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Introduction and Disclaimer

These worked examples illustrate the use of the BUGS language and sampler in a wide range of
problems. They contain a number of useful “tricks”, but are certainly not exhaustive of the models
that may be analysed.

We emphasise that all the results for these examples have been derived in the most naive way: in
general a burn-in of 500 iterations and a single long run of 1000 iterations. This is not recommended
as a general technique: no tests of convergence have been carried out, and traces of the estimates
have not even been plotted. However, comparisons with published results have been made where
possible. Times have been measured on a 60 MHz superSPARC: a 60 MHz Pentium PC appears
to be about 4 times slower, and a 30 MHz superSPARC about 2 times slower.

Users are warned to be extremely careful about assuming convergence, especially
when using complex models including errors in variables, crossed random effects and
intrinsic priors in undirected models.

*BUGS (©copyright MRC Biostatistics Unit 1995. ALL RIGHTS RESERVED. The support of the Economic and
Social Research Council (UK) is gratefully acknowledged. The work was funded in part by ESRC (UK) Award
Number H519 25 5023.



Warning
BUGS version 0.5
Release date: August 14, 1996

BUGS version 0.5 released on August 14, 1996 is a TEST version only.

If you encouter any errors in the program, please notify us by e-mailing bugs@mrc-bs.cam.ac.uk.
In particular, users are warned that BUGS version 0.5 may crash during sampling with the error

Can not locate mode of sampling density
or

Allowed number of function evaluations exceeded for ARS.

Such errors typically occur when estimating models involving a log or logit function of parameters
whose values are very close to zero. We are currently working to fix this bug, and will release a
revised version 0.5 when this has been sorted out. Please note that the Cosmos example in BUGS
Examples Volume 2 crashes with this error when running BUGS version 0.5, although the model can
be run successfully using BUGS version 0.30.
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1 Dugongs: a nonconjugate, nonlinear model

Carlin and Gelfand (1991) present a nonconjugate Bayesian analysis of the following data set from
Ratkowsky (1983):

Dugong 1 2 3 4 5 .. 2 27
Age (X) | 1.0 15 15 15 25 .. 290 315
Length(Y) | 1.80 1.85 1.87 1.77 2.02 ... 272 2.57

The data are length and age measurements for 27 captured dugongs (sea cows). Carlin and Gelfand
(1991) model this data using a nonlinear growth curve with no inflection point and an asymptote
as X; tends to infinity:

Y; ~ Normal(yi,7), i=1,..,27
pi = a—pyN a,Bf>10<y<1

Standard noninformative priors are adopted for «, § and 7, and a uniform prior on (0,1) is assumed
for v. However, this specification leads to a non conjugate full conditional distribution for v which
is also non log-concave. This problem may be handled within BUGS by discretizing -y, and specifying
equal prior probabilities for each discrete value. The BUGS code is shown below, and the graph is
given in Figure 1.

model dugongs;
const
N = 27, # number of observations
M = 128; # number of bins for gamma
var
x[N],Y[N] ,mu[N] ,alpha,beta,gamma,tau,sigma,p[M],iGamma,U1,U2,U3;
data x, Y in "dugongs.dat";
inits in "dugongs.in";

{

for (i in 1:N) {
mu[i] <- alpha - beta*pow(gamma,x[i]);
Y[i] ~ dnorm(mul[i],tau)
}
alpha ~ dnorm(0.0,1.0E-4);
beta ~ dnorm(0.0,1.0E-4);
tau ” dgamma(1.0E-3,1.0E-3); sigma <- 1.0/sqrt(tau);

iGamma ~ dcat(p[]); # discretize gamma
gamma <- iGamma/M; # normalize discretized gamma to range (0,1)
for (j in 1:M) { p[j]l <- 1/M } # equal prior for all values of iGamma

# Transform alpha, beta and gamma to scale used by Carlin and Gelfand
Ul <- log(alpha);
U2 <- log(beta);
U3 <- logit(gamma) ;
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Analysis

After a 500 iteration burn-in, 1000 iterations took 1 minutes 41 seconds (using 128 bins for discretiz-
ing 7). The results are shown below, together with those of Carlin and Gelfand, and Ratkowsky.
Results are also given for 1000 iteration BUGS runs using 64, 32, 16, and 8 bins for «, to illustrate
the change in precision incurred by using a coarser categorization. Note that the speed of running
this model in BUGS is approximately proportional to the number of bins, with the 8 bin model

ol

dugong i

taking as little as 9 seconds for 1000 iterations.

Figure 1: Graphical model for dugongs example.

U1 (log «) U2 (log B) | U3 (logit v) o
C & G posterior 0.975 —0.014 1.902 -
mode
Ratkowsky least 0.981 —0.028 1.932 -
squares estimate
BUGS posterior mode
(95% interval)
128 bins 0.979 —0.0291 1.896 0.098
(0.933, 1.032) | (—0.180, 0.117) | (1.366, 2.364) | (0.074, 0.129)
64 bins 0.977 —0.030 1.880 0.098
(0.934, 1.023) | (—0.183, 0.109) | (1.366, 2.268) | (0.074, 0.128)
32 bins 0.984 —0.024 1.941 0.098
(0.932, 1.034) | (—0.167, 0.123) | (1.272, 2.268) | (0.075, 0.131)
16 bins 0.976 —0.034 1.883 0.097
(0.933, 1.002) | (—0.183, 0.116) | (1.466, 1.945) | (0.074, 0.127)
8 bins 0.981 —0.036 1.945 0.096

We note that the BUGS estimates and 95% intervals for log « , log 8 and o are virtually unaffected
by the number of bins chosen for . However, the 95% interval estimate for logit «y itself is too
precise for the 16 and 8 bin models because the bin width is too coarse and nealry all the sampled
values for « fall within the same interval. The models with 32 or more bins give more realistic

interval estimates.

(0.958, 1.003)

(—0.182, 0.099)

(1.945, 1.945)

(0.073, 0.127)



2 Biops: discrete variable latent class models

Spiegelhalter and Stovin (1983) presented data on repeated biopsies of transplanted hearts, in
which a total of 414 biopsies had been taken at 157 sessions. Each biopsy was graded on evidence
of rejection using a 4-category scale of none (O), minimal (M), mild (+) and moderate-severe (++).
Part of the data is shown below.

Combination = Multinomial response Session frequency

0O O (2,0, 0, 0) 12
M M O (1, 2,0, 0) 10
+ + O (1,0, 2, 0) 17
++ ++ 4+ (0, 0, 0, 3) 5

The sampling procedure may not detect the area of maximum rejection, which is considered the true
underlying state at the time of the session and denoted ¢; — the underlying probability distribution
of the four true states is denoted by the vector p. It is then assumed that each of the observed
biopsies are conditionally independent given this true state with the restriction that there are no
‘false positives’: i.e. one cannot observe a biopsy worse than the true state. We then have the
sampling model

b; ~ Multinomial(e,,n;)

ti ~ Categorical(p)

where b; denotes the multinomial response at session i where n; biopsies have been taken, and
ejr is the probability that a true state #; = j generates a biopsy in state k. The no-false-positive
restriction means that ejo = €13 = e14 = €93 = eaq4 = e3q4 = 0. Spiegelhalter and Stovin (1983)
estimated the parameters e; and p using the EM algorithm, with some smoothing to avoid zero
estimates.

The appropriate graph is shown in Figure 2, where the role of the true state ¢; is simply to pick the
appropriate row from the 4 x 4 error matrix e. Here the probability vectors e; (j = 1,...,4) and p
are assumed to have uniform priors on the unit simplex, which correspond to Dirichlet priors with
all parameters being 1.

The BUGS code for this model is given below. No initial value file is provided, since the forward
sampling procedure will find a configuration of starting values that is compatible with the expressed
constraints. It has been necessary, however, to introduce dummy arrays for the separate rows of
the error matrix since they have different lengths. We also note the apparent “cycle” in the graph
created by the expression nbiops[i] <- sum(biopsies[i,]). This will lead BUGS to generate the
warning message Possible directed cycle or undirected link in model during compilation.
Such “cycles” are permitted provided that they are only data transformation statements, since this
does not affect the essential probability model.
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Biops: model specification in BUGS

model biops;

const
ns=157; # number of sessions

var
biopsies[ns,4], # grades observed in ith session (multinomial)
nbiops[ns], # total number of biopsies in ith session

true[ns], # true state in ith session

error[4,4], # error matrix in taking biopsies

error2[2], # non-zero elements of error[2,]

error3[3], # non-zero elements of error[3,]

pl4], # underlying incidence of true states

prior2[2], # prior parameters for error2

prior3[3], # prior parameters for error3

prior4[4]; # prior on p and error[4,] (fixed in data-file)
data biopsies in "biops.dat";

{
# TRANSFORMATIONS

for (i in 1:ns){
nbiops[i] <- sum(biopsies[i,]);
# MODEL
for (i in 1:ns){
true[i] ~ dcat(p[1);
biopsies[i,] ~ dmulti(error[truel[i],],nbiops[i]); # multinomial
# force no false positives

error[1,1] <- 1; error[1,2] <- 0; error[1,3] <- 0; error[1,4] <- O;
error[2,3] <- 0; error[2,4] <- 0; error[3,4] <- 0;

# priors for parameters
prior2[1] <- 1; prior2[2] <- 1;
prior3[1] <- 1; prior3[2] <- 1; prior3[3] <- 1;
prior4[1] <- 1; prior4[2] <- 1; prior4[3] <- 1; prior4[4] <- 1;
error2[] ~ ddirch(prior2[]); for (j in 1:2) {error[2,j] <- error2[jl}
error3[] ~ ddirch(prior3[]); for (j in 1:3) {error[3,j] <- error3[jl}
error[4,] ~ ddirch(prior4[]);

pll “ ddirch(prior4[]); # prior for p



Analysis

A simple BUGS run took 21 seconds for 1000 iterations and gave the following results which are

Figure 2: Graphical model for biops example

session i

similar to those obtained by the EM algorithm.

parameter (%) EM BUGS
algorithm

P 20 + 45 16 * 4.6
P2 28 +4.5 31 +5.1
p3 35 £43 39 +£4.3
s 17+ 34 15 +3.0
e11 100 100

€921 53 + 6.4 58 + 6.6
€22 47+ 6.4 42 + 6.6
e31 33+45 34+44
€32 4+ 1.7 4+1.8
ess 63 £ 4.7 62+ 4.7
e4q1 11+50 10+44
€49 1+ - 2+24
€43 25+ 74 20 +£5.7
€44 64+85 6771



BUGS examples Vol 2 9

3 Eyes: normal mixture models

Bowmaker et al. (1985) analyse data on the peak sensitivity wavelengths for individual microspec-
trophotometric records on a small set of monkey’s eyes. Data for one monkey (514 in the paper)
are given below (500 has been subtracted from each of the 48 measurements).

29.0 300 32.0 33.1 334 336 33.7 341 348 353
354 359 36.1 36.3 36.4 36.6 37.0 374 37.5 383
38.5 38.6 394 39.6 40.4 40.8 42.0 42.8 43.0 43.5
43.8 43.9 453 46.2 48.8 48.7 489 49.0 494 49.9
50.6 51.2 514 515 51.6 528 529 53.2

Part of the analysis involves fitting a mixture of two normal distributions with common variance
to this distribution, so that each observation y; is assumed drawn from one of two groups. Let
T; = 1,2 be the true group of the ¢th observation, where group j has a normal distribution with
mean \; and precision 7. We assume an unknown fraction P of observations are in group 2, 1 — P
in group 1. The model is thus

yi ~ Normal(Ar,,7)
T; ~ Categorical(P).

We note that this formulation easily generalises to additional components to the mixture, although
for identifiability an order constraint must be put onto the group means.

Robert (1994) points out that when using this model, there is a danger that at some iteration, all
the data will go into one component of the mixture, and this state will be difficult to escape from —
this matches our experience. Robert suggests a re-parameterisation, a simplified version of which
is to assume

A=A+86, 6>0.

A1, 0,7, P are given independent “noninformative” priors, including a uniform prior for P on (0,1).
The appropriate graph is shown below, and the BUGS code is given over the page.

S
N
N
~
~
AN
~<J \\

.a : :\
\\ AN
\\‘ v

~

observation i

Figure 3: Graphical model for eyes example
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Eyes: model specification in BUGS

model eyes;

const
N=48;

var
y[N], # observations
T[N], # true groups (labelled 1,2)
lambda[2], # means of two groups
theta, # scaled positive shift between groups
tau, # sampling precision
sigma, # sampling standard deviation
P[2], # proportion in first group
alphal[2]; # prior parameters for proportions

data y in "eyes.dat";
inits in "eyes.in";

P[] ~ ddirch(alphall); # prior for mixing proportion

{
for (i in 1:N){
y[i] ~ dnorm(lambdal[T[il],tau);
T[i]l] ~ dcat(P[1)
}
sigma <- 1/sqrt(tau);
tau ~ dgamma(0.01,0.01);
lambda[1] ~ dnorm(0,1.0E-6);
lambda[2] <- lambdal[1l]+theta;
theta ~ dnorm(0,1.0E-6) I(0,);
alphal[1] <- 1;
alpha[2] <- 1;
}
Analysis

# uniform prior

A BUGS run of 1000 iterations was extremely fast (4 seconds) and gave the following results which
are compared with the maximum likelihood estimates of Bowmaker et al. (1985)

parameter | maximum BUGS
likelihood

A1 536.9 £ .7 536.7 + 0.99

Ao 549.0 + 1.1 548.8 + 1.26

o 3.45 + .39 3.80 + .72

P, .62 £+ .08 .60 £+ .09

We note the appropriately wider intervals provided by the full Bayesian analysis. We also point out
that even with this re-parameterization we have experienced problems with some mixture models,
in that a component may contain no observations at some iteration. One solution is to force at
least one pre-specified observation to be in each component.
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4 Hearts: a mixture model for count data

The table below presents data given by Berry (1987) on the effect of a drug used to treat patients
with frequent premature ventricular contractions (PVCs) of the heart.

