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Problem 1: Nematodes

The Nematode data is an example of an unbalanced one-way layout. Assuming the one-way ANOVA model:

yij = µi + εij εij |σ2
i ∼ N (0, σ2

i )

The practical objective of the experiment would be to determine which nematocide is “best”. That is, the
question that needs to be answered is: which nematocide results in the highest yield? The equivalent statis-
tical questions are: a) Is there evidence to conclude that at least one treatment mean is different from the
other two? and b) If so, is there a treatment mean that is significantly larger than the other two? The typical
frequentist approach in the ANOVA framework to answering these questions are an F-test and then possibly
simultaneous t-tests for comparing treatment means.

For this exercise, a hierarchical Bayesian framework is suggested. The explicit forms of the full conditionals
are provided. This enables an estimate of the joint posterior distribution of the treatment means to be
constructed via Gibbs sampling MCMC. The code to perform this simulation was written in R. The output
was 40, 000 9-dimensional simulated points, the first 10, 000 of which are discarded as “burn-in”. Below are
some time series plots and histograms of some of the simulated data. The marginal densities of the treatment
means seem to be roughly symmetric, bell-shaped. Perhaps that for µ1 is a little skewed to the downside.
The histograms of the within-treatment variation and the three non-negative hyper-parameters seem to be
skewed to varying degrees to the upside. That for τ2 being very highly skewed. Some approximate summary
statistics for the simulated parameters are provided below:

Statistic µ1 µ2 µ3 σ2
1 σ2

2 σ2
3 σ2 ψ τ2

mean 26.64 20.46 21.64 30.36 47.36 39.65 20.46 22.50 22.10
var 3.75 3.58 2.78 424.38 618.19 382.70 222.11 8.14 1753.07

To address the question of most practical interest, the simulated joint density of the three contrasts: µ2−µ1,
µ3 − µ1, and µ3 − µ2 is estimated based on the simulated data. From this a (joint) 95% credible set on the
contrasts can be examined to see if it contains the point [0, 0, 0]. This is equivalent to testing the hypothesis:
H0 : µ1 = µ2 = µ3 vs. HA : at least one µi is different. That is, reject H0 if the credible set does not contain
the origin. Since the sample variances of the µ̂i’s are nearly the same for each i = 1, 2, 3, a 95% credible
sphere is constructed, centered at the contrast means: [−6.19,−5.00, 1.18]. This is approximated to be the
set such that the L2-distance from the mean is less than or equal to 7.65. Since

√
6.192 + 5.002 + 1.182 ≈ 8.04

the origin is not in the 95% credible sphere, so it could be concluded that at least one of the contrasts is
significantly different from 0. From the mean contrast vector, it is clear that at the very least, treatment 1
is significantly better than treatment 3. In addition, the contrasts can be tested individually, which would
reveal that the first two contrasts are significantly different from zero, whereas there is not enough evidence
to conclude that the third contrast is different from zero. Incidentally, referring to the R output, scaling the
contrasts by their sample standard deviations to form a 95% credible ellipsoid leads to the same conclusion,
that:
Use of nematocide 1 results in higher tomato yields than the other two nematocides studied.
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R Code

GibbsANOVA<-function(data0,par0=c(1,1,1,1,0.1,10,0.1),M=40000) {

# data0 is a data.frame of summary data named: ybar, s2, ni

# The length of each column is the number of treatments, k.

# par0=c(a_0, c_0, d_0, f_0, g_0, psi_0, zeta_0)

# theta=c(mu_1,...mu_k,sigma_1^2,...sigma_k^2,sigma^2,psi,tau^2)

# The starting values for theta are set somewhat arbitrarily.

k<-length(data0)

# set starting values

theta<-matrix(0,M,2*k+3)

theta[1,]<-c(rep(par0[6],k),rep(par0[4]/par0[5],(k+1)),par0[6],par0[3]/par0[2])

