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Abstract 

This paper introduces cross-variograms modeling by integral transforms. The suggested models can 
be asymmetric and hence do not require shifting to produce asymmetric cross-variograms. These mod- 
els are capable of providing anisotropic cross-variograms over multidimensional spaces. Simultaneous 
modeling of the cross-variograms is stressed and a method based on factorization of the unknown 
model coefficients is introduced. The suggested approach enables to retain joint conditional negative 
definiteness of the fitted models without requiring any additional constraints. Weighted least squares cri- 
terion is used to fit models to the experimental values and iterative quadratic programming is employed 
to solve the obtained nonlinear programming problem. Flexibility of the approach is demonstrated by 
fitting models to experimental cross-variograms over one-and two-dimensional spaces. 
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I .  In troduct ion  

Fitting permissible functions to experimental variograms/cross-variograms is an es- 
sential step in cokriging. Parametric methods exist for cross-variogram fitting (Journel 
and Huijbregts, 1978), but such methods are restrictive as to the choice of the mod- 
els for cross-variograms and may result in poor fits. In addition, these methods may 
become totally inapplicable in cases where different types of models need to be fitted 
to different variograms. 

In some of the reported studies, the Cauchy-Schwartz inequality is satisfied whether 
using the cross-covariances or using the cross-variograms (Ahmed and De Marsity, 
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1987). It can be shown that Cauchy-Schwartz inequality is necessary but not suffi- 
cient for joint non-negative definiteness of the fitted cross-covariance models. There 
is a controversy over the applicability of the Cauchy-Schwartz inequality to the 
cross-variogram matrices (Clark et al., 1987). 

In parametric set up, the requirement of joint conditional negative definiteness of 
the fitted functions is usually verified by checking the non-negativeness of the deter- 
minants of the corresponding coefficient matrices (Journel and Huijbregts, 1978). This 
puts a serious constraint over the number of variables which can be handled. This 
problem can be tackled by fitting the models to the variograms and cross-variograms 
simultaneously (Goulard and Voltz, 1992). The need of asymmetric functions for 
parametric modeling of cross-variograms, in principle, can be resolved by shifting 
the symmetric models (Journel and Huijbregts, 1978). The effect of such shifting on 
the requirement of joint conditional negative definiteness of the fitted functions over 
multidimensional spaces is yet to be understood. 

Note that modeling of the cross-variograms differs from modeling of variograms in 
at least three aspects. First, cross-variograms are not necessarily symmetric. Second, 
cross-variograms are not expected to exhibit the same type of behavior as variograms, 
i.e., an increase in magnitude with an increase in lag. Finally, there is no requirement 
of their conditional negative definiteness. In this paper, we discuss an approach to 
cross-variograms modeling which is suited to deal with the above-mentioned differ- 
ences. This method is an extension of an approach introduced in Shapiro and Botha 
(1991). The suggested models can be used for any number of variables over one-, 
two- and three-dimensional spaces. 

In Section 2 of this paper, we present a theoretical formulation of cross-variogram 
models and argue that valid cross-variograms should be jointly conditionally nega- 
tive definite. In Section 2.1, we introduce asymmetric models for cross-variograms 
over a one-dimensional space. Anisotropic models over two- and three-dimensional 
spaces are introduced in Section 2.2.1. Isotropic and symmetric models for the same 
regions of support are introduced in Section 2.2.2, while anisotropic and symmet- 
ric models are covered in Section 2.2.3. Section 2.3 describes a method of ac- 
quiring asymmetry through shifting of the symmetric cross-variograms; it shows 
that in such cases, the shift vectors appear in the non-negative definite matrices 
needed to satisfy the requirement of joint conditional negative definiteness of the 
models. There is an opinion that fitting models to the experimental data using a 
criterion like least squares estimation deprives the users of any control over the fit- 
ted models and that the shape of the fit is determined by the experimental values. 
In Section 2.4, we describe how the user can still control the shape of the fitted 
models. In particular, we introduce in that section formulation of constraints enforc- 
ing smoothness, monotonicity and concavity of the fitted functions. Section 3 dis- 
cusses a methodology for acquiring fit to the experimental data over one-dimensional 
spaces. 

We demonstrate applicability of the developed procedure with the help of two 
examples. The first example is for one-dimensional spaces while the second one 
is for the case of two- dimensional spaces. The experimental cross-variograms for 
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both examples were estimated from data observed over a two- dimensional space. 
In Section 4, the effects of  various parameters concerning the criterion of  fitting the 
models are discussed and some guidelines as to how these parameters can be chosen 
are included. Finally, in Section 5 we present concluding observations. 

2. Theoretical background 

We begin with some basic definitions and describe a theoretical background re- 
quired for our approach to cross-variograms modeling. Consider a multivariate spatial 
process Z(s ) :_  (ZI(s),...,Zk(s)), S C D, where D is a domain in ~e .  We assume 
subsequently that the process Z(s)  is second-order stationary. The cross-variograms E 
of  Z(s)  are then defined as (see Cressie, 1991, Section 3.2.3) 

27//(h) = var{Z/(s + h) - Z/(s)},  j , f  = 1 ..... k. (2.1) 

Half of  the cross-variograms, i.e., the functions 7//( '),  are called cross-semivariograms. 
For j = 1,...,k, the function 27//(. ) (the function 7//(')) is called the variogram 
(semivariogram) of  the corresponding process Z/(.). General conditions for existence 
of the semivariograms, 7jj('), are known as the Intrinsic Hypothesis and are discussed 
at length in Matheron (1963, 1971, 1973). Since in this article we model cross- 
variograms over a bounded domain D, the second-order stationarity assumption will 
suffice for our purposes. 

