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Introduction and Disclaimer

These worked examples illustrate the use of the BUGS language and sampler in a wide range of
problems. They contain a number of useful “tricks”, but are certainly not exhaustive of the models
that may be analysed.

We emphasise that all the results for these examples have been derived in the most naive way: in
general a burn-in of 500 iterations and a single long run of 1000 iterations. This is not recommended
as a general technique: no tests of convergence have been carried out, and traces of the estimates
have not even been plotted. However, comparisons with published results have been made where
possible. Times have been measured on a 60 MHz superSPARC: a 60 MHz Pentium PC appears
to be about 4 times slower, and a 30 MHz superSPARC about 2 times slower.

Users are warned to be extremely careful about assuming convergence, especially
when using complex models including errors in variables, crossed random effects and
intrinsic priors in undirected models.

*BUGS (©copyright MRC Biostatistics Unit 1995. ALL RIGHTS RESERVED. The support of the Economic and
Social Research Council (UK) is gratefully acknowledged. The work was funded in part by ESRC (UK) Award
Number H519 25 5023.



Warning
BUGS version 0.5
Release date: August 14, 1996

BUGS version 0.5 released on August 14, 1996 is a TEST version only.

If you encouter any errors in the program, please notify us by e-mailing bugs@mrc-bs.cam.ac.uk.
In particular, users are warned that BUGS version 0.5 may crash during sampling with the error

Can not locate mode of sampling density
or

Allowed number of function evaluations exceeded for ARS.

Such errors typically occur when estimating models involving a log or logit function of parameters
whose values are very close to zero. We are currently working to fix this bug, and will release a
revised version 0.5 when this has been sorted out. Please note that the Cosmos example in BUGS
Examples Volume 2 crashes with this error when running BUGS version 0.5, although the model can
be run successfully using BUGS version 0.30.
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1 Rats: Normal hierarchical models with missing data

This example is taken from section 6 of Gelfand et al. (1990), and concerns 30 young rats whose

weights were measured weekly for five weeks. Part of the data is shown below, where Y;; is the
weight of the ith rat measured at age ;.

Weights Y;; of rat 7 on day z;
zj=8 15 22 29 36
Rat 1 151 199 246 283 320
Rat 2 145 199 249 293 354

Rat 30 163 200 244 286 324

A plot of the 30 growth curves suggests some evidence of downward curvature.

The model is essentially a random effects linear growth curve

Yij ~ Normal(o; + Bi(zj; — ), 7c)
a; ~ Normal(a,7q)

B; ~ Normal(g,,3)

where T = 22, and 7 represents the precision (1/variance) of a normal distribution. We note the
absence of a parameter representing correlation between «; and f; unlike in Gelfand et al. (1990).
However, see the birats example in Volume 2 which does explicitly model the covariance between
a; and ;. For now, we standardise the z;’s around their mean to reduce dependence between «; and
B; in their likelihood: in fact for the full balanced data, complete independence is achieved. (Note
that, in general, prior independence does not force the posterior distributions to be independent).

Oy Tay Be, T3, Te are given independent “noninformative” priors. Interest particularly focusses on
the intercept at zero time (birth), denoted oy = o, — 5.Z. The appropriate graphical model is

shown in Figure 1.
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Figure 1: Graphical model for rats example
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Rats: model specification in BUGS

model rats;

const

N = 30, # number of rats

T = 5; # number of time points
var

tau.c, alphaO, alpha.c, beta.c, x[T],
mu[N,T], Y[N,T], alpha[N], betal[N],
tau.alpha, tau.beta, sigma, x.bar;

data Y in "ratsy.dat", x in "ratsx.dat";
inits in "rats.in";

{
for (i in 1:N) {
for (j in 1:T) {
muli,j] <- alphal[i] + betal[il*(x[j] - x.bar);
Y[i,jl “ dnorm(mul[i, j],tau.c)
}
alpha[i] ~ dnorm(alpha.c,tau.alpha);
betal[i] ~ dnorm(beta.c,tau.beta);
}
alpha.c ~ dnorm(0,1.0E-4);
beta.c ~ dnorm(0,1.0E-4);
tau.c ~ dgamma(1.0E-3,1.0E-3);
tau.alpha ~ dgamma(1l.0E-3,1.0E-3);
tau.beta ~ dgamma(1l.0E-3,1.0E-3);
sigma <- 1.0/sqrt(tau.c);
x.bar <- mean(x[1);
alpha0 <- alpha.c - beta.c*x.bar;

Note the use of a very flat but conjugate prior for the population effects: a locally uniform prior
could also have been used.

If the data are input in rectangular format, 2 files are required. The response data y are in file
ratsy.dat:

151 199 246 283 320
145 199 249 293 354
147 214 263 312 328
1656 200 237 272 297

157 205 248 289 316
137 180 219 258 291
153 200 244 286 324



and the measurements times x are in ratsx.dat:

Alternatively, the data may be input in S format, as in file ratsS.dat. In this case, both y and
x may be included in the same file:

list(Y = ¢(151.0,199.0,246.0,283.0,320.0,
145.0,199.0,249.0,293.0,354.0,

163.0,200.0,244.0,286.0,324.0),
x = ¢(8.0,15.0,22.0,29.0,36.0))

and the data statement on line 10 of the rats.bug file must be changed to

data in "ratsS.dat";

Analysis

A naive run, using no diagnostics for convergence, gave the following results for the population
intercept g at time 0 and the population gradient (.

Bugs>update(500) 500
Bugs>monitor (alpha0)
Bugs>monitor (beta.c)
Bugs>update (1000) 1000
Bugs>stats(alpha0)
mean
1.063E+2
Bugs>stats(beta.c)
mean
6.183E+0

updates took 00:00:02

updates took 00:00:04

sd 2.5% : 97.5% CI median
3.590E+0 9.968E+1 1.132E+2 1.061E+2

sd 2.5% : 97.5% CI median
1.095E-1 5.968E+0 6.393E+0 6.179E+0

sample
1000

sample
1000

These results may be compared with Figure 5 of Gelfand et al. (1990) — we note that the mean
gradient of independent fitted straight lines is 6.19.

Gelfand et al. (1990) also consider the problem of missing data, and delete the last observation of
cases 6-10, the last two from 11-20, the last 3 from 21-25 and the last 4 from 26-30. The appropriate
data file is called ratsmiss.dat, and is obtained by simply replacing data values by NA (see below).
The rats.bug file only has to change the data declaration to data Y in "ratsmiss.dat"; we
note that this is the only change necessary, since the distinction between observed and unobserved
quantities is made in the data file and not the model specification.
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Data file "ratsmiss.dat"

151 199 246 283 320
145 199 249 293 354

163 NA NA NA NA

Gelfand et al. (1990) focus on the parameter estimates and the predictions for the final 4 observa-
tions on rat 26. These predictions are obtained automatically in BUGS by monitoring the relevant
Y[] nodes. The following is a sample run.

Bugs>update(500) 500 updates took 00:00:02
Bugs>monitor (beta.c)

Bugs>monitor (Y[26,])

Bugs>update(1000) 1000 updates took 00:00:04
Bugs>stats(beta.c)

mean sd 2.5% : 97.5% CI median sample

6.537E+0 1.411E-1 6.260E+0 6.811E+0 6.533E+0 1000
Bugs>stats(Y[26,])

mean sd 2.5%, + 97.5) CI median sample

[26,2] 2.044E+2 8.937E+0 1.865E+2 2.212E+2  2.046E+2 1000

[26,3] 2.497E+2 1.076E+1 2.294E+2 2.706E+2  2.493E+2 1000

[26,4] 2.952E+2 1.280E+1 2.700E+2 3.216E+2  2.949E+2 1000

[26,5] 3.413E+2 1.603E+1 3.115E+2 3.742E+2  3.401E+2 1000

We note that our estimate 6.54 of (3, is substantially greater than that shown in Figure 6 of Gelfand
et al. (1990). However, plotting the growth curves indicates some curvature with steeper gradients
at the beginning: the mean of the estimated gradients of the reduced data is 6.66, compared to
6.19 for the full data. Hence we are inclined to believe our analysis. The observed weights for rat
26 were 207, 257, 303 and 345, compared to our predictions of 204, 250, 295 and 341.



2 Pump: conjugate gamma-Poisson hierarchical model

George et al. (1993) discuss Bayesian analysis of hierarchical models where the conjugate prior is
adopted at the first level, but for any given prior distribution of the hyperparameters, the joint
posterior is not of closed form. The example they consider relates to 10 power plant pumps. The
number of failures z; is assumed to follow a Poisson distribution

z; ~ Poisson(6;t;) 1=1,...,10

where 6; is the failure rate for pump i and ¢; is the length of operation time of the pump (in 1000s
of hours). The data is shown below.

Pump | 1 2 3 4 5 6 T8 9 10
t; 94.3 15.7 629 126 524 314 1.05 1.05 21 105
; 5 1 5 14 3 19 1 1 4 22

A conjugate gamma prior distribution is adopted for the failure rates:
0; ~ Gamma(a,f), 1=1,...,10
George et al. (1993) assume the following prior specification for the hyperparameters « and

a ~ Exponential(1.0)
B ~ Gamma(0.1,1.0)

They show that this gives a posterior for 8 which is a gamma distribution, but leads to a non-
standard posterior for a. Consequently, they use the Gibbs sampler to simulate the required
posterior densities.

Figure 2 shows the graph corresponding to the above model, and the associated BUGS analysis is

Qo

pump i

given below.

)

Figure 2: Graphical model for pump example.
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Model specification for pump example

model pump;

const
N = 10; # number of pumps

var
thetal[N], # failure rate of each pump
x[N], # number of failures per pump
t[N], # length of operation time
alpha,beta, # parameters of gamma prior
lambda[N] ; # theta[l*t[]

data t, x in "pump.dat";
inits in "pump.in";

{
for (i in 1:N){
thetalil ~ dgamma(alpha,beta) ;
lambda[i] <- thetal[il*t[i];
x[i] ~ dpois(lambdalil);
}
alpha ~ dexp(1.0);
beta ~ dgamma(0.1,1.0);
}

Analysis A BUGS run of 1000 iterations took 2 seconds after a 500 iteration burn-in. Posterior
mean estimates for selected parameters are listed below, together with the corresponding estimates
obtained by George et al. (1993) (denoted GMES estimate).

variable | BUGS estimate (95% interval) GMES estimate

o, 0.06 (0.02, 0.12) 0.06
02 0.10 (0.01, 0.30) 0.10
Bo 1.58 (0.47, 3.39) 1.59
010 1.97 (1.24, 2.93) 1.99
o 0.73 (0.28, 1.38) 0.70
B 0.98 (0.24, 2.36) 0.90
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3 Seeds: random effects logistic regression

This example is taken from Table 3 of Crowder (1978), and concerns the proportion of seeds that
germinated on each of 21 plates arranged according to a 2 x 2 factorial layout by seed and type of
root extract. The data are shown below, where r; and n; are the number of germinated and the
total number of seeds on the ith plate, s = 1,..., N. These data are also analysed by, for example,
Breslow and Clayton (1993).

seed O. aegyptiaco 75 seed O. aegyptiaco 73
Bean Cucumber Bean Cucumber

r nr/o|l r nr/opl r nor/al r n or/n
10 39 26| 5 6 83| 8 16 50| 3 12 .25
23 62 37|53 T4 72|10 30 .33 |22 41 .54
23 81 28|55 72 .76 8 28 .29|15 30 .50
26 51 b1 |32 51 63|23 45 .51 |32 51 .63
17 39 44,46 79 58| 0 4 .00 3 7 .43
10 13 .77

The model is essentially a random effects logistic, allowing for over-dispersion. If p; is the probability
of germination on the ith plate, we assume

r; ~ Binomial(p;, n;)
logit(p;) = o+ a171; + Qa2 + 127172 + b;
b; ~ Normal(0, 7).

where z1;, T9; are the seed type and root extract of the ¢th plate, and an interaction term aq9x1z9
is included. «q, a1, a9, @19, T are given independent “noninformative” priors. The graphical model
is shown in Figure 3.

The deviance for this model may be calculated within BUGS as a logical node. The log-likelihood
for an observation r; arising from a binomial model with denominator n; and success probability

pi 18
llike; = r;log(p;) + (n; —7i)log(l — p;)
The saturated log likelihood for the binomial model is

llike.sat; = r; 108(%) + (ni — i) log(1 — %)
i 7

Hence the deviance is given by 2(3°; llike.sat; — Y, llike;).
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Figure 3: Graphical model for the seeds example

Model specification for the seeds example

model seeds;

const
N = 21; # number of samples

var
alpha0O, alphal, alpha2, alphal2, tau, sigma,
x1[N], x2[N], p[N], r[N], n[N], b[N],
11ike[N], 1like.sat[N], deviance;

data r,n,x1,x2 in "seeds.dat";
inits in "seeds.in";
{
alpha0 ~ dnorm(0.0,1.0E-6); # intercept
alphal ~ dnorm(0.0,1.0E-6); # seed coeff
alpha? ~ dnorm(0.0,1.0E-6); # extract coeff
alphal2 ~ dnorm(0.0,1.0E-86);
tau ~ dgamma(1.0E-3,1.0E-3); # 1/sigma”2
sigma <- 1.0/sqrt(tau);
for (i in 1:N) {
b[i] ~ dnorm(0.0,tau);
logit(p[i]) <- alphaO + alphal*x1[i] + alpha2x*x2[i] +
alphal2*x1[i]*x2[i] + b[i];

r[i] ~ dbin(p[il,n[il);
# log likelihood for sample i:
11like[i] <- r[il*log(p[i]) + (n[i]l-r[il)*1log(1-p[il);

# log likelihood for saturated model:

1like.sat[i] <- r[i]l*log(r[il/n[i]) + (m[il-r[i])*log(l-r[il/n[il);
}
deviance <- 2 * (sum(llike.sat[]) - sum(1llike[]));
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Initial values in S object format
list(tau = 1, alpha0 = 0, alphal = 0, alpha2 = 0, alphal2 = 0)
Analysis
We may compare simple logistic, maximum likelihood (from EGRET), penalized quasi-likelihood

(PQL) (Breslow and Clayton, 1993) and BUGS results, using a burn-in of 500 iterations and estima-
tion based on 1000 samples.

