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Précis

1. Motivation
1.1 The concept of Probability is important, in science, in engineering,
medicine, navigation and in making everyday decisions, where, despite large
uncertainties, one has a moral obligation to act on a rational basis. In many
situations, people need plain estimates of probability in order that they may
make decisions by clear reasoning concerning probable benefits and penal-
ties.  Attenuated substitutes - likelihoods and confidence limits - provide
little or no direct support for rational decisions. People, especially profes-
sional people, need a clear theory for their use of probability.

1.2  Bayes' Essay towards solving a Problem in the Doctrine of Chances1

was revolutionary and foundational in addressing the root problem of ra-
tional justification for action under uncertainty.  The problem is fundamental
to the interpretation of uncertain quantitative evidence: it is embedded - but
often unseen - in every measurement.  Even in a simple counting of objects
we can make mistakes.

1.3 Yet, Bayes' problem has been widely ignored, largely because eminent
authorities - Boole, Keynes, Fisher, Fine - appeared to have shown that there
could be no general solution and that Bayes' solution, based on the postulate
of a uniform distribution of prior probabilities, involves self-contradictions.

2. The main thrust
2.1 Against this background, we embarked upon a constructive re-
appraisal of Bayes' essay.  By re-analysing the essay in relation to the metric
procedures actually used by practical people - builders, doctors, engineers,
navigators - we found that Bayes' solution is essentially sound and that the
main objections raised against it are fallacious.  It thus becomes possible to
make clear and objectively valid statements of probabilities concerning
metric hypotheses, against defined evidence and assumptions.  The diffi-
culties which have long undermined confidence in Bayes' theory, stem from
a misleading view of prior probabilities, accidentally suggested by Bayes
himself and then taken for granted by almost all subsequent authors, in-
cluding his most fierce critics.  Serious problems are also found in the
widespread failure - marked among lawyers and administrators - first, to
distinguish between individuals and populations and, secondly, to under-
                                                
1 Bayes (1763), p 376
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stand that probabilities in the real world can be assessed only in relation to
the evidence and assumptions on which they are based, and by means of
which infinite regressions of uncertainty are avoided.

3. Analysis
3.1 We define a 'Bayes trial' as one where we wish to find the probability
of occurrence Pm of an event M in a given type of test.  We have no prior
information about the value of Pm.  We therefore perform a set of n tests
and count the number of tests, m, in which the event occurs.  From the val-
ues m and n we are required to determine the probability that Pm lies be-
tween values x1 and x2.

3.2 We follow Bayes in measuring the probability of an event as 'the ratio
between the value at which an expectation depending on the happening of
the event ought to be computed, and the value of the thing expected upon
its happening'.  We find that this requires us to compute probability relative
to defined evidence and assumptions.

3.3 Bayes showed that, with two events E1  and E2, if it is discovered that
E2 has happened, the probability that E1 has also happened is given by:-

P (E1 | E2 )    =    
P (E1 ) xP  ( E2E1 )

  P (E2 )
 Eqn 1

This is often known as "Bayes' theorem."

3.4 However, Bayes and others did not see the need to denote the extrin-
sic data and assumptions, k¸ on which the estimates of probability are
based.  Nor did they see the need to differentiate, in considering a Bayes
trial, between PH  - the probability of an hypothesis concerning a value that
is fixed throughout a trial, and PR  -  the probability of an event which var-
ies randomly within such a trial.  Doing so gives the more precise form of
the theorem:-

P H(E1| k, E2 )    =    
PR (E1 |  k  ) x  PR (E2 |  k,E1  )

PR ( E2 |  k ) 
 Eqn 2

3.5 Applying the theorem to the determination of Pm, Bayes envisaged an
experiment in which a ball is thrown randomly onto a uniformly flat and
level table to decide the value of Pm.  He postulated that, when we have no
prior information about Pm, we should likewise assume a uniform prior
probability.  This allows us to compute the probability of the hypothesis
that Pm lies between values x1 and x2 - given all the explicit and implicit
assumptions.
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3.6 Bayes' postulate of the uniform prior has been attacked on two main
grounds.  First, that it implies knowledge, which, by definition, we do not
possess.  Second, when we are concerned with the value of a dimensional
parameter, such as a density, a uniform prior in terms of mass per unit of
volume becomes non-uniform, and therefore self-contradictory, in terms of
volume per unit of mass.

