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In this article, we discuss the sample average approximation (SAA) method
applied to a class of stochastic mathematical programs with variational
(equilibrium) constraints. To this end, we briefly investigate the structure of
both – the lower level equilibrium solution and objective integrand. We show
almost sure convergence of optimal values, optimal solutions (both local and
global) and generalized Karush–Kuhn–Tucker points of the SAA program
to their true counterparts. We also study uniform exponential convergence of
the sample average approximations, and as a consequence derive estimates of the
sample size required to solve the true problem with a given accuracy. Finally, we
present some preliminary numerical test results.
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1. Introduction

In this article, we consider the following optimization problem:

Min
x2X ; yð�Þ

E Fðx; yð!Þ; �ð!ÞÞ½ �

s:t: 0 2 Hðx; yð!Þ; �ð!ÞÞ þ N Cðyð!ÞÞ; a:e: ! 2 �:
ð1:1Þ

Here X is a non-empty subset of R
n, F :Rn

�R
m
�R

d
!R and H :Rn

�R
m
�R

d
!R

m,
�(!) is a random vector defined on a probability space (�,F ,P), C is a non-empty convex
closed subset of R

m and NC(y) denotes the normal cone to C at y,

NCðyÞ :¼ z 2 R
m : zTðy0 � yÞ � 0; 8 y0 2 C

� �
; if y 2 C;

and NC(y):¼; if y =2C. By ��R
d we denote the support of the distribution of �(!),

i.e. � is the smallest closed subset of R
d such that P{�(!)2�}¼ 1.

Problem (1.1) can be viewed as a two-stage stochastic programming problem (of the
‘here-and-now’ type) with recourse and variational constraints. At the first-stage one is
supposed to make a decision about value of vector x, restricted to the feasible set X , before
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a realization of the random data �(!) becomes available. At the second-stage, when x is

fixed and a realization �¼ �(!) becomes known, the following variational inequality (VI)

is solved to calculate the second-stage decision vector y: find y2C such that

Hðx; y; �ÞTðy0 � yÞ � 0; 8 y0 2 C: ð1:2Þ

(Note that this VI can also be written in the form 02H(x, y, �)þNC(y), and that if y is

a solution of this VI, then necessarily y2C.) The second-stage problem (VI) depends on a

realization of the random data �(!) (and on x), and therefore its solution y¼ y(!) is

considered as a function of !. Of course, it may happen that such solution is not unique or

does not exist. The precise meaning of this model will be discussed in the next section.

We refer to (1.1) as a stochastic mathematical program with equilibrium constraints

(SMPEC) since the second-stage VI constraint is often interpreted as an equilibrium

constraint.
Patriksson and Wynter [17] discussed a general class of SMPECs, similar to (1.1),

except that in their formulation the objective function F does not depend on random

variables while the set C in the variational constraint depends on both x and !.
They investigated existence of optimal solutions, Lipschitz continuity, convexity and

differentiability of the object function, and proposed a numerical method for solving

SMPECs with a finite number of scenarios. The discussion was extended by Evgrafov and

Patriksson [5]. More recently Shapiro [27] considered a class of here-and-now type of

SMPECs and investigated their basic properties such as measurability and continuity of

the objective integrand, and consistency and rate of convergence on sample average

approximation method for such problems. On the application aspect, Christiansen et al. [3]

considered an SMPEC model for a class of stochastic bilevel programming problems in

structural optimization, Xu [30] modelled a stochastic Stackelberg–Nash–Cournot

equilibrium problem as a specific SMPEC. It could be mentioned that the two-stage

SMPEC problem (1.1) is quite different from the stochastic variational inequality

of the form

0 2 E ½Hðy; �ð!ÞÞ� þ N CðyÞ; ð1:3Þ

discussed in Gürkan et al. [8].
A particularly interesting case of SMPEC is when C :¼ R

m
þ. Consequently, (1.1)

becomes a stochastic mathematical program with complementarity constraints (SMPCC).

The latter was investigated by Lin et al. in [13] with a focus on the discrete distribution

of �(!). Xu [31] extended the discussion to the continuous distribution case and used an

implicit programming approach to investigate such problems. A notable point in [31] is a

deterministic discretization method in which a set of grid points in the support set of �(!)
are chosen and the stochastic complementarity constraint is replaced by a set of

complementarity constraints with �(!) taking value at these grid points. Error bounds for

this type of deterministic discretization method are also discussed in [31].
It is well-known that even a crude discretization of the random data results in an

exponential growth of the number of scenarios and quickly becomes unmanageable with

increase in the number of random parameters. Therefore, that way or another, one needs

to reduce the set of considered scenarios to a manageable level in order to solve the

obtained SMPEC numerically. One approach to such a reduction is to use the
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Monte Carlo sampling techniques. In that respect, the sample average approximation
(SAA) method turned out to be surprisingly efficient.

The idea of the SAA method is simple indeed. A random (or rather pseudo-random)
sample �1, . . . , �N of N realizations of the random vector �(!) is generated and the involved
expected value function is approximated by the corresponding sample average function.
The SAA method and its variants, known under various names such as ‘stochastic
counterpart method’, ‘sample-path method’, ‘simulated likelihood method’, etc., were
discussed in the stochastic programming and statistics literature over the years. Statistical
properties of SAA estimators were studied in [4,11,18,19,23,25], for example. Recently
it was shown that (under certain regularity conditions) SAA estimators converge
exponentially fast to their true counterparts with increase of the sample size N
[15,30,31,34]. Theoretical findings were supported by numerical studies showing that the
SAA method can be surprisingly efficient in solving large scale (even non-convex)
stochastic programming problems (see, e.g. [8,15,16,21,29]).

In this article, we discuss an application of the SAA method to the SMPEC
problem (1.1) with a focus on the case where the variational constraint has a unique
solution for every x2X and almost every realization of �(!). This narrows the scope of the
discussion, but allows one to obtain results somewhat sharper than those covered in [27].
Specifically, we briefly investigate differentiability properties of both the lower level
equilibrium solution and objective integrand. Then we investigate almost sure
convergence of optimal values, optimal solutions (both local and global) and generalized
Karush–Kuhn–Tucker points of the SAA program to their true counterparts. We also
study uniform exponential convergence of the sample average approximations, and
consequently derive a probabilistic estimate of the sample size required for a sharp local
optimizer of the true SMPEC to be a sharp local optimizer of a sample average
approximation program. Finally, we outline implementation of the SAA method for
SMPEC problems and present some initial numerical results.

The rest of this article is organized as follows. In Section 2, we present a detailed
explanation of our model. As an example, we illustrate that a stochastic leader–followers
problem can be fitted into the model. In Section 3, we investigate properties such as
existence, uniqueness, Lipschitz continuity and directional differentiability of solutions of
the parametric variational inequality (1.2). In Section 4, we discuss consistency and
convergence of some estimators in our proposed sample average approximation scheme
for (1.1). In Section 5, we show the exponential convergence of the sample average
approximation scheme. Finally, in Section 6, we discuss some smoothing or regularization
techniques and present preliminary numerical test results.

2. Preliminary discussions and an example

In this section, we make a more detailed discussion of model (1.1) and present an example.
We then present some preliminary discussion of the SAA method for (1.1).

2.1 A discussion of the SMPEC model

Although our main emphasis, later on in this article, will rest on the case where the
equilibrium constraint (1.2) has a unique solution, we believe that it will be helpful to
discuss a precise meaning of model (1.1) in a general setting where (1.2) may have
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multiple solutions. Of course, in some applications it happens that the solution of (1.2) is

unique, but this cannot be guaranteed in general and it is important to understand an

implication of existence of multiple equilibrium solutions in (1.1).
When the equilibrium constraint (1.2) has multiple solutions, a decision needs to be

made as to which equilibrium solution should be taken into account, bearing in mind that

different equilibrium will result in different objective values. In practice, such selection

depends on the attitude and needs of the (first-stage) decision maker. We give below a
precise mathematical formulation of (1.1) based on the following two equivalent

approaches. One is to consider the optimization problem

Min
y2Rm

Fðx; y; �Þ s:t: 0 2 Hðx; y; �Þ þ N CðyÞ; ð2:1Þ

where x and � are treated as parameters. Note that for given x and �, problem (2.1) is a

deterministic mathematical program with equilibrium constraints (MPEC). Denote by

Q(x, �) the optimal value of problem (2.1). By the definition, Q(x, �)¼þ1 if the

corresponding variational inequality (1.2) does not have a solution. Then the SMPEC (1.1)

can be written as

Min
x2X

�
f ðxÞ :¼ E Qðx; �ð!ÞÞ½ �

�
; ð2:2Þ

where the expectation is taken with respect to the probability distribution P of the random

vector �(!).
The other way which leads to the formulation of (1.1) is as follows. Denote by S(x, �)

the set of solutions of the variational inequality (1.2). Note that the set S(x, �) can be

empty or contain more than one element. Then we can rewrite (1.1) as

Min
x2X ; yð�Þ2Sðx;�ð�ÞÞ

E Fðx; yð!Þ; �ð!ÞÞ½ �; ð2:3Þ

where the optimization in (2.3) is performed over all x2X and all measurable selections

y(!)2S(x, �(!)). It should be noted that in this formulation, y(!) lies in a functional space

of measurable mappings y :�!R
m.