# cycle through generating random variates from full conditionals

for(i in 2:M) {

# mu_i’s

num<-(data0$ybar*data0$ni)/theta[(i-1),(k+1):(k+3)]+

theta[(i-1),(2*k+2)]/theta[(i-1),(2*k+3)]

den<-data0$ni/theta[(i-1),(k+1):(k+3)]+1/theta[(i-1),(2*k+3)]

theta[i,1:k]<-rnorm(n=k,mean=num/den,sd=sqrt(1/den))

# psi

num<-sum(theta[i,1:k])+par0[7]*par0[6]

den<-k+par0[7]

theta[i,(2*k+2)]<-rnorm(n=1,mean=num/den,

sd=sqrt(theta[(i-1),(2*k+3)]/den))

# tau^2

theta[i,(2*k+3)]<-1/rgamma(n=1,shape=(par0[2]+k+1)/2, rate=(par0[3]+sum(

(theta[i,1:k]-theta[i,(2*k+2)])^2)+par0[7]*(theta[i,(2*k+2)]- par0[6])^2)/2)

# sigma_i^2

theta[i,(k+1):(k+3)]<-1/rgamma(n=k,shape=(par0[1]+data0$ni)/2,

rate=(par0[1]*theta[(i-1),(2*k+1)]+(data0$ni-1)*data0$s2+

data0$ni*(data0$ybar-theta[i,(1:k)])^2)/2)

# sigma^2

theta[i,(2*k+1)]<-rgamma(n=1,shape=(par0[4]+k*par0[1])/2,

rate=(par0[5]+par0[1]*sum(1/theta[i,(k+1):(k+3)]))/2)

}

return(theta)

}

# example of testing contrasts: 3 treatments (95% credible ellipsoid)

#> ANOVAsims<-GibbsANOVA(data0)

#> c1<-ANOVAsims[10001:40000,2]-ANOVAsims[10001:40000,1]

#> c2<-ANOVAsims[10001:40000,3]-ANOVAsims[10001:40000,1]

#> c3<-ANOVAsims[10001:40000,3]-ANOVAsims[10001:40000,2]

#> contrasts0<-cbind(c1,c2,c3)

#> cov(contrasts0)

# c1 c2 c3

#c1 7.171884 3.753002 -3.418882

#c2 3.753002 6.068929 2.315927

#c3 -3.418882 2.315927 5.734809

#> contrastss<-contrasts0/sqrt(diag(cov(contrasts0)))

#> apply(contrastss,1,mean)

# c1 c2 c3

#-2.3098178 -2.0306339 0.4941118

#> sum(sqrt((contrastss[1,]+2.31)^2+(contrastss[2,]+2.03)^2+(contrastss[3,]-0.494)^2)<3.04)/30000

#[1] 0.9496

#> sqrt((2.31)^2+(2.03)^2+(-0.494)^2)

#[1] 3.114649

#> sum(sqrt((contrastss[1,]+2.31)^2+(contrastss[2,]+2.03)^2+(-0.494)^2)<3.04)/30000

#[1] 0.9769

#so treatment 2 and 3 are not significantly different.

#whereas treatment 1 differs from both treatment 2 and treatment 3:

#> sum(sqrt((contrastss[1,]+2.31)^2+(+2.03)^2+(contrastss[3,]-0.494)^2)<3.04)/30000

#[1] 0.9108

#> sum(sqrt((+2.31)^2+(contrastss[2,]+2.03)^2+(contrastss[3,]-0.494)^2)<3.04)/30000

#[1] 0.8581667
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Figure 1: Last 500 Gibbs Samples of some selected Parameters

4



Figure 2: Marginal Histograms of Last 30,000 Parameter Gibbs Samples
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Problem 2: Rainfall Data in Marquitia

a) Posterior Density:
In general,

f(µ, σ|y1, . . . yn) ∝ π(µ, σ)
n∏

i=1

f(yi|µ, σ)

So using the priors for µ and σ and the likelihood specified for this problem:

f(µ, σ|y1, . . . yn) ∝ 1
10
√

2π
exp (− µ2

200
)

