formula for orthogonal projections

‖Y − A
‖2 = ‖Y − A
̃‖2 + ‖A
̃− A
‖2; (2.9)

where ‖x‖= (xTx)1=2 denotes the Euclidean norm of a vector x.
Suppose that the expectations E[gi(X )2], i=1; : : : ; k, are /nite and consider the k×k

matrix � = [!ij] with

!ij:=E {gi(X )gj(X )} ; i; j = 1; : : : ; k: (2.10)

Then it follows by the Law of Large Numbers that n−1ATA converges with probability
one to �. It also follows by the Central Limit Theorem that, under model (2.1)–(2.2),
n1=2(
̃n − 
0) converges in distribution to a random vector Z which is normally distri-
buted, N(0; �2�−1).

Suppose for the moment that f(x; 
) is a smooth (not necessarily linear in 
) function
and consider the parameter set � given in (2.3). This parameter set is de/ned by an
in/nite number of constraints qx(
)¿ 0, x∈ [a; b], where qx(
):=9f(x; 
)=9x. For 
∈�
consider the set

M (
):={x∈ [a; b]: qx(
) = 0}=
{
x∈ [a; b]:

9f(x; 
)
9x = 0

}
(2.11)

corresponding to the active at 
 constraints. Note that since 
∈� it follows that if the
set M (
) is nonempty, then this set coincides with the set of minimizers of 9f(·; 
)=9x
over the interval [a; b]. It is said that the extended Mangasarian–Fromovitz constraint
quali/cation holds at 
0 ∈� if there exists a vector �∈Rk such that

�T∇qx(
0)¿ 0 for all x∈M (
0): (2.12)

(By ∇qx(
):=(9qx(
)=9
1; : : : ; 9qx(
)=9
k)T we denote the gradient vector of the func-
tion qx(·) at 
.) Under the above constraint quali/cation the set � is approximated at
the point 
0 by the cone

C:={ ∈Rk :  T∇qx(
0)¿ 0; x∈M (
0)}: (2.13)

More precisely the following result holds (see, e.g., Bonnans and Shapiro, 2000,
p. 66).
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Proposition 2.1. Suppose that qx(
) is di4erentiable in 
 with ∇qx(
) being contin-
uous jointly in x∈ [a; b] and 
∈Rk ; the set M (
0) is nonempty and the extended
Mangasarian–Fromovitz constraint quali:cation holds at 
0 ∈�. Then the cone C;
de:ned in (2.13); has the following approximation properties:

inf
 ∈C

‖(
− 
0)−  ‖= o(‖
− 
0‖); 
∈� (2.14)

and

inf

∈�

‖(
− 
0)−  ‖= o(‖ ‖);  ∈C: (2.15)

Suppose now that f(x; 
) is linear in 
 and is given in form (2.2). Then

qx(
) = 
1
dg1(x)
dx

+ · · ·+ 
k
dgk(x)
dx

= 
 Tg′(x) (2.16)

and ∇qx(
) = g′(x), and hence

C = { ∈Rk :  Tg′(x)¿ 0; x∈M (
0)}: (2.17)

Moreover, the set � is convex and the extended Mangasarian–Fromovitz constraint
quali/cation is equivalent to the Slater condition: there exists a point 
 ∗ such that
9f(x; 
 ∗)=9x is greater than zero for all x∈ [a; b].
Under the Slater condition and if M (
0) is nonempty, then the cone C given in

(2.17) coincides with the tangent cone to the set � at the point 
0. Note that since
� is convex, it follows that � − 
0 is included in the tangent to � at 
0 cone,
and hence the property (2.14) trivially holds with the right-hand side of (2.14) being
zero. Note also that if 
0 is an interior point of �, then C = Rk . However, we are
particularly interested in the situations where 
0 is a boundary point of �. Under the
Slater condition, 
0 lies on the boundary of � if and only if the set M (
0) is nonempty.

Theorem 2.1. Suppose that model (2.1)–(2.2) holds and that the matrix � is non-
singular. Then the statistic T converges in distribution to

U :=min
 ∈C

(Z −  )T�(Z −  ); (2.18)

where Z is a normally distributed N(0; �2�−1) random vector and C is the cone
tangent to � at 
0.