Equivalence of formulations (2.2) and (2.3) is well documented in the stochastic

programming literature (e.g. [20, Chapter 1, section 2.4]). In that respect note that Q(x, �)
can be viewed as the optimal value of the problem:

Min
y2Rm

Fðx; y; �Þ s:t: y 2 Sðx; �Þ: ð2:4Þ

In particular, if Sðx; �Þ ¼ f �yðx; �Þg is a singleton for any x2X and �2�, then

Qðx; �Þ ¼ Fðx; �yðx; �Þ; �Þ and problems (2.2) and (2.3) can be written in the form (2.6)

below. If S(x, �) contains more than one solution, then problem (2.3) will choose

a solution which minimizes F(x, � , �(!)). Only for such a choice of an element of

S(x, �), problems (2.2) and (2.3) are equivalent, and this gives the precise meaning of
formulation (1.1).

Since formulation (1.1) suggests the minimal value of the objective in the case that the

set S(x, �) is not a singleton, it can be viewed as optimistic. A pessimistic decision maker
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would try to hedge against a worst possible situation by maximizing F(x, � , �(!)),
instead of minimizing, over the set S(x, �) of the second-stage equilibrium solutions.

This leads to the following min–max formulation of the corresponding SMPEC:

Min
x2X

Max
yð�Þ2Sðx;�ð�ÞÞ

E Fðx; yð!Þ; �ð!ÞÞ½ �: ð2:5Þ

Of course, two formulations (2.3) and (2.5) are equivalent if the set S(x, �) is a singleton
for all x2X and a.e. (P-almost every) � 2�. Note also that the pessimistic formulation

(2.5) is equivalent to (2.2) if Q(x, �) is defined as the maximal (instead of minimal) value of
F(x, y, �) over y2S(x, �).

It is important to note that in model (1.1), y(�) is treated as the second-stage decision
variable which is a solution of the problem depending on realization of the random vector
�(!) and the first-stage decision vector x. In particular, if for any x2X and a.e. �2�,

variational inequality (1.2) has a unique solution �y ¼ �yðx; �Þ, i.e. Sðx; �Þ ¼ f �yðx; �Þg, then
the second-stage decision vector is an implicit function of x and �. In that case,
problem (1.1) can be written as

Min
x2X

E Fðx; �yðx; �ð!ÞÞ; �ð!ÞÞ½ �: ð2:6Þ

This fits a stochastic leader–followers model as we shall explain in an example later.
It could also be mentioned that even under the condition that variational inequality

(1.2) possesses unique solution for all x2X and a.e. �2�, it could be quite a challenge to
solve the corresponding SMPEC numerically. At this stage it seems to be hopeless to solve

SMPEC problems numerically in absence of such condition. Therefore, the discussion of
situations with possibly non-unique solutions is given mainly for conceptual purposes.

The above SMPEC model is somewhat different from a here-and-now SMPEC
recourse problem considered by Lin et al. [13] and Lin and Fukushima [14]. In their model,
both x and y are treated as first-stage decision variables (which may belong to different
decision makers) and are subject to a complementarity constraint where y is treated as the

prime variable and x and �(!) are treated as parameters. At the second-stage, an additional
recourse vector z(!) is introduced to deal with the case when the complementarity
constraint does not have a solution for some realizations of �(!). A penalty is consequently
added to the objective. This can be viewed as an extension of the classical stochastic

programming recourse model to the SMPEC setting. Practical interpretations of this
approach and the one considered in this article are different and could be applied to
different situations.

Model (1.1) has a wide range of applications in areas such as decision analysis [30] and
structural optimization [3]. Here, we give an example in decision analysis.

Example 2.1 Consider a two-stage stochastic leader–followers problem in an oligopoly

market where mþ 1 firms compete to supply a homogeneous product in a non-competitive
manner. The leader’s decision problem can be formulated as follows:

Max
x2½0;U0�;yð�Þ

E xp
�
xþ

Pm
i¼1 yið!Þ; �ð!Þ

�� �
� c0ðxÞ

s:t: yið!Þ 2 arg max
yi2½0;Ui�

yip
�
xþ yi þ

P
k6¼i

ykð!Þ; �ð!Þ
�
� ciðyiÞ

( )
; i ¼ 1; . . . ;m:

ð2:7Þ
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Here x denotes leader’s supply with lower bound being normalized to 0 and upper bound

U0>0, and yi denotes i-th follower’s decision variable with lower bound 0 and upper

bound Ui>0, p(q, �) denotes the inverse demand function under random shock �¼ �(!),
i.e. if the total supply to the market is q, then market price is p(q, �) at scenario �(!)¼ �,
c0(�) denotes the leader’s cost function and ci(�) dhenotes follower i’s cost function.

In this problem, the leader needs to make a decision before a realization of

uncertainties in market demand to maximize his expected profit, based on his knowledge

of the distribution of �(!) and his belief on how followers will react to his supply in every

demand scenario. That is, in the above formulation (2.7), the leader’s decision variable x is

viewed as the first-stage decision variable which should be made before a realization of the

random data becomes known, while at the second-stage every follower will make his

optimal decision yi(!) based on knowledge of leader’s decision and a realization of the

market demand.
Suppose that p(�, �) is concave, differentiable and strictly decreasing for every � 2�,

and functions ci(�), i¼ 1, . . . ,m, are convex and differentiable. It follows from

[36, Proposition 2.4] that for every i2 {1, . . . ,m}, the function inside the parentheses in

the right-hand side of (2.7) is concave in yi2Rþ. Consequently, using KKT-optimality

conditions, we can rewrite the followers’ maximization problems as a variational

inequality (1.2) with C:¼[0,U1]� � � � �[0,Um] and H(x, y, �)¼ (H1(x, y, �), . . . ,Hm(x, y, �)),

Hiðx; y; �Þ :¼ �p xþ
Xm
i¼1

yi; �

 !
� yip

0 xþ
Xm
i¼1

yi; �

 !
þ c0iðyiÞ; i ¼ 1; . . . ;m: ð2:8Þ

Program (2.7) can be reformulated. Then, as a SMPEC of the form (1.1). In particular,

if we assume that the corresponding variational inequality has a unique solution,

i.e. followers have a unique Nash equilibrium for each feasible x and a.e. �2�, then the

optimistic and pessimistic formulations are equivalent and the resulting SMPEC can be

written in the form (2.6). Such uniqueness of solutions can be ensured under some

convexity conditions on cost functions ci and concavity condition on demand function p,

in which case H satisfies a monotonicity condition. However, when the follower’s

equilibrium has multiple solutions, the leader must consider a proper selection from the

equilibria in his decision making. In particular, if the leader is optimistic, then he will select

an equilibrium that maximizes his profit (for the given x in each demand scenario �(!)¼ �).
This will eventually lead to the optimistic formulation of the corresponding SMPEC as it

was discussed above (by negating the leader’s profit function).
In general, the leader’s objective function, given by the expected profit, might not be a

concave function of x. However, under some special circumstances such as a linear market

demand function and linear cost function of followers, the leader’s objective function is

concave (see [31] for details).