1
10σ

√
2π

exp (− (lnσ)2

200
)σ−n exp

{
−

n∑
i=1

[
yi − µ

σ
+ exp

(
−yi − µ

σ

)]}

Which can be simplified a little bit:

f(µ, σ|y1, . . . yn) ∝ σ−(n+1) exp

{
−

n∑
i=1

[
yi

σ
+ exp

(
−yi − µ

σ

)]
− nµ

σ
− µ2 + (lnσ)2

200

}

Utilizing the 48 observations y1 = 154, y2 = 49.6, . . . , y48 = 44.3:

f(µ, σ|154, . . . , 44.3) ∝ σ−49 exp
{
−

[
154 + . . .+ 44.3

σ
+ e−

154−µ
σ + . . .+ e−

44.3−µ
σ

]
− 48µ

σ
− µ2 + (lnσ)2

200

}

b) Metropolis-Hastings Algorithm:
Earlier in the semester, I adapted the Metropolis for Weibull practice example to R. For this problem, only
a little modification is required to make it Metropolis for Gumbel. For simplicity, the proposal joint density
is assumed to be the product of densities for µ′ and σ′. To enable the flexibility of two tuning parameters,
these are chosen to be N (µ, s21) and LN (log(σ), s22), respectively, giving µ′ support on R and σ′ support on
R+. That is:

q(µ′, σ′|µ, σ) =
1

2πσs1s2
exp

{
− (log(σ′)− log(σ))2

2s22
− (µ′ − µ)2

2s21

}
As can be seen in the time series plots of the simulated parameter values, with this proposal distribution, the
simulated bivariate posterior distribution could possibly be improved to mix better than with the “tuning”
parameter pair: s1 = 2, s2 = 2. A little bit of tuning, say s1 = 0.5, s2 = 0.1 could be used to arrive at
better performance. The density of µ seems to be skewed slightly to the left and the marginal density of σ
is skewed to the right. The histograms for µ and σ are attached. Summary statistics are as follows (after a
burn-in of 10000, 30000 realizations from the bivariate posterior distribution are used):

µ mean 45.77
var 11.22

σ mean 22.44
var 8.56

c) Prediction:
There are several ways that the probability: P (y∗ ≥ 410|y) can be estimated based on the above output.
One possibility is to simply “plug-in” the means of the simulated parameters into the Gumbel cdf. This
yields a probability of, 8.953704e− 08, very close to zero. A better way to estimate this probability is based
on actually estimating the posterior predictive distribution. This is like treating F (y∗|y) as a mixture of
30, 001 equally weighted Gumbel distributions with parameters from the sequence of simulated parameter
pairs. So for each of the 30, 001 pairs, the expression 1− F (410|µ, σ) can be evaluated. Then, the estimate
would be the mean of this posterior distribution. In this case, ˆP (y∗ ≥ 410|y) = 4.6021e − 07 ≈ 0. That is,
the probability of observing a maximum daily rainfall as large or greater than that tragic day in 1999 in any
given year is essentially zero.
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Figure 3: Last 500 Simulations of the Parameter µ s1 = 2, s2 = 2 . . .Poor Mixing

Figure 4: Last 500 Simulations of the Parameters s1 = 0.5, s2 = 0.1
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Figure 5: Marginal Histograms of Last 30,000 Parameter Pairs s1 = 0.5, s2 = 0.1

R Code

MH4gum<-function(data0,s1=1,s2=1,mu0=0,sigma0=1,M=40000) {
n<-length(data0) # two tuning parameters s1 and s2.
ru<-runif(M) # we will be testing rho M times.
rn<-rnorm(M) # these random variates can be
re<-rnorm(M) # updated to reflect their means.
xi<-matrix(0,M,2)
xi[1,]<-c(mu0,sigma0)

