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In practical applications of stochastic programming the involved probability distribu-
tions are never known exactly. One can try to hedge against the worst expected value
resulting fromaconsidered set of permissible distributions.This leads to amin–max formu-
lation of the corresponding stochastic programming problem. We show that, under mild
regularity conditions, such a min–max problem generates a probability distribution on
the set of permissible distributions with the min–max problem being equivalent to the
expected value problem with respect to the corresponding weighted distribution. We
consider examples of the news vendor problem, the problem of moments and problems
involving unimodal distributions. Finally, we discuss the Monte Carlo sample average
approach to solving such min–max problems.
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1 INTRODUCTION

A large class of stochastic optimization problems can be formulated in

the form of the minimization of an expected value function E�½�ðx,!Þ�

over a feasible set S (see [4,8,17] and references therein). In such a

formulation it is assumed that the probability distribution � of the

involved random variables is known. However, in practical applica-

tions the required distributions are never known exactly and can be
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estimated at best from historical data. Even worse, in many cases the

required data are either unavailable or unreliable. In such cases the

probability distribution to be used is quite often determined by subjec-

tive judgment.

An approach that can be used if the probability distribution � of the

random variables in the problem is not known, is as follows. Suppose

that a family A of probability distributions (measures) is constructed

which is viewed as the set of conceivable distributions relevant for

the considered problem. Then one may hedge against the worst

expected value resulting from the distributions in the set A by solving

the min–max stochastic optimization problem

min
x2S

f ðxÞ :¼ sup
�2A

E�½�ðx,!Þ�

( )
: ð1:1Þ

The min–max approach to optimization certainly is not new. It takes

its origins in von Neumann’s game theory and was used for a long time

in the statistical decision analysis (see, e.g., [1] and references therein).

Starting with work of Žáčková [21], min–max stochastic problems of

the form (1.1) have been studied in [3,5,6,9,12], for example. The con-

sidered set A, of probability distributions, can be ‘‘large’’, e.g., defined

by some general properties such as specified moments of the distribu-

tions of A, or can consist of a small finite number of distributions.

For example, the future demands of products can be modeled with

log-normal distributions with means that are increasing, constant, or

decreasing functions of time, and prescribed variances. A choice of

the family A used by various authors is discussed in [7].

An alternative to the above min–max approach is to define an a

priori probability measure on the set A, and hence to reduce the prob-

lem to the standard expected value formulation. This is a Bayesian type

approach. For example, if the setA is finite, sayA ¼ f�1, . . . ,�kg, then

by assigning a priori probabilities p1, . . . , pk to the corresponding meas-

ures, one obtains the unique distribution ��� :¼
Pk

i¼1 pi�i for which the

corresponding expected value problem

min
x2S

E ���½�ðx,!Þ� ð1:2Þ
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could be solved. That is, one averages over the set of possible distribu-

tions. Again, the choice of such an a priori distribution over A is often

subjective. We show that under mild regularity conditions, for each

min–max problem (1.1) there exists a probability distribution

p1, . . . , pk (with finite support) over A such that (1.1) is equivalent to

the expected value problem (1.2), where ��� ¼
Pk

i¼1 pi�i and each

�i 2 A. Although such an a priori distribution p1, . . . , pk, associated

with the min–max problem (1.1), is not given explicitly, this suggests

a relation between the min–max and Bayesian approaches.

If the considered probability distribution � is given by Dirac1 mea-

sure �a, then E�½�ðx,!Þ� ¼ �ðx, aÞ. Therefore, in case the set

A :¼ f�a: a 2 Ag is formed by Dirac measures, the above problem

(1.3) becomes the min–max problem

min
x2S

max
a2A

�ðx, aÞ: ð1:3Þ

The set A can be viewed as a region of uncertainty of the involved

data parameters and the approach associated with the min–max prob-

lem (1.3) is often referred to as the robust optimization method. It

seems also that the min–max approach to stochastic programming

makes the considered numerical problem better conditioned or,

in other words, more robust. This, however, requires a further

investigation.

2 MIN–MAX STOCHASTIC PROBLEMS

In this section we discuss theoretical properties of min–max stochastic

optimization problems of the form (1.1). We assume that A is a non-

empty (not necessarily convex) set of probability measures on measur-

able space ð�,FÞ, S is a subset of R
n and � : R

n
�� ! R. We

also assume that the set S is closed and convex and there is a convex

neighborhood V of the set S such that the following conditions hold.

(A1) For all x 2 V and � 2 A the function �ðx, Þ is F -measurable and

�-integrable.