Logistic maximum PQL BUGS

regression likelihood
variable g+t SE g+ SE 8+ SE B+t SE
constant () -.558 £ .126  -.548 + .167 -.542 £+ .190 -.542 +.178
seed (aq) 146 £ .223 097 £ .278  .077 £ .308  .028 +.340
extract (az) 1.318 £ .177 1.337 £ .237 1.339 + .270 1.368+.253
interaction (ai12) | -.778 £ .306 -.811 + .385 -.825 + 430 -.792+.426
scale (o) — 236 + .110 313 £ 121 .292+.152

BUGS produces samples for the deviance just like any other node. Hence we obtain a distribution
for the deviance as shown in Figure 4 (see also the section “Model criticism and selection” in the
BUGS manual 0.50).

0.05
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0.03
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Figure 4: Posterior distribution of the deviance for the seeds example
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3.1 Constraining random effects to sum to zero

It is possible to impose a constraint that random effects add to zero, which may be useful when, for
example, using intrinsic priors in which the prior mean is not specified. Alternatively, one might
be interested in estimating fixed effect coefficients for the particular individuals under study, rather
than coefficients for the population from which it is assumed the individuals are drawn

The model is achieved by creating additional independent random effects ¢; and setting b; = ¢; — €,
so that the marginal prior distributions are b; ~ Normal(0, %T) and the b’s sum to zero. The
model is contained in seedszro.bug, and its essentials are shown below.

alpha0O ~ dnorm(0.0,1.0E-6); # intercept

tau * dgamma(1.0E-3,1.0E-3); # 1/sigma”2
for (i in 1:N) {
c[i] ~ dnorm(0.0,tau);
b[i] <- c[i] - mean(c[]1); # make sure b’s add to zero
logit(p[i]) <- alphaO + alphal*x1[i] + alpha2*x2[i] +
alphal2*x1[i]*x2[i] + b[i];
r[i] = dbin(p[i],n[il);

}

This slows down the sampling somewhat: after a 500 iteration burn-in, 1000 iterations took 2%
minutes, with results ag = —.565+£.177, a1 = .093+.302, ap = 1.370+.272, a2 = —.861+.455,6 =
.282 4+ .158.

3.2 An alternative parameterisation for the precision of the random effects —
the unobserved covariate model

It is possible to parameterise the unknown variability between the random effects directly in the
linear predictor, while the random effects have a completely specified distribution. The random
effect then appears as an unobserved covariate, with its coefficient o being the standard deviation
of the random effects. In this case, we obtain the model

r; ~ Binomial(p;,n;)
logit(p;) = ao+ a1z1;i + aozo; + 121,72 + ob;
b; ~ Normal(0,1).

If we gave o the “non-informative” prior distribution p(o) =~ 1/0 (approximately equivalent to a
I'(e, €) distribution with mean 1 and variance 1/¢), then we would have essentially the same model
as when parameterised in terms of the b’s having precision 7, and 7 given a non-informative prior
p(1) = 1/7. However, p(c) = 1/0 is not log-concave in o (Gilks and Wild, 1992), and so currently
cannot be implemented in BUGS unless there is a conjugate likelihood (note that the prior p(7) ~ 1/7
is used extensively in these examples, but always when there are conjugate normal-likelihood terms).

We may however, use the exponential prior p(c) = e~?. We would expect, however, some tendency
of the estimate of o to be pulled towards 1 compared with the original analysis in terms of 7. File
seedssig.bug contains this model, whose essentials are shown below.
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sigma ~ dexp(1.0);
for (i in 1:N) {
b[i] ~ dnorm(0.0,1.0);
logit(p[i]) <- alphaO + alphal*x1[i] + alpha2*x2[i] +
alphal2*x1[i]*x2[i] + sigma * b[i];
r[i] ~ dbin(p[il,n[il);
}

Running this model for 1000 iterations after a 500 burn-in produced estimates of ¢y = —.526 +
213, a1 = .016 £+ .356, 0> = 1.318 + .302,a72 = —.777 + .472,6 = .340 £+ .151. We note that the
expected inflation of o towards 1.

3.3 A uniform prior for the standard deviation of the random effects

An alternative non-informative prior distribution for ¢ is to let p(o) be locally uniform on a range
(0,7). This may be achieved in BUGS using 2 different parameterizations: (i) the unobserved
covariate model (§3.2) with o ~ Uniform(0,r) instead of o ~ Gamma(1,1); (ii) the original model
parameterized in terms of the b’s having precision 7, but giving 7 a Pareto(%, r~2) prior instead of a
Gamma(0.001,0.001) prior (see section on “Non-informative priors” in the BUGS manual 0.50). The
BUGS code for the above models (with r=10) may be found in seedsuni.bug and seedspar.bug
respectively. The results of a 5000 iteration BUGS run following a 1000 iteration burn-in are shown
below.

Uniform(0,10) on ¢ Pareto(3,0.01) on 7
variable B+ SE B+ SE
constant (ap) -.563 + .187 -.552 +.211
seed (a1) 114 + .286 .081 + .356
extract (o) 1.393 + .289 1.428 + .319
interaction (aq2) -.912 £+ .438 -.940 £+ .519
scale (o) 364 + .161 377 £.146
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4 Surgical: institutional ranking

This example considers mortality rates in 12 hospitals performing cardiac surgery in babies. The
data are shown below.

Hospital
A B C D E F G H I J K L
No. of
ops. n |47 148 119 810 211 196 148 215 207 97 256 360
No. of

deathsr | 0 18 8 46 8 13 9 31 14 8 29 24

The number of deaths r; for hospital ¢ are modelled as a binary response variable with ‘true’ failure
probability p;:

r; ~ Binomial(p;,n;), i=1,.,12

4.1 Fixed effects model
We first assume that the true failure probabilities are independent (i.e. fixed effects) for each

hospital. This is equivalent to assuming a standard non-informative prior distribution for the p;’s,
namely:

pi ~ Beta(1.0,1.0)

The BUGS code is given below.
BUGS code for fixed effects model

model surg.fix;

const
N = 12; # number of hospitals
var
r[N], # number of deaths
n[N], # total number of operations
pN]; # ‘true’ probability of death

data r, n in "surgical.dat";
inits in "surgical.in";

{
for (i in 1:N) {
r[i] = dbin(p[il, n[il]);
pli]l = dbeta(1,1);
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4.2 Random effects model

A more realistic model for the surgical data is to assume that the failure rates across hospitals are
similar in some way. This is equivalent to specifying a random effects model for the true failure
probabilities p; as follows:

logit(ps) = bi
b; ~ Normal(y,T)

Standard non-informative priors are then specified for the population mean (logit) probability of
failure, u, and precision, 7.

Figure 5 shows the graph corresponding to the above model, and the essentials of the BUGS code

are given below.
\/

o] (e

NG

Hospital i
Figure 5: Graphical model for the random effects surgical example

BUGS code for random effects model

for (i in 1:N) {
r[i] ~ dbin(p[il, n[il]);
logit(p[il) <- bl[il;
b[i] ~ dnorm(mu, tau);
}
# Priors:
mu ~ dnorm(0.0,1.0E-6);
pop.mean <- exp(mu)/(l+exp(mu)); # population mean on natural scale
tau ~ dgamma(1.0E-3, 1.0E-3); sigma <- 1.0/sqrt(tau);

Analysis & Results

After a 500 iteration burn-in, a BUGS run of 1000 iterations took 1 second for the fixed effects model,
and 7 seconds for the random effects model. Figure 6 shows the posterior mean and 95% credible
interval for the estimated surgical mortality rate in each hospital for both the fixed and random
effect models.
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Figure 6: Fixed and shrunk estiamtes of the surgical mortality rates in each hospital. Numbers
in brackets show the observed nuber of deaths and the total number of operations. The vertical
line at p = 7.3% indicates the population mean failure rate (pop.mean) estimated from the random

effects model
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4.3 Ranking each hospital

A particular strength of the Markov chain Monte Carlo (Gibbs sampling) approach implemented
in BUGS is the ability to make inferences on arbitrary functions of unknown model parameters. For
example, we may compute the rank probabilty of failure for each hospital at each iteration. This
yields a sample from the posterior distribution of the ranks which may be summarised to provide
an estimate of the mean or median rank for each hospital, plus a 95% credible interval. The latter
captures the (typically large) uncertainty associated with the rank position of each hospital.

We compute the ranks in BUGS using the step function as follows

for (i in 1:N) {
for (j in 1:N) {
not.less.than[i,j] <- step(plil; - p[j1); ,
}
rank[i] <- sum(not.less.than[i,]);

}

where step(x) = 1 if X > 0 and 0 otherwise. The ith row of the array not.less.than[] thus con-
tains a 1 in columns co%responding to hospitals with an equal or lower estimated failure probability
than hospital ¢, and zeros elsewhere. Summing this row yields the total number of hospitals who
have a ‘better’ (lower) failure rate than hospital 7, and thus correpsonds to that hospital’s rank.

Results G

Figure 7 shows the posterior mean and 95% credible interval for the estimated surgical mortality
rate in each hospital fomboth the fixed and random effect models. These interval estimates illustrate
the considerable uncertainty associated with ‘league tables’: there are only 2 hospitals (H and K)
whose intervals exclude the median rank and none whose intervals fall completely within the lower
or upper quartiles. 0 °

® Mean rank — 95% C.1.

H (31/215) e

K (29/256) L e

B (18/148) |

J(8197) ‘ o

1
®
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1
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L (24/360) | .
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A (0147)
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E (8/211) - ¢ *— : ‘
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RANK

Figure 7: Posterior means and 95% credible intervals for the rank of each hospital. Vertical dashed
lines indicate the position of lower and upper quartiles and median rank
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5 Salm: extra-Poisson variation in dose-response study

Breslow (1984) analyses some mutagenicity assay data (shown below) on salmonella in which three
plates have been processed at each dose 7 of quinoline and the number of revertant colonies of TA98
Salmonella measured. A certain dose-response curve is suggested by theory.

Dose of quinoline (ug per plate)

0 10 33 100 333 1000
15 16 16 27 33 20
21 18 26 41 38 27
29 21 33 60 41 42

This is assumed to be a random effects Poisson model allowing for over-dispersion. Let z; be the
dose on the plates ¢1,42 and 3. Then we assume

yij ~ Poisson(u;;)
logpij = a+ Blog(z; +10) +yzi + Nij
Xij ~ Normal(0,7).

a, 8,7, T are given independent “noninformative” priors. The appropriate graph is shown in Fig-
ure 8.

As for the Seeds example, we may calculate the deviance as a deterministic node in BUGS. The
log-likelihood for an observation y;; arising from a Poisson model with mean p;; is

llike;; = w;jlog(mij) — pij + constant
The saturated log-likelihood for the Poisson model is
llike.sat;; = w;jlog(yij) — yij + constant
and the deviance is given by 2(3°;; llike.sat;; — 3=, llike;;).

; ; I Q
N, AY A
\ 1
S \ /
\s AY ’
'~ AY
.

.a repeats j

doses i

Figure 8: Graphical model for salm example
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Salm: model specification in BUGS

Note that each covariate has been centred about its mean in the BUGS code. This greatly improves
the stability and convergence of the simulations.

model salm;

const
doses = 6, plates = 3;

var
alpha, alpha.star, beta, gamma, mu[doses,plates], y[doses,plates],
lambda[doses,plates], sigma, tau, x[doses], logx[doses],
llike[doses,plates], 1llike.sat[doses,plates], deviance;

data y, x in "salm.dat";

inits in "salm.in";

{
alpha.star ~ dnorm(0.0,1.0E-4); # intercept
beta ~ dnorm(0.0,1.0E-4); # mutagenic effect
gamma ~ dnorm(0.0,1.0E-10); # toxic effect
tau ~ dgamma(1.0E-3,1.0E-3); # Gamma prior on precision

sigma <- 1.0/sqrt(tau);
for(i in 1:doses){
for(j in 1:plates){
log(mu[i,j]) <- alpha.star + beta*(logx[i]-mean(logx[]))
+ gamma* (x[i]-mean(x[])) + lambdali,j];

y[i,j] “ dpois(muli,j]1);
lambdali,j] ~ dnorm(0.0,tau);
1like[i,j] <- yli,jl*log(muli,jl) - muli,j];
1llike.sat[i,j] <- y[i,jl*log(yl[i,jl) - y[i,jl;
}
logx[i] <- log(x[i]+10);

}
alpha <- alpha.star - beta*mean(logx[]) - gamma*mean(x[]);
deviance <- 2 * (sum(llike.sat[,]) - sum(1like[,]));

}

Analysis

1000 iterations took 12 seconds after a 500 iteration burn-in. The resulting parameter estimates and
standard errors can be compared with those of Breslow (1984) using a quasi-likelihood approach.
Also shown below are the results of re-parameterizing the random-effects precision (7) in terms of
a Pareto (0.5, 0.04) prior, which is equivalent to assuming a uniform prior on (0, 5) for o.

