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On duality theory of convex semi-infinite programming
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In this article we discuss weak and strong duality properties of convex semi-infinite
programming problems. We use a unified framework by writing the corresponding constraints
in a form of cone inclusions. The consequent analysis is based on the conjugate duality
approach of embedding the problem into a parametric family of problems parameterized
by a finite-dimensional vector.
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1. Introduction

Consider semi-infinite programming problems (SIPs) of the form

Min
x2Rn

f ðxÞ subject to gðx,!Þ � 0, ! 2 �, ð1:1Þ

where � is a (possibly infinite) set, f : R
n
! R is an extended real valued function

and g : R
n
��! R. In the above formulation, a feasible point x 2 R

n is supposed
to satisfy the constraints gðx,!Þ � 0 for all !2�, and no structural assumptions are
made about the set �. In some situations it is natural to require that these constraints
hold for almost every (a.e.) !2�. That is, the set � is equipped with a sigma algebra F
and a (finite) measure � on ð�,FÞ. Then it is said that a property holds for a.e. !2�
if there is a set A 2 F such that �ðAÞ ¼ 0 and the property holds for all ! 2 �nA.
The formulation ‘‘for a.e. !2�’’ is relevant, for example, in stochastic program-
ming (cf [9–11]).

There exists an extensive literature on duality of convex SIPs (see, e.g., [4]
and references therein), and in particular on linear SIPs (see [2] and, for a more
recent survey, [3]). In this article, we discuss an approach to duality theory of both
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formulations in a unified framework by writing the corresponding constraints in a
form of cone inclusions. We then embed the dual problem into a parametric family
and study the ‘‘strong duality’’ relations between the primal and dual problems from
the point of view of conjugate duality (cf [8]). An advantage of the suggested approach
is that the strong duality property can be established in a finite-dimensional setting.

2. Weak duality

Both formulations of the semi-infinite programs (i.e., ‘‘for every !2�’’ and ‘‘for a.e.
!2�’’) can be written in the following form.

Define the mapping G : x� gðx, �Þ, from R
n into an appropriate linear functional

space Y. Choose an appropriate (nonempty convex) cone K � Y and write the
corresponding semi-infinite program in the form

Min
x2Rn

f ðxÞ subject to GðxÞ 2 K: ð2:1Þ

For example, in the case of the formulation ‘‘for every !2�’’ we can take Y :¼ R
� to be

the linear space of real valued functions � : �! R, and the cone

K :¼ f� 2 Y: �ð!Þ � 0, ! 2 �g: ð2:2Þ

In the case of the formulation ‘‘for a.e. !2�’’ we assume that, for every x 2 R
n,

the function gðx, �Þ belongs to the functional space Y :¼ Lpð�,F ,�Þ, for some
p 2 ½1,þ1�, and take

K :¼ � 2 Lpð�,F ,�Þ : �ð!Þ � 0 for a:e: ! 2 �
� �

: ð2:3Þ

Next we associate with Y, a dual space Y� of linear functionals �� : Y ! R. In that
way we define the scalar product h��, �i :¼ ��ð�Þ for �� 2 Y� and � 2Y. We assume that
Y and Y� form a pair of locally convex topological vector spaces. For example, with
Y :¼ R

� we can associate the linear space of functions �� : �! R such that only
a finite number of ��ð!Þ are nonzero and define the scalar product

h��, �i :¼
X
!2�

��ð!Þ�ð!Þ ð2:4Þ

(the summation in the right-hand side of (2.4) is taken over !2� such that ��ð!Þ 6¼ 0.)
In case of Y :¼ Lpð�,F ,�Þ we use its standard dual Y� :¼ Lqð�,F ,�Þ, where
q 2 ½1, þ1� is such that 1=pþ 1=q ¼ 1. Consider the dual

K � :¼ �� 2 Y� : h��, �i � 0, � 2 K
� �

ð2:5Þ

of the cone K, and the Lagrangian function Lðx, �Þ :¼ f ðxÞ þ h�,GðxÞi: We make the
following assumption throughout the article.
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Assumption (A1) For any � 62 K there exists �� 2 K� such that h��, �i > 0.