1Recall that Dirac measure �a is the measure of mass one at the point a.
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(A2) For every ! 2 � the function �ð,!Þ is convex on V.

(A3) For all x 2 V the max-function f ðxÞ is finite valued, i.e.,

f ðxÞ < þ1.

Then it follows that the function f ðÞ is the supremum of real valued

convex functions, and hence is real valued and convex on V.

Denote

g�ðxÞ ¼ gðx,�Þ :¼ E�½�ðx,!Þ�:

By the above assumptions, for every � 2 A the function g�ðÞ is real

valued and convex on a neighborhood of S and

f ðxÞ ¼ sup
�2A

g�ðxÞ:

Note that since gðx,�Þ is linear in �, the supremum in (1.1) does not

change if the set A is replaced by its convex hull

C :¼ convðAÞ ¼ � ¼
X
i2I

pi�i:�i 2 A, pi > 0,
X
i2I

pi ¼ 1, jI j <1

( )
:

ð2:1Þ

Recall the following definition of a saddle point of the min–max prob-

lem (1.1), with A replaced by its convex hull C.

Definition 2.1 It is said that ð �xx, ���Þ 2 S � C is a saddle point of the

problem (1.1) if

�xx 2 arg min
x2S

gðx, ���Þ and ��� 2 arg max
�2C

gð �xx,�Þ: ð2:2Þ

By the standard min–max theory we have that if there exists a saddle

point ð �xx, ���Þ, then

inf
x2S

sup
�2C

gðx,�Þ ¼ sup
�2C

inf
x2S

gðx,�Þ, ð2:3Þ
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and �xx is an optimal solution of (1.1). The problem

max
�2C

hð�Þ :¼ inf
x2S

gðx,�Þ

� �
, ð2:4Þ

can be viewed as dual of (1.1). We have that the optimal value of the

problem (1.1) is always greater than or equal to the optimal value of its

dual (2.4). Existence of a saddle point ð �xx, ���Þ ensures that problems

(1.1) and (2.4) have the same optimal value and ��� is an optimal

solution of the dual problem (2.4). Also, in that case the set of

saddle points is given by the Cartesian product of the sets of optimal

solutions of (1.1) and (2.4).

Since gð, ���Þ and S are convex, we have that �xx is a minimizer of gð, ���Þ

over S iff

0 2 @g ���ð �xxÞ þNSð �xxÞ, ð2:5Þ

where NSð �xxÞ denotes the normal cone to the set S at the point �xx 2 S

and @g ���ð �xxÞ is the subdifferential of g ���ðÞ at �xx ([18]). (Note that by

definition, NSð �xxÞ ¼ 6 0 if �xx =2S, and hence the above condition (2.5)

implies that �xx 2 S.) Denote

A
�
ðxÞ :¼ argmax

�2A
gðx,�Þ: ð2:6Þ

Since gðx, Þ is linear, we have that

conv A
�
ðxÞ

� �
¼ argmax

�2C

gðx,�Þ: ð2:7Þ

Therefore the second inclusion in (2.2) holds iff there exist �1, . . . ,

�k 2 A
�
ð �xxÞ and positive numbers p1, . . . , pk such that

Pk
i¼1 pi ¼ 1

and ��� ¼
Pk

i¼1 pi�i. Moreover,

@g ���ð �xxÞ ¼ @
Xk
i¼1

pig�i

 !
ð �xxÞ ¼

Xk
i¼1

pi@g�i
ð �xxÞ, ð2:8Þ

where the first equality in (2.8) follows by linearity of gð �xx, Þ and the

second is implied by Moreau–Rockafellar theorem. We obtain the
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following necessary and sufficient conditions for ð �xx, ���Þ to be a saddle

point, and hence sufficient conditions for �xx to be optimal.

PROPOSITION 2.1 A point ð �xx, ���Þ is a saddle point of the problem (1.1) iff

there exist �1, . . . ,�k 2 A
�
ð �xxÞ and positive numbers p1, . . . , pk such thatPk

i¼1 pi ¼ 1, ��� ¼
Pk

i¼1 pi�i and

0 2
Xk
i¼1

pi @g�i
ð �xxÞ þNSð �xxÞ: ð2:9Þ

In the last case �xx is an optimal solution of the problem (1.1).

Remark 2.1 Suppose that �xx satisfies the above sufficient conditions,

i.e., there exist �i and pi satisfying the assumptions of Proposition

2.1 and such that (2.9) holds. Consider the problem

min
x2S

fg ���ðxÞ ¼ E ���½�ðx,!Þ�g: ð2:10Þ

By (2.5) and (2.8) we have that (2.9) is a necessary and sufficient con-

dition for �xx to be an optimal solution of the problem (2.10).