Proof. We have that

T =min

∈�

n(
̃n − 
)T[n−1(ATA)](
̃n − 
):

Since n−1ATA converges in probability to �; it is then not diQcult to show that

T =min

∈�

n(
̃n − 
)T�(
̃n − 
) + op(1):

The proof can then be completed as in the proof of Shapiro (1985; Lemma 2.2) using
the asymptotic normality of n1=2(
̃n − 
0) and the approximating properties (2.14) and
(2.15) of the tangent cone C.
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Recall that, under the Slater condition, the tangent cone to � at 
0 can be written
in the form (2.17). If the function f(x; 
) is smooth (not necessarily linear in 
), then
it is possible to show by using the approximating properties (2.14) and (2.15) of the
cone C, that under mild regularity conditions the asymptotic result of Theorem 2.1 still
holds with the elements of the matrix � given by

!ij:=E
[
9f(X; 
0)
9
i

9f(X; 
0)
9
j

]
:

It is also possible to show that the estimator 
̂ has an asymptotic distribution described
in the following theorem (see Shapiro, 1989, Theorem 3.3).

Theorem 2.2. Under the assumptions of Theorem 2.1; n1=2(
̂n − 
0) converges in dis-
tribution to the minimizer R (Z) of the quadratic function (Z −  )T�(Z −  ) over the
cone C.

It is known that the random variable U , given in (2.18), normalized by the coeQcient
�−2, has a chi-bar-squared distribution. That is

Pr{�−2U¿ c}=
k∑

i=0

wiPr{%2i ¿ c}; (2.19)

where wi are nonnegative weights, w0 + · · · + wk = 1, and %2i is a chi-squared ran-
dom variable with i degrees of freedom, %20 ≡ 0. For a discussion of basic properties
of chi-bar-squared variables and technical details, the reader is referred to Robertson
et al. (1988) and Shapiro (1988). Theorem 2.1 shows that the corresponding result
holds for the test statistic T asymptotically, that is,

lim
n→∞Pr{�̂−2T¿ c}=

k∑
i=0

wiPr{%2i ¿ c}; (2.20)

where �̂2 is a consistent estimator of �2. A consistent estimator of �2 can be obtained
in a standard way, since E{S(
̃)}= (n− k)�2 we can take

�̂2:=(n− k)−1S(
̃): (2.21)

Eq. (2.20) suggests that the asymptotic distribution of T depends on the weights
wi which in turn are functions of the matrix � and the cone C. Since the cone C
is determined by the set M (
0) of active constraints (which is not known a priori),
evaluation of the weights wi may pose quite a delicate problem. Let us consider the
situation where M (
0) has a /nite number of points, say M (
0)={x∗1 ; : : : ; x∗‘}. This, of
course, always happens in the case of polynomial regression. De/ne vectors bi:=g′(x∗i )
and matrix B:=[b1; : : : ; b‘]. Assuming that vectors b1; : : : ; b‘, are linearly independent,
the weights are given by

wi =

{
w∗

‘−i(‘; B
T�−1B); i = 0; : : : ; ‘;

0; i = ‘ + 1; : : : ; k;
(2.22)

where w∗
j (‘; V ), j = 0; : : : ; ‘, denote the weights corresponding to the chi-bar-squared

distribution with covariance matrix V and the cone given by the positive orthant R‘
+
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(see Shapiro, 1988, Section 5, for details). In particular, for ‘=1 we have w0=w1= 1
2 ,

and for ‘=2 we have w0 = (2))−1()− cos−1 *12), w1 = 1
2 and w2 = 1

2 −w0, where *12

is the (1; 2)-element of the correlation matrix corresponding to the covariance matrix
V=BT�−1B. There are also closed form expressions for the weights w∗

j (‘; V ) for ‘=3
and ‘=4 (Kudô, 1963; Shapiro, 1985). For ‘¿ 4, Kudô (1963) proposed a recurrence
formula which is computationally workable for moderate values of ‘ (see Bohrer and
Chow, 1978). It appears that, at least in the case of a polynomial regression, in practical
applications the weights wi should be calculated for small or moderate values of ‘.
In principle, it is possible to evaluate the weights wi, and hence, by using Eq. (2.20),

to calculate (approximately) the critical values of the test statistic T , if consistent
estimates of the matrices � and B are available. This leaves the practical problem of
estimating the set M (
0). In the case of testing inequality linear constraints in linear
regression, the least favorable distribution occurs when all inequality constraints are
active (see Robertson and Wegman, 1978, Theorems 2.1, 2.2). The same holds here
for local alternatives. In other words, from a conservative point of view one should be
prepared for a worst situation and include all suspicious points in an estimator of the
set M (
0).

3. Technical considerations

In trying to implement the test procedure based on the statistic T given in (2.5) or
(2.8), there are several technical problems that must be resolved. In this section we
describe an approach for resolving these technical problems. We assume that model
(2.1)–(2.2) holds, and that the matrix � is nonsingular. We brie4y discuss the case
where the true regression function is not a member of the class of /tted models in
Section 3.3.