PVCs per minute
number (i) | Pre-drug (z;) Post-drug (y;) Decrease
1 6 5 1
2 9 2 7
3 17 0 17
11 9 13 -4
12 51 0 51

Farewell and Sprott (1988) model this data as a mixture distribution of Poisson counts in which
some patients are “cured” by the drug, whilst others experience varying levels of response but
remain abnormal. A zero count for the post-drug PVC may indicate a “cure”, or may represent
a sampling zero from a patient with a mildly abnormal PVC count. The following model thus is
assumed:

xz; ~ Poisson()\;) for all patients
y; ~ Poisson(8X);) for all uncured patients
P(cure) = ¢

To eliminate the nuisance parameters )\;, Farewell and Sprott use the conditional distribution of
y; given t; = x; + y;. This is equivalent to a binomial likelihood for y; with denominator ¢; and
probability p = % (see Cox and Hinkley (1974) pp. 136-137 for further details of the conditional
distribution for Poisson variables). Hence the final mixture model may be expressed as follows:
Plyi=0[t;) = 0+ (1—0)(1—p)"
Ply|t) = (1-0)(§)p"(1—p)t¥) yi=1,2, ...t

The graph for the hearts model is shown in Figure 4 and the BUGS code follows.
‘ 1

ojgcpe

s
s

w5 ®
QN

patient i

\

Figure 4: Graphical model for hearts example
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model hearts;
const N = 12;
var

value for the binomial probability depending
on whether statel = 1 or 2 (not cured or cured)
p and theta transformed to logit scale for normality

x[N],y[N],t[N], # pre-drug, post-drug and total PVC count
state[N],statel[N], # binary indicator of whether patient is cured
theta, # probability of cure (prob of state = 1)
p, beta, # p = binomial probability = beta/(l+beta)
P[2], # ‘pick’ variable used to select appropriate

#

#

#

alpha, delta;

data x, y in "hearts.dat";
inits in "hearts.in";

{
# TRANSFORMATIONS
for (i in 1:N) {
t[i] <- x[i] + y[il;
}
# MODEL
for (i in 1:N) {
y[i] - dbin(P[statel[i]l], t[il);
state[i] ~ dbern(theta);
statel[i] <- state[i]+1; # state[i] takes values O or 1, so need to
# add 1 to get values for use as index on P
}
P[1] <- p; P[2] <- 0O;
logit(p) <- alpha; alpha ~ dnorm(0,1.0E-4);
beta <- exp(alpha); # beta measures change in rate of PVCs after treatment
logit(theta) <- delta; delta ~ dnorm(0,1.0E-4)

Analysis

10000 iterations took 32 seconds after a 1000 iteration burn-in. The posterior means (95% C.I.)
are given below, together with Farewell and Sprott’s maximum likelihood estimates.

Paranu%er‘ BUGS ‘ MLE
0 0.572 (0.289, 0.823) | 0.575 (0.30, 0.81)
8 0.646 (0.359, 1.055) | 0.629 —
P 0.386 (0.264, 0.514) | 0.386 (0.27, 0.52)

The BUGS results are in close agreement with those of Farewell and Sprott, and suggest that there
is just over a 50% chance of a patient being “cured” (6 = 0.572); if not, the number of PVCs per
minute is likely to fall to about 65% (8 = 0.646) of their pre-drug count.
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5 Air: covariate measurement error

Whittemore and Keller (1988) use an approximate maximum likelihood approach to analyse the
data shown below on reported respiratory illness versus exposure to nitrogen dioxide (NOs) in 103
children. Stephens and Dellaportas (1992) later use Bayesian methods to analyse the same data.

Bedroom NO; level in ppb (z)
Respiratory illness (y) | <20 20-40 40+ Total
Yes 21 20 15 56
No 27 14 6 47
Total 48 34 21 103

A discrete covariate z; (j = 1,2, 3) representing NO5 concentration in the child’s bedroom classified
into 3 categories is used as a surrogate for true exposure. The nature of the measurement error
relationship associated with this covariate is known precisely via a calibration study, and is given
by

zj = a+ Bz +e¢gj
where o = 4.48, 8 = 0.76 and ¢, is a random element having normal distribution with zero mean
and variance o2 = 81.14. Note that this is a Berkson (1950) model of measurement error, in which
the true values of the covariate are expressed as a function of the observed values. Hence the
measurement error is independent of the latter, but is correlated with the true underlying covariate
values. In the present example, the observed covariate z; takes values 10, 30 or 50 for j = 1, 2,
or 3 respectively (i.e. the mid-point of each category), whilst z; is interpreted as the “true average
value” of NOs in group j. The response variable is binary, reflecting presence/absence of respiratory
illness, and a logistic regression model is assumed. That is

yj ~ Binomial(p;,n;)
logit(pj) = 91+92.Tj

where p; is the probability of respiratory illness for children in the jth exposure group. The
regression coefficients #; and 65 are given vague independent normal priors. The graphical model

is shown in Figure 5.
T= 8114 —4.48 B=o07s
\

\ \
\\ \\ "/

AN \\ —————

AN \ \
\ \

)
(—(w) aroup

Figure 5: Graphical model for air example
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Model specification for air example

model air;

const
alpha = 4.48, # intercept of measurement error model
beta = 0.76, # slope of measurement error model
sigma2 = 81.14, # error variance of measurement error model
J = 3; # number of exposure levels for covariate
var

thetal[2] ,X[J],Z[J] ,mul[J],p[J],y[J],n[J],tau;
data y, n, Z in "air.dat";
inits in "air.in";
{

thetal[1l] ~ dnorm(0.0,1.0E-3);

theta[2] ~ dnorm(0.0,1.0E-3);

tau <- 1/sigma?2;

for (j in 1:J) {

mul[j] <- alpha + betaxZ[j];
X[j] ~ dnorm(mulj],tau);
logit(p[jl) <- theta[1] + theta[2]*X[j];
y[j] ~ dbin(p[jl,n[j1);
}
}
Analysis

2000 iterations took 8 seconds after a 500 iteration burn-in, and produced the following output

variable estimate 95% interval
6, -0.669  -2.127, 0.218
0, 0.038 0.002, 0.098
z1 (low exposure) 11.6 -4.6, 26.2
z9 (medium exposure) 27.3 11.7, 424
z3 (high exposure) 41.8 25.3, 58.7

These results should be compared with the plots shown by Stephens and Dellaportas (1992). The
posterior mean for {61,602} is also similar to that obtained by Whittemore and Keller (1988), al-
though their maximum likelihood analysis yielded considerably smaller standard errors. In addition,
note that the posterior mean estimates for the elements of z; and x5 (the “true average exposure”
to NOg in the low and medium groups) are close to the “prior” values of 10 and 30 selected by
Whittemore and Keller. However, the value of z3 is somewhat lower than its “prior value” of 50,
largely because the posterior estimate is “pulled in” by the need to fulfil the linear logistic model
assumption.
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6 Cervix: case-control study with errors in covariates

Carroll et al. (1993) consider the problem of estimating the odds ratio of a disease d in a case-
control study where the binary exposure variable is measured with error. Their example concerns
exposure to herpes simplex virus (HSV) in women with invasive cervical cancer (d = 1) and in
controls (d = 0). Exposure to HSV is measured by a relatively inaccurate western blot procedure
w for 1929 of the 2044 women, whilst for 115 women, it is also measured by a refined or “gold
standard” method z. The data are given in the table below. They show a substantial amount of
misclassification, as indicated by low sensitivity and specificity of w in the “complete” data, and
Carroll et al. (1993) also found that the degree of misclassification was significantly higher for the
controls than for the cases (p=0.049 by Fisher’s exact test).

d z w Count
Complete data
1 0 0 13
1 0 1 3
1 1 0 5
1 1 1 18
0 0 O 33
0 0 1 11
0 1 0 16
0 1 1 16
Incomplete data
1 0 318
1 1 375
1 0 701
1 1 535

They fitted a prospective logistic model to the case-control data as follows

d; ~ Bernoulli(p;) 1=1,...,2044
logit(p;) = foc + B i=1,...,2044

where (3 is the log odds ratio of disease d. Since the relationship between d and z is only directly
observable in the 115 women with “complete” data, and because there is evidence of differential
measurement error, the following parameters are required in order to estimate the logistic model

$p1 = Plw=1|z=0,d=0)

$p10 = Plw=1|z=0,d=1)

$21 = Plw=1|z=1,d=0)

$20 = Plw=1|z=1,d=1)
g = Plz=1)

The differential probability of being exposed to HSV (z = 1) for cases and controls is calculated as
follows
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v = Plz=1|d=1)
_ Pd=1|z=1)P(z=1)
P(d=1)
_ 1

v = Plz=1|d=0)
Pd=0|z=1)P(z=1)

P(d = 0)

_ 1
o 1+e—Boc—B 1—q
I TR

The graph for the above model is in Figure 6.
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Figure 6: Graphical model for cervix example.

The role of the variables x1 and d1 is to pick the appropriate value of phi (the incidence of w) for
any given true exposure status x and disease status d. Since x and d take the values 0 or 1, and the
subscripts for phi take values 1 or 2, we must first add 1 to each x[i] and d[i] before using them
as index values for phi. BUGS does not allow subscripts to be functions of variable quantities —
hence the need to create x1 and d1 for use as subscripts. In addition, note that v; and v, were not
simulated directly in BUGS, but were calculated as functions of other parameters. This is because
the dependence of «y; and 2 on d would have led to a cycle in the graphical model which would no
longer define a probability distribution.
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Cervix: model specification in BUGS
model cervix;
const
= 2044; # number of observations
var

w[N], phi[2,2], approx HSV status; rates for w being positive
betalOC, beta, intercept and log-odds ratio
gammal, gamma2; # prob HSV positive given control or case
data d, x, w in "cervix.dat";
inits in "cervix.in";

x[N], x1[N], # ‘true’ HSV status (x[i] + 1)
d[N], d1[N], # cancer status (d[i] + 1)
plN], # prob of case
q, # incidence of HSV
#
#

{

for (i in 1:N) {
x[i] = dbern(q); # incidence of HSV

logit(p[i]l) <- betaOC + beta*x[i]; # logistic model

d[i] ~ dbern(p([il); # incidence of cancer
x1[i] <- x[i]+1; d1[i] <- d[il+1;
w[i] ~ dbern(phi[x1[i],d1[i]]); # incidence of w

}

q ~ dunif(0.0,1.0); # prior distribution

betaOC ~ dnorm(0.0,0.00001); beta ~ dnorm(0.0,0.00001);

for(j in 1:2) {
for(k in 1:2){ phil[j,k] ~ dunif(0.0,1.0); }
}
# calculate gammal = P(x=1|d=0) and gamma2 = P(x=1|d=1)
gammal <- 1/(1 + (1+exp(betaOC+beta))/(1+exp(betaldC)) * (1-9)/q);
gamma2 <- 1/(1 + (1+exp(-betaOC-beta))/(1+exp(-betalC)) * (1-q)/q);
}

Analysis

BUGS took 8 minutes to run for 1000 iterations, following a 500 iteration burn-in. The posterior
means and standard errors are shown in the table below, and are compared to the pseudolikelihood
(PSL) estimates obtained by Carroll et al. (1993).

0.790
0.421
0.590

=1|d=0) 0.441
=1|d=1) 0.608

Y1
V2

BUGS PSL

Parameter mean (S.E.) estimate (S.E.)
Boc -0.953 (0.240)  -0.981 (0.185)
g (log odds ratio) 0.690 (0.416)  0.622  (0.355)
¢11 Pw=1|z=0d=0)| 0307 (0.047) 0317  (0.057)
b2 Pw=1|z=0d=1)| 0222 (0.084) 0195 (0.089)
¢o1 Plw=1|z=1d=0)| 0.58 (0.065) 0.577  (0.067)
) (0.067) (0.067)

(0.053) (0.057)

(0.076) (0.079)

P(
P(
¢2o Pw=1|z=1d=1)| 0.749
P(z
P(z



18

7 Jaw: repeated measures analysis of variance

Elston and Grizzle (1962) present repeated measurements of ramus (jaw) bone height on a cohort
of 20 boys over an 18 month period:

Age (in years)
Subject 8 8.5 9 9.5

1 47.8  48.8 49.0 49.7
2 46.4 473 477 484
3 46.3 46.8 47.8  48.5

19 46.2 475 48.1 484
20 46.3 476 51.3 518
Mean | 48.66 49.62 50.57 51.45
variance | 6.35 6.45 6.92 7.45

Interest focuses on describing the average growth curve of the ramus bone. The 4 measurements Y;
= {Yi1, Yie, Yis, Yis} for each child i are assumed to be correlated and follow a multivariate normal

(MVN) distribution with unknown population mean vector p and precision matrix . That is
¥; ~ MVN(g, 2)

The following location models for the population mean p were fitted in turn:

E(uj) = Po Constant height
E(uj) = po+ Piz; Linear growth curve
E(uj) = po+ Pz + 5230? Quadratic growth curve

where z; = age at jth measurement. Non-informative independent normal priors were specified
for the regression coefficients By, $1 and (2. The population precision matrix 2 was assumed to
follow a Wishart(R, p) distribution. To represent vague prior knowledge, we chose the the degrees
of freedom p for this distribution to be as small as possible (i.e. 4, the rank of 2). The scale matrix

1 0 0 O
R was specified as 8 é (1) 8 , which represents an assessment of the order of magnitude of
0 0 01

=

the covariance matrix Q7! for Y; (see subsection on the use of the Wishart distribution in the
“Multivariate normal nodes” section of the BUGS manual 0.50). Note that except for cases with
very few individuals, the choice of R has little effect on the posterior estimate of Q! (Lindley,
1970).

Comparision of the fit of the 3 location models may be assessed by calculating the deviance. This
is given by —twice the sum of the log-likelihood contributions for each boy i:

1
=1

1
3 108192 — 5 (¥ — w)'2%; — )

M
llike; = —7log27r+

where M=4, the number of measurements per boy. The change in (minimum) deviance between
the constant and linear models or the linear and quadratic models may be compared to a x?
distribution on 1 degree of freedom. In addition, we may compute the residual sum of squares
RSS= %,;(Yij — p4)? for each model.
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The graph of the quadratic model is shown in Figure 7, and the BUGS code is given below.

model jaw;

const

M=4, # number of time points
N = 20, # number of boys

PI = 3.141593;

var

Y[N,M], age[M], # jaw bone length in mm and age

mu[M] ,Omega[M,M],Sigma2[M,M], # mean, precision & covariance matrix for Y
betal, betal, beta2, # regression coefficients for location models
R[M,M], # prior guess at magnitude of Sigma2
resid[N,M] ,resid2[N,M],RSS, # residuals and residual sum of squares
L1[N,M],11ike[N] ,deviance; # log-likelihood terms and deviance

data Y in "jawy.dat", age, R in "jawcov.dat";
inits in "jaw.in";
{
for (i in 1:N) {
Y[i,] ~ dmnorm(mu[], Omegal,]); # The 4 measurements for each

} # boy are multivariate normal
for(j in 1:M) { # location model for mean bone length at each age
# mul[j] <- betal; # constant
mu[j] <- beta0 + betal*agel[j]; # linear
# mu[j] <- betaO + betal*age[j] + beta2*pow(agel[jl,2); # quadratic
}

beta0 ~ dnorm(0.0, 0.001);

betal ~ dnorm(0.0, 0.001);

beta2 ~ dnorm(0.0, 0.001);

Omegal,] ~ dwish(R[,], 4); # between-child variance in length at each age
Sigma2[,] <- inverse(Omegal,]);

for (i in 1:N) {

for (j in 1:M) {
resid[i,j] <- Y[i,j] - mu[j]; # residuals
resid2[i,j] <-pow(resid[i,jl, 2); # squared residuals
L1[i,j] <- inprod(Omegalj,], resid[i,]);

}

11like[i] <- -0.5%(M*log(2*PI) - logdet(Omegal,])

+ inprod(resid[i,], L1[i,]1));

}
RSS <- sum(resid2[,]); # Residual Sum of Squares
deviance <- -2 * sum(llike[]); # Deviance

}

Note that at present, BUGS is unable to perform matrix multiplication. Hence to compute
(Y; — 1)'Q(Y; — 1) we use the inprod function to first compute Li = Q(Y; — p), and then to
compute (Y; — p)'L1. Also note the use of the inverse function to compute Sigma2.