It follows directly from the definition that the cone

K �� :¼ � 2 Y: h��, �i � 0, �� 2 K�
� �

contains the cone K. The above assumption (A1) implies that K ¼ K��.
Under the assumption (A1), we have that

sup
�2K�

Lðx, �Þ ¼
f ðxÞ, if GðxÞ 2 K,
þ1, if GðxÞ 62 K,

�

and hence, problem (2.1) can be written in the min–max form

Min
x2Rn

Max
�2K�

Lðx, �Þ: ð2:6Þ

Then the (Lagrangian) dual of (2.1) is the problem

Max
�2K�

 ð�Þ :¼ inf
x2Rn

Lðx, �Þ

� �
: ð2:7Þ

We refer to problems (2.1) and (2.7) as primal ðPÞ and dual ðDÞ problems, respectively,
and denote by val(P) and val(D) their respective optimal values. By Sol(P) we denote
the (possibly empty) set of optimal solutions of the primal problem.

In particular, for Y :¼ R
� and the cone K defined in (2.2) we have that

K� ¼ f� 2 Y� : �ð!Þ � 0, ! 2 �g ð2:8Þ

and Lðx, �Þ ¼ f ðxÞ þ
P

!2� �ð!Þgðx,!Þ (recall that for � 2 Y
� only a finite number of

values �ð!Þ do not equal zero, and hence, the corresponding summation over !2�
is well defined). For Y :¼ Lpð�,F ,�Þ and the cone K defined in (2.3) we have that

K� ¼ f� 2 Lqð�,F ,�Þ: �ð!Þ � 0, a:e ! 2 �g ð2:9Þ

and Lðx, �Þ ¼ f ðxÞ þ
R

�
�ð!Þgðx,!Þd�ð!Þ. In both cases the assumption (A1) holds.

By the standard min–max theory we have the following (called weak duality) relation

valðPÞ � valðDÞ ð2:10Þ

between the optimal values of the primal and dual problems.
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3. Strong duality

In this section we discuss conditions under which the strong duality relation
valðPÞ ¼ valðDÞ holds. For vectors x, y 2 R

n we denote by h y, xi their standard scalar
product. Let us embed the dual problem into the parametric family

Max
�2Y�

’ ð�, yÞ,ðDyÞ

where

’ ð�, yÞ :¼
infx2Rn

�
Lðx, �Þ � h y, xi

�
if � 2 K�,

�1 if � 62 K�:

�
ð3:1Þ

Note that the function ’ : Y� � R
n
! R is the infimum of linear functions, and hence

is concave. It follows that the min-function

#ð yÞ :¼ inf
�2Y�
f�’ ð�, yÞg ¼ � sup

�2Y�
’ð�, yÞ ð3:2Þ

is an extended real valued convex function. Clearly valðDyÞ ¼ �# ð yÞ and, in
particular, valðDÞ ¼ �# ð0Þ.

Let us calculate the conjugate of the function #(y). We have

#�ð y�Þ :¼ sup
y
h y�, yi � #ð yÞ ¼ sup

y, �
hy�, yi þ ’ ð�, yÞ

¼ sup
�2K�

sup
y

inf
x2Rn

�
h y�, yi � hx, yi þ Lðx, �Þ

�
: ð3:3Þ

Furthermore,

sup
y

inf
x2Rn

�
h y�, yi � hx, yi þ Lðx, �Þ

�
¼ sup

y

�
h y�, yi � sup

x2Rn
fh y, xi � Lðx, �Þg

�
¼ sup

y

�
h y�, yi � L�ð y, �Þ

�
¼ L��ð y�, �Þ, ð3:4Þ

where L�ð�, �Þ is the conjugate of the function Lð�, �Þ, and L��ð�, �Þ is the conjugate of
L�ð�, �Þ. Let us make now the following assumption.