Consequently for any saddle point ð �xx, ���Þ, the point �xx is an optimal sol-

ution of the expected value problem (2.10). Such distribution ��� can be

viewed as a worst probability distribution associated with the min–max

problem (1.1).

Under certain regularity assumptions (discussed below) the above

conditions (2.9) are also necessary for optimality of �xx. Suppose that

the following formula for the subdifferential of the max-function f ðxÞ

holds

@f ð �xxÞ ¼ conv
[

�2A�
ð �xxÞ

@g�ð �xxÞ

8<
:

9=
;: ð2:11Þ

Regularity conditions which are required for (2.11) to hold will be dis-

cussed later. Note that by (2.8) we have that

conv
[

�2A�
ð �xxÞ

@g�ð �xxÞ

8<
:

9=
; ¼

[
�2convfA�

ð �xxÞg

@g�ð �xxÞ: ð2:12Þ
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PROPOSITION 2.2 Let �xx be an optimal solution of the problem (1.1) and

suppose that formula (2.11) holds. Then there exist measures

�1, . . . ,�k 2 A
�
ð �xxÞ, with k � nþ 1, and positive numbers p1, . . . , pk

such that p1 þ    þ pk ¼ 1, and �xx is an optimal solution of the problem

(2.10) with ��� :¼
Pk

i¼1 pi�i. Moreover, the optimal values of problems

(1.1) and (2.10) are equal to each other.

Proof Since problem (1.1) is convex and f ðxÞ is finite valued for all x

in a neighborhood of �xx, we have that the following first-order optim-

ality condition holds at the point �xx:

0 2 @f ð �xxÞ þNSð �xxÞ: ð2:13Þ

Condition (2.13) means that there exists a subgradient z 2 @f ð �xxÞ such

that �z 2 NSð �xxÞ. Now, by formula (2.11), there exist �1, . . . ,�k 2

A
�
ð �xxÞ and zi 2 @g�i

ð �xxÞ, i ¼ 1, . . . , k, such that z ¼
Pk

i¼1 pizi for some

positive numbers p1, . . . , pk satisfying p1 þ    þ pk ¼ 1. Moreover,

since vector z is n-dimensional, the above holds with k � nþ 1.

Define ��� :¼
Pk

i¼1 pi�i. Then it follows that z 2 @g ���ð �xxÞ, and hence

condition (2.5) follows. Since problem (2.10) is convex, it follows

from condition (2.5) that �xx is an optimal solution of the corresponding

problem (2.10).

Finally, since g ���ð �xxÞ is equal to the optimal value of (2.10) and g�i
ð �xxÞ,

i ¼ 1, . . . , k, are equal to the optimal value of (1.1), the optimal values

of problems (1.1) and (2.10) are the same. g

Remark 2.2 By the above arguments the point ð �xx, ���Þ, constructed

in Proposition 2.2, is a saddle point of the problem (1.1). Therefore,

existence of an optimal solution of (1.1) together with the cor-

responding formula (2.11), ensure existence of a saddle point of (1.1).

Next we discuss sufficient conditions for (2.11) to hold. Formula

(2.11) certainly holds if the set A is finite. If A is infinite the situa-

tion is more subtle of course. In that case we need to equip A with a

topology such that the following properties hold.

(B1) The set A is compact (in the considered topology of A).

(B2) For every x in a neighborhood of �xx the function �� gðx,�Þ is

upper semicontinuous on A.
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Note that it follows from the above assumptions that the set A�
ð �xxÞ is

nonempty and compact. Note also that by assumptions (A1) and (A2)

we have that for every � 2 A the function g�ðÞ is convex and real

valued on a neighborhood of �xx, and hence is continuous at �xx. It follows

then by a general result about subdifferentials of the supremum of a

family of convex functions ([10, p. 201, Theorem 3]) that @f ð �xxÞ is

equal to the topological closure (in the standard topology of R
n) of

the set given in the right hand side of (2.11). We obtain that, under

the above assumptions, formula (2.11) holds if the set in the right

hand side of (2.11) is closed.

Let us observe that since f ðxÞ is convex and real valued for all x in a

neighborhood of �xx, it is continuous at �xx, and hence @f ð �xxÞ is bounded. It

follows that the set inside the parentheses in the right hand side of (2.11)

is bounded.