20

® &
\\@' @
N/

boy i

Figure 7: Graphical model for jaw example.

Analysis

After a 500 iteration burn-in, 1000 iterations took between 12 and 45 seconds for the 3 models and
produced the following output

Variable Constant model Linear model Quadratic model
BUGS BUGS MLE* BUGS
Bo 49.50 £+ 1.05 33.68 £ 1.79 33.75 37.28 £+ 2.70
B - 1.87 £+ 0.20 1.88 1.04 4+ 0.55
B - - - 0.05 4+ 0.03
1 49.50 £+ 1.05 48.63 + 0.53 48.65 + 0.55 48.64 £+ 0.54
7 49.50 £+ 1.05 49.57 £ 0.53 49.62 + 0.55 49.55 £+ 0.54
43 49.50 £ 1.05 50.50 £ 0.54 50.57 + 0.57 50.48 £ 0.55
4 49.50 £ 1.05 51.43 £ 0.57 51.45 + 0.60 51.44 £ 0.59
Sin 8.27 + 3.69 6.68 £ 2.17 6.01 + 1.90 6.69 + 2.18
Y12 7.19 £+ 3.02 6.46 + 2.12 5.88 + 1.89 6.46 + 2.13
Y13 5.90 + 2.89 6.01 £ 2.13 5.49 + 1.87 6.02 + 2.14
1,4 4.86 + 3.20 5.77 £ 2.15 5.27 £ 1.88 5.77 + 2.15
Yoo 7.61 + 2.95 6.75 £ 2.18 6.13 £ 1.94 6.76 + 2.18
Y93 7.36 + 3.29 6.39 +2.20 5.85 + 1.93 6.40 + 2.20
You 7.24 + 3.93 6.16 £ 2.22 5.63 + 1.94 6.17 £+ 2.22
Y33 9.23 £+ 4.15 7.20 £ 242 6.57 + 2.08 7.22 + 2.42
Y34 10.20 £+ 5.03 7.19 £ 247 6.60 £ 2.12 7.20 £ 2.47
Y44 12.60 £+ 6.19 7.80 £2.64 7.09 +2.24 7.81 + 2.64
RSS (minimum) 603.1 516.1 516.1 516.1
RSS (mean + S.E.) 718.2 £+ 163.3 |539.8 £ 327.6 - 540.9 + 336.3
Deviance (minimum) 258.5 226.1 - 226.3
Deviance (mean + S.E.) 267.5 + 42.4 236.0 £ 44.0 - 236.5 £ 45.5

*MLE = Maximum likelihood estimates obtainied by Goldstein (1979) (p. 95), and Prosser et al. (1991b) (p. 106)
using the ML3 software.

Examination of the RSS clearly indicates that the linear model is a superior fit to the constant
model, but that a quadratic term is unecessary. This is confirmed by the change in (minimum)
deviance between successive models: the linear versus constant model yields a log likelihood ratio
statistic of 32.4 on 1 d.f. (p <0.000001). The quadratic versus linear model yield virtually identical
deviances, giving a non-significant log likelihood ratio statistic.
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8 Birats: a bivariate Normal hierarchical model

We return to the rats example in Volume 1, and illustrate the use of a multivariate Normal (MVN)
population distribution for the regression coefficients of the growth curve for each rat. This is the
model adopted by Gelfand et al. (1990) for this data, and assumes a priori that the intercept and
slope parameters for each rat are correlated. For example, positive correlation would imply that
initially heavy rats (high intercept) tend to gain weight more rapidly (steeper slope) than lighter
rats. The model is as follows

Y;j ~ Normal(u;j, )
pij = P+ Poiz;
Bi ~ MVN(ugy Q)

where Y;; is the weight of the ith rat measured at age x;, and ; denotes the vector (f51;,32)-
We assume ‘non-informative’ independent univariate Normal prio?s for the separate components
pp, and pg,. A Wishart(R, p) prior was specified for 4, the population precision matrix of the
regression coefficients. To represent vague prior knowledge, we chose the the degrees of freedom
p for this distribution to be as small as possible (i.e. 2, the rank of Q3). The scale matrix R =

0 0.2
le for B; (see BUGS manual section on Multivariate normal models), and is equivalent to the prior
specification used by Gelfand et al. Finally, a non-informative Gamma(0.001, 0.001) prior was
assumed for the measurement precision 7.

200 0 . . . . .
( ) This represents our prior guess at the order of magnitude of the covariance matrix

The appropriate graphical model is shown in Figure 8, and the BUGS code is given below. Note the
use of the inverse function to compute Sigma2.beta, the population variance-covariance matrix
for the regression coefficients. This matrix is then used to compute r, the correlation between the
population mean intercept and slope parameters.

We note that in the original rats analysis we not only assumed (;, f2; were a priori independent,
but also centred the covariates around their mean, which ensured that the likelihood for each 8i;, Bo;
pair factorised. By not centering the covariates and using a multivariate normal prior for S;, Go;,
we have therefore introduced two additional forms of dependency.

We can investigate the influence of allowing such prior and likelihood dependence by fitting the
range of models listed below:

e Likelihood for f1;, 32; independent (centred covariates)

— Prior independence of (31;, 32; assumed: this is the original rats analysis, and implies
that pg, and pg, retain independence even conditional on the data.

— Prior dependence of 3y;, B2; allowed: this leads to dependence in the posterior of y15, and
Kg, to be introduced, essentially due to the estimates of 81;’s and (B2;’s being correlated
(in fact, fitting completely independent growth curves to the 30 rats leads to an empirical
correlation of .50 between the estimated slopes and estimated intercepts, even though
each specific pair of estimates Bh-, Bgi are independent).
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e Likelihood for f1;, 32; dependent (uncentred covariates)

— Prior independence of (1;, 82; assumed: in this formulation dependence between J1;, B2;
is only introduced through the likelihood: when learning about ug,, say, only current
values of (31;’s are taken into account.

— Prior dependence of (31;, 82; allowed: this is the full multivariate analysis described above.

The BUGS code for all these combinations is given below: relevant models may be fitted by changing
the commented lines appropriately. We note that the definition of 31;, pg, and oy depends on
whether the likelihood is independent (covariates centred) or not.

Birats: model specification in BUGS

model birats;

const

N = 30, # number of rats

T = 5; # number of time points
var

x[T] ,mu[N,T],Y[N,T] ,betalN,2] ,mu.betal2] ,0Omega.betal2,2],
Sigma2.betal[2,2] ,sigma.beta[2],tau.c,sigma,R[2,2],r,alpha0,
tau.betal[2];

data Y in "biratsy.dat", x in "biratsx.dat";
inits in "birats.in";

{
for (i in 1:N) {
for (j in 1:T) {
Y[i,j] © dnorm(mul[i,j],tau.c); #
mul[i,j] <- betali,1] + betali,2]*x[j]; # uncentred
# muli,j] <- betali,1] + betali,2]*(x[jl-mean(x[]1)); # centred

}
beta[i,] ~ dmnorm(mu.beta[],Omega.betal,]); # bivariate Normal
# betali,1] ~ dnorm(mu.betall],tau.betal[1]); # independent Normals
# beta[i,2] ~ dnorm(mu.beta[2],tau.betal[2]); # independent Normals
}

# intercept at zero for centred model
# alpha0 <- mu.betal[l] - mu.beta[2]* mean(x[]);

# intercept at mean(x[]) for uncentred model
alpha0O <- mu.beta[l] + mu.betal[2]* mean(x[]);
# prior for sampling precision
tau.c ~ dgamma(1.0E-3,1.0E-3); sigma <- 1.0/sqrt(tau.c);
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# parameters considered MVN

Omega.betal,] =~ dwish(R[,],2); # Wishart prior on precision matrix
R[1,1] <- 200.0; R[1,2] <- 0.0; # R = prior guess at order of covariance
R[2,1] <- 0.0; R[2,2] <- 0.2; # matrix for betali,]

Sigma2.betal,] <-inverse(Omega.betal,]1);
sigma.beta[1]<-sqrt(Sigma2.betal1,1]);
sigma.beta[2]<-sqrt(Sigma2.betal2,2]);
r <- Sigma2.betal[l,2] / (sqrt(Sigma2.betal[l,1])

*sqrt (Sigma2.beta[2,2])); # correlation

# parameters considered independent
# for (k in 1:2){
# tau.betalk] ~ dgamma(l.0E-3,1.0E-3);
# sigma.betalk]<-1/sqrt(tau.betalk]);
# }
mu.beta[l] ~ dnorm(0,.00001); # ‘flat’ univariate Normal prior on mean
mu.beta[2] © dnorm(0,.00001); # ‘flat’ univariate Normal prior on mean
}
1
<-———— - X
\\
[
rat i day |
Figure 8: Graphical model for the birats example
Analysis

Each run used a 500 iteration burn-in and a further 5000 iterations, which took around 90 seconds
and yielded the following results.



24

Variable Posterior mean & s.d.
Likelihood for f1;, 02;: | independent dependent
Prior for (8y;, B2;: indep. dep. indep. dep.

Population intercept at T
pa, (centred) or o (uncentred) 242.4 2427 242.6 242.6
27.5 27.8 286 277

Population slope KBy 6.18 6.19 6.18 6.19
.10 .10 .10 .10
Population s.d. in intercepts  Xg,, 14.7 146 104 10.7
21 20 19 20
Population s.d. in slopes ;N b1 .81 B0 51
.09 .09 .09 .09
Correlation between r - .64 - -.07
slopes & intercepts) .13 .24
Population intercept at 0: 106.3 106.4 106.5 106.5
ap (centred) or pg, (uncentred) 3.6 24 238 23

We can make a number of observations from these results.

1. The estimated correlation r between slopes and intercepts is high for the centred data and

almost zero for the uncentred, which suggests a ‘fan’ pattern in which the speed of growth is
unrelated to initial weight at birth, but as the lines separate the intercept at T is higher for

those with faster growth.

. Independence assumptions make no difference to the main location parameter estimates, only

their precision (and convergence properties).

. For centred data, the population intercept at 0 is substantially less precise with the prior

independence model than allowing dependence, since it is a function of ug, and ug, and the
dependence introduced between them from the highly correlated Ji;, 82;’s has been ignored.

. For uncentred data, the population intercept at z is only slightly less precise with the prior

independence model than allowing dependence, since it is a function of ug, and pg, and
the very small dependence introduced between them from the correlated (y;,32;’s has been

ignored.

In general we would advise using the multivariate normal model for multiple random effects, par-
ticularly when interest lies in functions of the population coefficients, such as predictions.

It is also technically possible to assume a multivariate sampling model for the y;’s, in which corre-
lated residuals around the growth curve are permitted. However, we have found these models have
very poor convergence properties: initial poor estimates lead to the variance-covariance matrix of
the observation vector having very large entries, and once this has occurred the sampler tends to
‘stick” with these values since the fitted curves have little incentive to approach the data. If such
models are attempted, extremely good starting values would be necessary, perhaps derived from

the type of analysis above.
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9 Schools: ranking school examination results using multivariate
hierarchical models

Goldstein et al. (1993) present an analysis of examination results from inner London schools. They
use hierarchical or multilevel models to study the between-school variation, and calculate school-
level residuals in an attempt to differentiate between ‘good’ and ‘bad’ schools. Here we analyse
a subset of this data and show how to calculate a rank ordering of schools and obtain credible
intervals on each rank.

Data

Standardized mean examination scores (Y') were available for 1978 pupils from 38 different schools.
The median number of pupils per school was 48, with a range of 1-198. Pupil-level covariates
included gender plus a standardized London Reading Test (LRT) score and a verbal reasoning
(VR) test category (1, 2 or 3, where 1 represents the highest ability group) measured when each
child was aged 11. Each school was classified by gender intake (all girls, all boys or mixed) and
denomination (Church of England, Roman Catholic, State school or other); these were used as
categorical school-level covariates.

Model

We consider the following model, which essentially corresponds to Goldstein et al.’s model 1.

Yi; ~ Normal(u;j, 7ij)
Mig = o015+ OészRTij + OtngRlij + ﬂlLRT,?j + /BQVRQZ']' + ﬂgGirlij
+p4Girls’ school; + B5Boys’ school; + 85 CE school;
+B37RC school; 4 Bgother school;
log Tij = 0 + QZSLRTZ'J'

where i refers to pupil and j indexes school. We wish to specify a regression model for the variance
components, and here we model the logarithm of 7;; (the inverse of the between-pupil variance) as
a linear function of each pupil’s LRT score. This differs from Goldstein et al.’s model which allows
the variance o2, to depend linearly on LRT. However, such a parameterization may lead to negative
estimates of 03;.

Prior distributions

The fixed effects Gy (kK = 1,...,8), 8 and ¢ were assumed to follow vague independent Normal
distributions with zero mean and low precision = 0.0001. The random school-level coefficients oy,
(k = 1,2,3) were assumed to arise from a multivariate normal population distribution with unknown
mean 7 and covariance matrix 3. A non-informative multivariate normal prior was then specified
for the population mean -y, whilst the inverse covariance matrix 7' = X~! was assumed to follow a
Wishart distribution. To represent vague prior knowledge, we chose the the degrees of freedom for
this distribution to be as small as possible (i.e. 3, the rank of T"). The scale matrix R was specified
0.1 0.005 0.005
as | 0.006 0.01 0.005 |, which represents our prior guess at the order of magnitude of 3.
0.005 0.005 0.01
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Estimating the ranks

The school-specific intercept aj; measures the ‘residual effect’ for school j after adjusting for pupil-
and school-level covariates. This might represent an appropriate quantity by which to rank schools’
performance. We compute the ranks in BUGS using the step() function where step(x) =1 ifx >
0 and 0 otherwise. The jth row of the array greater.than[] (see BUGS code below) thus contains
a 1 in columns corresponding to schools with an equal or higher intercept than school j, and zeros
elsewhere. Summing this row yields the total number of schools who perform ‘better’ than school
j, and thus corresponds to that school’s rank. Since rank[] is a function of the stochastic node
alphal,1], its value will change at every iteration. Hence we may obtain a posterior distribution
for rank[] which may be summarized to give a point estimate and 95% credible interval for the

rank of each school.