Quasi-likelihood BUGS BUGS
(Gamma prior on 7) (Pareto prior on 7)

o 2.203 £ .364 2.201 £+ .392 2.189 + 410

8 311 +£.099 292 £+ 141 311 £ .108

y —.000974 + .000437  -.000911 + .000615 -.000999 + .000450

o

D

.268 .266 + .088 .286 + .083
eviance - 18.89 + 6.26 18.02 £+ 5.90
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6 Equiv: bioequivalence and missing data in a cross-over trial

The table below shows some data from a two-treatment, two-period crossover trial to compare 2
tablets A and B, as reported by Gelfand et al. (1990).

Subject 7 | Sequence seq Period 1 Tj;; Period 2 T
1 AB 1 1.40 1 1.65 2
2 AB 1 1.64 1 1.57 2
3 BA -1 1.44 2 1.58 1
8 AB 1 1.25 1 1.44 2
9 BA -1 1.25 2 1.39 1
10 BA -1 1.30 2 1.52 1

The response Yj; from the ith subject (i = 1,...,10) in the kth period (k = 1,2) is assumed to be
of the form

Yir. ~ N(mig,71)
_ Tik—1¢ k—1T ]
mig = p+ (1) §+(—1) =+

2
4 ~ N(0,72)
where T;;, = 1,2 denotes the treatment given to subject ¢ in period k, u, ¢, m are the overall mean,
treatment and period effects respectively, and §; represents the random effect for subject 7. The

graph of this model is shown in Figure 9.

Two methods of analysis are shown. The first exploits the transformation used by Gelfand et al.
(1990) which essentially integrates out the random effects:

Y+ Yo

Yi — Yo T+ seq ¢
—_ N(——,2
2 ()
where seq = 1 for sequence AB, —1 for sequence BA, and 73 = 1= +27‘2 ! The BUGS code is given

on the next page. The fixed effects u, m and ¢ are given vague normal priors, and the precisions
are all given gamma(.001,.001) with the constraint that 73 < 74.

ONIONORO
@Q@

N
AN

el

patient i

Figure 9: Graphical model for equiv example
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Model specification for equiv example

model equiv;

const
N = 10, # number of patients
P=2; # number of periods
var
Y[N,P], # response for patient i in period k
m[N,P], # expected response for patient i in period k
T[N,P], # treatment for patient i in period k
seq[N], # sequence (1=AB; -1=BA)
Y.mean[N], # individual means
Y.diff[N], # individual differences
mu.diff [N], # expectations of individual differences
mu, # overall mean
phi, # treatment effect (log scale)
theta, # treatment effect
equivalence, # 1 if effect between 0.8 and 1.2
pi, # period effect
d[N], # subject random effect
taul,tau2,tau3, # precisions
sigmal,sigma2, # s.d.
sigma3;

data seq, T, Y in "equiv.dat";
# data seq, T, Y in "equivmiss.dat";
inits in "equiv.in";

{

# Transformed model

#

# for (i in 1:N) {

# Y.mean[i] <- mean(Y[i,]);

# Y.diff[i] <- (Y[i,1] - Y[i,2]1)/2;

# Y.diff[i] ~ dnorm(mu.diff[i], taul);
# mu.diff[i] <- .5 * pi + seql[i] * phi /2;
# Y.mean[i] ~ dnorm(mu, tau3);

# 2

# taul ~ dgamma(0.001, 0.001)I(tau3,);

# sigmal <- sqrt(2/taul);

# tau3 ~ dgamma(0.001, 0.001)I(,taul);

# sigma3 <- sqrt(2/taud);

# sigma2 <- sqrt(1/tauld - 1/taul);
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# Original model
for (i in 1:N) {
d[i] ~ dnorm(0,tau2); # Subject random effect
for (k in 1:P){
Y[i,k] =~ dnorm(m[i,k], taul);
m[i,k] <- mu + pow(-1, T[i,k]-1)* phi /2 +
pow(-1, k-1)* pi /2 + d[i]
}
}
taul ~ dgamma(0.001, 0.001); sigmal <- sqrt(1l/taul);
tau2 ~ dgamma(0.001, 0.001); sigma2 <- sqrt(1l/tau2);

pi ~ dnorm(0, 1.0E-06);

phi ~ dnorm(O, 1.0E-06);

mu ~ dnorm(0, 1.0E-06);

theta <- exp(phi);
# 1 if 0.8 < theta < 1.2

equivalence <- step(theta - 0.8) - step(theta - 1.2);
}

We note the use of initial transformations, the symmetric use of the I(taul3],) construction to
specify the inequality between 73 and 7. We also use the step function to indicate whether § = e
lies between .8 and 1.2, which traditionally determines bioequivalence.

Gelfand et al. (1990) also report the effect of removing observations Y11, Y3z, Yso from the data.
This is easily achieved by substituting NA for their values in the data file.

Analysis

5000 iterations took between 3 and 15 seconds after a 500 iteration burn-in. The results are shown
below.

Quantity Transformed (S.E.) | Original (S.E.) | Missing (S.E.)
6 =e? .99 (0.05) .99 (0.05) .98 (.07)
P(8<60<1.2) .999 - .999 - .989 -
o1 10 (.03) 11 (.03) 14 (.04)
o 15 (.05) 14 (0.05) 13 (.06)
Vi1 (1.40) 138  (0.19)
Y32 (1.58) 157 (0.18)
Yoo (1.31) 143 (0.20)

We note that our conclusions, that the treatments are extremely similar, are substantially different
from those of Gelfand et al. (1990) who concluded that the probability of bioequivalence was small.
However, we are inclined to believe our results in view of the fact that the average responses under
the two treatments are very close (1.432 and 1.440), and our predictions of the missing data points
are better than those shown in Gelfand et al. (1990).
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7 Dyes: variance components model

Box and Tiao (1973) analyse data first presented by Davies (1967) concerning batch to batch
variation in yields of dyestuff. The data (shown below) arise from a balanced experiment whereby
the total product yield was determined for 5 samples from each of 6 randomly chosen batches of
raw material.

Yield (in grams)

1545 1440 1440 1520 1580
1540 1555 1490 1560 1495
1595 1550 1605 1510 1560
1445 1440 1595 1465 1545
1595 1630 1515 1635 1625
1520 1455 1450 1480 1445

Batch

S v W~

The object of the study was to determine the relative importance of between batch variation versus
variation due to sampling and analytic errors. On the assumption that the batches and samples vary
independently, and contribute additively to the total error variance, we may assume the following
model for dyestuff yield:

Yij ~ Normal(,ui,Twithm)
/'I'Z ~ Norma;l(ey Tbetween)

where y;; is the yield for sample j of batch ¢, y; is the true yield for batch ¢, Tythin is the inverse
of the within-batch variance o2, . (i.e. the variation due to sampling and analytic error), 6 is the
true average yield for all batches and Tpeppeen is the inverse of the between-batch variance Ugetw cen
The total variation in product yield is thus Jfotal = aﬁ,ithm -l-O'getw cens and the relative contributions
of each component to the total variance are fuithin = 02;nin/Toar A0 foetween = Trepween! T otal-
We assume standard non-informative priors for 0, Tyithin and Tpetween-

The graph for this model is shown in Figure 10 and the essentials of the BUGS code are given below.

T between

iy
Sl

sample |

batch i

Figure 10: Graphical model for the dyes example
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Dyes: model specification in BUGS

for (i in 1:BATCHES) {
for (j in 1:SAMPLES) {
y[i,j] ~ dnorm(mul[il], tau.within);
}
mu[i] ~ dnorm(theta, tau.between);

}

theta ~ dnorm(0.0, 1.0E-10);
tau.within ~ dgamma(0.001, 0.001); sigma2.within <- 1/tau.within
tau.between ~ dgamma(0.001, 0.001); sigma2.between <- 1/tau.between

sigma2.total <- sigma2.within + sigma2.between;
f.within <- sigma2.within/sigma2.total;
f.between <- sigma2.between/sigma2.total;

Note that the above model formulation uses the concept of hierarchical centering (Gelfand et al.,
1995) (see Section ‘Parameterisation’ in the BUGS manual version 0.5). Box and Tiao use a different
parameterisation given below

Yij = 0+ b+ wj;
2
Var(wij) = Oyithin
2
Var ( b; ) =  Obpetween

A literal translation of this parameterisation into the BUGS language would lead to the following
declaration

y[i,j] <- theta + b[i] + w[i,j];

However, it does not make sense to declare y[i,j] as a deterministic node in BUGS since the values
of y[i,j] are already known and are read in from the data file. Instead, we could use the following
representation:

for (i in 1:BATCHES) {
for (j in 1:SAMPLES) {
y[i,j] ~ dnorm(mul[i], tau.within);

}
mu[i] <- theta + b[il;
bl[i] ~ dnorm(0.0, tau.between);

}

The above model formulation should yield parameter estimates equivalent to those obtained using
the hierarchically centered model, and is generally the form used in our examples.

Analysis

After a 5000 iteration burn-in, a further 50000 iterations took 19 seconds. (Note that a relatively
long run was required because of the high autocorrelation between successively sampled values of
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some parameters. Such correlations reduce the ‘effective’ size of the posterior sample, and hence
a longer run is needed to ensure sufficient precision of the posterior estimates). The posterior
means, medians and 95% intervals for selected quantities are shown below. Note that the posterior
distribution for afetwem has a very long upper tail: hence the posterior mean is considerably larger
than the median. Also shown are the Box and Tiao (B&T) estimates of 02, . and 02, .., Obtained
by classical analysis of variance. Here, afetw cen 18 estimated by the difference of the between- and
within-batch mean squares divided by the number of batches—1. In cases where the between-batch
mean square < within-batch mean square, this leads to the unsatisfactory situation of a negative
variance estimate. Computing a confidence interval for o2, .., is also difficult using the classical

approach due to its complicated sampling distribution.

BUGS B&T
mean median 95% C.I. estimate

0| 1528 1528 (1483,1572) -

02 hin | 2991 2760 (1551, 5736) 2451
Ot iween | 2376 1393 (0.013, 10694) 1764

.fbetween 0.35 0.35 (0-00, 0.82) —

We note that there is minimal information in the data concerning afetw cens and hence there will be
considerable sensitivity to the prior chosen.
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8 Stacks: robust and ridge regression

Birkes and Dodge (1993) apply different regression models to the much-analysed stack-loss data
of Brownlee (1965). This features 21 daily responses of stack loss (y), the amount of ammonia
escaping, with covariates being air flow (z1), temperature (z2) and acid concentration (z3). Part
of the data is shown below.

Day Stack loss y air flow z;, temperature zo acid z3

1 42 80 27 89
2 37 80 27 88
21 15 70 20 91

We first assume a linear regression on the expectation of y, with a variety of different error struc-
tures. Specifically

pi = Bo+ Brzin + Pezio + Pazis
y; ~ Normal(u;, 7)

y; ~ Double exp(u;, 7)

y; ~ Logistic(u;, 1)

yi ~ (i 7,d)

where z;; = (z;; — Tj)/sd(x ;) are covariates standardised to have zero mean and unit variance.
01, P2, B3 are initially given independent “noninformative” priors.

Maximum likelihood estimates for the double expontential (Laplace) distribution are essentially
equivalent to minimising the sum of absolute deviations (LAD), while the other options are alter-
native heavy-tailed distributions. A ¢ on 4 degrees of freedom has been chosen, although with more
data it would be possible to allow this parameter also to be unknown.

We also consider the use of ‘ridge regression’, intended to avoid the instability due to correlated
covariates. This has been shown (Lindley and Smith, 1972) to be equivalent to assuming the
regression coefficients of the standardised covariates to be exchangeable, so that

B;j ~ Normal(0,¢), j=1,2,3.

In the following example we extend the work of Birkes and Dodge (1993) by applying this ridge
technique to each of the possible error distributions.

Birkes and Dodge (1993) suggest investigating outliers by examining residuals Y; — p; greater than
2.5 standard deviations. We can calculate standardised residuals for each of these distributions,
and create a variable outlier[i] taking on the value 1 whenever this condition is fulfilled. Mean
values of outlier[i] then show the confidence with which this definition of outlier is fulfilled.

The appropriate graph for the ridge regression model is shown in Figure 11.