Consider the point-to-set mapping Gð�Þ :¼ @g�ð �xxÞ, from A into the

set of subsets of R
n. It is said that G is closed if its graph

gphðGÞ :¼ fð�, zÞ: � 2 A, z 2 Gð�Þg

is a closed subset of A� R
n. If G is closed, then it follows by compact-

ness of A�
ð �xxÞ that the set inside the parentheses in the right hand side

of (2.11) is closed, and hence is compact. Since the convex hull of a

compact set in R
n is compact, it follows then that the set in the right

hand side of (2.11) is closed. By the definition of the subdifferential

@g�ð �xxÞ we have that

Gð�Þ ¼ z 2 R
n: g�ðxÞ � g�ð �xxÞ � z  ðx� �xxÞ, 8 x 2 R

n
� �

:

Therefore, it follows by the upper semicontinuity of gðx, Þ that G is

closed if, in addition, gð �xx, Þ is continuous on A, i.e., the following con-

dition holds.

(B3) The function �� gð �xx,�Þ is continuous on A.

We obtain the following result.

PROPOSITION 2.3 Suppose that assumptions (A1)–(A3) and (B1)–(B3)

are satisfied. Then formula (2.11) holds.

Propositions 2.2 and 2.3 imply that if assumptions (A1)–(A3) and

(B1)–(B2) hold and assumption (B3) is satisfied with respect to an
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optimal solution �xx of (1.1), then the min–max problem (1.1) is equiva-

lent to the expected value problem (2.10). The corresponding numbers

p1, . . . , pk can be viewed as a probability measure, with the finite sup-

port f�1, . . . ,�kg, on the set A. Of course, the numbers pi are not

given explicitly and, in general, in order to find these numbers one

needs to solve the corresponding min–max problem.

Regarding assumptions (B1)–(B3) let us observe the following. If� is

a metric space and F is its Borel sigma algebra, we can equipA with the

standard weak topology (e.g., [2]). In that case conditions for compact-

ness of A are well known; by Prohorov’s theorem A is compact if (and

in case� is separable, only if )A is tight and closed (see, e.g., [2, Section

5]). Recall that it is said that A is tight if for any " > 0 there exists a

compact set � � � such that �ð�Þ > 1� " for every � 2 A. In particu-

lar, if� is a compact metric space equipped with its Borel sigma algebra

F , then any closed (in the weak topology) setA of probability measures

on ð�,FÞ is weakly compact. Also if, for some x 2 V , the function

�ðx, Þ is bounded and continuous (upper semicontinuous) on �, then

the mapping �� gðx,�Þ is continuous (upper semicontinuous) in the

weak topology.

By the above discussion together with propositions 2.2 and 2.3 we

obtain the following results.

THEOREM 2.1 Let �xx be an optimal solution of the problem (1.1).

Suppose that: (i) assumptions (A1)–(A3) hold, (ii) � is a metric space

and F is its Borel sigma algebra, (iii) the set A is tight and closed (in

the weak topology), (iv) for every x in a neighborhood of �xx the function

�ðx, Þ is bounded and upper semicontinuous on � and the function �ð �xx, Þ

is bounded and continuous on �.

Then there exist measures �1, . . . ,�k 2 A
�
ð �xxÞ, with k � nþ 1, and

positive numbers p1, . . . , pk such that p1 þ    þ pk ¼ 1, and for

��� :¼
Pk

i¼1 pi�i the following holds: (a) ð �xx, ���Þ is a saddle point of (1.1),

(b) ��� is an optimal solution of the dual problem (2.4), (c) the optimal

values of (1.1) and its dual (2.4) are equal to each other, (d) �xx is an optimal

solution of the problem (2.10) and the optimal values of problems (1.1)

and (2.10) are equal to each other.

Remark 2.3 If the set A is finite, then assumptions (B1)–(B3) hold

automatically. In that case assumptions (ii)–(iv) in the above theorem

are superfluous.
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3 EXAMPLES AND DISCUSSION

In this section we discuss several examples which demonstrate various

aspects of the min–max approach.

3.1 The News Vendor Problem

The news vendor problem (see, e.g., [4, Section 1.1]) can be formulated

as the problem of minimization of the function

g�ðxÞ :¼ �axþ

Z x

0

FðwÞ dw, ð3:1Þ

over x 2 Rþ. Here a 2 ½0, 1� is a parameter, FðÞ is a cumulative distri-

bution function (cdf ) on Rþ, and � is the probability measure corre-

sponding to FðÞ. The cdf FðÞ represents a probability distribution of

the associated demand per day. Suppose now that such probability

distribution cannot be specified exactly, and only a family A of rele-

vant cumulative distribution functions on Rþ can be specified.