3.7 However, when builders measure a dimensional attribute of an object,
e.g. the length of a beam, they do not need to invoke any prior probability
over the magnitude if they are using a ruler where the random errors are
additive, can be assumed to be independent of the magnitude being meas-
ured, and have a distribution known by calibration.

3.8 The issue of prior probability in such cases is thus switched from the
true value of the attribute to the calibrated measuring process.  It is then
irrelevant whether we are measuring amps, ohms, volts or watts.  The prior
probabilities now relate to the calibration of the meter.

3.9 Hence, by arithmetic subtraction we obtain a distribution of probabil-
ity over the 'true' value relative to the standard by which the meter has been
calibrated - provided the meter is working as calibrated.

3.10 When Bayes' theorem is applied to this type of measuring operation,
we find that the events to which the probabilities relate are:-

E1 is the event that the error has a given magnitude.  The probability of
this is given by the calibration.

E2 is the event that the measuring process is working according to the
calibration.

3.11 Where necessary, we conduct a Bayes' trial to compile a histogram of
error frequencies and thence obtain calibrated error-probabilities. The me-
dian - beloved by Fisher - appears to be self-calibrating. In trajectory esti-
mation, e.g. by a Kalman filter, an assumption of normally distributed
errors also simplifies the calibration.

3.12 In a Bayes trial, however, the uncertainties have binomial distribu-
tions which depend on the underlying true probabilities.  In this situation,
the calibrated ruler is not available and to compute the distribution of the
uncertainties we have to use Bayes' theorem in a way which forces us now
to assume priors - in Bayes' original sense -  for the true values of the error
probabilities.

3.14 However, for a Bayes trial to converge on the true value of Pm, the
only acceptable priors are:- (i) previous observations of the specific indi-
vidual case, or (ii) priors which exert no influence on the posterior prob-
abilities, such that the posterior distribution is determined entirely by the
observations.
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3.15 If a distribution of an attribute within a population is used as a prior
for an attribute in an individual case, it will, in general prevent the posterior
distribution from converging on the true value.  An exception occurs when
the population is uniformly distributed - as is the case in Bayes' experiment.

3.16 In general, however, where there have been no previous observations
on an individual case, the only valid prior is that which represents zero prior
information.  In a Bayes trial, the 'information zero' prior is the uniform
distribution.

4. Conclusion
4.1 The problems traditionally associated with the assumption of a prior
distribution in a metric process are not fundamental and are avoidable.  In a
Bayes trial, the assumption of a uniform prior is objective, fundamental and
essential if the result is to converge absolutely on the true value.

4.2 The issues raised by Bayes' essay are fundamental to the acquisition
of quantitative evidence in that:-

(1)  A Bayes' trial is the most basic metric procedure, involving simply the
counting of events with no dimensional parameters.

(2)  Every metric process involves uncertainty.  To handle that uncertainty in
a dimensional situation we have to :-
    (a) Calibrate the meter by Bayes trials.
    (b) Use Bayes' theorem to combine calibration and measurements.

4.3 Finally, we discuss some implications of these findings for the analysis
of causation and for a number of legal and ethical situations.  We deal spe-
cifically with the so-called 'base rate problem' where accepted wisdom is in a
state of serious confusion, stemming from a failure to distinguish between
the PH and PR  senses of probability.  We point out some consequent prob-
lems for rational, moral behaviour and the need for a broad harmonisation of
human values which are implied by the use of Bayes' theory as an aid to
rational decisions.
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Preface