The following BUGS code will fit all the necessary models by changing the lines that are commented
out: the version shown here fits a ridge regression for logistic errors.
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Stacks: model specification in BUGS

model stacks;
const

p =3, # number of covariates
N = 21, # number of observations
PI = 3.141593;

var

x[N,p], # raw covariates
z[N,p] , # standardised covariates
Y[N] ,mu[N], # data and expectations
stres[N], # standardised residuals
outlier[N], #

#

#

#

betal,betalp],

indicator if |stan res| > 2.5
standardised intercept, coefficients

b0,blp], unstandardised intercept, coefficients
phi, prior precision of standardised coefficeints
tau,sigma,d; # precision, sd and degrees of freedom of t distn

data Y,x in '"stacks.dat";
inits in "stacks.in";

{
#

Standardise x’s and coefficients
for (j in 1:p) {

b[j] <- betal[jl/sd(x[,j]) ;

for (i in 1:N) {

z[i,j] <- (x[1,3j] - mean(x[,jl))/sd(x[,jl) ;

}
}
b0 <- betalO-b[1]*mean(x[,1])-b[2]*mean(x[,2])-b[3]*mean(x[,3]);

Model
d <- 4; # degrees of freedom for t
for (i in 1:N) {

Y[i] ~ dnorm(muli],tau);
Y[i] ~ ddexp(muli],tau);
Y[i] ~ dlogis(mu[i],tau);
Y[i] ~ dt(mul[i],tau,d);
mu[i] <- betal0 + beta[1]*z[i,1]+beta[2]*z[i,2]+beta[3]*z[i,3];
stres[i] <- (Y[i] - mulil)/sigma;
outlier[i] <- step(stres[i] - 2.5) + step(-(stres[i]+2.5) );
}
Priors

beta0 ~ dnorm(0,.00001);
for (j in 1:p) {
betal[j] ~ dnorm(0,.00001); # coeffs independent
beta[j] ~ dnorm(0,phi); # coeffs exchangeable (ridge regression)
}
tau ~ dgamma(1.0E-3,1.0E-3);
phi ~ dgamma(1.0E-3,1.0E-3);

standard deviation of error distribution

sigma <- sqrt(1/tau); # normal errors

sigma <- sqrt(2)/tau; # double exponential errors

sigma <- sqrt(pow(PI,2)/3)/tau ; # logistic errors

sigma <- sqrt(d/(taux(d-2))); # t errors on d degrees of freedom
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Figure 11: Graphical model for stacks example

A BUGS run of 500 burn-in 4+ 1000 iterations took between 4 and 14 secs for each model and gave the
following output, including observations with probability greater than 0.1 of being outliers. Included
are the results of Birkes and Dodge (1993) (B&D) for least squares, least absolute deviation (LAD)
and ridge regression.

bo b1 by b3 o outliers
s.d. s.d. sd sd s.d.

(B&D)

Least squares -39.9 .72 130 -.15 3.24

LAD -39.7 83 b7 -.06 217

Ridge -40.6 .69 131 -.13

Independence

Normal -39.5 .71 1.32 -.16 3.37 #21
12.4 .18 .36 .16 .62

D Exp -388 .83 .79 -12 344 #1,34,21
9.3 .14 .35 .13 .85

Logistic -40.0 .79 1.04 -.14 3.35 #3,4,21
10.8 .15 .39 .15 .69

t4 -40.5 .84 .85 -.12 347 #4,21
10.2 .15 .38 .18 .81

Ridge

Normal -41.0 .67 134 -12 3.41 #21
12.6 .15 .38 .17 .65

D Exp -38.8 .83 .79 -12 349 #1,34,21
9.2 .14 .35 .18 .88

Logistic -40.0 .79 1.04 -.14 3.34 #1,3,4,21
11.6 .15 .39 .16 .76

t4 -40.5 .84 .85 -.12 347 #4,21
9.7 .14 .85 .12 .81

We note the similar results between the Birkes and Dodge methods and the BUGS runs, and the
lack of influence of the ridge technique in this context.
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9 Epil: repeated measures on Poisson counts

Breslow and Clayton (1993) analyse data initially provided by Thall and Vail (1990) concerning
seizure counts in a randomised trial of anti-convulsant therpay in epilepsy. The table below shows

the successive seizure counts for 59 patients. Covariates are treatment (0,1), 8-week baseline seizure
counts, and age in years.

Patient Y7 Yo Y; Yy Trt Base Age
1 5 3 3 3 0 11 31
2 3 5 3 3 0 11 30
3 2 4 0 5 0 6 25
8 40 20 21 12 O 52 42
9 5 6 6 5 0 12 37

59 1 4 3 2 1 12 37

We consider models II and III of Breslow and Clayton (1993), in which Base is transformed to
log(Base/4) and Age to log(Age), and a Treatment by log(Base/4) interaction is included. Also
present are random effects for both individual subjects (b1;) and also subjectxvisit random effects
(bjr) to model extra-Poisson variability within subjects. V4 is an indicator variable for the 4th

visit. Model III is given below: model IT is the same but without the b;; random effect for each
count.

yjk ~ Poisson(u;i)
log jk = o+ aBase log(Base;j/4) 4+ ary/Trt;
aprTrtjlog(Base;/4) + aageAge; + avaVay + bl + b
bl; ~ Normal(0,7y)
bjr ~ Normal(0, 7).

Coefficients and precisions are given independent “noninformative” priors. The appropriate graph

is shown in Figure 12
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Figure 12: Graphical model for epil example, using Model III of Breslow and Clayton (1993)
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Model specification for epil example

model epil3;

const

N = 59, # number of patients

T = 4; # number of clinic visits
var

y[N,T], mu[N,T], b1[N], b[N,T], Base[N], log.Base4[N], Trt[N],
Age[N], log.Age[N], V4[T], BT[N], alpha.Base, alpha.Trt,
alpha.Age, alpha.V4, alpha.BT, alphaO, a0, log.Base4.bar, Trt.bar,
log.Age.bar, V4.bar, BT.bar, tau.bl, tau.b, sigma.bl, sigma.b;
data y in "epily.dat", Trt,Base,Age in "epilcov.dat", V4 in "epilv4.dat";
inits in "epil.in";
{
for(j in 1:N) {
for(k in 1:T) {
log(mu[j,k]) <- a0 + alpha.Base * (log.Base4[j]l-log.Base4.bar)
+ alpha.Trt * (Trt[j]-Trt.bar)
+ alpha.BT * (BT[j] - BT.bar)
+ alpha.Age * (log.Agel[j]l-log.Age.bar)
+ alpha.V4 * (V4[k] - V4.bar)
+ b1[j1 + blj,k1;
y[j,k] ~ dpois(mulj,k]);

blj,k] ~ dnorm(0.0,tau.b); # subject*visit random effects
}
b1[j] ~ dnorm(0.0,tau.bl); # subject random effects
BT[;] <- Trt[j] * log.Base4[j]; # interaction

log.Base4[j] <- log(Base[jl1/4); log.Agel[j]l <- log(Agel[jl);
}
# covariate means:
log.Age.bar <- mean(log.Agel[]);

Trt.bar <- mean(Trt[]);
BT.bar <- mean(BT[]);
log.Base4.bar <- mean(log.Base4[]);
V4.bar <- mean(V4[]);
# priors:
a0 ~ dnorm(0.0,1.0E-4);
alpha.Base  dnorm(0.0,1.0E-4);
alpha.Trt ~ dnorm(0.0,1.0E-4);
alpha.BT ~ dnorm(0.0,1.0E-4);
alpha.Age ~ dnorm(0.0,1.0E-4);
alpha.V4 ~ dnorm(0.0,1.0E-4);
tau.bl ~ dgamma(1.0E-3,1.0E-3); sigma.bl <- 1.0/sqrt(tau.bl);
tau.b ~ dgamma(1.0E-3,1.0E-3); sigma.b <- 1.0/sqrt(tau.b);

# re-calculate intercept on original scale:
alpha0 <- a0 - alpha.Basex*log.Base4.bar - alpha.Trt*Trt.bar
- alpha.BT*BT.bar - alpha.Agex*log.Age.bar - alpha.V4*V4.bar;
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Note that in the BUGS code we have standardized each covariate about its mean to ensure approx-
imate prior independence between the regression coefficients. Without this parameterization we
have found severe convergence problems.

Analysis

For both models, a burn-in of 3000 iterations was followed by a further 6000 iterations. This took
approximately 15 minutes for model IT and 30 minutes for model III, showing the relative slowness
of handling models of this sort. The results may be compared with those of Breslow and Clayton
(1993).

PQL BUGS PQL BUGS
variable coeff £ SE  coeff =+ SE | coeff + SE  coeff + SE
Fized effects
constant -1.25 + 1.2 -1.46 £1.29 | -1.27 £ 1.2 -1.44 + 1.25
Base 87+ .14 .85 + .11 .86 + .13 91 + .13
Trt -91 + 41 -1.10 + .32 | -.93 + .40 -.89 + .42
Base x Trt | .33 £ .21 A3 + .17 34 + .21 31+ .21
Age A7 £+ .36 .54 £+ .35 A7 £ .35 48 + .37
V4 -16 +£ .05 -.16 + .06 -.10 + .09 -.11 + .09
Subject level random effects
o1 .53 + .06 .54 + .07 .48 + .06 .50 + .07
Unit level random effects
o I — 36 +.04 37 +.04
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10 Blocker: random effects meta-analysis of clinical trials

Carlin (1992) considers a Bayesian approach to meta-analysis, and includes the following examples
of 22 trials of beta-blockers to prevent mortality after myocardial infarction.

Study Mortality: deaths/total
Treated Control

1 3/38 3/39

2 7/114 14/116

3 5/69 11/93

4 102/1533 127/1520

20 32/209 40/218

21  27/391 43/364

22 22/680 39/674

In a random effects meta-analysis we assume the true effect (on a log-odds scale) §; in a trial 7 is
drawn from some population distribution. Let r" denote number of events in the control group in
trial 4, and 7] denote events under active treatment in trial ;. Our model is:

r¢ ~ Binomial(p$,nf)
r;.T ~ Binomial(piTa nzT)
logit(Pz‘C ) = K
logit(p;) = pi+3i
d; ~ Normal(d,T).

“Noninformative” priors are given for the y’s. 7 and d. The graph for this model is shown in
Figure 13. We want to make inferences about the population effect d, and the predictive distribution
for the effect 0y in a new trial. Empirical Bayes methods estimate d and 7 by maximum likelihood
and use these estimates to form the predictive distribution p(6new|ci, 7). Full Bayes allows for the

uncertainty concerning d and 7.

l

trial i

Figure 13: Graphical model for blocker example
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Model specification for blocker example
model blocker;

const
Num=22; # Number of studies

var
rt [Num], nt[Num], rc[Num], nc[Num],
pc [Num] , pt[Num], mu[Num], delta[Num],
d, tau, sigma, delta.new;

data rt, nt, rc, nc in "blocker.dat";
inits in "blocker.in";

{
for (i in 1:Num) {
rt[i] “ dbin(pt[i] ,nt[i]);
rclil ~ dbin(pc[il,nc[i]);

logit(pc[il) <- mulil;
logit(pt[i]) <- mu[i] + deltalil;

deltalil ~ dnorm(d,tau);
mu[i] ~ dnorm(0.0,1.0E-5);
}
d ~ dnorm(0.0,1.0E-6);
tau ~ dgamma(1.0E-3,1.0E-3);

sigma <- 1/sqrt(tau);
delta.new ~ dnorm(d,tau);

}

Analysis

A simple BUGS run of 1000 iterations took 23 seconds and gave the following results which may be

compared to those of Carlin (1992).

Carlin BUGS
variable coeff £ SE  coeff £ SE
population mean (d) | -.243 + .071 -.259 + .056
new study (dnew) -.245 + .203 -.263 + .119
scale (o) - .096 + .057

Our estimates are lower and with tighter precision - in fact similar to the values obtained by Carlin
for the empirical Bayes estimator. The discrepancy appears to be due to Carlin’s use of a uniform
prior for ¢2 in his analysis, which will lead to increased posterior mean and standard deviation for
d, as compared to our (approximate) use of p(c?) oc 1/0? (see his Figure 1).
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10.1 A t-distribution as a population prior

In some circumstances it might be reasonable to assume that the population distribution has heavier
tails, for example a t distribution with low degrees of freedom. This is easily accomplished in BUGS
by using the dt distribution function instead of dnorm for ¢ and d,¢y. The BUGS code, for a t
distribution on v = 4 degrees of freedom, is given in blockert.bug, and the essential shown below.

for (i in 1:Num) {

deltali] ~ dt(d,tau,4);

mu[i] ~ dnorm(0.0,1.0E-5);
}
d ~ dnorm(0.0,1.0E-6);
delta.new ~ dt(d,tau,4);

A 1000 iteration run produced an estimate for d of -.241 (SD .072), for e, of -.230 (SD .180) and
for sigma of 0.102 (SD .056), showing little influence in allowing the different shaped distribution,
since there are no outlying studies.

10.2 A hierarchical t-distribution with unknown degrees of freedom

It is possible to treat the degrees of freedom parameter v as an additional unknown random variable
in the model. This is most easily accomplished by specifying v to be a discrete variable. For example,
let v take values 2,4,6,8,10,12,15,20,30 or 50. We then assume a uniform prior over the possible
categories. That is, each value of v is given equal prior probability = 1/number of categories. The
BUGS code is given in blockht.bug, and is shown on the next page.

Analysis

2000 iterations took 67 seconds, after a burn-in of 2000 iterations (note that we have used a longer
burn-in than usual, since the degrees of freedom parameter typically converges quite slowly). This
produced the following estimates: d = -.256 (SD .062); dpewy = -.260 (SD .149); o = .095 (SD .054),
and v = 10.300 (SD 4.746). A t distribution on v = 10.3 degrees of freedom has a slightly heavier
tail than Normal. However, the estimates of d and d,¢, are very similar to those obtained by
assuming a Normal population prior for the true treatment effects in each study, suggesting that
allowing the different shaped distribution has little influence.