Given n observations of  a second-order stationary process, Z(s),  at locations 
sj,...,s,, a linear predictor of, say, Zl(so) at a new location So is 

n k 

21( S0 ) =- Z Z ~]iZ]( $i ). 
i=1 j= l  

(2.2) 

The Best Linear Unbiased Predictor (BLUP) is then obtained by minimizing 

var{Z , ( so ) -  ~ ~-~ 2jiZ/(si)}, 
i=1 j= l  

(2.3) 

subject to the unbiasedness conditions 

n 

~l i  = 1 a n d  Z~ji = O, j = 2,...,k. (2.4) 
i=1 i=1 

This estimation procedure (called cokriging in Geostatistics, (Cressie, 1991, Sec- 
tion 3.2.3)) can be formulated in terms of  the cross-semivariograms 7//(')- For the 
sake of  simplicity let us take k = 2. Then cokriging is performed by minimization 

i Some authors use the term pseudo cross-variograms. 
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of 

n 

- - ~ 2 1 i 2 1 j ] ) 1 1 ( S i  -- S j ) - ~ 2 Z 2 1 i ] ) 1 1 ( $ O  -- $i ) 
i=1 j = l  i = t  

n 

- 2  21i22k~)12($i - -  sk) + 2 ~ 2 2 k ~ 1 2 ( $  0 - -  S k )  

i=1 k = l  k = l  

-- ~-~ ~'~ 22k22f~22($k -- $f) (2.5) 
k = l  f = l  

over Z11, ..., 21,, 221 .... ,22n, subject to the constraints (2.4). This optimization problem 
is a quadratic programming problem subject to linear equality constraints. It has an 
optimal solution if and only if the objective function is convex over the affine space 
defined by Eqs. (2.4). Since the objective function is quadratic, this is equivalent to 
the condition that the quadratic function 

n 

Q ( 2 1 ,  & )  = - }-'~ 21~21,~,~1(s~ - s j )  
i=1 j = l  

n /I 

- 2  ~ ~ 21i22k~212(Si - Sk) 
i =1  k = l  

n 

- ~ ~ 22k22rT=(Sk -- &) (2.6) 
k = l  / = 1  

is non-negative definite over the linear space corresponding to the affine space defined 
by Eqs. (2.4). That is, Q(21,22) ~ 0 for any 41 = (211,.--,21,) and ~2 = (221, ..., 22, ) 
satisfying 

~-2~2ji = 0, j = 1, . . . ,k .  (2.7) 
i = l  

Therefore not all functions 27j/( ' )  can be meaningful cross-variograms. In particular, 
the above condition of non-negative definiteness is important. Without that condition 
the corresponding optimization problem can be meaningless in the sense that it may 
not possess an optimal solution and the associated variance estimates can be negative. 
The above discussion motivates us to introduce the following definition of permissible 
(valid) cross-variograms (cross-semivariograms). 

Definition 2.1. We say that a collection of functions gjf(.),  " " = J,J 1, ..., k, forms 
permissible cross-variograms if: 

(i) These functions are continuous, except possibly at the origin. 
(ii) gj/(h) > O, j , j '  = 1,...,k, for all h E Ra. 

(iii) gjj,(h) = 9/ j ( -h) ,  j , j '  = 1,...,k, for all h E F- a. 
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(iv) The functions - g j / ( . ) ,  j , j ' =  1,...,k, are conditionally non-negative definite in 
the sense that 

- ~ x j ¢ x j , . g i j , ( s l  - s . )  >_ O, 
d = l  /~=1 j = l  j t=l 

(2.8) 

for any s~, ..., s, E 1~ d and any numbers xje satisfying the equations 

n 

Z x H  = 0, j = 1,...,k. (2.9) 
f = l  

Let us make the following observations. Conditions (i)-(iv) of  the above definition 
imply that the functions gjj(.), j = 1 .... , k, individually, are permissible variograms in 
the usual sense used in Geostatistics (cf. Armstrong and Diamond, 1984; Christakos, 
1984; Cressie, 1991, Section 2.5.2). In particular, it follows from condition (iii) that 
these functions are symmetric, i.e., 9jj(h) = 9 j j ( -h) ,  and it follows from condition 
(iv) that -g j j ( ' ) ,  J = 1, ...,k, are conditionally non-negative definite. Note that this 
symmetry does not necessarily hold for the functions #j / ( . )  when j # f .  

It is not difficult to see that if functions f j / ( . ) , j , j '  = 1 ..... k, are jointly non- 
negative definite in the sense that 

k k 

/ = 1  / t=l j = l  j ~ l  

(2.10) 

for any s I . . . .  ,s n E ~ d  and any numbers xj~-, j = 1,...,k;d = 1, ...,n, then the functions 
- g j / (  ) = ~j' ( ' ) -  cjj, are jointly conditionally non-negative definite for any choice of 
constants c)j,. Consequently such functions g j / ( . )  can be used to construct permissible 
cross-variograms. 

Now, in order to generate non-negative definite functions ~ / ( . ) ,  we use the fol- 
lowing result which is a natural generalization of  the "sufficient" part of Bochner's 
theorem (Armstrong and Diamond, 1984). Consider the Fourier transform 

f ( s )  : fR" e i S t d M ( t ) '  (2.11) 

of  a matrix valued measure M ( t ) ,  t ¢ R d. That is, M ( t )  = [l~j/(t)],j, j '  = 1, ...,k, 
where /9 / ( ' )  are complex valued. Note that f ( s ) =  [~j,(s)],j,  f =  1,...,k, where 

f j / ( s )  : fR; eiStdpjj'(t)" (2.12) 

Let us show that if the measure M ( t )  is Hermitian non-negative definite matrix 
valued, then the functions fjj,(.) are jointly non-negative definite. (Recall that a 
complex valued matrix ~ = [vii], i , j  = 1 ..... n, is called Hermitian if vii = ~j and 

n it is called non-negative definite if ~ , ~  ~j=l  xi~jvij >_ 0 for any complex numbers 
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x~, ...,x,.) It will be sufficient to show this for atomic (discrete) measures. That is, 
let 

f ( s )  = ~ e ist '  y/e, (2.13 ) 
[=1 

where y/e e = [vj/], E = 1,...,m, are Hermitian non-negative definite matrices. (The 
matrices Y/e will be called the coefficient matrices.) We have then 

k k 

p=l p'=l j=l  j '= l  

~_~ ~ff~ k k m = Z ~_~ Z Xjp~j, p,(e isp'L )(e-iSp ''t' )vejj, 
p=l p'=l j=l  j ' = l  t°=l 