2.2 Sample average approximations of SMPECs problems

Now suppose that �(!) has a discrete distribution with a finite support, i.e. it can take a

finite number �1, . . . , �K of possible values (called scenarios1) with respective probabilities

p1, . . . , pK. Then the expected value function f(x), defined in (2.2), can be written as the

finite summation fðxÞ ¼
PK

k¼1 pkQðx; �kÞ. Also in that case mappings y :�!R
m can be
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identified with vectors (y1, . . . , yK)2R
mK, and hence formulation (2.3) implies that the

SMPEC problem (1.1) (optimistic formulation) can be written as one large MPEC:

Min
x; y1;...;yK

PK
k¼1

pkFðx; yk; �kÞ

s:t: x 2 X ; 0 2 Hðx; yk; �kÞ þ N CðykÞ; k ¼ 1; . . . ;K:

ð2:9Þ

The corresponding pessimistic formulation can be written as

Min
x2X

Max
y1;...;yK

PK
k¼1

pkFðx; yk; �kÞ

s:t: 0 2 Hðx; yk; �kÞ þ N CðykÞ; k ¼ 1; . . . ;K:

ð2:10Þ

As it was discussed earlier, two formulations (2.9) and (2.10) are equivalent if the

constraint variational inequality has unique solution for all x2X and a.e. �. Unless stated

otherwise, in the subsequent analysis we refer to the optimistic formulation of the

SMPEC model.
It is well-known that even a crude discretization of the random data results in an

exponential growth of the number of scenarios which makes the deterministic

problem (2.9) unmanageable even for a moderate number of random parameters. As it

was mentioned in the previous section, an approach to a drastic reduction of the number

of scenarios is to use the Monte Carlo sampling techniques. In that respect, the sample

average approximation (SAA) method turned out to be surprisingly efficient. The idea of

the SAA method is simple indeed. A random (or rather pseudo-random) sample �1, . . . , �N

of N realizations of the random vector �(!) is generated and the expected value

E[Q(x, �(!))] is approximated by the corresponding sample average ð1=NÞ
PN

j¼1 Qðx; �
jÞ,

and hence the (true) SMPEC problem (2.2) is approximated by the following, so-called

sample average approximating (SAA), problem:

Min
x2X

f̂NðxÞ :¼
1

N

XN
j¼1

Qðx; � jÞ

( )
: ð2:11Þ

This SAA problem can also be written in the following equivalent form

Min
x; y1;...;yN

1

N

XN
j¼1

Fðx; yj; �
jÞ

s:t: x 2 X ; 0 2 Hðx; yj; �
jÞ þ N CðyjÞ; j ¼ 1; . . . ;N:

ð2:12Þ

Note that after the random sample is generated, the obtained SAA problem (2.12) can be

viewed as SMPEC with N scenarios {�1, . . . , �N} and equal probabilities 1/N. We discuss

statistical properties of solutions of the SAA problem later.
Note also that (2.12) is essentially a deterministic MPEC and we may use a suitable

MPEC algorithm to solve it. We will discuss this in detail in Section 6. In comparison with

(2.12), (2.11) is an implicit formulation where variables yi, i¼ 1, . . . ,N are ‘eliminated’.

This type of formulation is helpful for the convergence analysis in Sections 4 and 5.
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3. Properties of solutions of variational inequalities

In order to proceed with the analysis, we need to understand the behaviour of the set

S(x, �) of solutions of the variational inequality (1.2), and eventually of the optimal value

function Q(x, �) of the second-stage problem (2.1). First, we have to ensure that S (x, �)
is non-empty for all x2X and a.e. �2� (this corresponds to the so-called relatively

complete recourse condition in two-stage stochastic programming). A simple condition

ensuring that (1.2) has a solution is that the mapping H(x, � , �) is continuous and the set C

is non-empty and compact (recall that C is assumed to be convex throughout this article).

This condition already suffices for application to the Stackelberg–Nash–Cournot

Equilibrium problem considered in Example 2.1. For a more extensive discussion of

existence of solutions of variational inequalities we may refer, e.g. to [9 section 2.2].

Uniqueness of solutions can be ensured by strict monotonicity of mapping H(x, � , �).
This holds in Example 2.1 if every function inside the parentheses in the right-hand side

of (2.7) is strictly concave in yi2 [0,Ui].
In order to simplify notation, we write now H(y,�), or H�(y), for the mapping

H(x, y, �) and view �:¼ (x, �) as a parameter vector of the corresponding variational

inequality:

0 2 H�ðyÞ þ N CðyÞ: ð3:1Þ

We refer to (3.1) as VI(C,H�) and consider a solution �yð�Þ 2 Sð�Þ of VI(C,H�). There is an

extensive literature where continuity and differentiability properties of �yð�Þ, viewed as

a function of �, are discussed (see, e.g. [1,7] for a thorough discussion of that topic).

It will be beyond the scope of this article to give a comprehensive review of that theory.

In what follows, we briefly discuss some results which will be relevant for our analysis.
We assume throughout the remainder of this article that the mapping H(� , �)

is continuous. Also we deal with the case where the solution set Sð�Þ ¼ f �yð�Þg,
of variational inequality VI(C,H�), is a singleton for all �2X ��. (Note that by

assuming S(�) is a singleton we postulate that S(�) consists of exactly one element, and

hence is non-empty.) If we assume, further, that �yð�Þ is uniformly bounded for all � in a

neighbourhood of a given point ��, then �yð�Þ is continuous at ��. This follows easily by

compactness arguments from the fact that the multifunction (point-to-set mapping)

y�NC(y) is closed. Of course, if the set C is bounded, then �yð�Þ are uniformly bounded for

all �2X ��.
Recall that, for a given �, mapping H� :R

m
!R

m is said to be strongly monotone, on C,

if there is a constant c>0 such that

ðH�ðy
0Þ �H�ðyÞÞ

T
ðy0 � yÞ � cky0 � yk2; 8 y0; y 2 C: ð3:2Þ

We say that H�(y) is uniformly strongly monotone if the constant c>0 in (3.2) is

independent of �2X ��. As far as Lipschitz continuity is concerned we have the

following relatively simple result (see, e.g. [7, Theorem 2.3.3]).

PROPOSITION 3.1 Suppose that H�(�)¼H(�,�) is continuous for all �, H(y, �) is Lipschitz

continuous with Lipschitz constant independent of y, and H�(�) is uniformly strongly

monotone on C. Then Sð�Þ ¼ f �yð�Þg is a singleton, and the mapping �yð�Þ is Lipschitz

continuous.
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It is more tricky to establish directional differentiability of �yð�Þ. We assume now that

the set C is given in the form

C :¼ fy 2 R
m : GðyÞ 2 Qg; ð3:3Þ

where G :Rm
!R

‘ is a continuously differentiable mapping and Q�R
‘ is a polyhedral

convex cone. In particular, if Q :¼ f0qg � ð�R
p
þÞ � R

‘ and G(y)¼ (g1(y), . . . , g‘(y)), where

‘¼ qþ p, then the corresponding set C is defined by q equality and p inequality constraints,

that is,

C ¼ y 2 R
m : giðyÞ ¼ 0; i ¼ 1; . . . ; q; giðyÞ � 0; i ¼ qþ 1; . . . ; ‘

� �
: ð3:4Þ

It is said that Robinson’s constraint qualification, for the system G(y)2Q, holds at a

point y02C, if

½rGðy0Þ�R
m
þ TQðGðy0ÞÞ ¼ R

‘: ð3:5Þ

Here rG(y) denotes the Jacobian matrix of G(�) at y, and TQ(z) denotes the tangent cone to

Q at z2Q. Note that forQ :¼ f0qg � ð�R
p
þÞ, Robinson’s constraint qualification coincides

with the Mangasarian–Fromovitz Constraint Qualification (MFCQ).
Denote by �(y,�) the set of all Lagrange multipliers � satisfying condition:

Vðy; �; �Þ ¼ 0; � 2 NQðGðyÞÞ; ð3:6Þ

where

Vðy; �; �Þ :¼ Hðy; �Þ þ ½rGðyÞ�T� ¼ Hðy; �Þ þ
X‘
i¼1

�irgiðyÞ: ð3:7Þ

We have that if y2S(�) and Robinson’s constraint qualification holds at y, then �(y,�) is
non-empty and bounded.