Assumption (A2) For every � 2 K�, the function Lð�, �Þ is proper convex and lower
semicontinuous.

In both the examples considered, for � 2 K� convexity of h�,Gð�Þi is implied by
convexity of gð�,!Þ, !2�. If, moreover, f ( � ) is proper convex and lower semi-
continuous, then the above assumption (A2) follows.

By the Fenchel–Moreau theorem (e.g., [7]) we have that, under assumption (A2), for
all � 2 K� the function L��ð�, �Þ coincides with Lð�, �Þ, and hence by (3.3) and (3.4)

#�ðy�Þ ¼ sup
�2K�

Lð y�, �Þ: ð3:5Þ

By #��ð�Þ we denote the conjugate of the function #�ð�Þ.
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PROPOSITION 3.1 Suppose that the assumptions (A1) and (A2) hold. Then valðDÞ ¼
�#ð0Þ, valðPÞ ¼ �#��ð0Þ and SolðPÞ ¼ �@#��ð0Þ.

Proof By (2.6) and (3.5) we have

valðPÞ ¼ inf
y�
#�ð y�Þ ¼ �#��ð0Þ: ð3:6Þ

We also have by convex analysis (e.g., [7]) that

@#��ð yÞ ¼ argmax
y�

�
h y�, yi � #�ð y�Þ

�
: ð3:7Þ

In particular,

@#��ð0Þ ¼ � argmin
y�
#�ð y�Þ ¼ � argmin

y�
sup
�2K�

Lð y�, �Þ

� �
: ð3:8Þ

That is, SolðPÞ ¼ �@#��ð0Þ. g

We obtain the following results which are quite standard in the conjugate duality
theory.

PROPOSITION 3.2 Suppose that the assumptions (A1) and (A2) hold and #��ð0Þ < þ1.
Then: (i) valðDÞ ¼ valðPÞ iff the function #( y) is lower semicontinuous at y¼ 0, and
(ii) valðDÞ ¼ valðPÞ and Sol(P) is nonempty iff the function #( y) is subdifferentiable
at y¼ 0.

Proof Since the function #ð�Þ is convex and #��ð0Þ < þ1, we have by the Fenchel–
Moreau theorem that #��ð0Þ ¼ #ð0Þ iff #( y) is lower semicontinuous at y¼ 0. Since
valðDÞ ¼ �#ð0Þ and valðPÞ ¼ �#��ð0Þ, property (i) follows.

Now if #( y) is subdifferentiable at y¼ 0, i.e., @#ð0Þ 6¼ 6 0, then #ð0Þ is finite and #( y)
is lower semicontinuous at y¼ 0, and @#ð0Þ ¼ @#��ð0Þ. It follows by (i) that
valðDÞ ¼ valðPÞ, and since SolðPÞ ¼ �@#��ð0Þ, it is nonempty. Conversely, if
valðDÞ ¼ valðPÞ and Sol(P) is nonempty, then #��ð0Þ ¼ #ð0Þ and @#��ð0Þ 6¼ 6 0.
This implies that @#ð0Þ ¼ @#��ð0Þ 6¼ 6 0, and hence property (ii) follows. g

PROPOSITION 3.3 Suppose that the assumptions (A1) and (A2) hold and val(P) is finite.
Then valðDÞ ¼ valðPÞ and Sol(P) is nonempty and bounded iff the following condition
holds: (i) there exists a neighborhood N of 0 2 R