= z)zj, vjj, ,  
f=l j=l  f = l  

(2.14) 

n where zJ = ~p=~ Xjpe 's,''t'. Since the matrices y / t  are non-negative definite, we have 

k k 
e-f e Z Ez)zj, >_ o 

j=l  j ' = l  

and hence the sum in (2.14) is non-negative. 
Therefore we can generate a collection of jointly non-negative definite functions 

in the form 

m 

fjj,(S) ~ iS.L ~ = e v)j,, j , j ' =  1 .... ,k, (2.15) 
[=1 

where [vSv.,], f = 1 .... ,m, are Hermitian non-negative definite matrices and tl,... ,t,, 
are corresponding points in R d. It follows then that J~,j(-s) = fjj,(s). The complex 
numbers v~j, = aS.j, + ibfj, should be chosen in such a way that the corresponding 
functions ~ / ( . )  are real valued. The functions gjj,(.) = cj j , -J~/( . ) ,  j , j '  = 1,...,k, will 
then form permissible cross-variograms provided these functions are non-negative 
valued. 

2.1. Cross-variograms over one-dimensional spaces 

Let us now consider the case of  d = 1, i.e. s, t E R. Since the functions l~j(s), 
j = 1, ..., k, should be symmetric, we can write 

m 

f j j(s) ----- ~-~aJjcos(ste),  j = 1 .... ,k, (2.16) 
K=I 
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and for 1 _< j ¢ j' <_ k, we have asymmetric functions 

' c o s ( s t , ) - b ; f s i n ( s t ( . ) .  (2.17) £j ,(s)  = ajj, 
(=1  

Here, tt > 0, { = 1,...,m, and the matrices Ue = [v~j,], where v~j, = a~, + ib~j,, 
j , j '  = 1, ...,k, should be Hermitian and non-negative definite. (Note that since Ue  
are Hermitian, it follows that v~.,j = v~7' =a~j,- ibr)j , ,  and hence b~7 = 0 ,  j = 1 ..... k.) 
Thus the matrices ~/rt are given by 

a~ ~, a~2 + ib~ 2 . . .  a~k + ib~k- 

af2 - ibm2 a~2 .. .  a~2, + ib l ,  
~//~/= , { = 1 . . . . .  m. (2.18) 

" .  • 

{ 
• a~k -ib;~k a~k - ib~k . . .  a~, 

Now, given that fjj,(.) are generated according to (2.16) and (2.17) and the non- 
negative definiteness condition holds, the functions 9 j j ' ( ' ) =  c j j , -  J~j,(.) are permis- 
sible cross-variograms provided these functions are non-negative valued. Note that 
the functions 9jj( ' )  are non-negative valued if and only if 

cjj - ~ a~j _> 0, j = 1,...,k, (2.19) 
,e=l 

and a sufficient condition for non-negativeness of  gjj,(.) for j ¢ j '  is 

m 

c j j , -  Z v/(a;f  )2 + (biJ ')z-> O. (2.20) 
( = l  

For k = 2, the non-negative definiteness condition is equivalent to the following 
conditions: 

_ _ _ tb c" ~2 a~l > O, a~2 > 0, and a~la~2 > (a~2) 2 + ,  12J, f = 1,...,m. (2.21) 

It can immediately be seen that a~2 and/or b~2 will be non-zero only if a~, and a~2 
are both non-zero. It was experienced during cross-variograms modeling that some 
of  the numbers a~l and aS22, g = 1, ... ,m, tend to be zero. The corresponding a~2 
and b~2 are then forced to be zero resulting in a poor fit of cross-variograms. This 
problem can be resolved by simultaneously fitting the variograms/cross-variograms. 

2.1.1. Ex tens ion  to more  than two variables 
While the simultaneous modeling technique works well for two variables, its ex- 

tension to more than two variables becomes restrictive since the condition of  non- 
negative definiteness of  the coefficient matrices (2.18) is harder to satisfy using the 
determinant approach. A parameterization of  the unknown coefficients a~j, and b~7, is 
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one possible solution to the problem. Consider Cholesky decomposition of  the coef- 
ficient matrices ~//~t = U e U  ~., where U ~', d = 1 , . . . ,  m, are upper triangular matrices 
of  unknowns u~ and ~ re, ~ = 1 , . . . ,  (k 2 + k)/2, with 

u ~ + i v ~  u ~ + i v ~  . . .  u ~ + i v ~  

0 uk+ + ivy+ 1 . . .  U~k_ 1 .~_ i~k_l  

d • ? 
0 0 . . .  U(k2+k)/2 "q- 1O(kg+k)/2 

U s d = 1 , . . . ,m.  (2.22) 

m 

C1 1 __ ~'-'~(UlL)2 .71_ (U2f)2 _.~ (V~)2 _{_ (V~)2 ~ O, 

?=l 

m 

C 2 2 -  Z ( U ~ )  2 + (Ud) 2 ~ 0, 

g=l 

c1~ u~u~ + ~2~3, + ~3-2, -> O. _ _  (/)2U3 __ ~t~ {'~2 
¢=1 

(2.25) 