for (i in 2:M) {
xi[i,1]<-xi[i-1,1]+rn[i]*s1
xi[i,2]<-xi[i-1,2]*exp(re[i]*s2)
rho<-(xi[i-1,2]/xi[i,2])^n*exp(sum(data0/xi[i-1,2]-data0/xi[i,2]+
exp(-(data0-xi[i-1,1])/xi[i-1,2])-exp(-(data0-xi[i,1])/xi[i,2]))+
n*(xi[i,1]/xi[i,2]-xi[i-1,1]/xi[i-1,2])+(xi[i-1,1]^2-xi[i,1]^2+
log(xi[i-1,2])^2-log(xi[i,2])^2)/200+xi[i,2]/xi[i-1,2]-xi[i-1,2]/xi[i,2])
if(ru[i]>rho)
xi[i,]<-xi[i-1,]
}
return(xi)
}

pgumbel<-function(x,mu,sigma) {
return(exp(-exp(-(x-mu)/sigma)))
}
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Problem 3: MARTA Passenger Arrivals (BUGS Example)

For this hierarchical Bayesian nonparametric problem it was not difficult to have BUGS simulate from the
posterior distribution of the model parameters because of the excellent, clear instructions provided in Hand-
out 14. Some traces of the simulated values were examined and appeared to exhibit no indication that the
simulation required any tuning. This page is attached. The summary posterior statistics were found directly
from within BUGS:

node mean sd MC error 2.5% median 97.5% start sample
lambda 8.63700 0.66660 0.004298 8 9 10 10001 30000

P[1] 0.02030 0.01998 1.121E-4 5.436E-4 0.01431 0.07419 10001 30000
P[2] 0.02037 0.01997 1.158E-4 5.062E-4 0.01423 0.07416 10001 30000
P[3] 0.02063 0.02028 1.175E-4 5.767E-4 0.01460 0.07552 10001 30000
P[4] 0.04080 0.02792 1.638E-4 0.005010 0.03477 0.11040 10001 30000
P[5] 0.04071 0.02801 1.555E-4 0.005076 0.03449 0.11090 10001 30000
P[6] 0.06124 0.03401 2.030E-4 0.013010 0.05519 0.14200 10001 30000
P[7] 0.06162 0.03430 1.990E-4 0.013050 0.05546 0.14350 10001 30000
P[8] 0.09009 0.04188 2.804E-4 0.026620 0.08411 0.18750 10001 30000
P[9] 0.09164 0.04199 2.523E-4 0.026740 0.08639 0.18850 10001 30000

P[10] 0.10390 0.04330 2.607E-4 0.035670 0.09861 0.20240 10001 30000
P[11] 0.12260 0.04625 2.609E-4 0.046680 0.11760 0.22650 10001 30000
P[12] 0.10220 0.04284 2.438E-4 0.034300 0.09691 0.19940 10001 30000
P[13] 0.08148 0.03862 2.142E-4 0.023130 0.07580 0.17240 10001 30000
P[14] 0.06095 0.03376 1.894E-4 0.013140 0.05521 0.14160 10001 30000
P[15] 0.04076 0.02794 1.531E-4 0.005245 0.03455 0.11040 10001 30000
P[16] 0.02048 0.01992 1.157E-4 5.324E-4 0.01446 0.07309 10001 30000
P[17] 0.02018 0.01981 1.114E-4 5.219E-4 0.01407 0.07420 10001 30000

The main parameter of interest is the arrival rate, λ. The posterior mean of λ is 8.64. The median is 9
passengers every four minutes. Either number could be justified as an estimate of the passenger arrival rate
per four minute interval. BUGS provides an easy way to save the simulated parameter values, in order, to a
text file. This then enables the data to be easily imported into another environment, such as R or MATLAB,
for data analysis and graphing. In this example, MATLAB was used to provide the histograms for λ, p2, p7,
p9, p10, p13, and p17. The histograms illustrate that λ is pretty much confined to the five integers 7, 8, 9,
10, and 11. The mode being 9. What can also be seen is that the probabilities that correspond to integers
far away from 9 seem to have a mode at zero. Whereas, the other four are very similar in shape with modes
in the general vicinity of 0.10.
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Figure 6: Marginal Histograms of 30,000 Posterior Samples via BUGS/MATLAB
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