The number of categories and choice of values for v is somewhat arbitary. This can influence the
resulting estimates since there is generally little information in the data concerning the value of
v. We have found that a prior which places greater weight on low degrees of freedom, but also
includes values large enough to give an approximately Normal distribution (e.g. v= 30, 50) works
best. Some fine-tuning may be necessary to ensure that ‘jumps’ between successive values of v
are small enough to ensure that the sampler does not get ‘stuck’ on a single value for hundreds of
iterations. In addition, it is not necessary to assume equal prior probabilities for each category of v
(see Verdinelli and Wassweman (1991) for example). Note that assuming a continuous distribution
for v would lead to a non log-concave full conditional distribution which BUGS is currently unable
to sample from — see the Dugongs example for further details of this type of problem.
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Model specification for blockht example

model blockht;

const

Num=22, # Number of studies

Nbins=10; # Number of categories for v
var

rt [Num], nt[Num], rc[Num], nc[Num], pc[Num],
pt [Num] , mu[Num], delta[Num], d, tau, sigma,
delta.new, v, etal[Nbins], k, prior[Nbins];

data rt, nt, rc, nc in "blocker.dat";
inits in "blocker.in";

{
for (i in 1:Num) {
rt[i] “ dbin(pt[i],nt[i]);
rclil ~ dbin(pc[il,nc[i]);

logit(pc[i]l) <- mu[i];
logit(pt[i]) <- mul[i] + deltalil;
deltali] ~ dt(d,tau,v);
mul[i] ~ dnorm(0.0, 1.0E-5);
}
delta.new ~ dt(d,tau,v);
d ~ dnorm(0.0,1.0E-6);
tau ~ dgamma (1.0E-3,1.0E-3);
sigma <- 1/sqrt(tau);

for (n in 1:Nbins) {

prior[n] <- 1/Nbins; # Uniform prior on v
}
k ~ dcat(prior[]);
v <- etalk]; # degrees of freedom for t

# Specify values taken by v: note that these
# could be included in the data file instead

etal[l] <- 2; etal[2] <- 4; etal[3] <- 6;
eta[4] <- 8; etal[b] <- 10 etal[6] <- 12;
etal[7] <- 15; etal8] <- 20; etal9] <- 30;
eta[10] <- 50;
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11 0Oxford: smooth fits to log-odds ratios in case-control studies

Breslow and Clayton (1993) re-analyse 2x2 tables of cases (deaths from childhood cancer) and
controls tabulated against maternal exposure to X-rays, one table for each of 120 combinations of
age (0-9) and birth year (1944-1964). The data may be arranged to the following form.

Strata Exposure: X-rays/total

Cases Controls age year-1954
1 3/28 0/28 9 -10
120 7/32 1/32 1 10

Their most complex model is equivalent to expressing the log(odds-ratio) 1); for the table in stratum
1 as
logy; = a4 Piyear; + Po(year? —22) + b;
b; ~ Normal(0,7).

They use a quasi-likelihood approximation of the full hypergeometric likelihood obtained by con-
ditioning on the margins of the tables.

We let 70 denote number of exposures among the n controls in stratum i, and ! denote number
of exposures for the n} cases. The we assume

r)  ~ Binomial(p?,n?)
r+ ~ Binomial(p;,n})
logit(p;) = pi
logit(p;) = pi+logy

Assuming this model with independent vague priors for the u;’s provides the correct conditional
likelihood. The appropriate graph is shown in Figure 14.

\\\ \ !
\ I
RS \ !

<

\ !

O
table i

Figure 14: Graphical model for oxford example
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Oxford: model specification
model oxford;

const
K=120; # Number of strata

var
ri[K], n1[K], rO[K], nO[K],year[K],
pl[K], pO[K], mu[K], logPsi[K], b[K],
alpha, betal, beta2, sigma, tau;

data r1,n1,r0,n0,year in "oxford.dat";
inits in "oxford.in"

{
for (i in 1:K) {
r0[i] ~ dbin(p0[il,n0[il);
ri[i] ~ dbin(p1[il,n1[i]);

logit(pO[i]) <- mul[il;
logit(p1[il) <- mu[i] + logPsil[il;
logPsi[i] <- alpha + betalxyear[i]
+ beta2*(pow(year[il],2)-22) + bl[il;
blil ~ dnorm(0,tau);
mu[i] ~ dnorm(0.0,1.0E-6)

alpha ~ dnorm(0.0,1.0E-6);
betal ~ dnorm(0.0,1.0E-6);
beta2 ~ dnorm(0.0,1.0E-6);

tau ~ dgamma(1.0E-3,1.0E-3);
sigma <- 1/sqrt(tau);

}

Analysis

A simple BUGS run took 3 minutes for 1000 iterations after a 500 iteration burn-in. The comparison
with the PQL fit of Breslow and Clayton (1993) is as follows.

PQL BUGS
variable coeff + SE coeff + SE
constant («) .566 + .070 .580 + .061
year (1) ~.0469 + .0167 -.0471 + .016
year? — 22(32) | .0071 £ .0033 -.0070 + .0030
scale (o) 15 £ .10 13 + .06
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12 LSAT: latent variable models for item-response data

Section 6 of the Law School Aptitude Test (LSAT) is a 5-item multiple choice test; students score 1
on each item for the correct answer and 0 otherwise, giving R=32 possible response patterns. Boch
and Lieberman (1970) present data on LSAT for N=1000 students, part of which is shown below.

Pattern index | Item response pattern | Freq (m)
1 00000 3

2 00001 6

3 00010 2

30 11101 61

31 11110 28

32 11111 298

Total 1000

12.1 Rasch model

The above data may be analysed using the one-parameter Rasch model (see Andersen (1980),
pp.253-254; Boch and Aitkin (1981)). The probability p;; that student j responds correctly to
item k is assumed to follow a logistic function parameterized by an ‘item difficulty’ or threshold
parameter oy and a latent variable §; representing the student’s underlying ability. The ability
parameters are assumed to have a Normal distribution in the population of students. That is:

logit(pjk) = 9_7' — O, ] = 1, ceey 1000;]{} = 1, ...,5
6; ~ Normal(0,7)

The above model is equivalent to the following random effects logistic regression:

logit(pjk) = ﬂgj — O, _] = 1, ceey 1000;]4,‘ = 1, ...,5
6; ~ Normal(0,1)

where (8 corresponds to the scale parameter (\/g) of the latent ability distribution. We assume
a half-normal distribution with small precision for 3; this represents vague prior information but
constrains 3 to be positive. Standard vague normal priors are assumed for the a;’s. Note that the
location of the a’s depend upon the mean of the prior distribution for 6; which we have arbitrarily
fixed to be zero. Alternatively, Boch and Aitkin ensure identifiability by imposing a sum-to-zero
constraint on the ay’s. Hence we calculate a, = « — @ to enable comparision of the BUGS posterior
parameter estimates with the Boch and Aitkin marginal maximum likelihood estimates.

Boch and Aitkin compute the following likelihood ratio chi-square statistic (deviance) for testing
the assumed model against a general multinomial alternative

R
2 m;
= 2 E 1
G (i:1m, 0g NPi)
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on R — 1 — g degrees of freedom, where ¢ is the number of paramters to be estimated, m; is the
observed number of students scoring response pattern i = 1,...,R=32 and P; is the (unconditional)
probability of a randomly selected student responding with pattern i. Conditional on ability level
0, this probabilty is

5
Py = Hpﬁ’é(l—pme)(l*”’“)
k=1

where pyg = 80 — a and rj; = 0 or 1 according to the value of the kth item in the ith pattern.

To obtain the unconditional probability P;, we integrate over 8 as follows

P, = /Pi|0f(9)d0

where f(0) is the posterior ability distribution. Using Monte Carlo integration and a sample of
simulated values for P;y, we may approximate this integral by

1 (n)
P~ o ZPM
n

where n indexes iteration. That is, we may estimate P; by the posterior mean of ;9. To generate
P;)p within BUGS, we just sample a random ability paramter 6y, from a standard normal at each
iteration, calculate pyjp and substitute this into the equation for F;y above. At the end of the BUGS
run, we calculate the posterior mean of the P;y’s and use this as our estimate of F; in the formula
for G2.

The BUGS code for this model is given on the next page, and the graph is shown in Figure 15.
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Figure 15: Graphical model for LSAT example.
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model LSAT;

const
N = 1000, # number students
R = 32, # number of possible test results
T = b5; # number of tests

var

response[R,T], m[R], culm[R], alpha[T], alT], thetalN], r[N,T],
pIN,T], beta, theta.new, p.thetal[T], p.item[R,T], P.thetal[R];
data response,m,culm in "lsat.dat";
inits in "lsat.in";
{
# Calculate individual (binary) responses to each test from multinomial data
for (j in 1:culm[1]) {
for (k in 1:T) { =r[j,k] <- responsel[l,k]; }
}
for (i in 2:R) {
for (j in culm[i - 1] + 1:culm[i]) {
for (k in 1:T) { r[j,k] <- respomnseli,k]; }
}
}
# Rasch model
for (j in 1:N) {
for (k in 1:T) {
logit(plj,k]) <- betaxthetal[j] - alphalk];
r[j,k] ~ dbern(p[j,k]);
}
thetal[j] ~ dnorm(0,1);
}
# Priors
for (k in 1:T) {
alphalk] ~ dnorm(0,0.0001); alk] <- alphalk] - mean(alphal]);
}
beta ~ dnorm(0,0.0001) I(0,);

# Compute probability of response pattern i, for later use in computing G~2
theta.new ~ dnorm(0,1); # ability parameter for random student
for(k in 1:T) {

logit(p.thetalk]) <- beta*theta.new - alphalk];
for(i in 1:R) {
p-item[i,k] <- pow(p.thetal[k],response[i,k])
* pow((1-p.thetalk]),(1-response[i,k]));
}
}
for(i in 1:R) {
# P_i|theta = PROD_k p_k|theta
P.thetal[i] <- p.item[i,1]*p.item[i,2]*p.item[i,3]*p.item[i,4]*p.item[i,5];
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Note that the data are read into BUGS in the original multinomial format to economize on space
and effort. The 5 x 1000 individual binary responses for each item and student are then created
within the BUGS code using the index variable culm (read in from the data file), where culm[i] =
cumulative number of students recording response patterns 1, 2, ..., 4; ¢ < R.

Analysis

A 2000 iteration BUGS run took 55 minutes after a 1000 iteration burn-in and produced the following
results:

f B&A BUGS mean BUGS normalized mean
estimate (95% C.I.) (95% C.1.)
Item «a a
1 —1.255 | —2.738 (—2.991, —2.490) | —1.258 (—1.459, —1.056)
2 0.476 | —1.004 (—1.163, —0.846) 0.476 (0.337, 0.608)
Threshold 3 1.235 | —0.240 (—0.388, —0.096) 1.242 (1.111, 1.376)
4 0.168 | —1.310 (—1.477, —1.142) 0.169 (0.029, 0.310)
5 —0.625 | —2.109 (—2.323, —1.905) | —0.629 (—0.805, —0.471)
g - 0.762 (0.623, 0.904) - -
G? (on 25 d.f.) 21.80 | 22.08 - - -

! B&A =Boch & Aitkin (1981) Marginal maximum likelihood estimate

12.2 2-parameter probit model

The Rasch model for the LSAT data may be extended to a 2-parameter model, and a normal
cumulative density assumed for the item response function, as follows:

pI“Obit(pjk) = 5k(9] - ’ch); j = 1, ey 1000;]{: = 1, ...,5
6; ~ Normal(0,1)

Here, §j, the slope parameter, provides a measure of how well item k discriminates between indi-
viduals of different abilities. The threshold parameter -y is again a measure of item difficulty. For
computational purposes, it is convenient to re-parameterize the above model as

pI‘Obit(pjk) = 5199]' — Nk, ] = 1, ceey 1000;]{: = 1, ...,5

where 1 = 0xVk-

Note that, as for the 1-parameter Rasch model, we calculate e, = n, — 7, which corresponds to a
sum-to-zero constraint on the item-intercept parameters. In addition, we must impose a constraint
on the slope parameters d; to ensure identifiabililty in the 2-parameter Rasch model. In BUGS this
is achieved by specifying a half-normal prior with scale = 1 for the d;’s; this fixes the population
variance and constrains the slopes to be positive. Alternatively, Boch and Aitkin (1981) apply the
restriction that [[3_, 6y = 1. Hence we also calculate dy = 6 / ([Ti—y 51:)% to enable comparison
of the BUGS and Boch and Aitkin slope estimates. Finally we compute gy = e / di in BUGS; these
correspond to Boch and Aitkin’s ‘sum-to-zero’ constrained threshold estimates.
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The essentials of the BUGS code for the 2 parameter model are given below.