The elements of  the coefficient matrices y/~r can be found to be 

k--j+ 1 
d )2 d 2 

a j j  Z ( = (Up,+i, +(Vp~,+ i , ) ,  j = l , . . . , k ,  
V=I 

k--j '  + l 
¢ ¢ ~ j t  

a j j ,  Z g " = (Up/+i, Up;+i, + Vp,+i, Vp;+i,), j < <__ k, 
it=l 

k - - f  +l 

(Up~+i, Vpj+i, ), j < < k, (2.23) - -  U pi+i, l) p~+i' 
i'=1 

: - '  = j ' - j + ~ : 7 - 1 1 ( k - i ' + l )  and pj, = ~4;'__-,1(k i ' +  1). where pjj = ~-~i ,= l (k- i '+ l  ), p j  = 
The unknowns aye., and b~j, in (2.16) and (2.17) can be replaced by the corre- 

sponding sequences of  unknowns u~ and v~ from (2.23). The problem thus reduces 
to estimation of  the vectors c, u and v of  unknowns subject to the non-negativity 
constraints. For k = 2, the permissible models can be written in the form 

t n  

g l l ( h )  = Cll - Z [ ( U l ~ )  2 q- ( u ~ )  2 q- (I)l() 2 --]- (u~)  2] c o s  ( h t f ) ,  

d=l 
m 

g = ( h )  = c=  - y~d(u~) 2 + (v~) 2] cos (htf) ,  
d=l 

m 
d d { (  

g,a(h) = c12 - y~{[u~u~ + v~v~] cos (h t , )  - sin (ht,)}.  - v~u2] (2.24) V2U E g 

g=l 

The corresponding non-negativity constraints are 
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2.2. Cross-variograms over multidimensional spaces 

2.2.1. Asymmetr ic  cross-variograms 
An extension of  the proposed method to the case of d _> 2 is straightforward. 

For d = 2, with h = (x, y) ' ,  the following function can be used for modeling the 
cross-variograms: 

ml m2 

9 1 J ' ( h ) = c J / -  ~ Y ~  "oi(xt'+yt")"e~W' " (2.26) 
/ = --/'1/I { I=- -?B 2 

The function which can be used for d = 3 with h = (x ,y , z ) '  is 

m I m 2  m 3  

ei(Xt/+yt/, +zt/,, ) y / f  f" (2.27) gjj,(h) = c,,, - Z Z ,,, 
~ - - ? ? l  I f l  ~ - - l n  2 f t t  = - -m3  

[. gK' ,'7" ] The coefficient matrices ~ :e ' e"  = tvjj, can be found by using the relations (2.18) 
and (2.23) after replacing the superscript f with {{ '  for d = 2 and with ({ '  #" 
for d = 3. This formulation not only permits asymmetry of the cross-variograms 
but also allows anisotropies of the variograms and cross-variograms. The number 
of  unknowns, however, increases exponentially with d and so does the CPU time 
during the model fitting stage. 

2.2.2. Symmetr ic  and isotropic cross-variograms 
In the case of  d > 2, there is a natural concept of  isotropic variograms g(h), when 

g(h) depends on h only through its Euclidean norm h = Ilhll. This, automatically, 
makes such functions symmetric. These functions can be useful in modeling cross- 
variograms when the experimental data is indicative of symmetry. In this approach, 
formula (2.16) can be used to construct analogues of isotropic cross-variograms by 
replacing cos(.) functions with Bessel functions of  the first kind (Shapiro and Botha, 
1991). The resulting symmetric models known as Hankel transforms are functions 
of a single variable. The isotropic models for the cross-variograms over a two- 
dimensional space can be written as 

m 

9jj,(h) = cjj, - ~-~Jo(h tt)a~j,, j , j '  = 1 . . . .  ,k. (2.28) 
f = l  

For d = 3, the cross-variograms can be modeled using 

-~ sin(hte)  i . . ,  
gj / (h)  = cj/ - hte a ) j , ,  j , j  = 1 . . . . .  k. (2.29) 

{=1 

Non-negativity of  these functions can be ensured by requiring 

cjj, - ~-~ l a~j, I > _ O, j , j '  = 1 . . . .  ,k. (2.30) 
¢=1 

Models (2.28) and (2.29) will be permissible cross-variograms if the k x k coef- 
ficient matrices ~F  are real, symmetric and non-negative definite. This requirement 
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can once again be met by using Cholesky decomposition of the unknown coefficients. 
The real and symmetric coefficient matrices ~//'e can be written as 

~U "f 

t ~ 

"a~l al2 ... a~k 

f a~k a~k ... akk 

, g~ =- 1 , . . . , m ,  ( 2 . 3 1 )  

with their elements given by 

k - j +  1 

a~) Z ' = (Up#+i ' ) 2  j = 1,.. . ,  k, 
it=l 

k - j t  + l 

aS'j, ~ ' , j '  = (Up/+i, UpT+i,), j < < k, (2.32) 
i '=1 

-- "' "-x--'J-lek F - 1 ) a n d  ~ J ' - l t k  F where p j ; =  ~{ -=l l (k - i '+ l ) ,  p j - j - j T ~ i , = , ~ .  - - r  Pj' -~ z-.,i'=l', - +1) .  

2.2.3. Symmetr ic  and anisotropic cross-variograms 
Models (2.28) and (2.29) can easily be corrected for anisotropies. Consider trans- 

forming the lag vectors, h, through multiplication with a transformation matrix L', 
where L is a lower triangular matrix of an appropriate size. The norm of the trans- 
formed lag vector is ~ and the resulting anisotropic models are 

m 

gj / (h )  = cjj, - ~--~Jo([h'LL'h]½ tr.)a~j, for d = 2, (2.33a) 
,f=l 

~ sin([h'LL'h] 1/2 tr, ) e 
gj / (h )  = cjj, - ~ e  ajj, for d = 3. 

f= l  

(2.33b) 

The elements of the lower triangular matrix L can also be treated as unknowns and 
found during the model fitting stage. Use of identity matrices of appropriate sizes 
for d = 2 and d = 3 in place of L will result in isotropic cross-variograms given 
by (2.28) and (2.29). 