3.1. Computing the test statistic

In order to compute the restricted estimate 
̂, and hence the test statistic T , one has
to solve a semi-in/nite (mathematical) programming (SIP) problem. An SIP problem
involves optimization of an objective function in a :nite number of variables, over
a feasible region de/ned by an in/nite number of constraints. One way of solving
such problems is by using a simple discretization method—replacing the in/nite set
of constraints by a /nite subset of them. This /nite subset consists of those con-
straints corresponding to the values of x on a /nite grid. The resulting problem is
a quadratic programming problem that can be easily solved, for example, by using
the QPROG=DQPROG procedures of the IMSL software library. Of course, the so-
lution thus obtained is actually an approximation to the real solution. We have used
this method in the simulations, to be described below, mainly because it was readily
available and so far seems adequate for the task.
A somewhat more eQcient discretization method, one that was originally proposed

for a linear objective function by Hettich (1986), can be adapted to our problem. It is
a more complicated, iterative scheme and since our main goal is to provide a useful
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and relatively straightforward tool for testing the hypothesis of monotonicity, we have
not attempted to implement it at this stage. A survey of other methods for solving SIP
problems can be found in Fiacco and Kortanek (1983), Hettich and Kortanek (1993)
and Goberna and Lopez (1998).

3.2. Determining the roots of the derivative

In order to derive an appropriate reference distribution, one has to decide how many
roots the derivative function has, and if there is more than one root, to evaluate where
these roots are located. This is the problem of estimating the set M (
0).

Let us assume that the true value 
0 of the parameter vector lies on the boundary
of the set �, and that the set M (
0) is /nite. This means that we are testing for
lack of monotonicity with respect to a null model that has only a /nite number of
stationary points in the open interval (a; b). (Moreover, we may also wish to add a
priori information such as that “there are no stationary points within a “small” distance
+ from the endpoints of [a; b]”.) The problem is then to identify the elements of M (
0).
First, we consider conditions under which it is theoretically possible to estimate these
stationary points of f(x; 
0). Second, we consider a procedure to decide whether to

include a candidate minimizer of 
̃
T
n g

′(x) as a point in M (
0).
Under the null hypothesis, the derivative 9f(x; 
0)=9x is nonnegative for all x∈ [a; b]

and hence the roots of this derivative are also its (global) minimizers on this interval.
Let us consider the set L(
) of local minimizers of the function 9f(·; 
)=9x on the
interval (a; b). Note that by the standard optimality conditions, every point x of the set
L(
) satis/es the equation

92f(x; 
)=9x2 = 0: (3.1)

It follows that M (
0) ⊂ L(
0), where the inclusion is strict if 9f(·; 
0)=9x possesses
local minimizers which are not global. This suggests that the elements of L(
̃) (or
L(
̂)) are natural candidates for estimators of the elements of M (
0). In this respect
the following result if useful.

Proposition 3.1. Suppose that: (i) the functions g1(x); : : : ; gk(x) are three times con-
tinuously di4erentiable; (ii) L(
0) contains a :nite number of points; say L(
0) =
{x∗1 ; : : : ; x∗m}; (iii) the derivatives 9 3f(x∗i ; 
0)=9x3; i = 1; : : : ; m; are positive.
Then: (a) For all 
 su<ciently close to 
0, the set L(
) contains the same number

of points, say L(
) = { Rx1(
); : : : ; Rxm(
)}, (b) Rxi(
) tend to Rxi(
0) = x∗i , i = 1; : : : ; m,
as 
 → 
0, (c) Rxi(
) are di4erentiable at 
0 and the corresponding gradients are
given by

∇ Rxi(
0) =−[
T0g
′′′(x∗i )]

−1g′′(x∗i ); i = 1; : : : ; m: (3.2)

Results (a)–(c) of Proposition 3.1 follow easily from the Implicit Function The-
orem, applied to Eq. (3.1) at the points (x∗1 ; 
0); : : : ; (x

∗
m; 
0), and from the fact that

92f(x; 
)=9x2 tends to 92f(x; 
0)=9x2 as 
 → 
0 uniformly in x∈ [a; b].
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In some situations, as for example in the case of cubic splines, the /rst assumption
of Proposition 3.1, concerning three times continuous diHerentiability of gi(x), is too
strong. This assumption can be relaxed by employing the Implicit Function Theorem
due to Clarke (1983, pp. 255–256). Suppose that the functions gi(x); i = 1; : : : ; k, are
twice diHerentiable and that the corresponding second derivatives g′′i (x) are Lipschitz
continuous on [a; b]. Consider the function 92f(·; 
0)=9x2 = 
T0g

′′(·). Its generalized
gradient 9(
T0g′′(x)), at x, is de/ned as the convex hull of all limits of the form
limn→∞ 
T0g

′′′(xn) such that xn → x and such that the derivatives g′′′i (xn), i = 1; : : : ; k,
exist. Note that since g′′i (x) are Lipschitz continuous, their derivatives g′′′i (x) exist
for all x∈ [a; b] except possibly on a set of Lebesgue measure zero. The following
proposition is then a re/nement of Proposition 3.1.