Consider the corresponding max-function

f ðxÞ :¼ �axþ sup
F2A

Z x

0

FðwÞ dw, ð3:2Þ

and let

hF ðxÞ :¼

Z x

0

FðwÞ dw and hðxÞ :¼ sup
F2A

hF ðxÞ:

Since 0 � FðÞ � 1, it follows that hF ðÞ is Lipschitz continuous with

Lipschitz constant 1 for each F, and thus hðÞ is also Lipschitz contin-

uous with Lipschitz constant 1. Hence there exists a function �FFðÞ,

which is given by the derivative of hðÞ almost everywhere, such that

hðxÞ ¼
R x
0

�FFðwÞ dw. That is,

f ðxÞ ¼ �axþ

Z x

0

�FFðwÞ dw:

Moreover, the function �FF has the following properties. Since each

F 2 A is nondecreasing, it follows that each hF ðÞ is convex, and
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thus hðÞ is convex, and hence �FFðÞ is nondecreasing, �FFðwÞ ¼ 0 for all

w < 0 and �FFðwÞ ! 1 as w ! þ1, and finally �FFðÞ can be chosen to

be right continuous. Consequently, �FFðÞ in itself is a cumulative prob-

ability distribution function.

It follows that the corresponding min–max stochastic problem can

be formulated as the news vendor problem with the cdf �FF . Note that

the cdf �FF does not depend on the parameter a.

3.2 Problem of Moments

Let � be a metric space and F be its Borel sigma algebra. Let

 1ð!Þ, . . . , mð!Þ be real valued measurable functions on ð�,FÞ and

A be the set of probability measures � on ð�,FÞ such that

E�½ jð!Þ� ¼ bj , j ¼ 1, . . . ,m, ð3:3Þ

for some b1, . . . , bm 2 R. Then, for a fixed x, the max-problem inside

the parentheses in (1.1) becomes the classical problem of moments

(see, e.g., [15] and references therein for the historical background of

the problem of moments). Note that here the set A is convex.

The following result is due to Rogosinsky [19].

LEMMA 3.1 Let � be a probability measure on ð�,FÞ such that

 1ð!Þ, . . . , mð!Þ are �-integrable. Then there exists a probability meas-

ure �0 on ð�,FÞ with a finite support of at most mþ 1 points such that

E�½ jð!Þ� ¼ E�0 ½ jð!Þ� for all j ¼ 1, . . . ,m.

By the above lemma it suffices to solve the corresponding max-prob-

lem with respect to measures with a finite support of at most s ¼ mþ 1

points. That is, the corresponding min–max problem can be written in

the form

min
x2S

max
Ps

i¼1 pi�ðx,!iÞ

subject to
Ps

i¼1 pi jð!iÞ ¼ bj, j ¼ 1, . . . ,mPs
i¼1 pi ¼ 1, pi � 0, i ¼ 1, . . . , s

8<
:

9=
;, ð3:4Þ

where the maximum inside the parentheses in (3.4) is taken with

respect to p 2 R
s
þ and !1, . . . ,!s 2 �.
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Let us make the following assumptions: (i) the set S is compact,

(ii) assumptions (A1)–(A3) hold, (iii) the set � is compact, and (iv)

the functions  1ðÞ, . . . , mðÞ and �ðx, Þ, x 2 V , are continuous on �.

By Prohorov’s theorem it follows from the above assumption (iii)

that the set of all probability measures on ð�,FÞ is compact (in the

weak topology). Moreover, since  1, . . . , m are continuous on �,

the set A is a closed subset of the set of all probability measures, and

hence is also compact. Note also that the function f ðxÞ is convex on

a neighborhood of S and hence is continuous on S, and hence the cor-

responding min–max problem has an optimal solution. We obtain then

by Theorem 2.1 that the optimal value of the min–max problem (3.4)

coincides with the optimal value of its dual

max
�2A

hð�Þ :¼ inf
x2S

E�½�ðx,!Þ�

� �
: ð3:5Þ

Denote by As be the set of measures � 2 A with a finite support of at

most s points. The set As is a closed subset of A, and hence is compact.