2.3. Sh i f ted  cross-variograms 

Asymmetric cross-variograms can also be constructed by introducing shift vectors 
in the arguments of the symmetric models (Journel and Huijbregts, 1978). Suppose 
we have symmetric one-dimensional models 

9jj,(h) = cjj, - ~ f2~., cos(h tt), j , j '  = 1 , . . . , k .  (2.34) 
E=I 
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Shift arguments hjj, with/Ttjj = 0 can be introduced in these models to yield asym- 
metric cross-variograms 

m 

gj / (h)  = c j /  - ~ (2~., cos({h +/~jj,} te), j , j '  = 1 , . . . , k .  (2.35) 
f = l  

For j ¢ j ' ,  these models can be shown to be equivalent to the models (2.17) 
for a~j, - I2~7,cos(/~jj, tf ) and bST, = f2~.,sin(/~j.j, te). Since non-negative definiteness 
of  the Hermitian matrices [v~j,],g = 1 . . . .  ,m, with v~, = a~j, + ib~j,, implies joint 
conditional non-negative definiteness of  the functions (2.16) and (2,17), we note that 
the matrices [f2~.,eihzJ 't'] and not the matrices [f2~,] are required to be non-negative 

definite. Similar expressions, involving shift vectors/~jj,, can be obtained for models 
over multidimensional spaces. 

2.4. Smoothness, monotonicity and concavity conditions 

The fitted cross-variograms could follow the estimated values too closely and, 
especially when the estimated values are scattered, may change rapidly. In order 
to eliminate such noisy behavior, further constraints may be required. Smoothness, 
monotonicity or concavity of  the fitted cross-variograms can be enforced by the cor- 
responding constraints on their derivatives. For example, the monotonicity of  g j / ( . ) ,  
in positive and negative directions, can be enforced by the constraints g~.j,(s) >_ 0 for 
s _> 0 and g~j,(s) < 0 for s < 0. Smoothness of  gjj,(') can be controlled by a bound 
on its second-order derivatives. Likewise concavity can be acquired by restricting the 
choice of  gjj,(s) to the class of  functions with the property g~),(s) < 0 for s _> 0 and 
gj~,(s) > 0 for s < 0. Although the derivatives of the models can be used to formu- 
late constraints as stated above, we found it convenient to use the differences. That 
is, for monotonicity for instance, we required gj/(s  + h) - gjj,(s) > 0 for s,h > O. 

3. Methodology and experimental results 

We now discuss a methodology of  fitting permissible cross-variograms to empirical 
data over one-dimensional spaces, i.e. for d = 1. Let ~j/(h), " " j , j  = 1 ..... k, be 
empirical cross-semivariograms estimated at lags hi, i = 1 ..... n. For example, given 
observations of  the process Z(s ) ,  we can use the classical estimator 

N(h) 

2~o,(h ) = N ( h  ) - '  ~-:~ [Z j (&  + h) - Z j , (&  )] 2 - (~ j  - fij, 12, 
/=1 

(3.1) 

where N(h)  is the number of  lag-h differences and fij is an estimated mean of the 
process Zj, j --- 1 ..... k. (The variables j and j '  have to be in the same units for 
(3.1) to give meaningful results.) For a discussion of  other, more robust, variogram 
estimators see Cressie and Hawkins (1980) and Cressie (1991). 
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We assume that the integer number n is even and that 

7 j j , ( h i )  = 7 j , j ( - h i ) ,  j,j" " ' =  1 ..... k,  i =  1 .... , n .  (3.2) 

We then fit permissible cross-variograms to the estimated values by, say, the weighted 
least squares method. That is, for a chosen set of  positive weights w;j/, i = 1 . . . .  , n; 
j , j ' =  1 . . . .  , k ,  we minimize the weighted least squares criterion 

m i n  q ( c , u , v ) =  Z Z ~ ' ~ W i j j ,  , ( h i ) - O j j , ( h i )  . 
c,u,l~ j=l jt=[ i=l 

(3.3) 

Here 9jj'( ') = cjj, - j~j, (.), the functions fjj, are generated according to the formulas 
(2.16) and (2.17), subject to the non-negative definiteness condition and the condi- 
tion that gjj,(.) should be non-negative valued. (For k = 2, the functions 9jj'( ') and 
the non-negativity constraints are given by (2.24) and (2.25) respectively.) The opti- 
mization problem (3.3) is solved with respect to the variables c = [cjj,] and vectors 
u, v representing the corresponding elements of  the matrices U e of (2.22). After an 
optimal solution E, ti,~ of (3.3) is found, fi and /~ are calculated using (2.23). The 
fitted cross-variograms are then generated according to the formulas 

1 , , ,  .... 
Ojj' ( h )  cjj, ajj ,  = _ _ , J , J  = 

(=1 

(3.4) 

A numerical solution of the optimization problem (3.3) requires application of 
nonlinear programming techniques. We used a method of iterative quadratic pro- 
gramming approximations (see Mayne and Polak (1982) for details). A FORTRAN 
code was developed that uses the subroutine QPROG from the IMSL library to solve 
the required quadratic programming problems. Since the objective function (3.3) in- 

and v~, the Hessian matrix and gradient volves fourth-order terms of  the unknowns u~ 
and " This entails provi- of  the objective function are also given in terms of u~ v~. 

sioning of  a non-zero vector of  initial guess for solution of the problem. We tried 
random numbers U ~ (0, 1 ) as initial guess for various problems and found that the 
solution as well as the total number of iterations are hardly affected by the choice 
of the initial guess vector. Subsequently we used 1/(10 m k) as the initial value for 
all u~ and v~, ~ = 1, . . . ,  (k 2 + k ) / 2 .  

3 .1 .  E x a m p & s  

We demonstrate modeling of  the cross-variograms with the help of two examples. 
The first one, involving two variables, is for a one-dimensional space while the 
second one is for two variables over a two- dimensional space. Variograms and cross- 
variograms for both examples were found using the same data set which comprises 
observations on moisture and temperature at 120 locations over a two- dimensional 
space. The observed values of the two variables were standardized using the sample 
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means and the standard deviations of  the respective variables. For the first exam- 
ple, the distances along the x-axis alone were used as the lags for calculating the 
experimental values of  the cross-variograms. 