Proposition 3.2. Suppose that: (i) the functions g1(x); : : : ; gk(x) are twice di4eren-
tiable and that their second-order derivatives g′′i (x) are Lipschitz continuous on [a; b];
(ii) L(
0) contains a :nite number of points; say L(
0)= {x∗1 ; : : : ; x∗m}; (iii) the gener-
alized gradients 9(
T0g′′(x∗i )); i = 1; : : : ; m; do not contain zero.
Then assertions (a) and (b) of Proposition 3.1 hold.

These alternative assumptions of Proposition 3.2 hold for cubic splines if their
second-order derivatives, which are piecewise linear functions, have no a 4at piece
to the left or to the right of each x∗i .
Since 
̃ and 
̂ are consistent estimators of 
0, we have that under the assumptions

of Proposition 3.1 (or Proposition 3.2), L(
̃) and L(
̂) provide consistent estimators of
the set L(
0). However, the inclusion M (
0) ⊂ L(
0) can be strict and consequently
we still face the problem of selecting elements of the set L(
̃) (or L(
̂)) as estimators
of the corresponding elements of M (
0). It is natural to take only those elements of
L(
̃) (or L(
̂)) for which 9f(x; 
̃)=9x (or 9f(x; 
̂)=9x) are not “too much” larger than
zero. In order to proceed, let us consider the function

.I (
):=min
x∈I


 Tg′(x); (3.3)

where I is a closed subinterval of (a; b), and use the following result.

Proposition 3.3. Suppose that: (i) the interval I contains one element; say x∗j ; of
L(
0); (ii) the functions g1(x); : : : ; gk(x) are twice di4erentiable.
Then n1=2(.I (
̃n)− .I (
0)) converges in distribution to a normal random variable

with zero mean and variance.

�2[g′(x∗j )]
T�−1[g′(x∗j )]: (3.4)

Proof. By a theorem of Danskin (1967); we have that the min-function .I (
) is dif-
ferentiable at 
0 and its gradient ∇.I (
0) is equal to g′(x∗j ). It follows that

.I (
)− .I (
0) = (
− 
0)Tg′(x∗j ) + o(‖
− 
0‖): (3.5)

The proof can be completed using the asymptotic normality of n1=2(
̃n − 
0).
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Moreover, we have that .I (
0) is zero if x∗j belongs to the set M (
0) and is greater
than zero otherwise. This result leads us to the possibility of testing whether an element
x∗j = Rxj(
0) of L(
0) estimated by Rxj(
̃n) belongs to the set M (
0) or not.

Let x̃n be a (local) minimizer of 
̃
T
n g

′(·). Consider the statistic Qn:=n1=2 
̃
T
n g

′(x̃n).
If x̃n is an estimator of a root x0 of 
T0g

′(x), then by (3.5) the following approximate
distributional result should hold:

Qn ⇒ N(0; �2[g′(x0)]T�−1[g′(x0)]); (3.6)

where “⇒” denotes convergence in distribution. If we /nd that Qn is too large, then
we would reject the hypothesis that x̃n is an estimator of an element of M (
0). In
practice, we use n−1ATA instead of �; �̂2 instead of �2, and x̃n instead of x0, when
computing the z-score zn based on the approximation in (3.6). Note that the univariate
central limit result holds for this z-score. In the simulation study described below, we

used a test size of 2=5% for deciding whether each local minimum of 
̃
T
n g

′(x) should
be included in M (
0).
Finally, we mention that under the assumptions of Proposition 3.1, it follows from

(3.2) that

n1=2[x̃j(
̃)− x∗j ] ⇒ N(0; �2[
T0g
′′′(x∗j )]

−2[g′′(x∗j )]
T[g′′(x∗j )]): (3.7)

If we remove the assumption that “there are no stationary points within a positive
distance + from the endpoints of [a; b]”, then we have to take into account a possibility
that local minima of 9f(x; 
0)=9x can occur at one or both of the endpoints. Let us
suppose for example that 9f(x; 
0)=9x has a local minimum at a (the discussion for b
is similar), then 9f(a; 
0)=9x¿ 0. We are interested in the case where 9f(a; 
0)=9x=0.
If further 92f(a; 
0)=9x2 ¿ 0 (the equivalent condition at b is 92f(b; 
0)=9x2 ¡ 0) then,
from smoothness assumptions on f(x; 
) we /nd that there is an interval [a;  ] where
92f(x; 
0)=9x2 is nonnegative and hence a is the only minimal point in it. If assumption
(ii) of Proposition 3.3 holds, then since 
̃n → 
0 and because of the continuity of the
min-function .I , we have that