BUGS code for the schools example

A graphical representation of the model is shown in Figure 9 and the essentials of the BUGS code are
given below. Note that the data are entered as a rectangular array with 1978 rows indexed by pupil.
Column 2 of the data array is a school indicator taking value 1 for all pupils in school 1, 2 for all
pupils in school 2 and so on. For computational convenience, Y, mu and tau are indexed over a single
dimension p = 1,...,1978 rather than as pupil ¢ within school j as used in equations on the previous
page and in the graphical model. The appropriate school-level coefficients for pupil p are then
selected using the school indicator in row p of the data array — for example alpha[school[p],1].
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Pupil-level AN \
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~< \\ ‘ v Phd \\‘ f %

pupil i

school j

Figure 9: Graphical model for schools example
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model schools;

const

N = 1978,# number of pupils

M

var

= 38;

# number of schools

Y[N], pupil[N], school[N], LRT[N], LRT2[N], VR[N,2], Gender[N],

School.gender[N,2], School.denom[N,3], alphal[M,3], beta[8], mu[N],
tau[N], sigma2[N], theta, phi, min.var, max.var, gammal[3], T[3,3],
Sigmal[3,3], mn[3], prec[3,3], R[3,3], rank[M], greater.than[M,M];

data school, pupil, LRT, School.gender, School.denom, Gender,
VR, Y in "schools.dat";
inits in "schools.in";

{

for(p in 1:N) {
Y[p] ~ dnorm(mul[p], taulpl);
mu[p] <- alphalschool[p],1] + alphal[school[p],2]*LRT[p]

}

+

+ + +

+

alpha[school[p],3]*VR[p,1] + beta[1]*LRT2[p]
beta[2]*VR[p,2] + betal[3]*Gender [p]

beta[4]*School.gender[p,1] + beta[5]*School.gender[p,2]

beta[6]*School.denom[p,1] + betal[7]*School.denom[p,2]
beta[8]*School.denom[p,3];

log(taul[p]) <- theta + phi*LRT[p];
sigma2[p] <- 1/taulp];

LRT2[p] <-

pow (LRT [p],2);

27

min.var <- exp(-(theta + phi * (-34.6193))); # lowest LRT score = -34.6193
max.var <- exp(-(theta + phi * (37.3807))); # highest LRT score =

# Priors for fixed effects:
for (k in 1:8) { Dbetalk] ~ dnorm(0.0, 0.0001); }
theta “ dnorm(0.0, 0.0001); phi “ dnorm(0.0, 0.0001);

# Priors for random coefficients:
for (j in 1:M) {

}

alphalj,]

~ dmnorm(gammal[], T[,]);

# Hyper-priors:

gamma []

~ dmnorm(mn[], precl[,]);

# Vague prior mean and precision for gamma
for(k in 1:3) {

}

mn[k] <- 0.0; preclk,k] <- 0.0001;

for(l in (k+1):3) { prec[l,k] <- 0.0; prec[k,1] <- 0.0; }

T[,] ~ dWlSh(R[:] :3);

37.3807
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# Prior guess at order of magnitude of covariance matrix for gamma
R[1,1] <- 0.1; R[2,2] <- 0.01; R[3,3] <- 0.01;
for(k in 1:3) {
for(1l in (k+1):3) { RI[k,1] <- 0.005; R[1,k] <- 0.005; }
}
Sigmal,] <- inverse(T[,]1);

# Compute ranks:
for (j in 1:M) {
for (k in 1:M) {
greater.than[j,k] <- step(alphalk,1] - alphalj,1]);
}
rank[j] <- sum(greater.than[j,]); # rank of school j

Results

A 5000 iteration burn-in + 5000 further iterations took approximately 4 hours to complete. The
posterior mean and standard error for each regression coefficient and the between-schools covariance
matrix are shown in the table on the next page. Maximum likelihood estimates obtained using the
MLS3 software (Prosser et al., 1991a) are also shown for comparison. Figure 10a shows the posterior
mean and 95% credible intervals for the ‘school effect’ a1, and Figure 10b shows the corresponding
posterior mean and 95% credible intervals for each school’s rank.

School
School

e—— 12 3  ———
L — 5 ' | L ——
T T T T T T T TTT T T T T T T T T T T T T T T T T T T rrr rrrrrT

-1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 135 7 911 14 17 20 23 26 29 32 35 38

School-specific intercept Rank

Figure 10: BUGS posterior means (o) and 95% credible intervals (——) for (a) the school effect a1
and (b) the rank for each school



BUGS examples Vol 2

for the schools example

Variable BUGS mean (SE) ML3 MLE (SE)

v1 (Population intercept) —0.673 (0.090) —0.703 (0.086)
~2 (LRT) 0.031 (0.005) 0.031 (0.002)
~s (VR1) 0.962 (0.069) 0.939 (0.075)
B (LRT?) 0.00027 (0.00009) 0.00023 (0.00009)
B> (VR2) 0.419 (0.055) 0.438 ( 0.061)
B3 (Girl) 0.168 (0.047) 0.173 (0.047)
B (Girls’ school) 0.123 (0.132) 0.139 (0.112)
B5 (Boys’ school) 0.072 (0.102) 0.086 (0.088)
fs (CE school) —0.280 (0.184) —0.220 (0.152)
B7 (RC school) 0.145 (0.101) 0.143 (0.091)
Bs (Other school) —0.171 (0.175) —0.135 (0.147)
S (Variance of a;) 0.048 (0.017) | 0.031  (0.011)
oo (Variance of ay) 0.0005 (0.0001) | 0.00001 (0.00002)
33 (Variance of as) 0.006 (0.005) | 0.005  (0.014)
Y19 (Covariance of a; & ay) 0.0006 (0.001) 0.0001  (0.0004)
Y13 (Covariance of a; & as) 0.002 (0.008) 0.004 (0.010)
S (Covariance of @y & @) 0.0002 (0.0004) | 0.0008  (0.0004)
0 (log precision for pupils 0.580 (0.033) - -

with average LRT)

¢ (change in log precision
per unit increase in LRT)

-0.0026 (0.0028)
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BUGS posterior means and standard errors (SE), plus ML3 maximum likelihood estimates (MLE)

The results are very similar to those obtained using MLL3. The interval estimates illustrate the large

degree of uncertainty associated with ‘league tables’;

there is only one school (number 5) whose

95% interval excludes the median rank. We also note that mean rank order is not identical to the

rank order of the mean intercepts.
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10 Ice: non-parametric smoothing in an age-cohort model

Breslow and Clayton (1993) analyse breast cancer rates in Iceland by year of birth (K = 11 cohorts
from 1840-1849 to 1940-1949) and by age (J = 13 groups from 20-24 to 80-84 years). Due to the
number of empty cells we consider a single indexing over I = 77 observed number of cases, giving
data of the following form.

1 age; year; cases; person-years;

1 1 6 2 41380
2 1 7 0 43650
713 5 31 13600

In order to pull in the extreme risks associated with small birth cohorts, Breslow and Clayton
(1993) first consider the exchangeable model

cases; ~ Poisson(u;)

logu; = logperson-years; + aage, + fyear,
Br ~ Normal(0, 7).

Running this model in BUGS gave an estimated o of .76 £ .23 compared to the estimate in Breslow
and Clayton (1993) of .69 £ .17.

10.1 Autoregressive smoothing of relative risks

They then consider the alternative approach of smoothing the rates for the cohorts by assuming an
auto-regressive model on the §’s, assuming the second differences are independent normal variates.
This is equivalent to a model and prior distribution

cases; ~ Poisson(u;)
logp; = logperson-years; + aage, + Oyear,
f1 ~ Normal(0,0.000001 x 7)
B2|61 ~ Normal(0,0.000001 x 7)
BelBr,...k—1 ~ Normal(2Bp_1 — Br—2,7) k > 2.

We note that $; and B; are given “non-informative” priors, but retain a 7 term in order to provide
the appropriate likelihood for 7.

For computational reasons Breslow and Clayton (1993) impose constraints on their random effects
B; in order that their mean and linear trend are zero, and counter these constraints by introducing
a linear term b x year; and allowing unrestrained estimation of «;. Since we allow free movement
of the §’s we dispense with the linear term, and impose a “corner” constraint «; = 0. The graph
is shown in Figure 11.



BUGS examples Vol 2 31

Model specification for auto-regressive smoothing (iceAR.bug)

model iceAR;
const
I =77, Nage=13, K=11,;
var
agel[I], year[I], cases[I], pyr[I], mu[I], alpha[Nagel],
beta[K], betamean[K], betaprec[K], logRR[K], tau, sigma;
data age, year, cases, pyr in "ice.dat";
inits in "ice.in";

{

for (i in 1:I) {
cases[i] ~ dpois(mul[i]l);
log(mu[i]) <- log(pyrl[il) + alphalagel[il] + betalyear[i]]

}

betamean[1] <- 0.0;

betaprec[1] <- taux1.0E-6;

betamean[2] <- 0.0;

betaprec[2] <- taux1.0E-6;

for (k in 3:K){
betamean [k] <- 2xbetalk-1] - betal[k-2];
betaprec [k] <- tau

}

for (k in 1:K){
betalk] ~ dnorm(betamean[k] ,betaprec[k]);
logRR [k] <- betal[k] - betal[5]

}

alphal[1] <- 0.0;

for (j in 2:Nage){
alphalj] “ dnorm(0,1.0E-6)

}

tau ~ dgamma(1.0E-3,1.0E-3);

sigma <- 1/sqrt(tau);

}

We note that log(RR) are calculated relative to the 5th cohort, as in Breslow and Clayton (1993).
Initial data file

Imposing the constraint oy = 0 defines a; to be a deterministic node. Consequently, we must
ensure that «; is not given an initial value. This is achieved by inserting an NA in the appropriate
position of the vector alpha in the inital values file as follows:

list(tau=1, alpha=c(NA,0,0,0,0,0,0,0,0,0,0,0,0), beta=c(0,0,0,0,0,0,0,0,0,0,0))

Analysis

The results for a run of 1000 iterations (20 seconds) are shown later.
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Figure 11: Graphical model for ice example, using the directed autoregressive representation

10.2 An undirected model using an intrinsic prior for the random effects

Breslow and Clayton (1993) point out that the joint prior for the 3’s defined by the autoregressive
process can alternatively be represented in an undirected form, giving the model

cases; ~ Poisson(u;)

logu; = log person-years; + Qage,; + Uﬂyeari
BilBj,j #1i ~ Normal(B;,n;)
where
B1 = 20— 0

Ba = 2B1+4Bs— P

Br = 4Bp—1+4Brt1 — Pr—2 — Bry2, 2<k <K -1
Brx 1 = 2Bk +4Bk—2— Pr-3

Bx = 2Bk-1— B2

and
n,ng = 1
no,Ng—1 = O
ng, k#1,2,K -1, K 6

We note the use of o as a multiplier for the random effects (see Section 9.5 of the manual and
the seeds example): as mentioned previously a log-concave prior must be chosen for o and we use
p(o) = e 7. Figure 12 shows the graph of this undirected smoothing model, and the associated

BUGS code is shown below.
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Model specification for undirected smoothing model in iceCARsg.bug

model iceCAR;
const
I =77, Nage=13, K=11;
var
age[I], year[I], cases[I], pyr[I], mu[I], alpha[Nage],
beta[K], betamean[K], betaprec[K], logRR[K], sigma;
data age, year, cases, pyr in "ice.dat";
inits in "ice.in";

{
for (i in 1:I) {
cases[i] “ dpois(mulil);
log(mu[i]) <- log(pyrl[il) + alphalage[il]
+ sigma * betalyear[i]]
}
betamean[1] <- 2xbetal[2] - betal[3];
betaprec[1] <-1;
betamean[2] <- (2xbetal[l] + 4x*betal[3] - betal4])/5;
betaprec[2] <- 5;
for (k in 3:(K-2)) {
betamean [k] <- (4x*betal[k-1] + 4xbetalk+1]
- betal[k-2] - betalk+2])/6;
betaprec [k] <- 6
}
betamean[K-1] <- (2*betalK] + 4*beta[K-2] - beta[K-3])/5;
betaprec[K-1] <- 5 ;
betamean [K] <- 2xbeta[K-1] - betalK-2];
betaprec [K] <= 1;
for (k in 1:K) {
betalk] ~ dnorm(betamean[k] ,betaprec[k]) ;
logRR[k] <- betal[k] - betal5]
}
alphal1] <- 0.0;
for (j in 2:Nage) {
alphalj] ~ dnorm(0,1.0E-6)
}
sigma ~ dgamma(1.00001,1.0);
}

This illustrates the capacity of BUGS to deal with undirected graphs, using the precedence rule
discussed in Section 9.2 of the manual. We note that o represents an deviation from 0, and yet
there is no constraint to make the §’s be distributed around 0. We might expect, therefore, a strong
induced dependence between ¢ and the parameters measuring location, and that the convergence
might suffer as a consequence. 1000 iterations took 20 seconds and the results are shown at the
end of the example.
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Figure 12: Graphical model for ice example, using the undirected representation (the intrinsic
prior) for the random effects, and the variability of the ’s acting directly within the linear predictor.

10.3 An intrinsic prior with a hyperparameter

An alternative, and perhaps more efficient, parameterisation is to consider the precision of the
random effects as a hyperparameter. The essential changes to the previous model area as follows.

logp; = logperson-years; + aage, + fyear,
BilBj,j #i ~ Normal(G;,n;7)

The graph is shown in Figure 13.

As introduced in Section 9.5 of the manual, we need to be careful in deriving the full conditional
sampling distribution for 7. If we were to leave the construction of this distribution to BUGS, a
likelihood term would be included for each §;: however, the likelihood for 7 is not the product of
these terms. Therefore we have to calculate algebraically the full conditional distribution for 7 and
put it in the BUGS model specification: as in the sampling distributions for the §’s the precedence
rule in BUGS then ensures that the 8 terms that now appear in the apparent prior for 7 are not
included as likelihood terms.

One can show that the conditional autoregressive model shown above is equivalent to the improper
prior

(b1, ..., b |T) x 7K/2¢=% Do mibi(bi=bi)
which provides the correct likelihood term for 7.

The essentials of the model specification (in iceCAR.bug) are shown below.
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{
for (i in 1:1) {
cases[i] “ dpois(mulil);
log(mul[i]) <- log(pyr[il) + alphalagel[il] + betalyear[i]]
}
for (k in 1:K){
betaprec [k] <- Nneighs[k] * tau;
}
d <- 0.0001 + sum(tau.like[])/2;
r <- 0.0001 + K/2;
tau ~ dgamma(r,d) ;
}

/’ year]i]

_________ pyr;

Figure 13: Graphical model for ice example, using the undirected representation (the intrinsic
prior) for the random effects and a hyperparameter 7 for their precision.