for (j in 1:N) {
for (k in 1:T) {
probit(p[j,k]) <- delta[k]*thetal[j] - etalk];
r[j,k] ~ dbern(plj,k]1);

thetal[j]l ~ dnorm(0,1);
}
for (k in 1:T) {
etalk] ~ dnorm(0,0.0001);
e[k] <- etalk] - mean(etal]); # sum-to-zero constraint

deltal[k] ~ dnorm(0,1) I(0,); # scale = 1, slope +ve
d[k] <- deltalk]/pow(deltal[l]l*deltal2]*deltal[3]
xdelta[4]*deltal[5], 0.2); # PRODUCT_k (d_k) =1

glk] <- el[k]/d[k]; # equivalent to B&A’s threshold parameters
}

Analysis

A 5000 iteration BUGS run took approxiamtely 2 hours after a 5000 iteration burn-in and produced
the following results:

t B&A BUGS mean BUGS normalized mean
estimate (95% CI) (95% CI)
Item 7 g
1 —0.679 | —1.558 (—1.789, —1.395) | —0.699 (—0.890, —0.556)
2 0.316 | —0.601 (—0.708, —0.504) 0.256 (0.159, 0.352)
Threshold 3 0.788 | —0.156 (—0.255, —0.064) 0.704 (0.620, 0.795)
4 0.092 | —0.777 (—0.901, —0.671) 0.080 (0.029, 0.178)
5 —0.517 | —1.204 (—1.358, —1.075) | —0.346 (—0.474, —0.230)
Item ) d
1 0.979 0.410 (0.163, 0.716) 0.995 (0.456, 1.696)
2 1.015 0.428 (0.222, 0.679) 1.047 (0.593, 1.709)
Slope 3 1.265 0.569 (0.317, 0.972) 1.414 (0.778, 2.646)
4 0.948 0.405 (0.204, 0.657) 0.987 (0.541, 1.583)
5 0.840 0.361 (0.143, 0.619) 0.874 (0.407, 1.475)
G? (on 21 d.f.) 21.29 | 21.66 - - -

" B&A =Boch & Aitkin (1981) Marginal maximum likelihood estimate
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13 Bones: latent trait model for multiple ordered categorical re-
sponses

The concept of skeletal age (SA) arises from the idea that individuals mature at different rates: for
any given chronological age (CA), the average SA in a sample of individuals should equal their CA,
but with an inter-individual spread which reflects the differential rate of maturation. Roche et al.
(1975) have developed a model for predicting SA by calibrating 34 indicators (items) of skeletal
maturity which may be observed in a radiograph. Each indicator is categorized with respect to its
degree of maturity: 19 are binary items (i.e. 0=immature or 1=mature); 8 items have 3 grades (i.e.
O=immature; 1=partially mature; 2=fully mature); 1 item has 4 ordered grades and the remaining
6 items have 5 ordered grades of maturity. Roche et al. calculated threshold parameters for the
boundarys between grades for each indicator. For the binary items, there is a single threshold
representing the CA at which 50% of individuals are mature for the indicator. Three-category
items have 2 threshold parameters: the first corresponds to the CA at which 50% of individuals are
either partially or fully mature for the indicator; the second is the CA at which 50% of individuals
are fully mature. Four and five-category items have 3 and 4 threshold parameters respectively,
which are interpreted in a similar manner to those for 3-category items. In addition, Roche et al.
calculated a discriminability (slope) parameter for each item which reflects its rate of maturation.
Part of the BUGS calibrat.dat file, which contains this data as a rectangular array, is shown below.
Columns 1-4 represent the threshold parameters (note the use of the missing value code NA to ‘fill
in’ the columns for items with fewer than 4 thresholds); column 5 is the discriminability parameter;
column 6 gives the number of grades per item.

0.7425 NA NA NA 2.9541 2
10.2670 NA NA NA 0.6603 2
10.5215 NA NA NA 0.7965 2

9.3877 NA NA NA 1.0495 2

0.2593 NA NA NA 5.7874 2

0.3887 1.0153 NA NA 8.1123 3

3.2573 7.0421 NA NA 0.9974 3
15.4750 16.9406 17.4944 NA 1.4297 4

5.0022 6.3704 8.2832 10.4988 1.0954 5

4.0168 5.1537 7.1053 10.3038 1.5329 5

Thissen (1986) (p.71) presents the following graded radiograph data on 13 boys whose chronological
ages range from 6 months to 18 years. (Note that for ease of implementation in BUGS we have listed
the items in a different order to that used by Thissen):
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ID | CA | Maturity grades for items 1-34

1 06(1111111111111111111211111111211211
2 10)12111221111111111111311111111311211

12 116.0122222222222222222223331NA2132555555
13 |18.0(12222222222NA22222222333NA2NA234555555

Some items have missing data (represented by the code NA in the table above). This does not
present a problem for BUGS: the missing grades are simply treated as unknown parameters to be
estimated along with the other parameters of interest such as the SA for each boy.

Thissen models the above data using the logistic function. For each item j and each grade k, the
cumulative probability @;; that a boy with skeletal age 6 is assigned a more mature grade than k
is given by

logitQx = ;(0 — i)

where §; is the discriminability parameter and the v;; are the threshold parameters for item j.
Hence the probability of observing an immature grade (i.e. kK = 1) for a particular skeletal age
is pj1 =1 —Qj1. The probability of observing a fully mature grade (i.e. kK = K, where K is
the number of grades for item j) is pjk; = Qj,k;—1. For items with 3 or more categories, the
probability of observing an itermediate grade is p;; = Qjr—1 — Qjk (i-e. the difference between
the cumulative probability of being assigned grade k or more, and of being assigned grade k + 1 or
more).

The BUGS code for this model is given below, and the graph is shown in Figure 16. Note that the
0; for each boy i is assigned a vague, independent normal prior theta[i] ~ dnorm(0.0, 0.001).
That is, each boy is treated as a separate problem with is no ‘learning’ or ‘borrowing strength’
across individuals, and hence no hierachical structure on the 6;’s.

3,

~ ’
/

ngrade category k @
\.‘

item j boy |

Figure 16: Graphical model for bones example.
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const
nChild = 13, # number of children
nInd = 34, # total number of indicators
nGrade = 5; # maximum number of grades
var

grade[nChild,nInd],
p[nChild,nInd,nGrade],
Q[nChild,nInd,nGrade - 1],
delta[nInd],

gamma [nInd,nGrade - 1],
ncat [nInd],

theta[nChild];

grade of each indicator for each child
probability of response

cumulative prob of > response
discrimination parameter

threshold parameters

number of categories for each indicator
latent variable = skeletal age

H OH OH H OH K H

data gamma, delta, mncat in "calibrat.dat", grade in "bones.dat";
inits in "bones.in";

{
for (i in 1:nChild) {

theta[i] ~ dnorm(0.0, 0.001);

for (j in 1:nInd) {

# Cumulative probability of > grade k given theta
for (k in 1:(ncat[j]-1)) {

logit(Q[i,j,k]) <- delta[jl*(thetali] - gammal[j,k]);
}

# Probability of observing grade k given theta
for (j in 1:nInd) {
pli,j,1] <- 1 - Q[i,j,1]1;
for (k in 2:(ncat[jl-1)) {
p[laJ’k] <- Q[l,J,(k_l)] - Q[]-,J’k];

}

pli,j,ncat[jl] <- Q[i,j, (ncat[jl-1)];
grade[i,j] ~ dcat(pl[i,j,1l:ncat[jll);



BUGS examples Vol 1 47

We note a couple of tricks used in the above code. Firstly, the variable p has been declared as
a 3-way rectangular array with the size of the third dimension equal to the maximum number of
possible grades (i.e. 5) for all items (even though items 1-28 have fewer than 5 categories). The
statement

grade[i,j] ~ dcat(pli,j,1:ngradeljll);

is then used to select the relevant elements of p[i,j, ] for item j, thus ignoring any ‘empty’ spaces
in the array for items with fewer than the maximum number of grades. Secondly, the final section
of the above code includes a loop indexed as follows

for (k in 2:(ngrade[jl-1)) { .... }

This loop need only be evaluated for items with 3 or more grades. It will be skipped whenever
j corresponds to binary items because the BUGS compiler will not attempt to generate any code
within a loop where the second index < first index. In the present example, whenever j corresponds
to a binary item, ngrade[j] = 2, and so the loop indices become

for (k in 2:1) { .... }

Analysis

A 500 iteration burn-in (25 seconds) followed by 1000 updates (52 seconds) gave the following
estimates of SA (6;) for each boy

Boy ID | CA BUGS Multilog 5 (Thissen)
1 0.6 | 0.306 =+0.208 | 0.341 =+0.181
2 1.0 | 1.351 +£0.254 | 1.316 =+0.250
3 2.0 | 2.350 +£0.292 | 2.346 +0.266
4 3.0 1 2902 =£0.290 | 2.909 +0.288
) 5.0 | 5,517 +£0.514 | 5.510 +0.492
6 6.0 | 6.744 +£0.613 | 6.711 =+0.606
7 7.0 | 6.455 +£0.584 | 6.411 +0.591
8 8.0 | 8.920 =+0.720 | 8.928 =+0.709
9 9.0 | 8977 =£0.640 | 9.001 +0.680
10 12.0 | 11.93 £0.694 | 11.911 +0.697
11 14.0 | 11.58 #£0.923 | 11.408 =+0.859
12 16.0 | 15.78 £0.548 | 15.758 +0.553
13 18.0 | 16.98 £0.738 | 16.887 +0.712
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14 Inhaler: random effects model for ordinal responses from a
cross-over trial

Ezzet and Whitehead (1993) analyse data from a two-treatment, two-period crossover trial to
compare 2 inhalation devices for delivering the drug salbutamol in 286 asthma patients. Patients
were asked to rate the clarity of leaflet instructions accompanying each device, using a 4-point
ordinal scale. In the table below, the first entry in each cell (r,¢) gives the number of subjects in
Group 1 (who received device A in period 1 and device B in period 2) giving response r in period 1
and response ¢ in period 2. The entry in brackets is the number of Group 2 subjects (who received
the devices in reverse order) giving this response pattern.

Response in period 2

1 2 3 4 TOTAL
Easy Only clear Not Confusing
after very

re-reading clear

Response 1| 59 (63) 35 (13) 3 (0) 2 (0) 99 (76)
in 2| 11 (40)  27(15) 2 (0) 1 (0) 41 (55)
period 1 3| 07 0(2) 0 (1) 0 (0) 0 (10)
4| 12 1 (0) 0 (1) 0 (0) 2 (3)

TOTAL | 71 (112) 63 (30) 5 (2) 3(0) | 142 (144)

The response R;; from the ith subject (: = 1,...,286) in the ¢th period (¢ = 1,2) thus assumes
integer values between 1 and 4. It may be expressed in terms of a continuous latent variable Y; ;
taking values on (—o0, 00) as follows:

Ri,t :.] if Yvi,t S [ajflaa’j)a .7 = ]-a "34 (1)

where ag = —o0o0 and a4 = oc. Assuming a logistic distribution with mean p;; for Y;;, then the
cumulative probability @);; ; of subject 7 rating the treatment in period ¢ as worse than category j
(i.e. Prob(Y;; > aj) is given by

logitQir; = —(aj+ ps;t+ i)

where b; represents the random effect for subject 7. Here, pu,, + depends only on the period ¢ and
the sequence s; = 1,2 to which patient ¢ belongs. It is defined as

_ B
P = 5ty

_ _B_T_
Hi2 = 9 5

_ BT
H21 = 2+2

_ B
H22 = 9 2+f~c

where (3 represents the treatment effect, m represents the period effect and x represents the carryover
effect. The probability of subject ¢ giving response j in period ¢ is thus given by p;; ; = Q; -1 —
Qi j, where Q; ;0 =1 and Q; 4 = 0 (see also the Bones example).
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The graph of this model is shown in Figure 17, and the BUGS code is given on the next page. We
assume the b;’s to be normally distributed with zero mean and common precision 7. The fixed
effects B, m and k are given vague normal priors, as are the unknown cut points a1, as and as.
We also impose order constraints on the latter using the I(,) notation in BUGS, to ensure that

al < ag < as.
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Figure 17: Graphical model for inhaler example

Note that the data is read into BUGS in the original contigency table format to economize on space
and effort. The indivdual responses for each of the 286 patients are then constructed within BUGS.
The second data file, xover.dat contains the three 2 x T' matrices treat, period and carry which
indicate whether to add or subtract the treatment, period and carryover effects respectively when
modelling the mean for each period and group.

Analysis

1500 iterations took 25 mins after a 1500 iteration burn-in. The results are shown below, and
are compared with those of Ezzet and Whitehead, who used the Newton-Raphson method and
numerical integration to obtain maximum-likelihood estimates of the parameters.

parameter ML estimate (S.E.) | BUGS mean (S.E.)
B (treatment) 1.17 (0.75) 1.06 (0.32)
7 (period) —0.23 (0.20) —0.24 (0.19)
k (carryover) 0.21 (0.49) 0.25 (0.25)
o — — 1.26 (0.26)
log o (log S.D.) 0.17 (0.23) 0.21 (0.21)
al 0.68 - 0.72 (0.14)
as 3.85 - 3.95 (0.35)

(0.48)

as 5.10 - 5.31
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Model specification for inhaler example

model inhaler;

const

N = 286, # number of patients

T=2, # number of periods

S =2, # number of sequences (AB & BA)

Npattern = 16, # number of possible response patterns

Ncut = 3; # number of cut points (= number of response categories - 1)
var

pattern[Npattern,T], # response pattern e.g. (1,1) or (2,4) etc.