min
x∈I

{92f(x; 
̃n)=9x2} → min
x∈I

{92f(x; 
0)=9x2} (3.8)

with probability one as n → ∞. Since 92f(x; 
0)=9x2 is greater than zero for all x in
I , we obtain that for n large enough 9f(x; 
̃n)=9x will be monotone on I , so that a
will be the minimal point in it. If it turns out that 92f(a; 
̃n)=9x2 is positive (or that
92f(b; 
̃n)=9x2 is negative) we will test whether a (or b) is a point where 9f(x; 
0)=9x
is zero.
Finally, having estimated M (
0) by M̃ , say, we can approximate the reference distri-

bution for the statistic T using the chi-bar-squared distribution based on M̃ . Based on
this approximate reference distribution, we can then compute an approximate p-value
for the observed value of T .
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3.3. Misspeci:ed models

In this section, we discuss the following situation of misspeci/ed models. Suppose
that the data is analyzed according to model (2.1) while the true model is

Yi = h(Xi) + �i; i = 1; : : : ; n; (3.9)

where h(x) is a real-valued measurable function, such that E{[h(X )]2} is /nite and Yi,
Xi and �i satisfy the assumptions speci/ed in Section 2. If the function h(x) does not
belong to the parametric family f(x; 
), then the model is said to be misspeci/ed.
Consider the minimizer 
 ∗ of the function

E{[h(X )− f(X; 
)]2}= E{[h(X )]2} − 2
 TE{h(X )g(X )}+ 
 T�
: (3.10)

It should be noted that if there is a unique 
0 such that h(x)=f(x; 
0), then obviously

 ∗ = 
0. It is possible to show (e.g., White, 1980) that the unconstrained least-squares
estimator 
̃, given in (2.7), converges in probability (with probability one) to 
 ∗ and
that n1=2(
̃− 
 ∗) converges in distribution to N(0; �−1V (
 ∗)�−1), where

V (
 ∗):=E{[h(X )− g(X )T
 ∗ + �]2g(X )g(X )T}:
Since V (
 ∗) = �2� +5(
 ∗), where

5(
 ∗):=E
{
[h(X )− g(X )T
 ∗]2g(X )g(X )T

}
;

we obtain that

n1=2(
̃− 
 ∗) ⇒ N(0; �2�−1 + �−15(
 ∗)�−1): (3.11)

If h(x) is close to f(x; 
 ∗), then (under mild regularity conditions) the elements of
5(
 ∗) will be small. For example, if

[h(x)− g(x)T
 ∗]26
�

maxj∈{1; :::; k} !jj

for all x in the range of X , then | ij|6 � for i; j=1; : : : ; k, where | ij| is the ijth element
of 5(
 ∗). Since all the elements of �−1 are /nite, for small enough � all the elements
of �−15(
 ∗)�−1 are also small. In this case, the bias caused by considering the
variance of the asymptotic distribution of n1=2(
̃ − 
 ∗) as �2�−1 is small. Moreover,
in case of misspeci/cation, �̂2 as de/ned in (2.21), converges in probability (with
probability one) to

�2(
 ∗):=E{[h(X )− f(X; 
 ∗)]2}+ �2

(White, 1980). However, if the closeness condition between h(x) and f(x; 
 ∗) holds,
then

�2(
 ∗)− �26
�

maxj∈{1; :::; k}!jj
:

In that case, �2 is estimated with only a small bias and hence �̂2(n−1ATA)−1 is a good
estimator, in the sense of consistency, of the variance of the asymptotic distribution of
n1=2(
̃− 
 ∗).
Suppose now that the point 
 ∗ belongs to the set � given in (2.3). This means

that the function f(·; 
 ∗) is monotonically nondecreasing on the interval [a; b]. If h(x)
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is increasing on [a; b] and is also close to f(·; 
 ∗), then testing the monotonicity
hypothesis using the misspeci/ed model will give correct results. It follows, in the
case that 
 ∗ ∈�, that the statistic T , given in (2.5), converges in distribution to

U :=min
 ∈C∗

(Z −  )T�(Z −  ); (3.12)

where Z is a normally distributed N(0; �2�−1 + �−15(
 ∗)�−1) random vector and
C∗ is the cone tangent to � at 
 ∗. Since

(n−1ATA)−1n−1
n∑

i=1

[(Yi − 
̃
T
g(Xi))2g(Xi)g(Xi)T](n−1ATA)−1

converges with probability one to �−1V (
 ∗)�−1, the variance of Z can be estimated
for large enough n.
If 
 ∗ �∈ �, which means that f(·; 
 ∗) is not monotonically nondecreasing, then