3.1.1. M o d e l i n g  over  a one -d imens iona l  space  

The experimental cross-variograms were calculated using (3.1). The number of 
experimental variograms was 21 for moisture, 22 for temperature and 48 for their 
cross-variogram. All the weights, wijj,, i = 1 , . . . ,  n, j , j '  -- 1, 2, were selected as 1.0. 
The value of m was chosen to be 10 with tt = 0.0058(, E -- 1 . . . .  ,10. The objec- 
tive function was set up as per (3.3) with the models g z ' ( ' )  given by (2.24). The 
objective function was minimized subject to the constraints (2.25). This problem 
involving 63 unknowns took 37 s on a Sun Sparc Center 2K. The vectors ,i and/~ 
were subsequently found using (2.23). The vectors & b and ~" are 

ci~l --- (0.019, 0.131, 0.367, 0.378, 0.167, 0.052, 0.027, 0.039, 0.066, 0.0517)', 
tigz = (0.026, 0.117, 0.194, 0.096, 0.009, 0.00097, 0.005, 0.017, 0.0495, 0.0667)', 
til2 = -(0.0014, 0.004, 0.008, 0.012, 0.01,0.005, 0.003, 0.007, 0.02, 0.026)', 
/~12 = (0.022, 0.123, 0.266, 0.189, 0.038, 0, -0.011,  -0.025, -0.054, -0 .0526) '  

~-- (Cll,C22,c12) ! -~- (2.814,2.346, 1.965)'. 

Plots of  the fitted models are placed as Figs. 1, 2 and 3. 

3.1.2. M o d e l i n g  over  a two-  d imens iona l  space  

The experimental variograms and cross-variograms were estimated in two direc- 
tions (45 and 135 ° ) with (3.1) modified to account for vector lags. For this problem, 
m was chosen as 25 and te were found using te = f ( / k t ) , (  = 1, . . . ,25,  with /kt = 

4.0 

3.2 

2 .4  

?..  1.6 

0.8 

0.0 

~ °  " , 

• . " ~ "  " " N ~ g g e t =  1.52 

: m = 1 0  

A t  = 0 .0058  

• • • E x p e r i m e n t a l  

F i t t e d  

' r r i i i i i i 

I0  20 30 40 50 60 70 80 90 

Fig. 1. Model for the moisture data over a one-dimensional  space. For moisture, mean  = 10.75, var 

= 37.05, skewness  = 0.64, kurtosis = 2.212. 
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N u g g e t  = 1 . 7 7  

m = l O  

A t  = 0 . 0 0 5 8  

• • • E x p e r i m e n t a l  

F i t t e d  

i t i i i i i 

0 I0  20  30 40 50 60 70 80 90 

h (feet) 

Fig. 2. Model  for the temp. data over  a one-d imens iona l  space. For  temp.,  sample mean --- 37.95, var 
= 17.98, skewrness = 0.36, kurtosis = 1.72. 

3 .5  

3 . 0  

2 .5  

2 .0  

1 . 5  

1 . 0  

0 . 5  

0.0 
- 9 0  

• o ° ° ° ~  

Y Nugget  = 2 .06  

m = l O  

A t  = 0 . 0 0 5 8  

• • • E x p e r i m e n t a l  

Fi t ted  

- 7 o  - 5 0  - 3 o  - s o  1o 30  50  7o  90  

h ( f e e t )  

Fig. 3. Cross -Var iogram model  for moisture & temperature over  a one-d imens iona l  space. 

0.01. The objective function was set up according to (3.3) with the models 9z'(')  
given by (2.33a). The lower triangular matrix L was initialized by using a 2 × 2 iden- 
tity matrix. The objective function was then minimized subject to the non-negativity 
constraints (2.30). This problem with 81 unknowns took 32 s on a Sun Sparc Center 
2K. The vector ~i was then found using (2.32) and is placed in Table 1. The vector 
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Table 1 
Coefficients of the models fitted to the empirical cross- 
variograms of moisture and temperature over a two- di- 
mensional space 

1 0.00000 0.00000 0.00000 
2 0.00389 0.00025 0.00076 
3 1.05423 0.02945 0.13985 
4 0.11790 0.17190 -0.12689 
5 0.00487 0.01828 -0.00935 
6 0.00039 0.00103 -0.00062 
7 0.00066 0.00124 -0.00086 
8 0.00597 0.01061 -0.00762 
9 0.02863 0.03831 -0.03252 
10 0.07194 0.05187 -0.06060 
11 0.09005 0.04561 -0.06356 
12 0.03923 0.03075 -0.03424 
13 0.01223 0.02235 -0.01624 
14 0.00785 0.01215 -0.00955 
15 0.02009 0.01324 -0.01585 
16 0.08038 0.03069 -0.04808 
17 0.09144 0.04681 -0.06271 
18 0.04984 0.05224 -0.04877 
19 0.04957 0.05263 -0.04951 
20 0.05493 0.04806 -0.05032 
21 0.02677 0.03031 -0.02803 
22 0.01487 0.02341 -0.01841 
23 0.01389 0.01143 -0.01222 
24 0,01786 0.00442 -0.00812 
25 0.00871 0.00258 -0.00411 

and the matrix/_, are given by 

= ( c 1 1 , c 2 2 , c 1 ~ ) '  = (2.5197, 2.0411, 2.0692)' ,  

~ = E  - ' ' ~ 0  0 ] 
0.571 0.610 " 

The models fitted to the two variograms are placed as Figs. 4 and 5, while the 
cross-variogram model is placed as Fig. 6. The model in Fig. 4 shows an obvi- 
ous anisotropy. Tables 2 and 3 provide the values o f  the experimental and fitted 
variograms and cross-variogram respectively. 

4. Parameters  selection 

The suggested approach o f  cross-variograms modeling involves assignment o f  nu- 
merical values to a number  o f  parameters. Here we give rough guidelines for their 
selection. 
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= 2 5  

A t  = 0 . 0 1  

N u g g e t  = 0 . 6 5 3  

M i n .  = O. 6 5 3  

M a x .  = 2 . 9 3 7  

Fig. 4. Variogram surface for the moisture data. The sample satistics for the moisture data are mean 
= 10.75, variance = 37.05, skewness = 0.64, kurtosis = 2.212. 