Note that, unless j�j � s, the set As is not convex. With such notation,

and s ¼ mþ 1, we can write the min–max problem (3.4) as follows

min
x2S

max
�2As

E�½�ðx,�Þ�: ð3:6Þ

We have by Theorem 2.1 that, under the above assumptions, the min–

max problem (3.6) has a saddle point ð �xx, ���Þ with measure ��� having a

finite support of at most ðnþ 1Þðmþ 1Þ points. It follows that the opti-

mal value of (3.6) is equal to the optimal value of its dual, which is

obtained by interchanging the order of min and max operators in

(3.6). Consequently, we obtain that the optimal value of the dual of

(3.6) is equal to the optimal value of (3.5), and hence ��� is an optimal

solution of the dual problem (3.5). Let us summarize the above discus-

sion in the following proposition.

PROPOSITION 3.1 Suppose that the assumptions (i)–(iv) are satisfied.

Then the following holds: (a) problems (3.4) and (3.5) possess optimal

solutions �xx and ���, respectively, with ��� having a finite support of at

most ðnþ 1Þðmþ 1Þ points, (b) ð �xx, ���Þ is a saddle point of the correspond-

ing min–max problem, (c) the optimal values of (3.4) and (3.5) are equal
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to each other, (d) �xx is an optimal solution of the expected value

problem (2.10), and the optimal values of (2.10) and (3.4) are equal to

each other.

In particular if m ¼ 0, i.e., A is the set of all probability measures

on ð�,FÞ, then the primal problem (3.4) is reduced to the min–max

problem

min
x2S

max
!2�

�ðx,!Þ: ð3:7Þ

Also by the above discussion we have that, under the assumptions

(i)–(iii), it suffices to solve its dual problem (3.5) with respect to prob-

ability measures with a finite support of at most nþ 1 points.

Moreover, if � is a convex subset of a normed space and the function

�ðx, Þ is concave for any x 2 S, then the set argmax!2� �ðx,!Þ is

convex. Therefore, in that case it suffices to solve the dual problem

(3.5) with respect to measures of mass one (Dirac measures), and

hence (3.5) is equivalent to the problem which is obtained from (3.7)

by interchanging the order of min and max operators.

It is also possible to show (see [11,13]) that the max-problem inside

the parentheses in (3.4) has the following dual

miny2R
mþ1 y0 þ b1y1 þ    þ bmym

subject to y0 þ y1 1ð!Þ þ    þ ym mð!Þ � �ðx,!Þ, 8 ! 2 �:

ð3:8Þ

Suppose that the set � is compact, that for every x 2 V the function

�ðx, Þ is upper semicontinuous and bounded on �, and that the

functions  1, . . . , m are continuous on �. Then the optimal value

of the problem inside the parentheses in (3.4) is equal to the optimal

value of the problem (3.8) (e.g., [13]), and hence problem (3.4) is

equivalent to the problem

minx2S, y2R
mþ1 y0 þ b1y1 þ    þ bmym

subject to y0 þ y1 1ð!Þ þ    þ ym mð!Þ � �ðx,!Þ, 8 ! 2 �:

ð3:9Þ
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3.3 Unimodal Distributions

A univariate distribution is said to be unimodal with mode a if its

cumulative (probability) distribution function is convex on the interval

ð�1, aÞ and concave on the interval ða, þ1Þ. At the point a the

cumulative distribution function can be discontinuous. Equivalently,

the distribution is unimodal if it is a mixture of the distribution of

mass one at a (Dirac measure �a) and a distribution with density func-

tion that is nondecreasing on ð�1, a� and nonincreasing on ½a, þ1Þ.

Since we can always translate a unimodal distribution with mode a to

a unimodal distribution with mode 0, we assume subsequently that all

considered unimodal distributions have mode 0.

By a result due to Khintchine we have that a distribution is unimodal

with mode 0 iff it is the distribution of a product UZ, where U and Z

are independent random variables, U is uniformly distributed on [0,1]

and the distribution of Z is arbitrary. Moreover, the unimodal distri-

bution is supported on interval ½a, b�, with a � 0 � b, iff the random

variable Z supported on ½a, b�.

Suppose that ! ¼ ðW1, . . . ,WkÞ is a k-dimensional random vector

such that its components W1, . . . ,Wk are mutually independent and

each component Wi has a unimodal distribution with mode 0 and

finite support ½ai, bi�. That is, � ¼ Xk
i¼1½ai, bi� is the Cartesian product

of the intervals ½ai, bi�, F is its Borel sigma algebra and the set A

consists of all probability measures on ð�,FÞ with independent

components each having a unimodal distribution with mode 0. Let

UiZi be Khintchine’s representation of Wi and U ¼ ðU1, . . . ,UkÞ,

Z ¼ ðZ1, . . . ,ZkÞ be the corresponding random vectors. Then it follows

that for any � 2 A,

E�½�ðx,!Þ� ¼ EZ EUZjZ½�ðx,!Þ�
� �

¼ E½ ðx,ZÞ�,

where  ðx, zÞ is the conditional expectation of �ðx,!Þ given Z ¼ z.