A simple BUGS run of 1000 iterations (following a 500 iteration burn-in) took 17 seconds. The
results for all 3 models are shown below. We note essentially the same results coming from the
autoregressive and the hyperparameter model, whereas the intrinsic prior model with ¢ acting in
the linear predictor is substantially different. After a further 9000 iterations, this model still gave
rather different results. We therefore do not recommend this approach, and suggest putting the
full conditional distribution for the precision parameter. Breslow and Clayton (1993) estimated o

to be .12 (SD .06).
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Auto-regressive Intrinsic prior (o) Intrinsic prior (1)

variable coeff + SE coeff + SE coeff + SE
(o) .09 + .05 1.59 4+ 0.03 .06 + .05
log RR[1] -1.26 + .22 -.89 £+ .20 -1.16 + .23
log RR[2] -.89 4+ .14 -.67 + .12 -.83 4+ .14
log RR[3] -.52 4+ .08 =37 + .08 -.50 4+ .08
log RR[4] -.20 4+ .06 -.07 + .06 =21 + .04
log RR[5] 0 0 0

log RR[6] .13+ .06 .04 + .06 .16 £+ .06
log RR[7] 284+ .07 .15 £+ .06 32 £+ .09
log RR[8] 43 + .09 .29 + .07 49 + .11
log RR[Q] 57 + .12 .28 £+ .09 .65 £ .15
log RR[10] 77+ .15 .0 + .14 .83 + .19
log RR[11] 87 + .24 .89 + .29 1.02 £+ .26
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11 Lips: spatial smoothing of cancer rates

The rates of lip cancer in 56 counties in Scotland have been analysed by Clayton and Kaldor (1987)
and Breslow and Clayton (1993). The form of the data includes the observed and expected cases
(expected numbers based on the population and its age and sex distribution in the county), a
covariate measuring the percentage of the population engaged in agriculture, fishing, or forestry,
and the “position” of each county expressed as a list of adjacent counties.

County Observed Expected T Observed Adjacent
cases cases (% in agric..) SMR (100 O/E) counties

1 9 1.4 16 652.2 5,9,11,19
39 8.7 16 450.3 7,10
56 0 1.8 10 0 18,24,30,33,45,55

We note that the extreme SMRs (Standardised Mortality Ratios) are based on very few cases.
Breslow and Clayton (1993) initially consider a random-effects Poisson model allowing for over-
dispersion, where O;, E; are the observed and expected cancer incidence in the ith county.

O; ~ Poisson(u;)
logp; = logE; + a1z;/10 + b;
b; ~ Normal(ag,7)
SMR; = 100yu;/E;.
ap, a1 and 7 are given independent “noninformative” priors. We note that the prior distribution
for the b’s can be easily shown to be equivalent to a model with an “intrinsic” prior

- N-1
bz|bj,j 7é 7~ Normal(b\i, TT)
where N is the number of counties, and E\i = ﬁ >_j=ibj is the average in all counties except 3.

The graph is shown in Figure 14.

@ @ county i

Figure 14: Graphical model for 1ips example, assuming exchangeable relative risks.
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Model specification for exchangeable model (1ipsEX.bug).

model lips;

const
regions = 56, neighbours = 264;

var
O[regions], bl[regions], mu[regions],
E[regions], x[regions], SMRhat[regions],
alpha0O, alphal, tau, sigma;

data in "lips.dat";

inits in "lips.in";

{
for (i in 1:regioms) {
0[i] ~ dpois(mul[i]);
log(mu[i]) <- log(E[i]) + alphalx* x[i]/10 + b[il;
bl[i] ~ dnorm(alphaO,tau);
SMRhat[i] <- 100*mu[i]l/E[i];
}
alpha0 ~ dnorm(0.0,1.0E-5);
alphal ~ dnorm(0.0,1.0E-5);
tau ~ dgamma(1.0E-3,1.0E-3);
sigma <- 1/sqrt(tau);
}

Results from this model, both with and without the covariate, are shown at the end of this example.

11.1 Spatial smoothing using an intrinsic prior

Breslow and Clayton (1993) consider a random-effects Poisson model allowing for over-dispersion
and spatial correlation, using the conditional autoregressive (CAR) model of Besag (1974), which
may be written

O; ~ Poisson(u;)
logu; = logkE; + alxi/lo + ob;
bi ~ Normal(gi, n,)

n; = Number of neighbours of+
- 1

b = — > b

i jeneighbours(i)
SMR; = 100u;/E;.

The graph for this model is shown in Figure 15. As with the exchangeable model, introducing the
intrinsic prior means that a level term ¢q is not necessary in this model, although Breslow and
Clayton (1993) retain this term due to their imposition of the constraint that }~;b; = 0. As in the
seeds and ice examples, the standard noninformative prior for ¢ cannot be used.
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Specification of spatial model with intrinsic prior (1ipsSig.bug).

model lipsSig;

const
regions = 56, neighbours = 264;

var
O[regions], b[regions], b.bar[regions], SMR[regions],
mu[regions], E[regions], off[regions+1],Nneighs[regions],
x[regions], SMRhat[regions],
map [neighbours], b.neigh[neighbours], alphal, sigma;

data in "lips.dat";

inits in "lips.in";

{
for (i in 1:regioms) {
0[i] ~ dpois(mu(lil);
log(mu[i]) <- log(E[i]) + alphalx*x[i]/10 + sigma * b[i];
b[i] “ dnorm(b.bar[i] ,Nneighs[i]);
b.bar[i] <- mean(b.neigh[ off[i]+1 : off[i+1] 1);
SMRhat[i] <- 100*mu[i]l/E[i];
Nneighs[i] <- off[i+1] - off[i];
}
for (i in 1:neighbours) {
b.neigh[i] <- b[map[il];
}
alphal ~ dnorm(0.0,1.0E-5);
sigma ~ dgamma(1.00001,1.0)
}

This model shows how one can handle variable length attributes relating to each county. The data
file needs to contain the “map” of adjacent counties. The relevant part of 1ips.dat is as follows:

map = ¢c( 5, 9,11,19,
7,10,
6,12,
18,24,30,33,45,55),
off =c¢( 0, 4, 6, 8, ... ,258,264))

This shows the neighbouring counties in a single long list map, with an additional list off of offset
counts, indicating that the list of neighbours of county 7 starts at entry off [i]+1 and ends at entry
off [i+1] in map. This enables the calculation of the number of neighbours (Nneighs) within the
.bug program, and also to identify the current value of b; (b.neigh) for each neighbour of 7. This
in turn allows the calculation of the mean b.bar[i] of the neighbours of county 3.
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Figure 15: Graphical model for 1ips example, assuming spatial smoothing of relative risks using
an intrinsic prior.

The precedence condition in BUGS ensures that the sampling for each b does not use the same

variables in the prior and the likelihood. 1000 iterations for this model took 47 seconds, and the
results are shown at the end of this example.

11.2 Spatial model with intrinsic prior and hyperparameter.

As in the ice example, we can introduce a precision parameter as a hyperparameter for the random

effects, which will speed up the computation but requires the external calculation of the appropriate
full conditional sampling distribution.

O; ~ Poisson(u;)
logpu; = logE;+ a1z;/10 + b;
bz' ~ Normal(gi, Tz’)
n; = Number of neighbours of+
— 1
b = — > bi

ng .
* neighbours(i)
Ti = T

SMR; = 100u;/E;.

The graph of this model is shown in Figure 16. It can be shown that this is equivalent to the
improper prior

p(bl, . bI|7') o 71/267% Zmbi(bifgi)

which provides the correct likelihood term for 7. Breslow and Clayton (1993) mention that this
prior can also be expressed as

p(b1, ..., br|T) x 11267 2o (0im)?

where ~ here represents “is a neighbour of”.
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The likelihood for 7 is derived above, and the term contributed by each county 7 (tau.like[i])
= I'(1,1) is assumed. The precedence condition

must be calculated. A proper prior I'(r*,d*)
within BUGS (see Section 9.5 of the Manual) then ensures terms are not included in both prior and

likelihood when sampling.
Essentials of specification of spatial model with intrinsic prior and hyperparameter

(1ipsCAR.bug)

for (i in 1:regioms) {

0[il] ~ dpois(mu[il);
log(mu[i]) <- log(E[i]) + alphal*x[i]l/10 + b[il;

~ dnorm(b.bar[i] ,tau.i[i]);

b[i]
b.bar[i] <- mean(b.neigh[ off[i]+1 : off[i+1] 1);
tau.i[i] <- tau * Nneighs[i];

SMRhat[i] <- 100*mu[il/E[i];

Nneighs[i] <- off[i+1] - off[il;
tau.like[i]<- Nneighs[i] * b[i] * (b[i]l-b.bar[i]);

d <- dstar + sum(tau.like[])/2;
r <- rstar + regions/2;
~ dgamma(r,d) ;

tau
sigma <- 1/sqrt(tau);

Figure 16: Graphical model for 1ips example, assuming spatial smoothing of relative risks governed

by a hyperparameter 7.



42

Analysis

We may compare the penalized quasi-likelihood (PQL) (Breslow and Clayton, 1993) and BUGS
results, using a burn-in of 500 iterations and estimation based on 1000 samples.

constant  z/10 o
(o) (a1)

Exchangeable model

PQL -44 + .16 .68 £ .14 .60 £ .08
BUGS -.52 + .14 .71 £ .12 .61 £+ .09
Spatial model

PQL -18 £ .12 .35 £ .12 .73 £ .13
BUGS (using o) — 37 £ .11 .69 + .12
BUGS (using 7) — 36+ .12 .76 + .13

Unlike the previous ice example, the two parameterisations of the precision of the random effects
arrive at the same answer, probably because in this example the random effects are distributed
around 0.

Removing the covariate from the model provides the following estimates for the SMR’s, which may
be compared to the results of Breslow and Clayton (1993) using PQL. The BUGS results for the
spatial model are using the hyperparameter 7.

Observed SMR Exchangeable model Spatial model

(100 x O/E)  PQL BUGS PQL BUGS
652.2 4739 4717 £ 166.0 446.3 477.0 & 138.1
450.3 4242 419.0 + 65.4  438.3 432.4 + 64.4
361.8 305.9  289.3 + 83.6 352.1 326.7 + 93.3

0.0 61.5  80.4 +42.6 683 748+ 234

We note the substantial drop in the error in the low-risk areas through the spatial model.



BUGS examples Vol 2 43

12 Beetles: logistic, probit and extreme value (log-log) model
comparison

Dobson (1983) analyses binary dose-response data published by Bliss (1935), in which the numbers
of beetles killed after 5 hour exposure to carbon disulphide at N=8 different concentrations are
recorded:

Concentration (z;) | Number of beetles (n;) Number killed (r;)
1.6907 59 6
1.7242 60 13
1.7552 62 18
1.7842 56 28
1.8113 63 52
1.8369 59 52
1.8610 62 61
1.8839 60 60

We assume that the observed number of deaths r; at each concentration z; is binomial with sample
size n; and true rate p;. Plausible models for p; include the logistic, probit and extreme value
(complimentary log-log) models, as follows

o exp(a + Bz;)
i = 1y exp(a + fz;)
pi = ®(a+fBz;)
pi = 1—exp(—exp(a+ fBr;))

The corresponding graph is shown in Figure 17.
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Figure 17: Graphical model for beetles example
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The fit of each model may be assessed by calculating the deviance D as follows (see also the seeds
example). The log-likelihood for an observation r; arising from a binomial model with denominator
n; and success probability p; is

llike; = r;log(pi) + (ni — ri)log(1l — p;)
The saturated log likelihood for the binomial model is
llike.sat; = 7y log(ﬁ) + (n; — ;) log(1l — ﬁ)
T n;
The deviance is calculated by computing a node D = 2(3", llike.sat; — >, llike;) within BUGS. This
will yield a posterior distribution for D, the minimum value of which corresponds to the classical

deviance obtained using maximum likelihood estimation. This may be compared with a x3 _,
distribution to assess model fit.

model beetles;
const
N = 8; # number of doses
var
r[N],p[N],x[N],n[N],alpha,alpha.star,beta,r.hat[N],11ike[N],11ike.sat[N],D;
data x, n, r in "beetles.dat";
inits in "beetles.in";
{
for (i in 1:N) {
r[i] © dbin(p[i]l, n[il);
logit(p[i]) <- alpha.star + beta*(x[i]-mean(x[]));
# alternative link functions:
# probit(p[i]) <- alpha.star + beta*(x[i]l-mean(x[]));
# cloglog(p[i]l) <- alpha.star + betax(x[i]l-mean(x[]));
# log likelihood for sample i & saturated log-likelihood:
11like[i] <- r[il*log(p[il) + (n[i]l-r[i])*log(1-p[il);
1like.sat[i] <- r[il*log(r[il/n[i]) + (m[il-r[i])*log(1-r[il/n[il);

r.hat[i] <- pl[il*n[i]; # fitted values

}

alpha.star ~ dnorm(0.0, 1.0E-3);

beta ~ dnorm(0.0, 1.0E-3);

alpha <- alpha.star - beta*mean(x[]);

D <- 2 * (sum(llike.sat[]) - sum(1like[]));
}

Note that we have standardized each dose z; about the mean: this gives approximately uncorrelated
regression coefficients, and greatly improves convergence. Figure 18 shows the sample traces (ploted
using CODA) for alpha and beta after a 10000 iteration BUGS run. The first run (chain:beetles1)
used the centered parameterization, whilst the second run (chain:beetles2) used the uncentered
parameterization. The chains from the latter run have still not converged, and exhibit very high
autocorrelations (see Figure 19), whilst those from the former run converge almost immediately,
and exhibit rapid mixing rather than a slow, ‘snaking’ trace; this is reflected by the much lower
autocorrelation.
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Figure 18: Traces for the models with centered covariates (beetlesl) and uncentered covariates
(beetles2)

alpha: beetlesl alpha: beetles?2

.= .=
2 k]
8 8
[ IT) [ IT)
S o 5] o
[5] [5]
] ]
> >
< o l., e D e e , < o HHHH H ‘HHH

o o

0 10 20 30 40 50 0 10 20 30 40 50
Lag Lag
beta: beetles1 beta: beetles2

c 3 c 3
2 ]
8 8
[ 1) o n
5 o 5 o
g g
=) =)
< S I, e U , < S

o o

0 10 20 30 40 50 0 10 20 30 40 50
Lag Lag

Figure 19: Plot of the within-chain autocorrelations for the models with centered covariates
(beetlesl) and uncentered covariates (beetles?2)
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Analysis

1000 iterations took 2 seconds after a 500 iteration burn-in. The BUGS posterior means and standard
errors for the regression coefficients and fitted values, plus the minimum deviance for each model
are given below, as are Dobson’s maximum likelihood estimates (M LE). Note that the equivalent
of M LE’s may be obtained from the BUGS output by taking the values of alpha, beta and r.hat
sampled at the iteration yielding the minimum value for the deviance. These are also given in the

table below.