T → ∞ as n → ∞ and we will reject H0 for large enough n. If h(x) is also not
monotonically nondecreasing and is close to f(·; 
 ∗), then also in this case using the
misspeci/ed model will usually give correct results. It should be noted that it is possible
that h(x) is not monotone while f(·; 
 ∗) is, or vice versa. If the class G, de/ned as
{
 Tg(x): 
∈Rk}, is chosen so that it is 4exible enough, then this problem should only
arise in pathological cases.
Now we discuss a special case of misspeci/cation, the linear case that was experi-

mented with in the simulations. Suppose that the true model is

Yi = 
 Tg(Xi) + 
 T
(1)g(1)(Xi) + �i; (3.13)

where


:=(
1; : : : ; 
k)T; g(x):=(g1(x); : : : ; gk(x))T;


(1):=(
k+1; : : : ; 
l)T; g(1)(x):=(gk+1(x); : : : ; gl(x))T

and functions gj(x), j = 1; : : : ; l, and variables Xi; Yi, �i, i = 1; : : : ; n, obey the same
assumptions as in Section 2. But, instead of /tting model (3.13), the misspeci/ed
model (2.1) is /tted. In this case 
̃ converges with probability one to 
+�−1�01
(1)
and �̂2 converges with probability one to �2 + 
 T

(1)(�11 − �T
01�

−1�01)
(1), where

• � is as above;
• �11 is an (l − k) × (l − k) matrix with �11(i; j):=E {gk+i(X )gk+j(X )} and

i; j = 1; : : : ; l− k; is assumed to be nonsingular; and
• �01 is a k × (l − k) matrix where �01(i; j):=E {gi(X )gk+j(X )}, i = 1; : : : ; k;

j = 1; : : : ; l− k.

De/ne (
∗M )T:=((
 ∗)T; R0), where R0 is a row vector of l− k zeros. It can be shown
that 
 ∗ is the element of Rk for which (
∗M )T is closest to 
0 = (
; 
(1))T in the sense
that 
∗M is the argmin of the following mathematical programming problem

min
9∈Rl

(9− 
0)T�M (9− 
0) subject to 9(1) = 0; (3.14)

where �M is an l×l matrix with (i; j) element �M (i; j)=E{gi(X )gj(X )}, i; j=1; : : : ; l;
and 9(1) consists of the last (l− k) elements of 9.
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Furthermore, n−1T → (
∗M − R

∗
)T�M (
∗M − R


∗
) with probability one as n → ∞,

where R

∗
is the optimal solution of

min
#∈�M

(
∗M − #)T�M (
∗M − #) (3.15)

with

�M :={9∈Rk : (g′(x)T; g′(1)(x)
T)9¿ 0 for all x∈ [a; b]; 9(1) = 0}:

Alternatively, R

∗
can also be shown to be the optimal solution of the problem

min
#∈�M

(#− 
0)T�M (#− 
0): (3.16)

Consider now the case where X is not a random variable and its values are pre-
determined systematically. If we further assume that they are chosen in such a way
that

(i) n−1ATA → �; (3.17)

(ii) n1=2[n−1ATA(1) − n−1(ATA)�−1�01] → 0 as n → ∞ (3.18)

and the previous assumptions about the errors �i hold, then we obtain again that
n1=2(
̃− 
 ∗) converges in distribution to N(0; �2�−1) (using the same technique as in
Section 4.2 of Dhrymes, 1970). Properties (3.17) and (3.18) hold if the x grid is
uniformly spaced on [a; b]. If �2 is known then this case is reduced to the case of
Theorem 2.1. But if it is not known and we use the biased estimator �̂2, as de/ned in
(2.21), then T=�̂2 will tend to be smaller than T=�2 and the test will have a smaller
size than its nominal values.

4. Simulation results

The simulation study reported below is somewhat limited, and serves only to demon-
strate the eQcacy of the methodology described above in a speci/c setting. Given its
feasibility in this basic setting, we justify trying to verify its applicability to more
complicated settings. Some modi/cations of the methodology are already being con-
templated based on some of the results described below. We will give only a brief
summary of the simulation results. A detailed report and analysis of simulation results
are given in Doveh et al. (1990).
The limited setting is that of three data sets. One is generated from a cubic poly-

nomial regression and the other two from a /fth-order polynomial regression; all with
normal (additive) errors. The models /tted are third-, fourth- and /fth-order polyno-
mials. The domain of the regression is [0; 1].