Let us now fix a point �0 and suppose that S(�0)¼ {y0}. By

C0 :¼
�
d 2 R

m : H�0ðy0Þ
Td ¼ 0; d 2 TCðy0Þ

�
ð3:8Þ

we denote the so-called critical cone to C at y02C, and for a given direction d2R
m consider

��ðdÞ :¼ arg max
�2�ðy0;�0Þ

X‘
i¼1

�id
T½r2giðy0Þ�d:

We can now formulate the following result about directional differentiability of �yð�Þ at

�0, [26].

PROPOSITION 3.2 Suppose that: (i) H(� , �) is continuously differentiable and G(�) is twice

continuously differentiable, (ii) the set Sð�Þ ¼ f �yð�Þg is a singleton and �yð�Þ tends to y0 as

�!�0, (iii) Robinson’s constraint qualification holds at the point y0, (iv) for any � the system

0 2 ryHðy0; �0Þdþ r�Hðy0; �0Þ�þ [�2��ðdÞ

X‘
i¼1

�i½r
2giðy0Þ�d

( )
þNC0 ðdÞ ð3:9Þ

has unique solution �d ¼ �dð�Þ. Then �yð�Þ is directionally differentiable at �0 and
�y0ð�0; �Þ ¼ �dð�Þ.
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Let us consider some particular cases of the above result. If �ðy0; �0Þ ¼ f ��g is a

singleton, then system (3.9) becomes

0 2 ryVðy0; �0; ��Þdþ r�Vðy0; �0; ��Þ�þNC0ðdÞ; ð3:10Þ

where V(y,�, �) is defined in (3.7). If the mapping G(y) is affine, then r2G(y)¼ 0, and

hence in that case systems (3.9) becomes

0 2 ryHðy0; �0Þdþ r�Hðy0; �0Þ�þNC0 ðdÞ: ð3:11Þ

Of course, if �yð�Þ is directionally differentiable at �0 and �y0ð�0; �Þ is linear in �, then �yð�Þ is

Gâteaux differentiable at �0, and if, moreover, �yð�Þ is locally Lipschitz continuous, then

Fréchet differentiability follows. We may refer to [7, Section 5.4] for a detailed discussion
of differentiability properties of �yð�Þ when the set C is defined by a finite number of

constraints in the form (3.4).
As it was already mentioned in Section 2, we have that if Sðx; �Þ ¼ f �yðx; �Þg is a

singleton, then Qðx; �Þ ¼ Fðx; �yðx; �Þ; �Þ, and hence continuity and differentiability

properties of �yðx; �Þ can be used to derive differentiability properties of Q(x, �). This,
in turn, can be translated into the corresponding properties of the expected value

function f(x). For a further discussion of this topic we may refer to [20, Chapter 2]

and [27].

4. Convergence of SAA estimators

In this section, we present a convergence analysis for the SAA program (2.11). The reason

that we deal with (2.12), rather than (2.12), is that we can use properties of the optimal

value function Q(x, �) in a direct way. We denote by v̂N and ŜN the optimal value and the

set of optimal solutions, respectively, of problem (2.11). Note that v̂N and ŜN are functions

of the generated sample and hence should be treated as random variables. In this section,
we discuss convergence properties of v̂N and ŜN viewed as statistical estimators of their

counterparts v* and S* of the true problem (2.2). We assume in this section that the

random sample �1, . . . , �N is i.i.d.

4.1 Consistency of SAA estimators

Following the standard statistical terminology we say that v̂N is a consistent estimator of v*

if v̂N converges with probability one (w.p.1) to v* as N!1. We also discuss consistency

of SAA estimators x̂N 2 ŜN of optimal solutions.
It is known that the sample average function f̂NðxÞ converges w.p.1 to the expected

value f(x) uniformly in x2X , i.e.

lim
N!1

sup
x2X

f̂NðxÞ � fðxÞ
			 			
 �

¼ 0; w:p:1; ð4:1Þ

if the following conditions hold (e.g. [19, Section 2.6]):

(A1) The set X is compact.
(A2) For a.e. �2�, the function Q(�, �) is continuous on X .
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(A3) {Q(x, �)}x2X, is dominated by an integrable function, i.e. there is a P-integrable
function �(�) such that supx2XjQ(x, �)j ��(�) for a.e. �2�.

The above assumption (A2) holds, e.g. if the solution �yð�; �Þ is unique and continuous
for a.e. �. The assumption (A3) holds, e.g. if jQ(x, �)j � c for all (x, �)2X �� and some
c2R. This, in turn, holds if Q(� , �) is continuous and X and � are compact. We have that,
under the above conditions (A1)–(A3), v̂N converges w.p.1 to v* and for any (measurable)
selection x̂N2 ŜN the distance dist(x̂N,S*)! 0 w.p.1 as N!1. That is, under mild
regularity conditions, we have that any (globally) optimal solution x̂N of the SAA problem
converges w.p.1 to the true optimal set S*. This settles the question of consistency of
globally optimal solutions of the SAA problem. However, in the present case the true and
SAA problems typically are non-convex and can have many local optima and stationary
points which are even not locally optimal. Moreover, the function Q(�, �) may not be
everywhere differentiable. Under some additional conditions it is also possible to show
convergence of locally optimal solutions. Consider the following conditions.

(A4) There exists a P-integrable function �(�) such that for an open set V �R
n

containing the set X , and all x, x0 2 V and � 2� it holds that

jQðx0; �Þ �Qðx; �Þj � �ð�Þkx0 � xk: ð4:2Þ

(A5) For every (fixed) x2X , the function Q(�, �) is continuously differentiable at x
w.p.1.

Condition (A4) means that Q(�, �) is Lipschitz continuous, with constant �(�), on an
open set V containing X . Recall that if the solution �yð�; �Þ is unique, then Qðx; �Þ ¼
Fðx; �yðx; �Þ; �Þ, and hence Lipschitz continuity of Q(�, �) follows from Lipschitz continuity
of �yð�; �Þ. Note that if the set X is bounded, then condition (A4) implies that {Q(x,�)}x2X is
dominated by function �ð�Þ :¼ Qð �x; �Þ þD�ð�Þ, where �x is a point of X and D is the
diameter of X . Therefore, if X is bounded and Qð �x; �Þ is P-integrable for some �x 2 X , then
condition (A4) implies condition (A3).

Let us now discuss condition (A5). For �2�, consider the set �(�) of such x2V that
Q(�, �) is differentiable at x (the set V is specified in condition (A4)). Since Q(�, �)
is Lipschitz continuous on V, the set V n�(�) has Lebesgue measure zero, and hence �(�)
is dense in V. It is said that Q(�, �) is continuously differentiable at x if x2�(�) and for any
sequence xk2�(�) converging to x it follows that rxQ(xk, �)!rxQ(x, �) as k!1.
It is also possible to formulate this in the following form. Consider Clarke’s generalized
gradient @Q(x, �) of Q(�, �) at x2V, which is formed by the convex hull of all limits of the
form limk!1rxQ(xk, �) with �(�)3 xk! x. Then Q(�, �) is continuously differentiable at x
iff @Q(x, �) is a singleton. Therefore, the above condition (A5) means that @Q(x, �) is a
singleton for a.e. �2�.

Recall that if the solution �yðx; �Þ is unique, then Qðx; �Þ ¼ Fðx; �yðx; �Þ; �Þ. Therefore,
if for a given realization � of the random data vector, �yð�; �Þ is differentiable at x, then
Q(�, �) is differentiable at x. We have that under various regularity conditions, �yð�; �Þ is
continuously differentiable at a given point x (cf., [7, Theorem 5.4.6] and the discussion of
Section 3). Let �(x) denote the set of � 2� such that �yð�; �Þ is continuously differentiable
at x. Then condition (A5) holds if, for any x2X , the Lebesgue measure of � n�(x) is zero
and the probability distribution of �(!) has a density (i.e. is absolutely continuous with
respect to the Lebesgue measure). For a more detailed discussion of this subject in the
SMPCC setting, see, e.g. [31, Section 2].
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For two sets A, B�R
n we denote by

DðA;BÞ :¼ sup
x2A

distðx;BÞ½ �

the deviation of A from B. We have the following result [23].