Logistic Probit Extreme value
MLE BUGS BUGS MLE BUGS BUGS MLE BUGS BUGS
“MLE” mean+SE “MLE” mean+SE “MLE” mean+SE

«a —60.72+5.18 —60.82 —60.76+5.13| - —34.91 —-35.094+2.58| -  —39.67 —39.89+3.24
I} 34.274+2.91  34.33  34.30+2.88 - 19.71  19.82+1.45 - 22.10 22.22+1.80
71 3.46 3.45 3.60+0.98 | 3.36 3.38 3.46+1.01 | 5.59 5.57 5.60+1.12
7y 9.84 9.84 1.00+1.72 |10.72 10.77 10.81+1.71 |11.28 11.27 11.25+1.60
73 22.45 22.47  22.624+2.15 [23.48 23.54  23.58+1.94 [20.95 20.96 20.90+1.92
7y 33.90 33.93  34.00+1.78 [33.82 33.86 33.93+1.61 |30.37 30.41  30.35+1.69
5 50.10 50.14  50.12+1.63 [49.62 49.65  49.71+£1.59 (47.78 47.85 47.81+1.74
76 53.29 53.32  53.25+1.10 [53.32 53.33  53.34+1.11 |54.14 54.20 54.14+1.21
7 59.22 59.24  59.16+0.72 [59.66 59.67 59.64+0.71 |61.11 61.14  61.05+0.52
7' 58.74 58.75  58.69+0.42 [59.23 59.23  59.194+0.34 |59.95 59.95 59.9240.09
D 11.23 11.23 11.23 10.12 10.12 10.12 3.45 3.45 3.45
(min)

Comparison of the minimum deviances indicates that the extreme value model fits the data consid-
erably better than do the logistic or probit models. This appears to be due to a smaller discrepancy
between observed (r;) and fitted (7;) values at the lower concentrations for the extreme value model.
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13 Pines: Bayes factors for selecting regression models

General Formulation

Carlin and Chib (1995) consider the general problem of having K models with parameters 6, ..., 0k,
and wanting to obtain the posterior probability of each model. If the model indicator M is specified
as a variable and hence as a node in the graph, M can then be sampled in a Gibbs run, and hence
p(M = j|y) is obtained as a frequency of M = j in the sample. However, we need to specify a full
probability model in order to satisfy MCMC conditions for convergence.

Their approach is to make the following assumptions:

e y is independent of f4; given that M = j; i.e. M picks which parameters are relevant to y.

e f4,...,0K are independent given the model indicator M.

These imply an overall joint distribution

0,M = j)p(8|M = j) p(M = j)
0;, M = j) x [[ p(6s| M = j) p(M = j)
k

p(y,0, M =j) = ply

When it comes to Gibbs sampling, the full conditional distributions are

p(M =j|0,y) o p(y,8,M = j)
= p(yl6;, M = j) x
11 26x1M = j) p(M = j)
k

p(0;1045,y, M = 5) < p(yl;, M = j)p(6;|M = j)

p(Or—j|M # j) are known as pseudo-priors, and although their form is theoretically arbitrary, it is
convenient to have them close to p(6;|M = j,y) so that plausible values are generated even when
the model is being assumed false.

Carlin and Chib recommend a two-stage approach to estimation and model choice:

e Run each model separately using ‘estimation priors’.

¢ Use an approximation of the resulting posterior distributions as pseudo-priors for other mod-
els.

Run sampler for all models together, monitoring M.

Adjust the prior for M to ensure frequent visitation to all models.

Re-adjust estimate of p(M|y) to allow for the choice of prior on the model.
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One of the examples of Carlin and Chib (1995) concerns data of Williams (1959) on 42 specimens
of radiata pine. For each specimen the maximum compressive strength y; was measured, with its
density x; and its density adjusted for resin content z;. Part of the data is shown below.

Specimen strength y; density z; adjusted z;

1 3040 29.2 25.4
2 2470 24.7 22.2
3 3610 32.3 32.2
4 3480 31.3 31.0
41 3030 33.2 29.4
42 3030 28.2 28.2

Two alternative models are being considered:

Model 1: y; ~ Normal(a + Bz, 1)
Model 2: y; ~ Normal(y + dz;, 7o)

The graph for the joint model is shown in Figure 20.

observation i

Figure 20: Graphical model for pines example showing the two models being simultaneously
handled within a unified framework.

The following BUGS code shows that all variables were standardised to have mean 0 and variance 1
before analysis.
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pines : model specification in BUGS

model pines;

const
N = 42, # number of data points
M= 2; # number of models

var

Y[N], Ys[N], # raw and standardised data

x[N], =xs[N],
z[N], =zs[N],
mu[M,N], # means for each model

tau[M], # precisions for each model
alpha, mu.alpha[M], tau.alpha[M], # priors for parameters

beta, mu.beta[M] , tau.beta[M] ,
gamma, mu.gammal[M], tau.gamma[M],
delta, mu.delta[M], tau.delta[M],
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# probability of model 2

pMl, # prior for model
pM2,
Js # true model

ri[M], 11[M],
r2[M], 12[M];

data in "pines.dat";
inits in "pines.in";

{

# standardise data
for(i in 1:N){

Ys[i] <- (Y[il

# priors for tau[1l]
# priors for taul[2]

- mean(Y[]))/sd(Y[D);

xs[i] <- (x[i] - mean(x[]))/sd(x[D);
zs[i] <- (z[i] - mean(z[]))/sd(z[1);

# model node

j 7 dcat(pll);

pl1] <- 0.9995; p[2] <- 0.0005; # use for joint modelling
# pl1] <- 1; p[2] <- 0 ; # include for estimating Model 1

# pl1] <- 0 ; pl2] <-1;
pM2 <- step(j - 1.5);

# model structure
for(i in 1:N){

# include for estimating Model 2

mul[1,i] <- alpha + beta *xs[i];
mu[2,i] <- gamma + delta*zs[i];
Ys[i] “ dnorm(mulj,i],tauljl);
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# Model 1
alpha ~ dnorm(mu.alphalj],tau.alphalj]l);
beta “ dnorm(mu.betalj],tau.betaljl);
tau[1] ~ dgamma(ri([j],11[j1);
# estimation priors
mu.alpha[1]<- 0; tau.alpha[l] <- 1.0E-6;
mu.beta[l] <- 0; tau.beta[l] <- 1.0E-4;
ri[1] <- 0.0001; 11[1] <- 0.0001;
# pseudo-priors
mu.gamma[1] <- 0; tau.gamma[l] <- 400;
mu.delta[1] <- 1; tau.delta[l] <- 400;

r2[1] <- 46 ; 12[1] <- 4.5;
# Model 2
gamma ~ dnorm(mu.gammalj],tau.gammal[j]);

delta ~ dnorm(mu.deltalj],tau.deltaljl);
tau[2] ~ dgamma(r2[j],12[j1);
# estimation priors
mu.gamma[2] <- 0; tau.gamma[2] <- 1.0E-6;
mu.delta[2] <- 0; tau.deltal[2] <- 1.0E-4;
r2[2] <- 0.0001; 12[2] <- 0.0001
# pseudo-priors
mu.alpha[2]<- O; tau.alpha[2] <- 256;
mu.betal[2] <- 1; tau.betal[2] <- 256;
ri[2] <- 30 . 11[2] <- 4.5;

Running each of the models separately gave the following within-model parameter estimates (pos-
terior means and standard deviations).

| Model 1 (z) Model 2 (z)
intercept |-.0001 £ .06 -.0002+ .05
gradient | .93 £+ .06 95 £ .05
T=0"2| 68+15 102+ 22

Approximations to these results are then used as the pseudo-priors for the ‘wrong’ model shown
in the BUGS code above: for Model 1 we set priors v ~ Norm(0,400), ¢ ~ Norm(1,400), 7 ~
Gamma(46,4.5), while under Model 2 we set priors a ~ Norm(0,256), ([ ~ Norm(1,256),7 ~
Gamma(30,4.5). The prior on the second model has to be adjusted to p(M = 2) = .0005 to ensure
M =1 is visited frequently.

A BUGS run of 500 burn-in and 10000 iterations took 1 minute and gave p(M = 2|y) = .629.

Hence the Bayes factor is % X % = 3389, compared with Carlin and Chib’s estimate of

P(M = 2|y) = .689 and their Bayes factor of 4420. The differences in these results could be due to
the different estimation priors used in our analysis.
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14 Alli: multinomial-logistic models

Agresti (1990) analyses a set of data on the feeding choice of 221 alligators, where the response
measure for each alligator is one of 5 categories: fish, invertebrate, reptile, bird, other. Possible
explanatory factors are the length of alligator (two categories: < 2.3 metres and > 2.3 metres),
and the lake (4 catgeories: Hancock, Oklawaha, Trafford, George). The full data is shown below.

Primary Food Choice
Lake Size |Fish Invertebrate Reptile Bird Other

Hancock < 2.3| 23 4 2 2 8
>23 7 0 1 3 5

Oklawaha <2.3| 5 11 1 0 3
>2.3| 13 8 6 1 0

Trafford <2.3| 5 11 2 1 5
>23| 8 7 6 3 5

George < 2.3| 16 19 1 2 3
> 23| 17 1 0 1 3

Each combination of explanatory factors is assumed to give rise to a multinomial response with
a logistic link, so that for lake i, size j, the observed vector of counts X;; = Xjj1,..., X;j5 has
distribution

Xij. ~ Multinomial(p;;., n;j)
5
ik = ikl D bijk
k=1
bijk = eak+ﬂik+7jk;

where n;; = 22:1 Xijk, and a1, Bi1, Bik, Vi1, vk = 0 for identifiability. This model is discussed
in detail in the BUGS manual section Multinomial-logistic models. All unknown a’s, 8’s , v’s are
initially given independent “noninformative” priors. The graph for the multinomial-logistic model
is shown in Figure 21.

The BUGS manual discusses two ways of fitting this model: directly in the form given above or
by using the multinomial-Poisson transformation which will be somewhat more efficient. Both
techniques are illustrated in the code given on the next page.

We also illustrate how to transform the paramters for each food choice from the ‘corner’ parameter
constraint used in the sampling to the Agresti constraint of making the parameters add to zero.
Finally we calculate the standard goodness-of-fit (deviance) statistic

Xijk

G?=2) X log —2% .
Z-Zj; N NijPijk
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Alligator: model specification in BUGS

model alli;
const
I = 4, # number of lakes
J = 2, # number of sizes
K = 5; # number of foods
var
X[1,J,K], # observations
n[I,J], # total for each covariate pattern
E[1,J,K], # fitted values
0logOE[I,J,K1, # 0 log O/E
G2, # goodness-of-fit statistic
mul[I,J,K], # Poisson means
philI,J,K], # exp (betalk] ° x[i,jl)
plI,J,K], # fitted probabilities
lambdalI,J], # baseline rates in each covariate strata
alphal[K], # factor for food = 2,3,4,5
betalI,K], # factor for lakes = 2,3,4, for each food
b[I,K], # factor for lakes = 2,3,4, relative to food 1, centred
gamma [J,K], # factor for size = 2, for each food
glJ,K]; # factor for size = 2, relative to food 1, centred
data X in "alli.dat";
inits in "alli.in";
{
# TRANSFORMATIONS
for (i in 1:I) { # loop around lakes
for (j in 1:J) { # loop around sizes
nl[i,j] <- sum(X[i,j,1);
}
}
# PRIORS
alphal[1l] <- 0; # zero contrast for baseline food
for (k in 2:K){ alphalk] ~ dnorm(0,0.00001)} # vague priors
# Loop around lakes:
for (k in 1:K){ beta[l,k] <- O } # corner-point contrast with first lake
for (i in 2:I) {
betali,1] <- 0 ; # zero contrast for baseline food
for (k in 2:K){ betali,k] ~ dnorm(0,0.00001)} # vague priors
}
# Loop around sizes:
for (k in 1:K){ gammal[l,k] <- 0} # corner-point contrast with first size
for (j in 2:J) {

gamma[j,1] <- 0 ; # zero contrast for baseline food
for ( k in 2:K){ gammal[j,k] ~ dnorm(0,0.00001)} # vague priors
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# LIKELIHOOD

for (i in 1:I) { # loop around lakes
for (j in 1:J) { # loop around sizes

# Multinomial response
X[i,j,] 7 dmulti( pli,j,] , nli,j1 );

for (k in 1:K) { # loop around foods
pli,j,k] <- phili,j,k] / sum(phili,j,]);
log(phili,j,k]) <- alphalk] + betali,k] + gammalj,k];
}

# Fit standard Poisson regressions relative to baseline

# lambdal[i,j] = dnorm(0,0.00001); # vague priors

# for (k in 1:K) { # loop around foods

# X[i,j,k] ~ dpois(muli,j,k1);

# log(muli,j,k]) <- lambdali,j] + alphalk] + betali,k] + gammalj,k];
#

# TRANSFORM OUTPUT TO ENABLE COMPARISON WITH AGRESTI’S RESULTS

for (k in 1:K) { # loop around foods
for (i in 1:I) { # loop around lakes
bl[i,k] <- betal[i,k] - mean(betal,k]); # sum to zero constraint
}
for (j in 1:J) { # loop around sizes
glj,k] <- gammal[j,k] - mean(gammal[,k]); # sum to zero constraint
}
}
# FITTED VALUES
for (i in 1:I) { # loop around lakes
for (j in 1:J) { # loop around sizes
for (k in 1:K) { # loop around foods
# pli,j,k] <- muli,j,k]/sum(mul[i,j,]); # fitted probabilities

E[]-’J’k] <- p[laJ:k] * n[l’J];
OlogOE[i,j,k] <- X[i,j,k] * log( X[i,j,k] / E[i,j,k] );
}
}
}
G2 <- 2 * sum( OlogOE[,,] );
}
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Figure 21: Graphical model for alligator example using the multinomial-logistic model

A BUGS run of 500 burn-in and 1000 iterations took 148 seconds using the direct method and 36
seconds using the Poisson transformation. Some results are compared below with those of Agresti,
where the parameters for each food choice have been constrained to add to zero. Hence we transform

the sampled values in BUGS as follows: b, = Bk

—>l Bik/4, i=1,2,3,4, k =2,3,4,5. Therefore

the displayed values can be interpreted as representing the extent to which the log-odds of selecting
each food choice, relative to fish, is attributable to Lake Hancock.

Agresti (s.e.) BUGS (s.e.)
Parameter MLE Multi- Multi-
logistic poisson
b12 -1.76 (.44) -1.83 (.45) -1.97 (.47)
bis - 42 (.56) -.32 (.58) -.42 (.65)
b14 41 (.51) .60 (.53) .61 (.56)
bis 24 (.35) 9 (.37) .27 (.37)
G? 17.1 37.8 (6.7) 38.4 (6.9)

We note that the classical goodness-of-fit (deviance) statistic is 17.1 on 12 degrees of freedom. This
should be contrasted with the minimum achieved values of 20.9 and 24.1 under the two Bayesian

formulations.
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15 Endo: conditional inference in case-control studies

Breslow and Day (1980) analyse a set of data from a case-control study relating endometrial cancer
with exposure to estrogens. 183 pairs of cases and controls were studied, and the full data is shown
below.

Status of control
Not exposed Exposed
Status of case
Not exposed | ngg = 121  ngy =7
Exposed nig =43  nqp =12

We denote estrogen exposure as z;; for the ith case-control pair, where j = 1 for a case and j = 2
for a control. The conditional likelihood for the log (odds ratio) ( is then given by
eﬂwil
H ePrir 4 eBxiz’
(3
We shall illustrate three methods of fitting this model. It is convenient to denote the fixed disease
status as a variable Y;; = 1,Y;5 = 0.