Ncum[Npattern,T], # cumulative total

response [N,T], # response for patient i in period t

pIN,T, (Ncut+1)], # prob of response j for patient i in period t

QIN,T,Ncut], # cumulative prob of response worse than j
# for patient i in period t

seq[N], # treatment sequence (1=AB; 2=BA)

mu[S,T], # logistic mean for group g & period t

treat[S,T], beta, # treatment effect

period[S,T], pi, # period effect

carry[S,T], kappa, # carryover effect

a[Ncut], # cut points for latent response variable

b[N], # subject random effect

tau, # precision of subject effects

sigma, log.sigma;
data pattern, Ncum in "inhaler.dat", treat, period, carry in "xover.dat";
inits in "inhaler.in";
{
#
# Construct individual response data from contingency table
#
for (i in 1:Ncum[1,1]) {
seqli] <- 1; for (t in 1:T) { responsel[i,t] <- pattern[1,t] }
}
for (i in (Ncum[1,1]+1) :Ncum[1,2]) {
seq[i] <- 2; for (t in 1:T) { response[i,t] <- pattern[1,t] }
}

for (k in 2:Npattern) {
for(i in (Ncum[k-1,2]+1) :Ncum[k,1]) {
seq[i] <- 1; for (t in 1:T) { respomnsel[i,t] <- pattern[k,t] }
}
for(i in (Ncum[k,1]+1) :Ncum[k,2]) {
seq[i] <- 2; for (t in 1:T) { responsel[i,t] <- pattern[k,t] }
}
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**

Model

for (i in 1:N) {
for (t in 1:T) {
for (j in 1:Ncut) {

**

Cumulative probability of worse response than j

logit(Q[i,t,jl) <- -(alj]l + mulseql[il,t] + b[il);

+*

Probability of response = j
pli,t,1] <- 1 - Q[i,t,1];
for (j in 2:Ncut) { pli,t,jl <- Q[i,t,j-1]1 - Q[i,t,j] %
pli,t, (Ncut+1)] <- Q[i,t,Ncut];

response[i,t] ~ dcat(pli,t,]);

**

Subject (random) effects

bl[i] ~ dnorm(0.0, tau);

**

Fixed effects

for (s in 1:8) {
for(t in 1:T) {
# logistic mean for sequence s in period t
mu[s,t] <- betaxtreat[s,t]/2 + pi*period[s,t]/2 + kappa*carryl[s,t];

}

beta ~ dnorm(0, 1.0E-06);
pi ~ dnorm(0, 1.0E-06);
kappa ~ dnorm(0, 1.0E-06);

# ordered cut points for underlying continuous latent variable
al1] = dnorm(0, 1.0E-06)I(,al[2]);
a[2] ~ dnorm(0, 1.0E-06)I(al[1],al[3]);
al[3] = dnorm(0, 1.0E-06)I(al2],);

tau ~ dgamma(0.001, 0.001);
sigma <- sqrt(1/tau);
log.sigma <- log(sigma) ;

51
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15 Litters: beta-binomial for clustered response data

The table below shows the data of Williams (1975) on the mortality in 2 sets of 16 litters of pigs.

Litter 1 2 3 4 5 6 8 9 10 11 12 13 14 15 16
: 13 12 9 9 8 8 12 11 9 9 8 11 5 7 7
Proportion (set1) | 3 3 § § § § 13 12 0 0 & 1. 5 7 10 10
Surviving
: 12 11 10 9 10 9 9 8 8 4 7 4 5 3 3 0
Proportion (set2) | 3 7 1 § 11 0 i3 s 9 5 & 7 10 5 10 7
Surviving

We would like to assume that the survival rates in the litters within each set are similar, but not
identical. The simplest conjugate model is to assume the observed number of deaths r;; in litter ¢
of group j is binomial with sample size n;; and true rate p;;, and then assume the true rates are
drawn from a beta distribution with unknown parameters. This model is also considered by George
et al. (1993).

r;j ~ Binomial(p;;, nsj)
pij ~ Beta(aj,b))

The beta parameters are given gamma priors, which must have a parameter @ > 1 in order to be
log-concave: we have chosen gamma(1,.001) priors.

litter i

group |

Figure 18: Graphical model for litter example
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Litters: model specification in BUGS

model litters;

53

const
N = 16, # number of litters in each group
G = 2; # number of groups
var
n[N,G], # denominators
r[N,G], # survivors
plN,G], # true survival rpob
alG], # beta parameter
b[G], # beta parameter
mu[G], # beta mean

thetalG]; # 1/ beta precision

data n, r in "litters.dat";
inits in "litters.in";
{
for (j in 1:G) {
for (i in 1:N) {

r[i,jl = dbin(pl[i,jl,nli,j1);
pli,j]1 ~ dbeta(aljl,b[j1);

}

muljl <- al[jl/(aljl + blj1);

ali]l ~ dgamma(1,.001);
}
}

thetal[j]l <- 1.0/(alj]l + b[j1);
b[i] ~ dgamma(1,.001);

Note the use of the gamma(1,.001) priors for the a’s and b’s, equivalent to exponential distributions
with mean 1000. This provides a log-concave prior which gently penalizes larger values.

A simple BUGS run took 13 seconds for 5000 iterations after a 500 iteration burn-in, and gave the

following results.

parameter | BUGS (S.E.) Maximum (S.E.)
likelihood
a1 1482 886
by 182 116
U1 892 0.021 0.898  0.026
01 .0016 0.0004 0.021  0.048
a9 3.6 2.8
b 1.1 .8
) 752 0.060 0.740  0.069
02 307 0.185 0.465 0.234

Warning

The above estimates, particularly aq, ao suffer from extremely poor convergence, limited agreement
with m.l.e.’s, and considerable prior sensitivity. This appears to be primarily due to the parame-
terisation in terms of the highly related a; and b;, whereas direct sampling of u; and 6; would be
strongly preferable. We suggest that random effects logistic models (see seeds example) may be

more appropriate.
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16 Mice: Weibull regression in censored survival analysis

Dellaportas and Smith (1993) analyse data from Grieve (1987) on photocarcinogenicity in four
groups, each containing 20 mice, who have recorded a survival time and whether they died or were
censored at that time. A portion of the data, giving survival times in weeks, are shown below. A
* indicates censoring.

Mouse Irradiated Vehicle Test Positive
control control substance control

1 12 32 22 27
18 *40 30 24 12
19 31 37 37 17
20 36 27 29 26

The survival distribution is assumed to be Weibull. That is
Fltiz) = reP 7t exp(—e5t])

where t; is the failure time of an individual with covariate vector z; and ( is a vector of unknown
regression coefficients. This leads to a baseline hazard function of the form

)\0 (tz) = ’I‘t;—n_l
Setting u; = Pz gives the parameterisation
t; ~ Weibull(r, p;)

For censored observations, the survival distribution is a truncated Weibull, with lower bound cor-
responding to the censoring time. The regression coefficients 8 were assumed a priori to follow
independent Normal distributions with zero mean and “vague” precision 0.0001. The shape param-
eter r for the survival distribution was given a Gamma(1, 0.0001) prior, which is slowly decreasing
on the positive real line.

Median survival for individuals with covariate vector z; is given by m; = (log2e~#%)1/7.

The appropriate graph is shown in Figure 19, using an undirected dashed line to represent a logical
range constraint. The BUGS code is given on the next page.
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Figure 19: Graphical model for mice example



BUGS examples Vol 1

Model specification for mice example

model mice;

const

N = 80, # number of individuals

M= 4; # number of treatment groups
var

t[N], # failure time for each mouse
t.cen[N], # censoring time for each mouse
group[N], # treatment group for each mouse
mu[N], r, # Weibull parameters

beta[M], # log relative risk parameters
median[M], # median survival for each group
irr.control,veh.control, # treatment contrasts

test.sub,pos.control;

data t, t.cen, group in "mice.dat";
inits in "mice.in";

{
for(i in 1:N) { # t.cen[i] = 0
t[i] ~ dweib(r,mu[i])I(t.cen[i],); # if mouse i fails
mu[i] <- exp(betalgroup[ill); # relative risk model
}
for(j in 1:M) {
betal[j] ~ dnorm(0.0, 0.0001); # prior
median[j] <- pow(log(2) * # median survival
exp(-betaljl), 1/r);
}
r © dgamma(1.0,0.0001); # slowly decreasing on +ve reals
irr.control <- betal1l]; # change
veh.control <- betal[2]-betall]; # parameterisation

test.sub <- beta[3]-betal[l];
pos.control <- beta[4]-betal[1];

55

We note a number of tricks in setting up this model. First, individuals who are censored are given
a missing value in the vector of failure times t, whilst individuals who fail are given a zero in
the censoring time vector t.cen (see data file listing below). The truncated Weibull is modelled
using I(t.cen[i],) to set a lower bound. Second, we set a parameter betal[j] for each treatment
group j, and create a single covariate group taking values 1, 2, 3 or 4 in the data file. Nested
subscripts i.e. beta[group[i]] are used to select the required betal[j] to appear in the linear
predictor according to the value of group[i] for the ith individual. The contrasts betal[j] with
group 1 (the irradiated control) are calculated at the end. Alternatively, we could have included a

grand mean term in the relative risk model and constrained betal[1] to be zero.
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Data in rectangular format

12 01
17 01
21 01
25 01
11 01
26 01
35 01
NA 40 1
31 01
36 01
32 02
27 0 2
23 02
12 0 2
18 0 2
NA 40 2

Column 1 refers to the failure times t for each mouse, column 2 represents the corresponding
censoring times t.cen, and column 3 indicates which treatment group the mouse belongs to.

Analysis

A simple BUGS run took 22 seconds for 1000 iterations after a 500 iteration burn-in. The output
was as follows:

variable estimate 95% interval
veh.control -1.18 -1.92, -0.43
test.sub -0.34 -1.00, 0.34
pos.control 0.38 -0.35, 1.01
r 3.15 9.3, 3.59
median[1] (irr) 24.2 21.1, 28.1
median[2] (veh) 35.4 39.7, 42.5
median[3] (test) 27.0 22.9, 31.7
median[4] (pos) | 215 18.4, 25.3

These should be compared to the plots shown by Dellaportas and Smith (1993)
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17 Kidney: Weibull regression with random effects

McGilchrist and Aisbett (1991) analyse time to first and second recurrence of infection in kidney
patients on dialysis using a Cox model with a multiplicative frailty parameter for each individual.
The risk variables considered are age, sex and underlying disease (coded other, GN, AN and PKD).
A portion of the data are shown below.

Patient Recurrence Event Age at Sex Disease
Number time ¢ (2=censored) time ¢t (l=female) (0O=other;1=GN;
2=AN;3=PKD)
1 8,16 1,1 28,28 0 0
2 23,13 1,2 48,48 1 1
3 22,28 1,1 32,32 0 0
4 447,318 1,1 31,32 1 0
35 119,8 1,1 22,22 1 1
36 54,16 2,2 42,42 1 1
37 6,78 2,1 52,52 1 3
38 63,8 1,2 60,60 0 3

We have analysed the same data assuming a parametric Weibull distribution for the survivor
function, and including an additive random effect b; for each patient in the exponent of the hazard
model as follows

~  Weibull(r, p5) 1=1,..,38;7=1,2
logpi = a+ BageAGE;j + BsexSEXi + Buisease; DISEASE; 3
+Bdiseases DISEASE; 2 + Baiseases DISEASE; 3 + b;
b; ~ Normal(0,7)

where AGE; ; is a continuous covariate, SEX; is a 2-level factor and DISEASE; ;, (k = 1,2,3) are
dummy variables representing the 4-level factor for underlying disease. Note that the the survival
distribution is a truncated Weibull for censored observations as discussed in the mice example.
The regression coefficients and the precision of the random effects (7) are given independent “non-
informative” priors, namely

Bx ~ Normal(0,0.0001)
7 ~ Gamma(0.0001,0.0001)

The shape parameter of the survival distribution r is given a Gamma(1, 0.0001) prior which is
slowly decreasing on the positive real line.

The graphical model is shown in Figure 20, and the BUGS code is given below. The structure of the
data file is similar to that used in the mice example.
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Kidney: model specification in BUGS

model kidney;

const
N = 38, # number of patients
M=2; # number of observations per patient

var
t[N,M], # failure time
t.cen[N,M], # censoring time
mu[N,M], r, # Weibull parameters
b[N], # random effects for patients
tau, # precision of random effects
sigma, # 1/sqrt(tau)
age[N,M],sex[N],disease[N], # covariates
beta.age,beta.sex, # regression coefficients
beta.disease[4],alpha; # regressioncoefficients

data t, t.cen, age, sex, disease in "kidney.dat";

inits in "kidney.in";
{
for (i in 1:N) {
for (j in 1:M) {

# Survival times bounded below by censoring times:
t[i,j] = dweib(r,muli,j]) I(t.cenli,jl,);

log(mul[i,j]) <- alpha + beta.agexageli,j]

+ beta.sex*sex[i]

+ beta.disease[disease[i]] + b[il;

}

# Random effects:
b[i] ~ dnorm(0.0, tau)

# Priors:
alpha ~ dnorm(0.0, 0.0001);

beta.age ” dnorm(0.0, 0.0001);
beta.sex ~ dnorm(0.0, 0.0001);

beta.disease[1] <- 0; # corner-point constraint

for(k in 2:4) {

beta.disease[k] ~ dnorm(0.0, 0.0001);

}

tau ~ dgamma(1.0E-3, 1.0E-3);

r ~ dgamma(1.0, 1.0E-3);

sigma <- 1/sqrt(tau); # s.d. of random effects
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Figure 20: Graphical model for kidney example

Analysis
A BUGS run took 4 minutes for 2500 iterations after a 2500 iteration burn-in. The output is
summarized in the table below, and the results of McGilchrist and Aisbett (1991)’s Cox analysis

using an iterative Newton-Raphson estimation procedure are also shown for comparison.

McGE&A estimate (S.E.)

variable BUGS estimate (S.E.)