n such that for every y 2 N there
exists � 2 K� such that

inf
x2Rn

�
Lðx, �Þ � hy, xi

�
> �1: ð3:9Þ

Proof Suppose that condition (i) holds. Then for every y 2 N there exists � 2 Y�

such that ’ ð�, yÞ > �1, and hence #ð yÞ < þ1 for all y 2 N . Since #ð0Þ � #��ð0Þ ¼
�valðPÞ, and val(P) is finite, it follows that #ð0Þ is finite. By convexity of #ð�Þ,
we obtain that #( y) is continuous at y¼ 0. It follows that @#ð0Þ is nonempty and
bounded, and hence, by Proposition 3.2, valðDÞ ¼ valðPÞ and Sol(P) is nonempty and
bounded.
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Conversely, suppose that Sol(P) is nonempty and bounded. By Proposition 3.1,
it follows that @#��ð0Þ is nonempty and bounded. This implies that #��ðyÞ is finite
valued for all y in a neighborhood of 0 2 R

n. This, in turn, implies that #( y) is
finite valued for all y in a neighborhood of 0 2 R

n, and hence condition (i) follows.
g

Consider the following linear SIP:

Min
x2Rn
hc, xi subject to hað!Þ, xi þ bð!Þ � 0, ! 2 �: ð3:10Þ

For the problem we have that, for � 2 K�,

’ ð�, yÞ ¼
h�, bi, if y ¼ cþ h�, ai,
�1, otherwise,

�

and hence

#ð yÞ ¼ inf
�
�h�, bi: cþ h�, ai ¼ y, � 2 K �

�
: ð3:11Þ

Therefore for the linear SIP, condition (i) of Proposition 3.3 is equivalent to the
condition:

0 2 int
�
y 2 R

n : y ¼ cþ h�, ai, � 2 K�
�
: ð3:12Þ

Condition (3.12) is well known in the dual theory of linear SIP (cf., [1]).

PROPOSITION 3.4 Suppose that the assumptions (A1) and (A2) hold and Sol(P) is
nonempty and bounded. Then valðDÞ ¼ valðPÞ.

Proof Since SolðPÞ ¼ �@#��ð0Þ, it follows that @#��ð0Þ is nonempty and bounded.
This implies that #��ðyÞ, and hence #( y), is continuous at y¼ 0. g

In various settings the result of Proposition 3.4 is known, e.g., in the case of
‘‘for a.e. !2�’’ setting and Y :¼ L1ð�,F ,�Þ and Y� :¼ L1ð�,F ,�Þ, [9], and
Y :¼ L1ð�,F ,�Þ and Y� :¼ L1ð�,F ,�Þ, [5], and in the setting of ‘‘for all !2�’’
and linear semi-infinite programming, [2]. The above derivations show that the
nonemptiness and boundedness of Sol(P) implies the strong duality property for
general convex problems under the minimal structural assumption (A1).

In the setting ‘‘for a.e. !2�’’ and Y :¼ L1ð�,F ,�Þ and Y� :¼ L1ð�,F ,�Þ,
the following extension of Proposition 3.4 is similar to a result presented in [5].

PROPOSITION 3.5 Suppose that the assumptions (A1) and (A2) hold and the set Sol(P)
has the form

SolðPÞ ¼ Aþ L, ð3:13Þ

where A is a nonempty bounded subset of R
n and L is a linear subspace of R

n.
Then valðDÞ ¼ valðPÞ.
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Proof Suppose that condition (3.13) holds. Then by Proposition 3.1 we have that
#��ð0Þ is finite and @#��ð0Þ ¼ �Aþ L. Since

#��ð yÞ � #��ð0Þ þ hz, yi, 8 z 2 @#��ð0Þ,

it follows that #��ð yÞ ¼ þ1 for any y 62 L?, i.e., the domain of #�� is contained in the
linear space L?. Consequently, the domain of # is also contained in L?. Since A
is bounded, we have that #��ð�Þ, restricted to L?, has a nonempty and bounded
subdifferential at 0 2 L?. It follows that #��ð yÞ is finite for all y restricted to L? in a
neighborhood of 0 2 L?. Consequently, #ð yÞ ¼ #��ð yÞ and is finite for all y 2 L? in
a neighborhood of the null vector. It follows that, restricted to L?, #ð�Þ is continuous
at 0 2 L?. Consequently, #ð�Þ is lower semicontinuous at 0 2 R