First, Breslow and Day point out that for case-control studies with a single control per case, we may
obtain this likelihood by using unconditional logistic regression for each case-control pair. That is

Yi1 ~ Binomial(p;,2)
Logit p; = pB(zi — zi2)

Second, the BUGS manual section Conditional likelihoods in case-control studies discusses fitting this
likelihood directly by assuming the model

Y;, ~ Multinomial(p;, 1)
2
pij = e/ ) e
i=1
logeij = Py

Finally, the BUGS manual shows how the multinomial-Poisson transformation can be used. In
general, this will be more efficient than using the multinomial-logistic parameterisation above,
since it avoids the time-consuming evaluation of E§:1 eij. However, in the present example this
summation is only over J=2 elements, whilst the multinomial-Poisson parameterisation involves
estimation of an additional intercept parameter for each of the 183 strata. Consequently the latter
is less efficient than the multinomial-logistic in this case.

We note that all these formulations may be easily extended to include additional subject-specific
covariates, and that the second and third methods can handle arbitrary numbers of controls per case.
In addition, the Bayesian approach allows the incorporation of hierarchical structure, measurement
error, missing data and so on.

The graph for the conditional likelihood model is shown in Figure 22.

All these techniques are illustrated in the code given below, which includes a transformation of the
original summary statistics into full data. In this example, all but the second conditional-likelihood
approach are commented out.
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Endo: model specification in BUGS
model endo;

const
I = 183, # number of matched sets
J =2 # number of people per set
var
n10,n01,n11,n00, # collapses form of data
Y[1,J], # observed disease status
plI,J], # probability of disease status
elI,J], # exp ( beta ’ x )
est[I,J] , # estrogen use
mul[I,J], # Poisson means
betaO[I], # baseline rates in each stratum

beta; # covariate coefficient
data n10,n01,n11,n00 in "endo.dat";
inits in "endo.in";
{
# transform collapsed data into full
for (i in 1:I){ Y[i,1] <- 1; Y[i,2] <- 0;}
# loop around strata with case exposed, control not exposed (nl10)
for (i in 1:n10){ est[i,1] <- 1; est[i,2] <- 0;%}
# loop around strata with case not exposed, control exposed (n01)
for (i in (n10+1):(n10+n01)){ est[i,1] <- O; est[i,2] <- 1;}
# loop around strata with case exposed, control exposed (nll)
for (i in (n10+n01+1):(n10+n01+ni11)){ est[i,1] <- 1; estl[i,2] <- 1;}
# loop around strata with case not exposed, control not exposed (n00)
for (i in (n10+nO01+ni11+1):I){ est[i,1] <- 0; est[i,2] <- 0;}

# PRIORS
for (i in 1:I) { betaO[i] ~ dnorm(0,1.0E-6) } beta ~ dnorm(0,1.0E-6) ;

# LIKELIHOOD
for (i in 1:I) { # loop around strata
METHOD 1 - logistic regression
Y[i,1] ~ dbin( p[i,1]1, 1);
logit(p[i,1]) <- beta * (est[i,1] - est[i,2]);
METHOD 2 - conditional likelihoods
Y[i,] ” dmulti( p[i,],1);
for (j in 1:2){
pli,jl <- eli,j]l / sum(eli,]);
log( e[i,j] ) <- beta * est[i,j] ;
}
METHOD 3 fit standard Poisson regressions relative to baseline
for (j in 1:2) {
Y[i,j] © dpois(muli,jl1);
log(mu[i,j]) <- betaO[i] + beta*estl[i,j];

H OH H R

H OH OH H R
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Figure 22: Graphical model for endo example using the conditional-likelihood approach.

A BUGS run of 500 burn-in and 1000 iterations, took the times shown below and gave the following

(very similar) results.

BUGS
Parameter | MLE Logistic Multinomial Multinomial
logistic poisson
08 1.82  1.90 1.90 1.85
s.e. 41 42 42 46
time (secs)| — 5 21 225
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16 Asia: a simple expert system

16.1 Evidence propagation

Lauritzen and Spiegelhalter (1988) introduce a fictitious “expert system” representing the diagnosis
of a patient presenting to a chest clinic, having just come back from a trip to Asia and showing
dyspnoea (shortness-of-breath). A graphical model for the underlying process is shown in the
Figure 23, where each variable is binary. The BUGS code is shown below and the conditional
probabilities used are given in Lauritzen and Spiegelhalter (1988).

visit to Asia?

either tub.
or cancer?

Figure 23: Graphical model for asia example

Asia: model specification in BUGS

model Asia;

var
asia,smoking,tuberculosis,lung.cancer,bronchitis,either,xray,dyspnoea,
p-asia[2],p.smoking[2],p.tuberculosis[2,2],p.bronchitis[2,2],
p.lung.cancer[2,2],p.xray[2,2],p.dyspnoeal2,2,2];

data in "asia.dat";

{

smoking ~ dcat(p.smoking[]) ;

tuberculosis ~ dcat(p.tuberculosis[asia,]);
lung.cancer ~ dcat(p.lung.cancer[smoking,]);
bronchitis “ dcat(p.bronchitis[smoking,]);

either <- max(tuberculosis,lung.cancer);

xray ~ dcat(p.xray[either,]);

dyspnoea “ dcat(p.dyspnoealeither,bronchitis,])
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Note the use of max to do the logical-or. All initial values are computed by forward sampling so
no initial value file is necessary. The dcat distribution is used to sample values with domain (1,2)
with probability distribution given by the relevant entries in the conditional probability tables.
The S-Plus format has been used for the data file, since these conditional probability tables are of
different dimensions, and would require 4 separate data files in rectangular format.

Data in S-Plus format for asia example

list(asia = 2, dyspnoea = 2,

p-asia = ¢(0.99, 0.01),
p-tuberculosis = ¢(0.99, 0.01,
0.95, 0.05),
p.bronchitis = c(0.70, 0.30,
0.40, 0.60),
p.smoking = ¢(0.50, 0.50),
p.lung.cancer = c(0.99, 0.01,
0.90, 0.10),
p.xray = ¢(0.95, 0.05,
0.02, 0.98),
p.dyspnoea = ¢(0.9, 0.1,
0.2, 0.8,
0.3, 0.7,
0.1, 0.9)

The observed features (asia and dyspnoea) are given value 2 in the data-file. 100000 iterations (31
seconds) gave the following posterior probabilities (the exact values are given in brackets): smoking
.625 (626), tuberculosis .089 (.088), lung cancer .099 (.100), bronchitis .810 (.812), either .183 (.182)
z-ray .220 (.220). Note that these probabilities are obtained by subtracting 1 from the posterior
means of the variables smoking, tuberculosis efc. which are actually defined on the domain (1,2).

16.2 Learning about parameters

Spiegelhalter et al. (1993) describe techniques for estimating parameters (i.e. the conditional proba-
bilities) of such a network, where these parameters can be represented by additional nodes connected
to a set of networks corresponding to each of a set of cases. The parameters can be given inde-
pendent Dirichlet distributions and, with complete data, standard conjugate Bayesian updating is
straightforward. With incomplete data a number of different analytic approximations have been
suggested, but in fact a simulation solution is easily implemented.

Figure 24 illustrates the asia2 network in which 6, represents the unknown conditional probability
of bronchitis? given smoking?. Note that 6, replaces the known conditional probability matrix
p.bronchitis used in the first asia network described above. The observed part of the network
is represented by the replicated plates. We illustrate learning about 6, with a dataset of five cases,
in which the true value for smoking is not observed for case 2, who has bronchitis and dyspnoea,
and case 3, whose only positive feature is an x-ray.
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visit to Asia; ?

lung cancer;?

either tub.
or canceri?

bronchitis i?

pos. X—rayi?

Figure 24: Graphical model for asia2 example, with additional node 6, representing the unknown
conditional probability of bronchitis? given smoking?

patient i

The data file now does not contain values for p.bronchitis, but does have observed data for five
cases.

Data for asia2 example

list(p.asia = ¢(0.99, 0.01),
p.tuberculosis = ¢(0.99, 0.01,
0.95, 0.05),
p.smoking = ¢(0.50, 0.50),
p.lung.cancer = c(0.99, 0.01,
0.90, 0.10),
p.xray = ¢(0.95, 0.05,
0.02, 0.98),
p.dyspnoea = ¢(0.9, 0.1,
0.2, 0.8,
0.3, 0.7,
0.1, 0.9)
asia =c(1,1,1,1,1),
smoking = c(2,NA,NA,L1,1),
tuberculosis = ¢(1,1,1,1,1),
lung.cancer = c(2,1,1,1,1),
bronchitis = ¢(2,2,1,2,1),
xray = c(2,1,2,2,1),

dyspnoea

c(2,2,1,2,2))
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The BUGS code (shown below) now requires the observables to be vectors, and has put independent
Dirichlet prior probability distributions with parameters (1,1) (i.e. uniform priors) on each of the
unknown conditional distributions p(bronchitis | smoking=no) and p(bronchitis | smoking=yes).

Asia2: model specification in BUGS

model Asia2;

const
N = 5; # number of cases

var
asia[N],smoking[N],tuberculosis[N],lung.cancer[N],
bronchitis[N],either[N],xray[N],dyspnoealN],
p-asial[2],p.smoking[2],p.tuberculosis[2,2],theta.b[2,2],
p.lung.cancer[2,2],p.xray[2,2],p.dyspnoeal[2,2,2] ,prior[2];

data in "asia2.dat";

{

for (i in 1:N){

smoking[i] ~ dcat(p.smoking[]) ;

tuberculosis[i] ~ dcat(p.tuberculosis[asialil,]);
lung.cancer[i] ~ dcat(p.lung.cancer[smoking[i],]);
bronchitis[i] “ dcat(theta.b[smoking[i],]);

either[i] <- max(tuberculosis[i],lung.cancer[i]);
xray[i] “ dcat(p.xrayleither[i],]);

dyspnoeal[il ~ dcat(p.dyspnoealeither[i],bronchitis[i],])
}

# priors for unknown probabilities

for (j in 1:2){
theta.b[j,] = ddirch(prior[]); # theta.b = p(bronchitis | smoking)
prior[j] <- 1;
}

}

Analysis

100000 iterations after a 1000 iteration burn-in took 36 seconds and led to posterior mean estimates
(standard deviations) of p(bronchitis | smoking=no) = .52 (.21) and p(bronchitis | smoking=yes)
= .66 (.23). In addition we estimate that for cases 2 and 3 respectively, there is a probability .56
and .37 that they are smokers.
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17 Pigs: genetic counselling and pedigree analysis

Spiegelhalter (1990) uses exact methods to analyse a small pedigree. This pedigree was previously
used by Cannings and Thompson (1981) to illustrate their ‘peeling’ procedure to provide likelihoods
for gene frequencies and probabilities for individuals being affected or carriers. The pedigree is
shown in Figure 25. We assume these are pigs which have the possibility of carrying a recessive
gene: thus each pig has a genotype ajai, ajas or asas, in which only those with aqas are affected
with the trait, while those with aiao are carriers of the defective allele as. We assume that Ian
(the consequence of a mating between Fred and his Aunt Clare) is yet to be born, and all that is
known is that Fred’s niece Jane has the trait. We wish to estimate the prevalence p of the allele
as, and predict the chance of Tan being affected.

Figure 25: Graphical model for pigs example

The conditional probability distributions are as follows. For the genotype of the founder nodes
Ann, Brian, Eric and Henry we assume a binomial distribution

Founder ~ Binomial(q,2)

where Founder takes values 0, 1 or 2 for genotypes asas, ajas and a1a1 respectively, and ¢ = 1—p is
the prevalence of the allele a1. This is equivalent to assuming Hardy Weinberg equilibrium, giving

P(aia1) = ¢%, P(a1a2) = 2q(1 — q), P(azaz) = (1 — q)*.
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For the genotype of offspring we have the standard Mendelian inheritance probabilities given by
the following table.

Genotype of parents  Genotype of offspring

1 ( alal) 2 (alag) 3 (agag)
Prob (genotype)

aja; aia; 1

aija; a1ar )

aijal as2a2 1

aijao a1a2 .25 .0 .25
aiag asa2 .5 D
asa9 a2a2 1

For a recessive gene the genotype-to-phenotype penetrance probabilities are given by:

Genotype of individual| Phenotype of individual
1 (normal) 2 (affected)
Prob (phenotype)

ai1al 1
ai1a9 1
asa9 1

The necessary inheritance probabilities are read in from the data file as an array (note the use of
the more convenient S-Plus format for this file).

Data in S-Plus object format

list(p.mendelian = ¢c(1.0, 0.0, 0.0,
0.5, 0.5, 0.0,
0.0, 1.0, 0.0,
0.5, 0.5, 0.0,
0.25, 0.5,0.25,
0.0, 0.5, 0.5,
0.0, 1.0, 0.0,
0.0, 0.5, 0.5,
0.0, 0.0, 1.0),
p.recessive = ¢c(1.0, 0.0,
1.0, 0.0,
0.0, 1.0),
Al =1,B1 =1, C1 =1,
D1 =1, E1 1, F1 =1,
Gl =1, H1 =1, J1 = 2)
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Model specification in BUGS for the pigs example

model pi
var

g3;

Ann,Anni,Al, Brian,Brianil,B1, Clare,Cl, Diane,D1, Eric,Ericil,El,
Fred,F1, Gene,G1, Henry,Henryl,H1, Ian,I1, Jane,J1,
a,b,c,d,e,f,g,h,i[3],p,q, p.mendelian[3,3,3], p.recessive[3,2];

data in "pigs.dat";
inits in "pigs.in";

{
q ~ dunif(0,1);
p<-1-gq;
Anni ~ dbin(q,2); Ann <- Annil + 1;
Brianl * dbin(q,2); Brian <- Brianl + 1;
Clare ~ dcat(p.mendelian[Ann,Brian,]);
Diane ~ dcat(p.mendelian[Ann,Brian,]);
Ericl ~ dbin(q,2); Eric <- Ericl + 1;
Fred ~ dcat(p.mendelian[Diane,Eric,]);
Gene “ dcat(p.mendelian[Diane,Eric,]);
Henryl ~ dbin(q,2); Henry <- Henryl + 1;
Ian “ dcat(p.mendelian[Clare,Fred,]);
Jane ~ dcat(p.mendelian[Gene,Henry,]);
A1 ~ dcat(p.recessive[Ann,]);
Bl ~ dcat(p.recessive[Brian,]);
Cl1 ~ dcat(p.recessive[Clare,]);
D1 ~ dcat(p.recessive[Diane,]);
El ~ dcat(p.recessive[Eric,]);
F1 ~ dcat(p.recessive[Fred,]);
G1 ~ dcat(p.recessive[Gene,]);
H1 ~ dcat(p.recessive[Henry,]);
I1 ~ dcat(p.recessive[Ian,]);
J1 ~ dcat(p.recessive[Jane,]);
a <- equals(Ann, 2);
b <- equals(Brian, 2);
¢ <- equals(Clare, 2);
d <- equals(Diane, 2);
e <- equals(Eric, 2);
f <- equals(Fred, 2);
g <- equals(Gene, 2);
h <- equals(Henry, 2);

for (J in 1:3) {

i[J]

<- equals(Ian, J)

# prevalence of al
# prevalence of a2
# geno. dist. for founder

# geno. dist. for child

# phenotype distribution

# event that Ann is carrier

al al
al a2
a2 a2 (i.e. Ian affected)
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We note a number of important tricks. First, each genotype is a 3-valued categorical variable
with conditional probabilities either determined by the binomial (Hardy-Weinberg equilibrium)
distribution (for founder nodes) or from the Mendelian inheritance probabilities which are stored
as a 3-dimensional matrix p.mendelian. In the latter case, the genotype of the parents picks which
row of the matrix is used for the distribution. However, the rows of this matrix are indexed by
values 1, 2 or 3, whilst the genotypes of the founder nodes take values 0, 1 or 2. Since BUGS does not
allow subscripts to be functions of variables, we must first add 1 to the genotype of the parents (for
example, Ann = Annl + 1) and use these new variables as subscripts to the matrix p.mendelian.
The genotype-to-phenotype distribution is handled similarly in a matrix p.recessive. Second, the
equals function equals(Ann, 2) allows the calculation of P(Ann’s genotype = 2) (i.e. a carrier),
whilst equals(Ian, J) calculates P(Ian’s genotype = J), where J=3 implies that Ian is affected.