Various (IMSL-based) random number generators were used in the preliminary stages
in order to double-check the results obtained. No signi/cant diHerence between gener-
ators was found.
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Table 1
Comparing the size of the monotonicity test with the nominal size. (q = 0; R = 0; 5000 simulations)

m � n 2 = 0:01 2 = 0:05

p = 3 p = 4 p = 5 p = 3 p = 4 p = 5

ENE ENE
E N E N E N E N

1 2 18 0.015 0.024 0.024 0.019 0.028 0.061 0.088 0.090 0.068 0.094
1 2 32 0.015 0.020 0.020 0.015 0.021 0.058 0.070 0.070 0.055 0.065
1 2 100 0.010 0.012 0.012 0.012 0.013 0.053 0.060 0.060 0.058 0.058

2 1.75 18 0.025 0.035 0.046 0.035 0.060 0.076 0.106 0.144 0.116 0.172
2 1.75 32 0.011 0.019 0.023 0.012 0.027 0.057 0.076 0.095 0.060 0.011
2 1.75 100 0.011 0.018 0.019 0.007 0.016 0.055 0.070 0.076 0.036 0.071

3 1.25 64 0.013 0.016 0.019 0.014 0.014 0.52 0.058 0.071 0.064 0.064
3 1.25 100 0.012 0.014 0.016 0.016 0.016 0.047 0.054 0.064 0.062 0.062
3 12.5 150 0.009 0.011 0.012 0.012 0.012 0.046 0.050 0.055 0.055 0.055

The simulation results were based on three sets of data. The /rst set is generated
from the model

yi =
640
3

(xi − 0:5)3 − qxi + ei; (4.1)

the second set is generated from the model

yi = 2
30 (xi − 9)5 − 2

6 (xi − 9)4(xi − 0:5) + 2
3 (xi − 9)3(xi − 0:5)2

+2960− qxi + ei (4.2)

and the third set is generated from the model

yi = 100(xi − 0:72)5 − 500(xi − 0:72)4(xi − 0:25)

+1000(xi − 0:72)3(xi − 0:25)2 − qxi + ei; (4.3)

where xi, i = 1; : : : ; n, is a (pseudo-) random sample from the uniform distribution
U[0; 1], and ei, i = 1; : : : ; n; is a (pseudo-) random sample from the N(0; �2) distribu-
tion. If q = 0 then the regression function f(x) is on the boundary of � de/ned for
polynomial regression of order three or higher. Power calculations are performed by
setting q¿ 0, which corresponds to a single negative minimum of the derivative of the
true regression function in the /rst two models (at x = 0:5) and two negative minima
of the derivative (at x = 0:25 and 0:72) in the third model.
The statistics are reported on the basis of 5000 simulations for each case studied

and reported in Table 1; and on the basis of 500 simulations for each case studied and
reported in Table 2. A case is de/ned by setting the following parameters;

• m, the model number (where m=1 is for model (4.1), m=2 is for model (4.2) and
m= 3 is for model (4.3));
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Table 2
Some power estimates—2 = 0:05

m n � q R p = 3 p = 4 p = 5
ENE

E N E N

1 18 1.0 10.00 42.43 1.00 0.98 0.98 0.79 0.80
1 18 1.0 1.67 7.07 0.21 0.23 0.23 0.14 0.16
1 18 2.0 20.00 42.43 1.00 0.99 1.00 0.90 0.91
1 18 2.0 3.33 7.07 0.21 0.25 0.25 0.13 0.19
1 100 1.0 4.24 42.43 1.00 1.00 1.00 0.84 0.84
1 100 1.0 0.71 7.07 0.20 0.21 0.21 0.13 0.13
1 100 2.0 8.48 42.43 1.00 1.00 1.00 0.84 0.84
1 100 2.0 1.41 7.07 0.21 0.22 0.22 0.14 0.14

2 18 0.50 1.77 15 0.27 0.27 0.27 0.09 0.13
2 18 0.50 4.12 35 0.97 0.96 0.97 0.76 0.79
2 18 1.50 5.30 15 0.31 0.31 0.35 0.23 0.29
2 18 1.50 12.37 35 1.00 1.00 1.00 1.00 1.00
2 100 0.50 0.75 15 0.32 0.33 0.33 0.10 0.10
2 100 0.50 1.75 35 0.99 0.99 0.99 0.74 0.74
2 100 1.50 2.25 15 0.31 0.35 0.35 0.09 0.13
2 100 1.50 5.25 35 0.99 0.99 0.99 0.90 0.91

