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1. Bayesian Wavelet Shrinkage. This open ended question is essentially

asking to select a data set with noise present in it (a noisy signal, function, or

noisy image), transform the data to the wavelet domain, apply shrinkage by

suitably developed Bayes rules on wavelet coefficients, and back-transform

shrunk coefficients (alias Bayes estimates) to the domain of original data.

Recent Tech Report 34/2004 at http://www.isye.gatech.edu/brani/isyestat/

updates the Handout 21 with some recent references, and you may use some

of the procedures supplied there. However, the question is open ended and

you may propose your own method and use the software of your choice, even

BUGS.

Solution:

Suppose the likelihood for a detail wavelet coefficient is given θ is bino-

mial B(n, θ), i.e.,

f(x|θ) =
(n

x

)
θx(1− θ)n−x, x = 0, 1, . . . , n,

and the prior is β, Be(α, β), where the hyperparameters α and β are known,

π(θ) =
1

B(α, β)
θα−1(1− θ)β−1, 0 ≤ θ ≤ 1.

The Bayesian rule is
x + α

n + α + β
.

Take Doppler as the original signal, as known in Figure 1. Noise of size

of 0.1 is added to the original signal. Figure 2 shows the data with noise

adding to it. Figure 3 shows the shrinkage results by applying the Bayesian

rule above to the data in Figure 2.
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The codes for this problem is in the Appendix.
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Figure 1: Original Data
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Figure 2: Original Data with Noise
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Figure 3: Results of Shrinkage
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Problem 2 Solution:

(i) Exact calculating:

P (J1,M1|B1) =
1

P (B1)

∑

E,A

P (B1, E,A, J1,M1)

=
1

P (B1)

∑

A

[∑

E

P (E)P (A|B1, E)

]
P (B1)P (M1|A)P (J1|A)

=
1

P (B1)

∑

A

P (A, B1)P (B1)P (M1|A)P (J1|A)

With

P (A0, B1) = P (E0)P (A0|B1, E0) + P (E1)P (A0|B1, E1)

= 0.998 ∗ 0.06 + 0.002 ∗ 0.05

= 0.05998,

and

P (A1, B1) = P (E0)P (A1|B1, E0) + P (E1)P (A1|B1, E1)

= 0.998 ∗ 0.94 + 0.002 ∗ 0.95

= 0.94002.

Then,

P (J1,M1|B1) = P (A0, B1)P (M1|A0)P (J1|A0) + P (A1, B1)P (M1|A1)P (J1|A1)

= 0.05998 ∗ 0.01 ∗ 0.05 + 0.94002 ∗ 0.70 ∗ 0.90

= 0.5922.

————————–

————————–
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(ii) Using Kevin Murphy’s BNT

With

P (J1|M1, B1) = 0.8992,

P (M1|B1) = 0.6586,

the results is:

P (J1,M1|B1) = P (J1|M1, B1)P (M1|B1) = 0.8992 ∗ 0.6586 = 0.5922.

See Appendix for codes.

————————–

————————–

(iii) Using BUGS.

With

P (J1|M1, B1) = 0.897,

P (M1|B1) = 0.649,

the results is:

P (J1,M1|B1) = P (J1|M1, B1)P (M1|B1) = 0.897 ∗ 0.649 = 0.5822.

————————–

————————–
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Problem 3 Solution::

• Full conditionals:

f(Y, µ, λ, τ) =

{
τ∏

i=1

Poi(λ)

}
π(τ)π(λ)

{
n∏

i=τ+1

Poi(µ)

}
π(τ)π(µ)

=
λ
Pτ

i=1 yi

(
∏τ

i=1 yi!)n
e−τλ λαλ−1e−βλλ

Γ(αλ)βαλ
λ

λ
Pn

i=τ+1 yi

n(
∏n

i=k+1 yi!)
e−(n−τ)µ µαµ−1e−βµµ

Γ(αµ)βαµ

λ

=
λ
Pτ

i=1 yi+αλ−1e−λ(τ+βλ)

(
∏τ

i=1 yi!)nΓ(αλ)βαλ
λ

µ
Pn

i=τ+1 yi+αµ−1e−µ(n−τ+βµ)

(
∏n

i=τ+1 yi!)nΓ(αµ)βαµ
µ

From the above equation,

P (τ = k|λ, µ, Y ) = λ
Pτ

i=1 yi+αλ−1e−λ(τ+βλ)µ
Pn

i=τ+1 yi+αµ−1e−µ(τ+βµ),

[λ|τ, µ, Y ] =
λ
Pτ

i=1 yi+αλ−1e−λ(τ+βλ)

Γ(
∑τ

i=1 yi + αλ)β
Pτ

i=1 yi+αλ

λ

, and

[µ|τ, λ, Y ] =
µ
Pτ

i=1 yi+αµ−1e−µ(τ+βµ)

Γ(
∑n

i=τ+1 yi + αµ)β
Pn

i=τ+1 yi+αµ

µ

.

• Figure 4 shows the observations. Figure 5 shows the last 500 simula-

tions out of 10000 for τ , λ, and µ. Figure 6 shows the histograms for

τ , λ, and µ. Figure 7 shows the original data with the posteriors of τ ,

λ, and µ.

• Table 1 shows the posterior sample means and variances for τ , λ, and

µ

See Appendix A for codes.
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Figure 4: Original Data
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Figure 5: Last 500 Simulations for τ , λ, and µ
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Figure 6: Histograms of τ , λ, and µ

Table 1: Posterior Statistics

Parameter Mean Variance

τ 39.9681 6.0111

λ 3.1231 0.0850

µ 0.9222 0.0133
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Figure 7: Original Data with Posteriors of τ , λ, and µ
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