PROPOSITION 4.1 Suppose that the above conditions (A3)–(A5) hold. Then: (a) the expected

value function f(x) is continuously differentiable on X , (b) for all x2X ,

rfðxÞ ¼ E ½rxQðx; �ð!ÞÞ�; ð4:3Þ

(c) @f̂NðxÞ converges to rf(x) w.p.1 uniformly on any compact subset C of X , that is,

lim
N!1

sup
x2C

Dð@f̂NðxÞ;rfðxÞÞ ¼ 0; w:p:1; ð4:4Þ

where @f̂NðxÞ is Clarke’s generalized gradient of f̂N at x and

Dð@f̂NðxÞ;rfðxÞÞ :¼ sup
z2@f̂NðxÞ

kz� rfðxÞk

is the deviation of the set @f̂NðxÞ from the (singleton) set {rf(x)}.

Suppose that the above condition (A4) holds, and hence f(x) and f̂NðxÞ are

Lipschitz continuous on V. We say that a point �x 2 X is a stationary point of the (true)

problem (2.2) if

0 2 @fð �xÞ þ NXð �xÞ: ð4:5Þ

Of course, if f(x) is continuously differentiable at �x, i.e. @fð �xÞ ¼ frfð �xÞg is a singleton, then

the generalized gradient @fð �xÞ in (4.5) is reduced to the usual gradient vector rfð �xÞ. In the

similar way, a stationary point of the corresponding SAA problem (2.11) by replacing f(x)

in (4.5) with f̂NðxÞ is defined. If the set X is convex, then NXð �xÞ denotes the usual normal

cone. For non-convex sets there are several possible concepts of normal cones.

For example, one can define NXð �xÞ as the polar of the contingent (Bouligand) cone to

X at �x. For convex set X these two concepts of normal cones are equivalent. Also, suppose

that the set X is defined by a finite number of constraints

X :¼
�
x : biðxÞ ¼ 0; i ¼ 1; . . . ; r; biðxÞ � 0; i ¼ rþ 1; . . . ; s

�
; ð4:6Þ

where bi(x), i¼ 1, . . . , s, are continuously differentiable functions and let I (x) be the index

set of active at x inequality constraints. Then we can defineNXð �xÞ as the cone generated by

vectors rbið �xÞ, i¼ 1, . . . , r, with unconstrained coefficients and vectors rbið �xÞ, i 2 ð �xÞ, with

non-negative coefficients. Under the Mangasarian–Fromovitz constraint qualification, the

such defined normal cone coincides with the Bouligand normal cone, and (4.5) represents a

necessary condition for �x to be a locally optimal solution of the problem (2.2).
We assume that the considered normal cone is such that the point-to-set mapping

x�NX(x) is closed on X , i.e. if X 3 xk!x, yk2NX(xk) and yk! y, then y2NX(x).

The above concepts of normal cones satisfy this property. Denote by �* and �̂N the

sets of stationary points of the true (2.2) and SAA (2.11) problems, respectively.

By Proposition 4.1 we have the following result (cf., [25, Section 7]).
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PROPOSITION 4.2 Suppose that the assumptions (A1) and (A3)–(A5) hold and the
point-to-set mapping x�NX(x) is closed on X . Then Dð�̂N;�

�Þ ! 0 w.p.1 as N!1.

Let us emphasize that in the SMPEC setting the value function Q(�, �), and hence
the sample average function f̂Nð�Þ, typically are not everywhere differentiable.
Nevertheless, in case the random data vector �(!) has a continuous distribution, the
condition (A5) may hold as we discussed earlier. Together with condition (A4) this implies
that the expected value function f(x) is continuously differentiable. This is a well-known
‘smoothing’ property of the expectation operator. Of course, if f(�) is continuously
differentiable at �x, then the stationarity condition (4.5) means that 0 2 rfð �xÞ þ NXð �xÞ,
which is quite standard. On the other hand, the stationarity concept (4.5) applied to the
SAA problem could be quite loose. The result of Proposition 4.2 shows that under
mild regularity conditions we may expect that stationary points of the SAA problem
(where stationarity is understood in a broad sense based on Clarke’s generalized
gradients) converge w.p.1 to stationary points of the true problem with increase of the
sample size N.

5. Exponential convergence

In the preceding section, we discussed convergence of the SAA estimators. However, those
results have not addressed an important issue which is interesting from the conceptual and
computational points of view. That is, how large the sample size should be to achieve a
desired accuracy of SAA estimators? In this section, we address this issue. It should be
emphasized that the derived estimates of the sample size are too conservative for practical
applications. Nevertheless, these estimates give an important insight into theoretical
complexity of the considered problems.

Let us start with the following general result about uniform convergence.
The following analysis is self contained and is based on a relatively elementary application
of the upper bound of Cramér’s Large Deviation Theorem. Consider a function
h :X ��!R and the corresponding expected value function f(x):¼E[h(x, �(!))], where
the expectation is taken with respect to the probability distribution P of the random
vector �(!). Recall that X is a closed subset of R

n and ��R
d denotes the support of the

probability distribution P. We assume that for every x2X the expectation f(x) is well
defined, i.e. h(x, �) is measurable and P-integrable. In our applications we take, of course,
h(x, �):¼ Q(x, �). However, the following results may have an independent interest and it
is not essential at the moment to assume that the considered function is given by the
optimal value of the second-stage problem.

Let �1, . . . , �N be an i.i.d sample of the random vector �(!), and consider the
corresponding sample average function f̂NðxÞ :¼ ð1=NÞ

PN
j¼1 hðx; �

jÞ: We discuss now
uniform exponential rates of convergence of f̂NðxÞ to f(x). We denote by

MxðtÞ :¼ E et½hðx;�ð!ÞÞ�fðxÞ�
� �

the moment generating function of the random variable h(x, �(!))� f(x). Let us make the
following assumptions.

(C1) For every x2X the moment generating function Mx(t) is finite valued for all t in
a neighbourhood of zero.
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(C2) There exists a (measurable) function � :�!Rþ and constant �>0 such that

jhðx0; �Þ � hðx; �Þj � �ð�Þkx0 � xk� ð5:1Þ

for all � 2� and all x0, x2X .
(C3) The moment generating function M�(t) of �(�(!)) is finite valued for all t in a

neighbourhood of zero.

Assumption (C1) (assumption (C3)) means that probability distribution of the random

variable h(x, �(!)) (random variable �(�(!))) dies exponentially fast in the tails.

In particular, it holds if this random variable has a distribution supported on a bounded

subset of R. For h(x, �)¼Q(x, �) and � ¼ 1, assumption (C2) basically is the same as the

assumption (A4) used in the previous section. In some interesting cases the power

constant � could be less than one, this is why we consider the more general setting here.

THEOREM 5.1 Suppose that conditions (C1)–(C3) hold and the set X is compact. Then for

any ">0 there exist positive constants C¼C(") and �¼ �("), independent of N, such that

Prob sup
x2X

		f̂NðxÞ � fðxÞ
		 � "
 �

� Cð"Þe�N�ð"Þ: ð5:2Þ

Proof By Cramér’s Large Deviation (LD) Theorem we have that for any x2X and ">0

it holds that

Probff̂NðxÞ � fðxÞ � "g � expf�NIxð"Þg; ð5:3Þ

where

IxðzÞ :¼ sup
t2R

�
zt� logMxðtÞ

�
ð5:4Þ

is the LD rate function of random variable h(x, �(!))� f(x). Similarly

Probff̂NðxÞ � fðxÞ � �"g � expf�NIxð�"Þg;

and hence

Probf
		f̂NðxÞ � fðxÞ

		 � "g � exp �NIxð"Þ
� �

þ exp �NIxð�"Þ
� �

: ð5:5Þ

By assumption (C1) we have that both Ix(") and Ix(� ") are positive for every x2X .
For a 	>0, let �x1; . . . ; �xM 2 X be such that for every x2X there exists

�xi, i2 {1, . . . ,M}, such that kx� �xik � 	, i.e. f �x1; . . . ; �xMg is a 	-net in X . We can

choose this net in such a way that M� [O(1)D/	]n, where D :¼ supx0,x2Xkx
0 � x k is the

diameter of X and O(1) is a generic constant. By (5.1) we have that

jfðx0Þ � fðxÞj � Lkx0 � xk�; ð5:6Þ

where L :¼E[�(�(!))] is finite by assumption (C3). Moreover,

		f̂Nðx0Þ � f̂NðxÞ
		 � �̂Nkx0 � xk�; ð5:7Þ
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where �̂N :¼ N�1
PN

j¼1 �ð�
jÞ. Again, because of condition (C3), by Cramér’s LD Theorem

we have that for any L0>L there is a positive constant � such that

Prob �̂N � L0
� �

� expf�N�g: ð5:8Þ

Consider Zi :¼ f̂Nð �xiÞ � fð �xiÞ, i¼ 1, . . . ,M. We have that the event {max1�i�MjZij � "}
is equal to the union of the events {jZij � "}, i¼ 1, . . . ,M, and hence