~ 5  m = 2 5  

"~ A t  = 0 . 0 1  

N u g g e t  = 1 . 2 9 2  

M i n .  = 1 . 2 9 2  

M a x .  = 2 .  1 4 1  

Fig. 5. Variogram surface for the temperature data. The sample statistics for the temperature data are 
mean = 37.95, variance = 17.98, skewness = 0.36, kurtosis= 1.718. 
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tt~ 

15,a, 

"3.~ 

, \  ~ ~ ~ (.~ . . . .  = 25 
6~ A t  = 0 . 0 1  

N u g g e t  = 2 . 6 3 7  

M i n .  = t .  9 3 6  

M a x .  = 2 . 6 3 7  

Fig. 6. Cross-Variogram surface for the moisture & temperature data over a two~timensional space. 

4.1. Weights 

While fitting models to the empirical values, some sort of  criterion for goodness 
of  fit is needed. The criterion of  weighted least squares (WLS), with weights chosen 
proportional to the error variance, is a common choice due to the ease of handling 
and the ability of this criterion to yield some desired properties of the estimators. 
Cressie (1985) has shown that variance of  the variogram is a function of the number 
of pairs used in estimation of the empirical variogram as well as the variogram value 
itself. Because of  the reliance of variances on the variograms, exact weights cannot 
be assigned a priori. One way of tackling this problem is to use an iterative scheme 
by starting with ordinary least squares. Shapiro and Botha (1991 ) have reported that 
the fit is hardly affected by the choice of  these weights so ordinary least squares can 
be used by selecting all the weights to be 1.0. 

4.2. Effect of lags 

Since different data sets can have lags, h, of  different magnitudes, the choice of  
the frequencies, t j , . . . ,  tin, can become difficult. In order to overcome this problem, 
all the lags can be divided by the magnitude of  the maximum lag in the data set. 
The resulting normalized lags would then range between zero and one, making the 
selection of  t~ . . . . .  t,, comparatively easy. 

4.3. Discretizing intervals 

Selection of  appropriate numbers m and t l , . - . , tm is important since the objective 
function and the fitted models are quite sensitive to the choice of these numbers. 
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Table 2 
Variograms of the moisture and temperature data 

Moisture Temperature 

Lag 45 ° direction 135 ° direction 45 ° direction 135 ° direction 

Exp. Fit. Exp. Fit. Exp. Fit. Exp. Fit. 

3. 0 . 5 2 5  0.672 0.709 0.732 1.112 1.305 0.932 1.350 
6. 0 . 7 4 7  0.726 1.067 0.939 1.517 1.346 1.616 1.504 

10. 1 .237  0.845 1.011 1.284 1.889 1.434 2.127 1.753 
14. 1 .479  0.999 1.874 1.543 1.722 1.548 2.155 1.926 
18. 1 .245  1.168 1.761 1.650 2.033 1.671 2.096 1.970 
22. 1 .403  1.327 1.997 1.668 2.004 1.784 2.031 1.941 
26. 1 .717  1,461 2.141 1.697 2.075 1.875 1.778 1.925 
30. 2 . 4 5 3  1.560 1.909 1.784 2.003 1.935 2.206 1.956 
34, 1 .685  1.622 2.164 1.907 1.672 1.965 1.947 2.007 
38, 1 . 4 8 7  1.653 1.769 2.025 1.763 1.969 2.078 2.036 
42, 1 . 7 3 6  1.664 1.547 2.121 1.778 1.958 2.437 2.031 
46, 1 . 1 8 2  1.669 1.976 2.203 2.052 1.941 2.344 2.017 
50. 1 . 1 5 2  1.677 2.283 2.289 2.151 1.928 2.277 2.021 
54. 1 . 6 9 9  1.696 2.379 2.394 1.824 1.925 2.268 2.051 
58. 1 . 4 9 7  1.730 2.277 2.519 1.698 1.934 2.543 2.091 
62. 1 . 4 8 0  1.776 2.609 2.652 1.859 1.953 2.323 2.123 
66. 1 . 7 6 4  1.832 2.690 2.770 2.063 1.978 2.339 2.139 
70. 2 . 4 6 1  1.893 3.010 2.854 1.620 2.002 2.241 2.140 
74. 1 . 7 4 9  1.953 3.934 2.899 2.224 2.022 1.968 2.132 
78. 1 . 3 3 9  2.009 2.550 2.918 1.577 2.034 2.129 2.120 
82. 1 .612  2.060 2.849 2.926 2.080 2.037 2.114 2.106 
86. 2 . 4 7 0  2.105 3.536 2.930 1.716 2.034 1.913 2.092 
90. 1 . 8 7 6  2.146 3.020 2.934 1.972 2.027 2.018 2.078 
94. 1.871 2.185 2.481 2.936 1.224 2.019 1.647 2.064 
98. 1 .198  2.224 2.712 2.936 1.372 2.049 

102. 4.035 2.922 

We fitted models to the same data sets using different values o f  m and t~ . . . . .  tm to 

observe the effect o f  their choice. It was observed that smoothness and the ability o f  

the fitted models to chase the experimental values depend heavily on the choice o f  

tin. For a given value o f  t,~, the value o f  m was observed to have little effect on the 

fitted models. Since choice o f  the frequencies, t l , . . . ,  tm, is crucial, their selection can 

be made data dependent by including one additional unknown in the optimization 
problem. For the case o f  d = l, consider using t¢ = t~a, where ~ can be treated 

as an unknown interval in the frequency domain and its value can be found along 

with the vectors c, u and v while optimizing (3.3). This procedure can also be used 

with the isotropic models (2.28) and (2.29) for d -- 2 and d -- 3 respectively. A 

similar methodology can be adopted while using the anisotropic models (2.26) and 

(2.27) with additional unknowns a~ . . . . .  ~d. The models (2.33a) and (2.33b) do not 
require additional unknowns since the requirement o f  varying the interval size is 
automatically fulfilled by the elements o f  the matrix L. The suggested approach o f  
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Table 3 
Cross-variograms of the moisture and temperature data 

231 

45 ° direction 135 ° direction 225 ° direction 315 ° direction 

Lag Exp. Fit. Exp. Fit. Exp. Fit. Exp. Fit. 