Note that it follows from convexity of �ð,!Þ that  ð, zÞ is also convex.

We obtain that the primal min–max problem (1.1) can be written

here as the problem of maximization of E½ ðx,ZÞ� over all probability

measures on ð�,FÞ with independent components, and then minimiza-

tion over x 2 S. Clearly the optimal value of such min–max problem

will be less than or equal to the optimal value of the min–max problem
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of maximization of E½ ðx,ZÞ� over all probability measures on ð�,FÞ,

and then minimization over x 2 S. As it was shown in the previous sec-

tion it suffices to solve the last max problem with respect to Dirac meas-

ures only, i.e., the last min–max problem is equivalent to the problem

min
x2S

max
z2�

 ðx, zÞ: ð3:10Þ

Now any Dirac measure on � belongs to the set of probability meas-

ures on � with independent components. Therefore, we obtain that the

primal min–max problem (1.1) is equivalent here to the problem

(3.10), and hence to the problem

min
x2S

max
�2U

E�½�ðx,wÞ�, ð3:11Þ

where U is the set of uniform probability distributions having supports

of the form Xk
i¼1Li with either Li ¼ ½0, b0i�, b0i � bi, or Li ¼ ½a0i, 0�,

ai � a0i. Moreover, if the set S is compact, then there exists a saddle

point ð �xx, ���Þ such that ��� is a weighted sum of at most nþ 1 uniform

distributions of the above form.

Similar analysis can be performed if the componentW1, . . . ,Wk are

independent, and each Wi has a unimodal and symmetric distribution

on interval ½�ai, ai�. Note that in such case the distribution ofWi can be

represented as the distribution of UiZi, where Ui and Zi are indepen-

dent random variables, Ui is uniformly distributed on ½�1, 1� and Zi

has an arbitrary distribution on ½0, ai�.

4 MONTE CARLO SIMULATION METHOD OF

SAMPLE AVERAGE APPROXIMATION

In this section we consider situations where the set A contains a finite

number of probability measures. That is, let A :¼ f�1, . . . ,�kg and

hence the min–max problem (1.1) becomes

min
x2S

f ðxÞ :¼ max
i¼1,..., k

fiðxÞ

� �
, ð4:1Þ
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where

fiðxÞ :¼ E�i
½�ðx,!Þ�, i ¼ 1, . . . , k:

Note that problem (4.1) can be written in the following equivalent

form

min x2S, z2R z
subject to fiðxÞ � z, i ¼ 1, . . . , k:

ð4:2Þ

Since the functions fiðÞ and the set S are assumed to be convex and the

Slater condition for the problem (4.2) always holds, it follows that if �xx

is an optimal solution of the problem (4.1) (and hence ð �xx, f ð �xxÞÞ is an

optimal solution of (4.2)), then there exist Lagrange multipliers satis-

fying the corresponding optimality conditions (e.g., [10, p. 68]). That

is, there exist �i � 0, i ¼ 1, . . . , k, such that
Pk

i¼1 �i ¼ 1, �i ¼ 0 if

fið �xxÞ < f ð �xxÞ, and

�xx 2 arg min
x2S

Xk
i¼1

�ifiðxÞ

" #
:

These Lagrange multipliers are exactly the weights (probabilities) pi
discussed in Section 2.

We denote by �� the set of all Lagrange multiplier vectors

� ¼ ð�1, . . . , �kÞ satisfying the above optimality conditions. Note that

�� is given by the set of optimal solutions of the dual problem

max
�2�

min
x2S

Xk
i¼1

�i fiðxÞ, ð4:3Þ

where � :¼ � 2 R
k
þ:
P

i¼1k �i ¼ 1g
�

, and therefore does not depend

on �xx.

Now let us discuss the sample average approximation (SAA)

approach to solving the min–max problem (4.1) or its equivalent

(4.2). Let f̂fiðxÞ be the sample average approximation, based on a

random sample of size Ni, of the function fiðxÞ, i ¼ 1, . . . , k. That is,
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if !1, . . . ,!Ni � �i is a generated random sample, then f̂fiðxÞ :¼

N�1
i

PNi

j¼1 �ðx,!
jÞ. Then problem

min
x2S

f̂f ðxÞ :¼ max
i¼1,..., k

f̂fiðxÞ

� �
, ð4:4Þ

provides an approximation of the problem (4.1). Let N :¼

ðN1, . . . ,NkÞ, and v̂vN , ŜSN and �̂�N be the optimal value, the set of

optimal solutions and the set of Lagrange multiplier vectors,

respectively, of the approximating problem (4.4).