Prob max
1�i�M

jZij � "

� 
�
XM
i¼1

Prob
		Zi

		 � "� �
:

Together with (5.5) this implies that

Prob max
1�i�M

		f̂Nð �xiÞ � fð �xiÞ
		 � "� 

� 2
XM
i¼1

exp
�
�N½I �xið"Þ ^ I �xið�"Þ�

�
:

For an x2X let iðxÞ 2 argmin1�i�M kx� �xik. By construction of the 	-net we have that

kx� �xiðxÞk � 	 for every x2X . Then

		f̂NðxÞ � fðxÞ
		 � 		f̂NðxÞ � f̂Nð �xiðxÞÞ

		þ 		f̂Nð �xiðxÞÞ � fð �xiðxÞÞ
		þ 		fð �xiðxÞÞ � fðxÞ

		
� �̂N	

� þ
		f̂Nð �xiðxÞÞ � fð �xiðxÞÞ

		þ L	�:

Now let us take a 	-net with such 	 that L	�¼ "/4, i.e. 	:¼ ["/(4L)]1/�. Then

Prob sup
x2X

		f̂NðxÞ � fðxÞ
		 � "
 �

� Prob �̂N	
� þ max

1�i�M

		f̂Nð �xiÞ � fð �xiÞ
		 � 3"

4


 �
:

Moreover, by (5.8) we have that

Prob �̂N	
� �

"

2

n o
� expf�N�g

for some �>0, and hence

Prob sup
x2X

		f̂NðxÞ � fðxÞ
		 � "
 �

� expf�N�g þ Prob max
1�i�M

		f̂Nð �xiÞ � fð �xiÞ
		 � "

4


 �

� expf�N�g þ 2
XM
i¼1

exp �N I �xi

"

4

� �
^ I �xi

�"

4

� �h in o
: ð5:9Þ

Since the above choice of the 	-net does not depend on the sample (although it depends

on "), and both I �xið"=4Þ and I �xið�"=4Þ are positive, i¼ 1, . . . ,M, we obtain that

(5.9) implies (5.2), and hence completes the proof. g

It follows from (5.2) that

lim sup
N!1

1

N
log Prob sup

x2X

		f̂NðxÞ � fðXÞ
		 � "
 �� �

� ��ð"Þ: ð5:10Þ
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Now let us strengthen condition (C1) to the following condition:

(C4) There exists constant 
>0 such that for any x2X , the following inequality

holds:

MxðtÞ � exp 
2t2=2
� �

; 8 t 2 R: ð5:11Þ

Note that if random variable h(x, �(!))� f(x) has normal distribution with variance 
2,
then its moment generating function is equal to the right-hand side of (5.11). In that case,

the above inequality (5.11) holds as equality.

Suppose, further, for the sake of simplicity that �¼ 1. It follows from condition

(5.11) that log Mx(t)� 

2 t2/2, and hence

IxðzÞ �
z2

2
2
; 8 z 2 R: ð5:12Þ

Consequently, inequality (5.9) implies

Prob sup
x2X

		f̂NðxÞ � fðxÞ
		 � "
 �

� expf�N�g þ 2M exp �
N"2

32
2


 �
; ð5:13Þ

where M¼ [O(1)D/	)]n¼ [O(1)DL/"]n.
It follows from (5.13) that for �2 (0, 1) and the sample size

N �
Oð1Þ
2

"2
n log

Oð1ÞDL

"

� 
þ log

1

�

� � �
; ð5:14Þ

we have that

Prob sup
x2X

		 f̂NðxÞ � fðxÞ
		 � "
 �

� �: ð5:15Þ

It follows from the above estimates that if x̂N is an "/2-minimizer of f̂NðxÞ over X and the

sample size N satisfies (5.14), then x̂N is an "-minimizer of f(x) over X with probability

at least 1� �. In other words, we have the following.

By solving the SAA problem with accuracy "/2 and the sample size satisfying (5.14), we are
guaranteed that the obtained solution solves the true problem to accuracy " with probability
at least 1� �.

For a further discussion of this topic we may refer to [28].

5.1 Convergence of directional derivatives

The above results can also be applied to establishing rates of convergence of directional

derivatives of f̂NðxÞ at a given point �x 2 X . We assume in the remainder of this section that

condition (C2) holds with constant � ¼ 1, and that:

(C5) For every �2�, the function h�(�)¼ h(�, �) is directionally differentiable at �x.

Conditions (C2)–(C5) imply that f(�) is Lipschitz continuous in a neighbourhood of �x,

f(�) is directionally differentiable at �x, its directional derivative f 0ð �x; �Þ is Lipschitz
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continuous, and f 0ð �x; �Þ ¼ E ½�ð�; �ð!ÞÞ�, where �ð�; �Þ :¼ h0�ð �x; �Þ (e.g. [20, Proposition 2,

p. 66]). Here we also have that f̂ 0Nðx; �Þ ¼ �̂Nð�Þ, where

�̂NðdÞ :¼
1

N

XN
j¼1

�ðd; �jÞ; d 2 R
n; ð5:16Þ

and E ½�̂NðdÞ� ¼ f 0ð �x; dÞ; for all d2R
n. Note that condition (C2) implies that

j�(d, �)j � �(�)kdk for any d2R
n and �2�, and hence together with condition (C3) this

implies that the moment generating function of �(d, �(!)) is finite valued in a neighbourhood
of zero. Therefore, Theorem 5.1 implies the following result. (By Sn�1 :¼ {d2R

n : kdk¼ 1}

we denote the unit sphere taken with respect to a norm k�k on R
n.)

THEOREM 5.2 Suppose that conditions (C2)–(C5) hold, with constant �¼ 1 in condition

(C2). Then for any ">0 there exist positive constants C¼C(") and �¼ �("), independent
of N, such that

Prob sup
d2Sn�1

		f̂ 0Nð �x; dÞ � f 0ð �x; dÞ
		4 "


 �
� Cð"Þe�N�ð"Þ: ð5:17Þ

The above result for directional derivatives can be translated into estimates of

convergence of sample average subdifferentials. Recall that

HðA;BÞ :¼ max
�
DðA;BÞ;DðB;AÞ

�
¼ max sup

x2A
distðx;BÞ; sup

x2B
distðx;AÞ


 �

is called the Hausdorff distance between sets A, B�R
n. We have that if A and B are

compact convex subsets of R
n, then

HðA;BÞ ¼ sup
d2Sn�1

		
AðdÞ � 
BðdÞ		; ð5:18Þ

where 
AðdÞ :¼ supz2A dTz denotes the support function of the set A. Note also that if

� :Rn
!R is a real valued positively homogeneous convex function, then there exists a

(uniquely defined) convex compact set A�R
n such that �(�)¼ 
A(�). If a function

f :Rn
!R is directionally differentiable at a point x and f 0(x, �) is convex, we denote by

@ f(x) the corresponding convex set such that f 0(x, �)¼ 
@f (x)(�). In case the function f is

convex, @f(x) coincides with the subdifferential of f at x in the usual sense of convex

analysis. If f is regular, at x, in the sense of Clarke [2, Definition 2.3.4], then @f(x) coincides
with the generalized gradient of Clarke.

The following result is a consequence of Theorem 5.2.

THEOREM 5.3 Suppose that conditions (C2)–(C5) hold, with constant � ¼ 1 in

condition (C2), and for every �2� the directional derivative h0�ð �x; dÞ is convex in d2R
n.