3 100 0.50 0.75 15 0.23 0.24 0.25 0.29 0.29
3 100 0.050 1.75 35 0.66 0.66 0.69 0.80 0.80
3 100 0.75 1.12 15 0.29 0.31 0.33 0.30 0.30
3 100 0.75 2.62 35 0.87 0.85 0.87 0.84 0.84
3 100 1.25 1.88 15 0.40 0.41 0.46 0.32 0.32
3 100 1.25 4.37 35 0.95 0.94 0.96 0.92 0.92
3 150 0.50 0.60 15 0.22 0.23 0.24 0.30 0.30
3 150 0.50 1.43 35 0.69 0.69 0.70 0.80 0.80
3 150 0.75 0.90 15 0.33 0.33 0.33 0.30 0.30
3 150 0.75 2.14 35 0.86 0.86 0.87 0.83 0.83
3 150 1.25 1.50 15 0.44 0.42 0.45 0.32 0.32
3 150 1.25 3.57 35 0.93 0.93 0.94 0.90 0.90

• p, the order of the :tted polynomial;
• q, the degree of nonmonotonicity of the true regression function;
• n, the sample size;
• �, the standard deviation of the error distribution.

For each case the statistics reported are the proportion of simulations, out of 5000
(or 500), for which the hypothesis of monotonicity is rejected based on obtaining
(approximate) p-values less than 5% or 1%. The calculations may take into account
the possibility of zeros at endpoints (denoted E), or may reject that possibility (denoted
N ). If the results in both cases (E and N ) were identical, only one column was given
for that case (denoted ENE). All the results are rounded to the nearest thousandth.
It was conjectured that the power should be a function of R=q

√
n=�, as would be the

case for the detection of a nonzero expectation based on an ordinary average, and this
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is what the results show for the cases where the true function had only one minimum
in the regression domain and a cubic polynomial was /tted. For this reason, R is also
given in the tables. The conjecture does not hold in the cases where m= 3. We note
that in every simulation run we used IMSL routine ZPORC=DZPORC for determining
the zeros of a polynomial and if it failed to /nd any root then the ZPLRC=DZPLRC
routine of IMSL was used for the same purpose. The simulations in case of two minima
(model (4.3)) demanded more data than in case of one minimum (models (4.1) and
(4.2)) since otherwise the two minima are not discovered.
From Table 1 we see that in the main, the estimated and nominal sizes of the tests

are in good agreement, at least for moderate and large sample sizes. For this basic
setting the method seems to be valid as far as test size is concerned. From Table 1,
for the cases where m = 1 and p¿ 3, demonstrating the in4uence of over/tting a
polynomial, we see that the estimated sizes are higher than the nominal ones. From
the same table, cases with m=2 and m=3, demonstrating the in4uence of under/tting
a polynomial, we see that nominal and estimated sizes are closer for third-order poly-
nomials than for fourth- and even /fth-order polynomials (which is the true model).
It should be noted that this happens not only in case of /fth-order models with only
one minimum of the derivative, which has the same nature as a third-order polyno-
mial in the domain of regression (m = 2), but also in the case of two minima in the
domain (m = 3). In all the cases above the estimated sizes taking the ends into ac-
count are much closer to the nominal sizes than without them. Since we are usually
interested in /xed size tests, it is recommended in this setting to take the ends into
account.
The power calculations are also quite encouraging, and show that the procedure

has the potential of providing a general method for testing for monotonicity. It turns
out that except for very low �, /tting the third-order polynomial gave usually better
power results than the /fth-order polynomial even when the latter was the true model.
Although /tting fourth-order polynomials shows good power results, it is not recom-
mended because of its size problems, and since it does not have the overall nature of
an ascending function.
In a preliminary attempt to extend the investigation beyond the basic setting described

in (4.1)–(4.3), we also considered a true regression function of zig-zag type de/ned
as follows:

f(x) =




2(x − a); x6 a;

−+
(x − a)
(b− a)

; a6 x6 b;

?(x − b)− +; x¿ b:

(4.4)

In this case, when /tting the p = 5 model, there was a marked problem of local
minima near both endpoints. Here, of course, we are dealing with the situation of
a misspeci/ed model, and one has to investigate how the approximating /fth-order
polynomial to the regression function f(x) of (4.4) really behaves (see the comments
in Section 3.3). It will be interesting to check how the use of splines will improve the
situation for this case. Another option would be to simply extend the order of the /tted
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polynomial to allow for the additional 4exibility required to mimic f(x) adequately.
All these issues will be considered in the continuation of the current research.

5. Concluding remarks

We suggested in this paper an approach to testing monotonicity of a regression
function. Our approach is parametric and is based on the assumption that there exists
a parametric family which can “suQciently well” represent the data. The assumption
that the model is linear in the parameters is not essential and is made for the sake
of simplicity. A simulation study seems to indicate that the method is not sensitive to
small misspeci/cations of the employed model. Our approach is very diHerent from the
nonparametric approach suggested in Bowman et al. (1998). In particular, the critical
values of the considered test statistic are calculated (or rather approximated) analytically
and a bootstrapping is not involved. In any case it would be interesting to compare
the two methods numerically for various data sets.
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