Analysis

A simple BUGS run took only 2 seconds for 2000 iterations after a 1000 iteration burn-in, and gave
the following output.

variable ‘ estimate s.d.
P 0.662 0.154
P(i) = i[3] = Prob(lan is affected)| 0.053 0.224

This can be compared to the exact answer, which is a polynomial in p with maximum at 0.67,
conditional on which P(7) = 0.06.

We note that considerable care is required in doing Gibbs sampling in pedigrees due to the possibility
that certain configurations of genotypes are not reachable from a single starting point, and hence
the Markov Chain is not irreducible.
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18 Cosmos: flexible mean and variance relationships using Legen-
dre polynomial basis functions

We are grateful to Dr. David Mackay of the University of Cambridge Engineering Department for
providing us with the following example.

The most accurate means of calculating the distances to galaxies involves measuring the period
and magnitude (luminosity) of a class of supergiant variable stars known as Cepheids. Empirically,
the magnitude and log period of nearby Cepheids show a linear relationship with a small amount
of scatter. Hence measurement of the magnitude and period of a number of Cepheids in a galaxy
gives direct distance information in the form of a constant offset between their magnitude—period
line and the magnitude—period line of the nearby Cepheids. Such information may be used, for
example, to deduce the value of the Hubble constant (Freedman et al., 1994).

The standard analysis assumes a linear regression model with independent Normal errors. However,
such assumptions may be inappropriately strong since it is not known that an exact straight line
relationship holds, nor that the scatter is Gaussian and uniform. Here we use BUGS to model the
distance between two simulated populations of Cephids assuming a polynomial relationship between
magnitude and period and a noise level dependent on the magnitude.

This underlying relationship between magnitude (z) and period (t) is described by the following
model:

t; ~ Normal(u;,7;)

Ky
pi = Y wpdn(w:)
h=1

h=1

Ky
T, = exp (th%(ﬂﬁi))

where ¢ indexes Cephids. The basis functions ¢() are Legendre polynomials defined as follows:

$i(zi) = 1
a(zi) =
dn(zi) = (2h —3) x z; X pp_1(x;) — (b —2) X pp_2(x;) s 9

h—-1

The ‘weight’ parameters {wy} (h = 1,..,Ky,) and {b,} (h = 1,.., K}) are assumed to follow inde-
pendent Normal distributions with population precision parameters w,, and w; respectively. The
latter are given non-informative gamma prior distributions. Note that we obtain the special case
of uniform noise by setting K; = 1 and the special case of a straight line relationship by setting
K, = 2. The quantity of interest, namely the distance between the two Cephid populations, is
modelled by adding a scalar offset d to the mean u; of each Cephid in the second population. The
graph for this model is shown in Figure 26.
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X
bogu] ]
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Figure 26: Graphical model for the cosmos example

Simulated Data

The above model was used to simulate (z,t) pairs for 50 Cephids from each of two populations
using true values Ky = K, = 3 and d = 3.0. These data are shown in Figure 27.
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Figure 27: Simulated data from two Cephid populations differing by an offset d
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Cosmos: model specification in BUGS

model cosmos;

const
N=100, # Total number of Cephids
Kw=10, # Number of basis functions for mu [linear relation = 2]
Kb=10, # Number of basis functions for tau [uniform noise = 1]
K=10, # K=max (Kw,Kb)
x0=0.0, dx=1.0;

var

x[N], t[N], pop[N], mu[N], tau[N], sigmal[N],
w[K], b[K], philK,N], omega.w, omega.b, d[2];
data x, t, pop in "cosmos.dat" ;
inits in "cosmos.in" ;
{
for (i in 1:N) {
# Recurrence relation to define Legendre polynomials:
phi[1,i] <- 1.0 ;
phi[2,i] <- (x[i]-x0)/dx ;
for (h in 3:K) { phi[h,i] <- ( ( 2%¥h-3 ) * (x[1]-x0)/dx * phi[h-1,i]
- (h-2 ) * phi[h-2,i] ) / ( h-1); }

}
# Model:
for (i in 1:N) {
t[i]l] ~ dnorm(mul[i], taul[il);
mul[i] <- d[popl[il] + inprod(w[l, phil,il);
taul[i] <- exp(inprod(b[], phil[,i])); sigmali] <- 1/sqrt(taulil);
}
d[1] <- 0.0; # => d[pop[il]l = 0 if popl[il=1
d[2] * dnorm(0.0, 0.0001); # offset between two populations
# Priors:

for (h in 1:Kw) {
wlh] ~ dnorm(0.0, omega.w);

}
for (h in Kw+1:K) {

wlh] <- 0.0; # Fill out array with zeros if Kw < K
}

for (h in 1:Kb) {
b[h] ~ dnorm(0.0, omega.b);

}
for (h in Kb+1:K) {

b[h] <- 0.0; # Fill out array with zeros if Kb < K
}

omega.b ~ dgamma(1l.0E-3, 1.0E-3);
omega.w ~ dgamma(l.0E-3, 1.0E-3);
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Note the use of the function inprod() to calculate Z,Ifjl wpdp(x;) and Zi{:”l brodn(z;). We also
introduce K = max(K,, Kp) and if K < K the extra parameters {bh}llgb+1 are set to zero: this
allows the use of a single matrix ¢p(z;) when computing both the above inner products.

Results

We estimated 4 different models: K,, = 2, K, = 1 (standard model); K,, = 2, K = 10 (linear
model with non-uniform noise); K,, = 10, K; = 1 (polynomial model with uniform noise); K,, =
10, K = 10 (polynomial model with non-uniform noise). For each, BUGS was run for a burn—in
period of 500 iterations followed by 1000 further iterations, taking approximately 8 minutes. The
posterior mean, standard deviation and 95% credible interval for the offset d are given below.

K, 1 10
K, mean sd  95% interval {mean sd = 95% interval
2 2.442 0.3005 (1.857, 3.020) | 2.761 0.2603 (2.250, 3.240)
10 2.542 0.3074 (1.983, 3.156) |2.714 0.2710 (2.180, 3.231)

The over—simple model K;, = 1, K,, = 2 gives a 95% interval for d that only just includes the true
value of 3.0. Changing from the over-simple model to the model with K,, = 10 produces a slight
increase in the uncertainty of d. The increase is only slight because there are two opposing effects:
first, for any particular value of noise, the higher degree polynomial is less well determined and the
uncertainty in d increases; but second, the greater flexibility of the magnitude-period relationship
allows it to fit the curving shape of the data and makes smaller noise levels probable. Small noise
levels give more accurate inferences. A similar effect occurs as we increase the number of terms in
the representation of 7 (K} = 10). The estimation of d can become more precise, in intuitive terms,
because the model is able to discover that some values of = give more reliable measurements than
others, so that the inference of d can be based on them, ignoring the more noisy measurements.
The net effect is that when we change from the over—simple model to the most flexible model
(Ky = 10, K, = 10), the 95% interval becomes smaller and more accurate. Whether this will
happen for the real Cepheid data remains to be seen.
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19 Marsbars: order constraints in two-way ANOVA

Gelfand et al. (1992) analyse fictitious data arranged in a two way table, intended to represent
response data as might occur in consumer preference studies. We wish to impose the constraints
that the row effects are decreasing while the column effects increase to the middle column and then
decrease.

Simulated ordered two-way ANOVA data

| j=1 2 3 4 5
i=1] .982 1.902 3.797 -1.531  .570
i =2|-1.417 1.356 1.287 -3.629 -3.413
i=3|-1.601 4.713 .814 .834 -2.082
i =4|-4.912 -4.541 -4.768 -9.051 -2.744

Then we assume

Yi; ~ Normal(u;j,7)
pij = o+ 06
a; ~ Normal(pg,Ta)

Bj ~ Normal(ug,7s)
T ~ gamma(a,b)

Following Gelfand et al. (1992) we set po = pg = 0,7 = 73 = .2, and a = 0,0 = 1. We wish to
impose the constraints that a; > as > ag > a4, and f1 < B2 < B3 > (4 > (5 The appropriate
graph is shown in Figure 28, where undirected dashed lines are used to represent the logical order
constraints.

column j

Figure 28: Graphical model for marsbars example
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The BUGS code for this model is given below. We note the use of the I(.,.) notation to denote
constraints, and the convenience with which other unknowns may be included into constraints.

Marsbars: model specification in BUGS

model MarsBars;
const
cols = 5, rows = 4,
tau.alpha = 0.20, mu.alpha = 0.
tau.beta = 0.20, mu.beta = 0.0;
var
Y[rows,cols], mu[rows,cols], tau, betal[cols],
alpha[rows], bound, sigma;
data Y in "marsbars.dat";
inits in "marsbars.in";

0,

{
for(j in 1:cols) {
for (i in 1:rows) {
mu[i,j] <- alphali] + betaljl;
Y[i,j] ~ dnorm(mul[i,j],tau)
}
}
tau ~ dgamma(1.0E-3,1.0E-3);
sigma <- 1/sqrt(tau);
alpha[1] ~ dnorm(mu.alpha,tau.alpha)I(alphal[2],);
alphal[2] ~ dnorm(mu.alpha,tau.alpha)I(alphal[3],alphal1]);
alphal[3] ~ dnorm(mu.alpha,tau.alpha)I(alphal[4],alphal2]);
alphal[4] ~ dnorm(mu.alpha,tau.alpha)I(,alphal3]);
bound <- max(betal[2],betal4]);
betal[l] ~ dnorm(mu.beta,tau.beta)I(,betal2]);
beta[2] ~ dnorm(mu.beta,tau.beta)I(betal[1],betal3]);
betal[3] ~ dnorm(mu.beta,tau.beta)I(bound,);
beta[4] ~ dnorm(mu.beta,tau.beta)I(betal[5],betal[3]);
beta[5] ~ dnorm(mu.beta,tau.beta)I(,betal4]);
}
Analysis

A run of 1000 iterations only took 1 second after a 500 iteration burn-in, and gave the following
estimates, which may be compared to the posterior plots provided in Gelfand et al. (1992).

variable ‘ estimate 95% interval

o 153 -0.34, 3.56
s 0.22  -1.44, 2.04
s 0.38  -2.20, 1.46

ay 407 -6.21, -1.82
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20 Stagnant: a changepoint problem

Carlin et al. (1992) analyse data from Bacon and Watts (1971) concerning a changepoint in a linear
regression.

-1.39 1.12|11 -.12 .60(21 .44 .13
-1.39 1.12(12 -.12 .59(22 .59 -.01
-1.08 .99 |13 .01 .51(23 .70 -.13
-1.08 1.03|14 .11 .44|24 .70 .14
-.94 .92 (15 .11 .43|25 .85 -.30
-.80 .90 (16 .11 .43|26 .85 -.33
-.63 .81 |17 .25 .33|27 .99 -.46
-.63 .83 (18 .25 .30|28 .99 -.43
-.25 .65 (19 .34 .25|29 1.19 -.65
10 -.25 .67 (20 .34 .24

© 00 S O W N .

We assume a model with two straight lines that meet at a certain changepoint z; — this is slightly
different from the model of Carlin et al. (1992) who do not constrain the two straight lines to cross
at the changepoint. We assume

Y; ~ Normal(y;,7)
ui = a—l—ﬁj[i](wi—wk)J[i]:l if i<k;JiE=2if i>k

giving E(Y) = « at the changepoint, with gradient 3; before, and gradient (3, after the changepoint.
a, B1, P2, T are given independent “noninformative” priors. The appropriate graph is shown in
Figure 29, and the BUGS code follows.

We note that to be able to update the changepoint in the current version of BUGS we are required
to have the changepoint as a discrete random variable; this could be a discretised X although here
we have followed Carlin et al. (1992) and forced the change to occur at one of the design points.
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Figure 29: Graphical model for stagnant example
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Model specification for the stagnant example

model stagnant;
const
N = 29; # number of points
var
x[N], mu[N], Y[N], punif[N], J[NI],
k, alpha, beta[2], tau, sigma;
data Y, x, punif in '"stagnant.dat";
inits in "stagnant.in";

{
k ~ dcat(punif[]); # uniform prior over changepoint observation
for (i in 1:N) {
J[i] <= 1 + step(i - (k+0.5)); # J[il=1 if i<=k; 2 if i>k
mu [i] <- alpha + betalJ[i]1*(x[i]l - x[k]);
Y[i] ~ dnorm(mu[i] ,tau)
}
alpha ~ dnorm(0,1.0E-6);
betal ~ dnorm(0,1.0E-6);
beta2 ~ dnorm(0,1.0E-6);
tau ~ dgamma (1.0E-3,1.0E-3);
sigma <- 1.0/sqrt(tau);
}
Analysis

A BUGS run took 29 seconds for 1000 iterations after a 500 iteration burn-in and gave the following
output.

variable ‘ estimate  95% interval

o 0.469  (0.452, 0.486)
B —0.449 (—0.471, —0.427)
Bo —1.037 (—1.072, —1.007)
k 15 (14, 16)

The parameter estimates are very similar to those of Carlin et al. (1992) and Bacon and Watts
(1971). The entire posterior distribution for & lay in the range 14-16, all of which correspond to a
changepoint at X = .11. Plotting the data supports this finding, and contrasts slightly with the
analysis of Carlin et al. (1992) whose posterior mode lay at & = 12. However, their posterior median
of k = 13 corresponds to the first 13 points being on one line, and the remainder on another, which
is essentially our finding.
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