Then f 0ð �x; �Þ is convex, and for any ">0 there exist positive constants C¼C(") and �¼ �("),
independent of N, such that

Prob H @f̂Nð �xÞ; @fð �xÞ
� �

4 "
n o

� Cð"Þe�N�ð"Þ: ð5:19Þ

Now suppose that h(x, �)	Q(x, �), the set X is convex and �x is a sharp local minimizer of
the true problem, i.e. there is a constant ">0 such that

f 0ð �x; dÞ � "kdk; 8 d 2 TX ð �xÞ; ð5:20Þ
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where TX ð �xÞ denotes the tangent cone to X at �x 2 X (note that here we do not assume
f 0ð �x; �Þ is convex). Then, under conditions (C2)–(C5), it follows from (5.17) that

Prob f̂ 0Nð �x; dÞ4 0; 8 d 2 TX ð �xÞ n f0g
n o

� 1� Cð"Þe�N�ð"Þ: ð5:21Þ

That is, the probability of the event that �x is a sharp local minimizer of the corresponding
SAA problem approaches one exponentially fast with increase of the sample size N.
We can write this result as follows.

THEOREM 5.4 Suppose that the set X is convex and, for h(x, �)	Q(x, �), conditions
(C2)–(C5) hold, with �¼ 1 in condition (C2). Let �x 2 X be a sharp locally optimal
solution of the true problem. Then with probability approaching one exponentially fast with
increase of the sample size N, �x is a sharp locally optimal solution of the corresponding
SAA problem.

The main additional assumption of the above Theorem 5.4 is the assumption of
sharpness of locally optimal solution �x of the true problem. As compared with general
results of the first part of this section, this assumption holds only in rather specific
situations (cf. [24]). However, the assumption may suit the context of SMPEC. This can be
intuitively explained as follows. In SMPEC, particularly in SMPCC [30,31], the
components of �yð�; �Þ are generally piecewise smooth. It is quite typical that smooth
pieces are joined at a ‘kink’ which is reasonably sharp. This type of kink may become a
sharp local minimizer or a sharp local maximizer of Q(x, �) and eventually that of f(x).
In other words, we may expect that f(x) contains many sharp local minimizers in SMPEC.
In any case, convergence results of this section may have an independent interest.

6. Some algorithmic aspects of SAA

In the preceding section, we have established theoretical results about convergence of the
SAA method for SMPEC. In this section, we discuss some algorithmic details for solving
the SAA problem (2.12) and give simple numerical examples.

First, let us consider the following approximation scheme for solving the SAA
problems. Suppose that we can construct a function Q :X ��!R, depending on the
parameter >0, such that Q(x, �) converges to Q(x, �) as  # 0 uniformly in
(x, �)2X ��. Then for a generated sample � j, j¼ 1, . . . ,N, and a sequence N# 0,
we approximate the corresponding SAA problem by the problem

Min
x2X

~fNðxÞ :¼
1

N

XN
j¼1

QN ðx; �
jÞ

( )
: ð6:1Þ

Because of the uniform convergence of QN ðx; �Þ to Q(x, �) we have that for any ">0 the
inequality

sup
x2X

~fN ðxÞ � f̂NðxÞ
			 			5 "

holds for all N large enough (independently of the sample). Together with (4.1) this implies

lim
N!1

sup
x2X

~fN ðxÞ � fðxÞ
			 			
 �

¼ 0; w:p:1: ð6:2Þ
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Therefore, under assumptions (A1)–(A3), we obtain consistency of the optimal value and

(global) optimal solutions of problem (6.1). If, further, for every �2� and >0 the

function Q(�, �) is continuously differentiable and Dðfr ~fNðxÞg; @f̂NðxÞÞ converges

uniformly to zero (independently of the sample), then under assumptions (A1) and

(A3)–(A5), consistency of the stationary points of problem (6.1) follows.
In order to motivate such approximations let us consider the following construction.

Assume that the sets C and X have a specific structure, that is, C can be expressed as in

(3.3) with Q :¼ �R
‘
þ and X can be expressed as in (4.6). Consequently, we can rewrite

(2.12) as

Min
x; y1 ;...;yN
�1 ;...;�N

1

N

XN
j¼1

Fðx; yj; �
jÞ

s:t: biðxÞ ¼ 0; i ¼ 1; . . . ; r;

biðxÞ � 0; i ¼ rþ 1; . . . ; s;

Hðx; yj; �
jÞ þ ½rGðyjÞ�

T�j ¼ 0; j ¼ 1; . . . ;N;

0 � �j ? �GðyjÞ � 0; j ¼ 1; . . . ;N:

ð6:3Þ

This is a deterministic mathematical program with complementarity constraints. From

the algorithmic point of view, complementarity constraints may cause some computational

difficulties. There are several ways to deal with these difficulties. For instance, we may use

Scholtes’ regularization method [22] to relax the j-th complementarity constraint by

replacing it with a perturbed system of inequalities

�j � 0; GðyjÞ � 0;�giðyjÞ�ji � ; i ¼ 1; . . . ; ‘; ð6:4Þ

and solve the following regularized SAA scheme

Min
x; y1 ;...;yN
�1 ;...;�N

1

N

XN
j¼1

Fðx; yj; �
jÞ

s:t: biðxÞ ¼ 0; i ¼ 1; . . . ; r;

biðxÞ � 0; i ¼ rþ 1; . . . ; s;

Hðx; yj; �
jÞ þ ½rGðyjÞ�

T�j ¼ 0; j ¼ 1; . . . ;N;

�j � 0; �GðyjÞ � 0; j ¼ 1; . . . ;N;

�giðyjÞ�ji � N; i ¼ 1; . . . ; ‘; j ¼ 1; . . . ;N:

ð6:5Þ

Here gi(�) denotes the i-th component of G(�), �ji denotes the i-th component of the vector

of Lagrange multipliers �j, and N# 0. Observe that (6.5) can be viewed as a two-stage

program: in the first-stage, minimization is taken with respect to x and in the second-stage,

minimization is taken with respect to yj for �¼ �
j, j¼ 1, . . . ,N. Let QNðx; �

jÞ be the optimal

value the second-stage problem, j¼ 1, . . . ,N. Then by the above discussion we have that,

under mild regularity conditions, consistency of the globally (locally) optimal solutions of

the regularized SAA problem (6.5) holds.
Another way to deal with the complementarity constraints is to use an NCP function

such as

 ða; b; cÞ :¼ �
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� bÞ2 þ c2

q
� ðaþ bÞ

� 
;
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or

 ða; b; cÞ :¼ aþ b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2 þ c2

p
;

so that the complementarity constraint can be replaced by

 giðyjÞ;��ji; 
� �

¼ 0; i ¼ 1; . . . ; ‘: ð6:6Þ

In the MPEC literature, this is known as a smoothing NCP method (see, e.g. a discussion
in [6,9,10]). Consequently, we may solve the following smoothed SAA scheme

Min
x; y1;...;yN
�1 ;...;�N

1

N

XN
j¼1

Fðx; yj; �
jÞ

s:t: biðxÞ ¼ 0; i ¼ 1; . . . ; r;

biðxÞ � 0; i ¼ rþ 1; . . . ; s;

Hðx; yj; �
jÞ þ ½rGðyjÞ�

T�j ¼ 0; j ¼ 1; . . . ;N;

 giðyjÞ;��ji; 
� �

¼ 0; i ¼ 1; . . . ; ‘; j ¼ 1; . . . ;N:

ð6:7Þ

Convergence results analogous to the regularized SAA scheme are expected for (6.7).
We omit the details.

6.1 Some preliminary tests

In this section, we report results of a numerical implementation of the SAA method based

on smoothing schemes discussed above. Our focus is on the regularization scheme (6.5)
and smoothed NCP scheme (6.7). Since there are very few SMPEC source problems in the

literature, we have to make them by ourselves. It is not difficult to construct an SMPEC
problem, but it is more tricky to have a problem with solutions which can be calculated in

a closed form. We would like to have a problem with an explicitly known solution in
order to verify numerical results.

We carried out tests in Matlab 6.5 installed in a PC with Windows XP operating

system. This is because MATLAB 6.5 has a built-in optimization solver function fmincon
for general non-linear smooth optimization problems and our programs (6.5) and (6.7) are

non-linear smooth optimization problems for >0. In order to speed up rates of
convergence, we used the Latin Hypercube Sampling (LHS) to generate samples. The

parameter  is set 1/N for both programs where N is the sample size.
To see the performance of the SAA method, we have also carried out tests for the

Deterministic Discretization Approximation (DDA) method [31] for (6.3) which

incorporates a regularization scheme (6.4) and a smoothing NCP scheme (6.6) and
compare the results with those from SAA schemes.