It is not difficult to show that under mild regularity conditions, the

SAA estimators v̂vN , x̂xN 2 ŜSN and �̂�N 2 �̂�N are consistent estimators

of their counterparts of the ‘‘true’’ problem (4.1). This is because of

the fact that if each sample average function f̂fiðxÞ converges with prob-

ability one (w.p.1) to the expected value function fiðxÞ uniformly on a

set U � R
n, then the corresponding max-function f̂f ðxÞ converges

w.p.1 to f ðxÞ uniformly on U.

We say that the Law of Large Numbers (LLN) holds pointwise, on

the set V, if for any given x 2 V and each i 2 f1, . . . , kg, f̂fiðxÞ converges

with probability one to fiðxÞ as Ni ! 1. If each sample is i.i.d., then

this holds by the classical (strong) LLN.

PROPOSITION 4.1 Suppose that the assumptions (A1)–(A2) hold, that

the ‘‘true’’ problem (4.1) has a nonempty and bounded set S� of optimal

solutions and that the LLN holds pointwise. Then v̂vN converges w.p.1

to the optimal value of (4.1), and supx2ŜSN
distðx,S�Þ ! 0 and

sup�2�̂�N
distð�,��Þ ! 0 w.p.1 as the sample sizes Ni, i ¼ 1, . . . , k,

tend to infinity.

Proof Proof of this proposition is rather standard, we quickly outline

it for the sake of completeness. Let U be a convex compact subset of V

such that S� � intðUÞ, where intðUÞ denotes the interior of the set U.

Let D be a countable dense subset of U. By the pointwise LLN we

have that for any x 2 D, each f̂fiðxÞ converges w.p.1 to fiðxÞ, and

hence f̂f ðxÞ converges w.p.1 to f ðxÞ. Since the set D is countable, it

follows that the event ‘‘f̂f ðxÞ converges to f ðxÞ for every x 2 D’’

happens w.p.1. Since the SAA functions f̂f ðxÞ are convex and D is

dense in U, it follows by a result from convex analysis ([18,

Theorem 10.8]) that the event ‘‘f̂f ðxÞ converge to f ðxÞ uniformly on

the compact set U’’ happens w.p.1.
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Now let ~SSN be the set of minimizers of f̂f ðxÞ over x 2 S \U. Since

S \U is compact it follows then by the uniform convergence w.p.1

of f̂f ðxÞ to f ðxÞ that supx2 ~SSN
distðx,S�Þ ! 0 w.p.1. It remains to note

that because of the convexity assumption, ŜSN ¼ ~SSN provided that
~SSN � intðUÞ. The assertions follow. g

It is a more delicate issue to estimate rates of converges of the

SAA estimators. The Central Limit Theorem type results for estimators

which are obtained by solving sample average approximations of the

problem (4.2) are discussed in [20, Section 6.6].

Finally let us observe that for any ��� 2 � we have the following

inf
x2S

f ðxÞ ¼ inf
x2S
sup
�2�

Xk
i¼1

�i fiðxÞ

¼ inf
x2S
sup
�2�

E

Xk
i¼1

�i f̂fiðxÞ

" #

� inf
x2S

E

Xk
i¼1

���i f̂fiðxÞ

" #
� E inf

x2S

Xk
i¼1

���i f̂fiðxÞ

" #
: ð4:5Þ

By solving the SAA problems with respect to the measure

��� :¼
Pk

i¼1
���i�i several times, one can estimate the last expected

value in (4.5) by the corresponding average of the obtained optimal

values of the SAA problems. This gives a valid statistical lower

bound for the optimal value of problem (4.1). For stochastic program-

ming problems this bound was suggested by Norkin et al. [16] and

Mak et al. [14]. Note that if ��� 2 ��, then

inf
x2S

f ðxÞ ¼ inf
x2S

E

Xk
i¼1

���i f̂fiðxÞ

" #
:

Therefore, a good choice of ��� would be to take ��� from the set �� of

Lagrange multipliers. Although a ‘‘true’’ Lagrange multiplier vector

usually is unknown, it can be consistently estimated by solving a

SAA problem. Consequently, the obtained estimate can be used in

the above statistical lower bound procedure.
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[21] J. Žáčková (1966). On minimax solutions of stochastic linear programming
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