n, and hence
valðDÞ ¼ valðPÞ. g

So far we did not discuss the existence of optimal solutions of the dual problem.
By the standard min–max theory we have from (2.6) and (2.7) that if valðPÞ ¼
valðDÞ, then �xx and ��� are optimal solutions of the primal and dual problems, respectively
iff ð �xx, ���Þ is a saddle point of the Lagrangian Lðx, �Þ, i.e., �xx 2 argminx2Rn Lðx, ���Þ
and ��� 2 argmax�2K� Lð �xx, �Þ. Because of assumption (A1), the second of the above
conditions means that Gð �xxÞ 2 K and h ���,Gð �xxÞi ¼ 0. Therefore, if valðPÞ ¼ valðDÞ, then
�xx is an optimal solution of the primal problem and ��� is an optimal solution of
the dual problem iff

�xx 2 argmin
x2Rn

Lðx, ���Þ, Gð �xxÞ 2 K and h ���,Gð �xxÞi ¼ 0: ð3:14Þ

Let us remark that without additional topological type assumptions, existence of an
optimal solution for the dual problem cannot be guaranteed (cf., [6]).

Finally, let us consider the following min–max problem

Min
x2X

�ðxÞ :¼ sup
!2�

hðx,!Þ

� �
: ð3:15Þ

We make the following assumptions:

Assumption (B1) The set X is a nonempty closed convex subset of R
n.

Assumption (B2) The set � is a nonempty convex subset of a linear space �.
Assumption (B3) The function h : R

n
��! R is such that hð�,!Þ is convex for every

!2�.

With the problem (3.15) is associated the following SIP

Min
x2X, z2R

z subject to hðx,!Þ � z � 0, ! 2 �: ð3:16Þ

The optimal values of problems (3.15) and (3.16) are equal to each other, and �xx is
an optimal solution of (3.15) iff ð �xx, �zzÞ, with �zz being the optimal value of (3.15),
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is an optimal solution of (3.16). The dual of problem (3.16) can be written in the form

Max
�2K�P
!2�

�ð!Þ¼1

inf
x2X

X
!2�

�ð!Þhðx,!Þ

( )
, ð3:17Þ

where � : �! R is such that only a finite number of �ð!Þ are nonzero and K* is defined
in (2.8). The assumption (A1) holds here and assumption (A2) is implied by the
assumptions (B1) and (B3). Therefore, we can apply the developed theory to problems
(3.16) and (3.17) in a straightforward way. In particular, we obtain that the common
optimal value of (3.15) and (3.16) is equal to the optimal value of (3.17) if the set
Sol(P) of optimal solutions of (3.15) can be represented in the form (3.13), with A
being a nonempty bounded subset of R

n and L being a linear subspace of R
n.

Further, let us make the following assumption.

Assumption (B4) For every x 2 X, the function hðx, �Þ : �! R is concave.

Under assumption (B4), we have that for any � 2 K� such that
P

!2� �ð!Þ ¼ 1,
the inequality

X
!2�

�ð!Þhðx,!Þ � hðx, �!!Þ

holds with �!! :¼
P

!2� �ð!Þ!. Note that by convexity of �, we have that �!! 2 �.
Therefore, under the assumptions (B3) and (B4), the optimal value of (3.17) is equal
to the optimal value of the max–min problem

Max
!2�

�ð!Þ :¼ inf
x2X

hðx,!Þ

� �
: ð3:18Þ

The above discussion together with Proposition 3.5 implies the following result.

PROPOSITION 3.6 Suppose that the assumptions (B1)–(B4) hold and the set of optimal
solutions of (3.15) can be represented in the form Aþ L, with A being a nonempty bounded
subset of R

n and L being a linear subspace of R
n. Then the optimal values of (3.15)

and (3.18) are equal to each other.
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