Note that fmincon is an iterative algorithm. In the implementation, the starting point

is set to 0.5e, where e denotes a vector with unit components. The dimension of e depends
on the sample (grid) size and problem size.

Throughout the tests, we recorded CPU times, number of function evaluations

(fun eva.#), number of iterations (iter.#) and approximate optimal solution (opt.val.) and
optimal value at the solution (opt. val.) and these quantities are displayed in the tables of

test results. The sample size N in SAA related methods and the size of grid points
(also denoted by N) in DDA related methods are both set to 100.
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The NCP smoothing we used throughout the tests is based on

 ða; b; cÞ :¼ �
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� bÞ2 þ c2

q
� ðaþ bÞ

� 
;

which is a smoothing of the min-function min(a, b).

Example 6.1 Consider

Min fðxÞ :¼ E ðx1 � 1Þ2 þ ðx2 � 1Þ2 þ �y1ðx; �Þ
2
þ �y2ðx; �Þ

2
� �

s:t: x1 2 ½0; 2�; x2 2 ½0; 2�;

where x¼ (x1, x2), �¼ (�1, �2), and �y1ðx; �Þ and �y2ðx; �Þ are solutions of the

complementarity constraints:

0 � ðy1; y2Þ ? ðy1 � x1 þ �1; y2 � x2 þ �2Þ � 0:

We assume that �1, �2 are independent random variables, both having uniform distribution

on the interval [0, 1].
It is not difficult to verify that the complementarity problem here has a unique solution

�yðx; �Þ ¼ ð �y1ðx; �Þ; �y2ðx; �ÞÞ, where

�yiðx; �Þ ¼
xi � �i; if �i � xi;

0; otherwise;




for i¼ 1, 2. Consequently, we have

f ðx1; x2Þ ¼ ðx1 � 1Þ2 þ ðx2 � 1Þ2 þ

Z x1

0

ðx1 � t1Þ
2dt1 þ

Z x2

0

ðx2 � t2Þ
2dt2

¼ ðx1 � 1Þ2 þ ðx2 � 1Þ2 þ
x31
3
þ
x32
3
:

Therefore, the exact solution is ð�1þ
ffiffiffi
3
p
;�1þ

ffiffiffi
3
p
Þ ¼ ð0:7320; 0:7320Þ and the optimal

value v*¼ 0.4051. The test results are displayed in Table 1.

Example 6.2 Consider

Min fðxÞ :¼ E ðx1 � 1Þ2 þ ðx2 � 1Þ2 þ ðx3 � 1Þ2 þ �y1ðx; �Þ
2
þ �y2ðx; �Þ

2
þ �y3ðx; �Þ

2
� �

s:t: x1 2 ½0; 2�; x2 2 ½0; 2�; x3 2 ½0; 2�;

where �y1ðx; �Þ, �y2ðx; �Þ and �y3ðx; �Þ are solutions of:

0 � ðy1; y2; y3Þ ? ðy1 � x1 þ �1; y2 � x2 þ �2; y3 � x3 þ �3Þ � 0;

Table 1. Numerical results for Example 6.1.

Methods N CPU fun eva.# iter.# opt.val. opt. solutions

SAA-REG 100 43.4060 3875 18 0.4053 (0.7315, 0.7315)
SAA-NCP 100 14.9840 1836 8 0.4054 (0.7321, 0.7317)
DDA-REG 100 61.0150 3059 14 0.4351 (0.7257, 0.7257)
DDA-NCP 100 7.2180 1019 4 0.4351 (0.7255, 0.7255)
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and �1, �2, �3 are independent random variables each having uniform distribution on [0, 1].

This example is modified from Example 6.1 to make a case that the random vector � has
three components. By a similar analysis, we obtain

f ðxÞ ¼ ðx1 � 1Þ2 þ ðx2 � 1Þ2 þ ðx3 � 1Þ2 þ
x31
3
þ
x32
3
þ
x33
3

and deduce that the global optimal solution is ð�1þ
ffiffiffi
3
p
;�1þ

ffiffiffi
3
p
;�1þ

ffiffiffi
3
p
Þ and optimal

value v*¼ 0.6077. The test results are displayed in Table 2. No tests have been carried out

for DDA-Reg and DDA-NCP as the set of grid points is too large.

Example 6.3 Consider

Min fðxÞ :¼ E ðx1 � 1Þ2 þ ðx2 � 1Þ2 þ �y1ðx; �Þ
2
þ �y2ðx; �Þ

2
� �

s:t: x1 2 ½0; 2�; x2 2 ½0; 2�;

where �y1ðx; �1; �2Þ and �y2ðx; �1; �2Þ are solutions of:

0 � ðy1; y2Þ ? ðy1 � x1 þ �1 � �2; y2 � x2 þ �2Þ � 0;

and �1, �2 are independent random variables, both having uniform distribution on [0, 1].

This example is also modified from Example 6.1 by changing the first complementarity

constraint so that it depends on both �1 and �2.
It is not difficult to verify that the complementarity problem has unique solution

�yðx; �Þ ¼ ð �y1ðx; �Þ; �y2ðx; �ÞÞ, where

�y1ðx; �Þ ¼
x1 � �1 þ �2; if x1 � �1 þ �2 � 0;

0; otherwise;




and

�y2ðx; �Þ ¼
x2 � �2; if �2 � x2;

0; otherwise:




Consequently, we can work out the explicit expression of the objective function

fðxÞ

¼

�
1

6
x41þ

1

12
ð1þx1Þ

4
þðx1� 1Þ2þðx2� 1Þ2þ

1

3
x32; if x1 2 ½0;1�;x2 2 ½0;2�;

�
1

6
x41þ

1

12
½ð1þx1Þ

4
Þþ ðx1� 1Þ4� þ ðx1� 1Þ2þðx2� 1Þ2þ

1

3
x32; if x1 2 ½1;2�;x2 2 ½0;2�:

8><
>:

Table 2. Numerical results for Example 6.2.

Methods N CPU funt eva.# iter.# opt.val. opt. solutions

SAA-REG 100 145.5310 6004 20 0.6079 (0.7318, 0.7320, 0.7320)
SAA-NCP 100 27.3750 2745 8 0.6089 (0.7316, 0.7321, 0.7318)
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Through a simple analysis, we can obtain an approximate optimal solution
ð0:48887;�1þ

ffiffiffi
3
p
Þ. Note that the first coordinate is not exact as we obtained it by

solving @f(x)/@x1¼ 0 in Maple. The numerical test results are displayed in Table 3.
Our preliminary results show that SAA related methods perform better than DDA

related methods. From the smoothing perspective, we find that NCP related methods
perform better than regularization related methods. This is perhaps to do with the fact that
our complementarity constraints are all linear and strongly monotone with respect to y.
Of course, to draw a more definitive conclusion, more tests are required. This could be
a subject of further investigation.
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A. Shapiro, eds., Handbooks in OR & MS, Vol. 10, North-Holland Publishing Company,

Amsterdam, 2003.
[26] A. Shapiro, Sensitivity analysis of parameterized variational inequalities, Math. Oper. Res. 30

(2005), pp. 76–91.
[27] A. Shapiro, Stochastic mathematical programs with equilibrium constraints, J. Optim. Theory

Appl. 128 (2006), pp. 223–243.
[28] A. Shapiro and A. Nemirovski, On complexity of stochastic programming problems,

in Continuous Optimization: Current Trends and Applications, V. Jeyakumar and

A.M. Rubinov, eds., Springer, New York, 2005, pp. 111–144.
[29] B. Verweij, et al., The sample average approximation method applied to stochastic routing

problems: a computational study, Comput. Optim. Appl. 24 (2003), pp. 289–333.

[30] H. Xu, An MPCC approach for stochastic Stackelberg–Nash–Cournot equilibrium, Optimization
54 (2005), pp. 27–57.

[31] H. Xu, An implicit programming approach for a class of stochastic mathematical programs with
equilibrium constraints, SIAM J. Optim. 16 (2006), pp. 670–696.

418 A. Shapiro and H. Xu

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
5
6
 
7
 
J
a
n
u
a
r
y
 
2
0
1
0