Bage 0.003 (0.015) 0.006 (0.013)
Bies (female) -1.866 (0.496) -1.795 (0.434)
Baisease; (GN) -0.055 (0.592) 0.206 (0.484)
Biiscases (AN) 0.586 (0.582) 0.410 (0.494)
Buisease, (PKD) -1.269 (0.822) -1.296 (0.712)
o 0.496(0.378) 0.382
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18 Leuk: survival analysis using Cox regression

Several authors have discussed Bayesian inference for censored survival data where the integrated
baseline hazard function is to be estimated non-parametrically (Kalbfleisch, 1978; Kalbfleisch and
Prentice, 1980; Clayton, 1991; Clayton, 1994). Clayton (1994) formulates the Cox model using
the counting process notation introduced by Andersen and Gill (1982) and discusses estimation
of the baseline hazard and regression parameters using MCMC methods. Although his approach
may appear somewhat contrived, it forms the basis for extensions to random effect (frailty) models,
time-dependent covariates, smoothed hazards, multiple events and so on. We show below how to
implement this formulation of the Cox model in BUGS.

For subjects i = 1, ...,n, we observe processes N;(t) which count the number of failures which have
occurred up to time ¢. The corresponding intensity process I;(t) is given by

L(Hdt = BANi(t) | Fo)

where dN;(t) is the increment of N; over the small time interval [¢,¢ + dt), and F;_ represents the
available data just before time ¢. If subject i is observed to fail during this time interval, dN;(¢)
will take the value 1; otherwise dN;(t) = 0. Hence E(dN;(t) | Fi—) corresponds to the probability
of subject i failing in the interval [¢,¢ + dt). As dt — 0 (assuming time to be continuous) then this
probability becomes the instantaneous hazard at time ¢ for subject i. This is assumed to have the
proportional hazards form

Ii(t) = Yi(t)Xo(t) exp(8'z)

where Y;(t) is an observed process taking the value 1 or 0 according to whether or not subject 7 is
observed at time ¢ and \o(t) exp(8'z;) is the familiar Cox regression model. Thus we have observed
data D = {N;(t),Y;(t),#;7 = 1,...,n} and unknown parameters § and Ay(t) = fg Ao(u) du, the
latter to be estimated non-parametrically.

The joint posterior distribution for the above model is defined by

P(B,80() | D) oc P(D | B,A0())P(B)P(Ao())

For BUGS, we need to specify the form of the likelihood P(D | 8, A¢()) and prior distributions for 3
and Ag(). Under non-informative censoring, the likelihood of the data is proportional to

ﬁ [H Ii(t)dm(t)] exp(— /t>0 L;(t)dt)
i=1 | t>0 2

This is essentially as if the counting process increments dN;(t) in the time interval [¢,¢ + dt) are
independent Poisson random variables with means I;(t) dt:

dN;(t) ~ Poisson(l;(t)dt)
We may write
Lt)dt = Y;(t)exp(B'z)dAo(t)

where dAg(t) = Mo(t) dt is the increment or jump in the integrated baseline hazard function
occurring during the time interval [¢,¢ + dt). Since the conjugate prior for the Poisson mean is
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the gamma distribution, it would be convenient if Ag() were a process in which the increments

dAg(t) are distributed according to gamma distributions. We assume the conjugate independent
increments prior suggested by Kalbfleisch (1978), namely

dAo(t) ~ Gamma(cdAj(t),c)

Here, dA§(t) can be thought of as a prior guess at the unknown hazard function, with c representing
the degree of confidence in this guess. Small values of ¢ correspond to weak prior beliefs. In the

example below, we set dA§(t) = rdt where r is a guess at the failure rate per unit time, and dt is
the size of the time interval.

The above formulation is appropriate when genuine prior information exists concerning the underly-
ing hazard function. Alternatively, if we wish to reproduce a Cox analysis but with, say, additional
hierarchical structure, we may use the multinomial-Poisson trick described in the BUGS manual.
This is equivalent to assuming independent increments in the cumulative hazard function as failure
times, whose logarithms are given ‘non-informative’ priors. This formulation is also shown below.

The fixed effect regression coefficients (3 are assigned a vague prior

B ~ Normal(0.0,0.000001)

The graph for the Cox model is shown in Figure 21.
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Figure 21: Graphical model for leuk example
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A widely used example in survival analysis is Frierich et al. (1963)’s data comparing time to re-
mission of leukaemia in patients receiving a new drug (6-MP) with control patients. The data are
reproduced below

Treatment Survival time in weeks

Placebo 1 1 2 2 3 4 4
5 5 8 8 8 8 11
11 12 12 15 17 22 23

6-MP 6* 6 6 6 7 9 10*
0 11* 13 16 17 19* 20*
22 23 25 32* 32* 34* 35*

* indicates censoring

The BUGS code to analyse this data using the Cox proportional hazards model is as follows

Model specification

model leuk;

const
N = 42, # number of patients
T =17, # number of unique failure times

eps = 0.000001;

# used to guard against numerical
# imprecision in step function

var
obs.t[N], # observed failure or censoring time for each patient
t[T+1], # unique failure times + maximum censoring time
dN[N,T], # counting process increment
Y[IN,T], # 1=subject observed; O=not observed
Idt[N,T], # intensity process
Z[N], # covariate
beta, # regression coefficient
dLO[T], # increment in unknown hazard function
betaO[T], # log(increment in unknown hazard function)
dLO.star[T], # prior guess at hazard function
c, # degree of confidence in prior guess for dLO
mu[T], # location parameter for Gamma (= c * dLO.star)
r, # prior guess at failure rate
fail[N], # failure = 1; censored = 0
S.treat[T], # survivor function for treatment group
S.placebo[T]; # survivor function for placebo group

data obs.t, fail, Z in "leuk.dat", t in "failtime.dat";
inits in "leuk.in";
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{
# Set up data

for(i in 1:N) {
for(j in 1:T) {

# risk set = 1 if obs.t >= t
Y[i,j] <- step(obs.t[i] - t[j] + eps);

# counting process jump = 1 if obs.t in [ t[jl, t[j+1]1 )

# i.e. if t[j] <= obs.t < t[j+1]

dN[i,j] <- Y[i,jl*step(t[j+1] - obs.t[i] - eps)*faillil;
}

}
# Model

for(j in 1:T) {
# DbetaO[j] ~ dnorm(0,0.001); # include this when using Poisson trick
for(i in 1:N) {

dN[i,j] “ dpois(Idt[i,jl); # Likelihood
Idt[i,j] <- Y[i,jl*exp(betaxZ[i])*dLO[j]; # Intensity

# Try Poisson trick - independent log-normal hazard increments
- enables dLO, c, r, mu to be dropped from model
# Idt[i,j] <- Y[i,jl*exp(betaO[jl+beta*Z[i]); # Intensity

**

dLO[j] ~ dgamma(mu[j], c¢);
mu[j] <- dLO.star[j] * c; # prior mean hazard

# Survivor function = exp(-Integral{10(u)du}) exp(beta*z)
S.treat[j] <- pow(exp(-sum(dLO[1:j]1)), exp(beta * -0.5));
S.placebo[j] <- pow(exp(-sum(dLO[1:j]1)), exp(beta * 0.5));

}

c <- 0.001; r <- 0.1;
for (j in 1:T) {

dLO.star[j] <- r * (t[j+11-t[j1)
}

beta ~ dnorm(0.0,0.000001);
}
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Here, obs.t[i] is the follow-up time for patient ¢ (i = 1,...,42), with fail[i] indicating whether
this corresponds to a failure or a censored observation.

Data

Part of the data file leuk.dat is shown below: column 1 refers to obs.t, column 2 is fail and
column 3 is Z

o
[¢)]

17

1 0.5
221 0.5
231 0.5
6 1-0.5
6 1-0.5
6 1-0.5
6 0 -0.5
71-0.5

[¢)]

32 0 -0.

34 0 -0.5
35 0 -0.5

A separate data file (failtime.dat) contains the 17 distinct failure times t[j] (j = 1,...,17) plus
t[18] = tynaz, the maximum follow-up time. These values define the time intervals [¢,¢ + dt) used
for calculating the counting process increments dN;(t). Note that the upper end of the interval is
defined to be strictly < ¢+ dt, so the counting process for a subject who fails at exactly time ¢+ dt
will not be incremented until the following time interval. Consequently, if t,,,, represents a failure
time rather than a censoring time, an arbitrary value > t,,,, must be chosen for the final value of
the vector t[]. This ensures that the counting process for this subject is incremented during the
final time interval.

Time-dependent covariates could be included by making Z[i, j] the value for the ith individual at
the jth failure time.

We note the use of the step function to create the counting process increments dN[i, j1 = dN;(¢;)
and the risk set process Y[i,j] = Yj(¢;). This function takes the value 1 if its argument is > 0, and
0 otherwise. Thus step(time[i] - t[j] + eps) returns the value 1 for Y[i,j] if the follow-up
time time [i] for patient ¢ > the current failure time t [j], and 0 thereafter. A similar trick is used
in the construction of dN[i,j].

Note that the variable dN[i,j] appears twice on the left-hand side of a statement. Under the
section labelled # TRANSFORMATIONS, dN[i,j] is a deterministic node, whilst under the # MODEL
section, it features as a random node. This construction is permitted in BUGS to allow creation of
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data nodes within the program session, rather than having to carry out all data transformations
before setting up the .dat file (see Section 4.9 of the BUGS manual for more details).

We also calculate the conditional survivor function given covariates z. This is given by
t !
S(t;z) = e:vp(—/ )\o(u)du)eXp(ﬁ ?)
0

where [§7 Ao(u) du = Ag(ts) = X7_odAo(t;).
Analysis

1000 iterations took 41 seconds after a 500 iteration burn-in. The posterior mean (standard error)
of the regression coefficient 3 was 1.55 (0.43). This compares with the standard partial likelihood
estimate (obtained using the SAS PHREG procedure) of 1.59 (0.43). Whitehead (1980) estimated
B to be 1.51 (0.42) using the Poisson model formulation in GLIM: using the analogous Poisson trick
in BUGS gave an estimate of 1.54 (.41). The estimated survival probabilities are shown in Figure
22.

1.0

— W o

**** Placebo

0.8
I

0.6

Survival probability
0.4
|

0.2

Time (in days)

Figure 22: Estimated mean survivor function and 95% credible interval (shaded region) for treat-
ment and placebo groups in the leuk example

Tied failure times

The Poisson likelihood formulation of the Cox model outlined above assumes that time is truly
continuous, in the sense that no two failures can occur simultaneously. Hence the analysis described
here is not strictly correct, since we have allowed multiple failures to occur at any one time. This
analysis actually corresponds to Peto (1972)’s treatment of ties. An alternative approach is to
randomly perturb the failure times prior to analysis to ensure distinct failure times for each subject.
However, this is somewhat conservative since it assumes the null hypothesis to be true. A better
method is to simulate new perturbations of the failure times at each iteration of the Gibbs sampler,
conditional upon the data and the current values of other model parameters. Unfortunately, the
declarative structure of the BUGS language does not permit this model at present, although future
versions of the program may include it.
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18.1 Cox regression with frailties

Frierich et al. (1963)’s data actually arise via a paired design, although this information has been
ignored in most published analyses. Patients were matched according to their remission status
(partial or complete). One patient from each pair received the drug 6-MP whilst the other received
the placebo. We may introduce a fourth column (called pair) in the BUGS data file ( leukfr.dat)
to indicate each of the 21 pairs of patients:

11 0.5 1
11 0.5 2
21 0.5 3
171 0.5 19
221 0.5 20
231 0.5 21
6 1-0.519
6 1-0.5 18
61-0.5 8
6 0-0.5 1
350 -0.5 21

We model the potential ‘clustering’ of failure times within pairs of patients by introducing a group-
specific random effect or frailty term into the proportional hazards model. Using the counting
process notation introduced in the Leuk example, this gives

Lt)dt = Y;(t) exp(8'z + bpair;)dAo(t i=1,..,42; pair; =1,...,21
pair;

bpair; ~ Normal(0,7)

A non-informative Gamma prior is assumed for 7, the precision of the frailty parameters. Note
that the above ‘additive’ formulation of the frailty model is equivalent to assuming multiplicative
frailties with a log-Normal population distibution. Alternatively Clayton (1991) discusses the
Cox proportional hazards model with multiplicative frailties, but assumes a Gamma population
distribution. However, this formulation does not lead conclusively to log-concave full conditional
distributions, and so cannot currently be implemented in BUGS.

The modifications to the BUGS code needed to include a frailty term in the leuk example are shown
below, and may be found in the file leukfr.bug.

for(j in 1:T) {
for(i in 1:N) {
dN[i,j] = dpois(Idt[i,jl); # Likelihood
Idt[i,jl <- Y[i,jl*exp(beta*Z[il+b[pair[i]l])*dLO[j]; # Intensity

for(k in 1:Npairs) {
blk] ~ dnorm(0.0, tau);
}
tau ~ dgamma(0.001, 0.001); sigma <- sqrt(l/tau);
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Analysis

2000 iterations took 3 minutes after a 1000 iteration burn-in. The posterior mean (standard error)
of the regression coefficient § was 1.58 (0.43). This is slightly larger than the estimate of § when
the clustering was ignored. However, the posterior mean of ¢ was only 0.18 (95% credible interval
0.02-0.59). This suggests that population variation in frailty was small, and hence there is relatively
little clustering or association of failure times within matched pairs.
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