3. 3.320 2.622 4.008 2.575 3.195 2.622 2.848 2.575 
6. 2 . 9 9 1  2.579 2.837 2.414 3.081 2.579 2.535 2.414 

10. 2.646 2.487 2.182 2.153 2.108 2.487 1.722 2.153 
14. 2.036 2.367 1.384 1.976 2.718 2.367 1.865 1.976 
18. 2.332 2.239 1.719 1.938 2.120 2.239 2.110 1.938 
22. 1 . 6 7 7  2.121 2.145 1.985 1.962 2.121 1.873 1.985 
26. 1 . 503  2.028 1.745 2.027 2.521 2.028 2.381 2.027 
30. 1.751 1.967 2.094 2.024 2.214 1.967 1.819 2.024 
34. 2.008 1.939 2.068 1.999 2.273 1.939 2.595 1.999 
38. 1 . 4 2 7  1.939 1.592 1.992 2.373 1.939 2.339 1.992 
42. 1 . 6 7 4  1.959 1.835 2.015 1.935 1.959 2.092 2.015 
46. 2.307 1.985 1.932 2.050 2.050 1.985 2.126 2.050 
50. 1 . 7 8 0  2.010 1.842 2.070 1.720 2.010 1.926 2.070 
54. 1 .523  2.026 1.396 2.066 1.975 2.026 1.823 2.066 
58. 1.671 2.031 1.481 2.044 2.034 2.031 1.912 2.044 
62. 1 . 9 8 0  2.026 1.575 2.020 1.935 2.026 2.407 2.020 
66. 1 . 233  2.014 1.510 2.009 1.707 2.014 1.760 2.009 
70. 0 . 9 2 3  2.002 1.286 2.014 2.107 2.002 2.227 2.014 
74. 1 . 3 5 6  1.993 1.013 2.033 1.731 1.993 2.847 2.033 
78. 2.202 1.991 1.107 2.059 2.761 1.991 2.598 2.059 
82. 1 . 1 1 9  1.997 1.463 2.084 1.984 1.997 2.215 2.084 
86. 1.781 2.009 2.049 2.105 2.120 2.009 3.051 2.105 
90. 2.406 2.118 2.896 2.118 
94. 3.099 2.125 3.965 2.125 
98. 2.968 2.126 

est imating the value o f  0~ during the model  fitting stage was tried on several data 

sets with different initial values o f  0~. A unique value o f  the interval ~ could not be 
found with different choices o f  initial guess for a given data set, but the values o f  the 

objective function were found to be quite close. Subsequently,  we tried initializing 

by  5.0/(m × hmax) with hmax being the magni tude o f  the m a x i m u m  lag in the data set. 
(In case the lags are normal ized as suggested in Section 4.2, hmax will be 1.0.) This 
method was found to result in good fits for values o f  m ranging between 5 and 50. 
Table 4 provides values o f  the objective function q( . )  for various combinations o f  m 
and ~ for the data o f  example  1. Column 2 o f  this table contains the initial values 

o f  ~ used to start the optimization while column 3 has the corresponding optimal 
values o f  ~. Note  that each optimal  value o f  ~ corresponds to a different set o f  the 
vectors a, b and c. 

The number  o f  variables, k, and the number  m determine the number  o f  unknowns 
in the optimizat ion problem. It may  be desirable to keep the number  o f  unknowns 
less than the total number  o f  experimental  values. This gives us a clue as to how 
the number  m can be selected. 
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Table 4 
Objective function of  example 1 for different values of m and 

M ~ ~ Objective M :~ ~ Objective 
initial final function initial final fimction 

5 0.0010 0.0504 14.39 5 0.0100 0.0423 12.54 
5 0.1000 0.1400 17.42 5 0.5000 0.3340 16.73 
10 0.0010 0.1480 10.12 10 0.0100 0.0410 11.48 
10 0.1000 0.1100 18.25 10 0.5000 0.4910 16.02 
15 0.0010 0.0256 08.94 15 0.0100 0.0259 08.09 
15 0.1000 0.0986 16.08 15 0.5000 0.4870 11.80 
20 0.0010 0.1206 13.71 20 0.0100 0.0400 11.09 
20 0.1000 0.0641 12.55 20 0.5000 0.4980 11.78 
5 0.0116" 0.0325 09.77 10 0.0058* 0.0291 07.59 
15 0.0039* 0.0320 07.94 20 0.0029* 0.0030 06.74 
25 0.0023* 0.0029 05.96 30 0.0019" 0.0006 05.45 
35 0.0017" 0.0024 05.50 40 0.0015" 0.0019 05.02 
45 0.0013" 0.0032 04.93 50 0.0012" 0.0014 05.05 

* denotes the initial values found by using c~ = 5/(m x hmax ). 

5. Conclusions 

In this article, we have suggested the use of integral transforms for cross-vario- 
grams modeling. Various forms of these transforms are then shown to meet the 
requirements like asymmetry and anisotropy of the fitted models. A parameteri- 
zation of the unknowns based on Cholesky decomposition of the coefficient matrices 
is also introduced. This method ensures joint conditional negative definiteness of the 
fitted models for any number of variables without any need for additional constraints. 
Applicability of the suggested models along with the parameterization approach 
is demonstrated with examples for two variables over one- and two- dimensional 
spaces. The first example highlights the ability of the suggested functions to 
model asymmetry of the cross-variograms. The second example focuses on the abil- 
ity of the suggested functions to model anisotropies of the variograms/cross-var- 
iograms. Effects of various modeling parameters on the fitted models are 
finally discussed and a procedure for the selection of those parameters is 
outlined. 
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