This book is the history of an exploration of Thomas Bayes' Essay
towards solving a Problem in the Doctrine of Chances.  The exploration
goes back over thirty years; the book itself was conceived some ten years
ago in the blissful summer shade of an English cricket ground, the first intent
being merely a short note to explain an un-resolved flaw in the theory un-
derlying the application of Bayes' theorem to radar systems.   The next day, a
visit to the kindly librarian of the Royal Society provided us with a copy of
the original.  Reading it, we found ever more reasons to doubt all that we
had previously gathered about what it actually said and meant.  Now, after
many a hundred further hours of glazed eyes pointing outwardly at cricket,
while inwardly retracing, time after time, the arguments of Boole, Keynes,
Fisher, Fine, and many others, we offer the story of our journey and what we
found.  Often too, we have fought out our doubts while stamping the sand of
Melbourne's Port Phillip Bay where, with no social inhibitions to constrain
us and the waves to drown our shouting, we have given full voice to the
frustration and anger that spring so easily from finding confusion where one
had believed there to be good order.  We offer, therefore, not an homogene-
ous view as seen from a concluding position, but, as exhorted by Sir Peter
Medawar and Sir Herman Bondi, a report which follows the sequence of our
exploration and the unfolding of our perceptions.  By this means, we may
perhaps convey something of the challenge and excitement which has kept
us at this quest for so many years, and in which we invite others now to join.

Truth, however, is slippery stuff and the central aim of this book is to
give us a better grip on certain of its aspects.  Not on the truth, for another
axis on which our argument turns, is the perception that, when we endeavour
to convey truth in words, we engage in a process of forming and projecting
an image. Perforce, therefore, we use lenses, filters and mirrors, each of
which in some aspects sharpens and, in other aspects, blurs the image we
project.  Truth, absolute truth, there may well be in a transcendental space of
infinite dimensions.  Our ability to project that truth using our own earthly,
murky minds as lenses is limited.  The resulting image is only to be under-
stood as a convolution of the absolute with the confusion and prejudice of
those minds.  And often, lenses, mirrors, prisms will invert an image: 'up' is
shown as 'down';  'right' as 'wrong'.   Thomas Bayes and countless others
engaged themselves in this quest of seeking and projecting the truth, and
whatever harsh words we may later have to say about the images they pro-
duced, let us remember that they were all engaged in one great quest.
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Yet there is a sense in which we seek to project an image which is, if
not absolutely true, then is at least solid and trustworthy.  For this book is a
philosophical horse from an engineering stable; and, from engineers and
navigators, as from their doctors, people expect reliability. That the expected
performance is not always achieved, is caused, all too often, by a basic
failure to understand the nature of probability.  Had the Titanic been em-
ployed on the sea route between India and Britain, she would never have
struck an iceberg and could well have become an icon of, apparently, safe
design.  In some modern fields of engineering, medicine and navigation,
however, the concepts of probability and uncertainty are fundamental.  This
is especially marked in the fields of remote sensing, such as radar and medi-
cal scanning, and in communications, where we are concerned not merely
with the relatively simple concept of direct probability - as when we draw a
card at random from a pack of known constitution - but also with the more
difficult and contentious problem of inferring the constitution of the pack
from the cards we have drawn.  In medicine, there are further, analogous
problems: the direct problem of estimating the probability that exposure to
infection will give rise to disease and, conversely, the problem of inferring
the probability of a specific disease from the evidence of the symptoms.
Formally, then:-

Our aim is to clarify some of the central principles involved when, under
conditions of uncertainty, we observe certain phenomena and, on that basis,
together with various assumptions, we attempt to determine the degrees of
confidence with which we can rationally believe assertions, derived from the
observations by defined procedures, concerning states or conditions relating
to the phenomena we have observed.
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Notation

Having considered various approaches to notation, we have aimed for
clarity and simplicity wherever it seemed achievable.  Hence, for example,
multiplication is, where sensible, denoted explicitly by the symbol ' x ', but
where this becomes too cumbersome the ' x ' is omitted and the algebraic
notation in which, for example ' a .b  ' denotes ' a x b ' is used.  To those who
have had the benefit of a classical education in mathematics, this may seem
trivial, or perhaps even condescending, yet we find that, in today's world,
and especially in the English-speaking world, young people are increasingly
denied the opportunities to learn classical mathematics which were readily
available to previous generations.  But the grim fact that we cannot assume
familiarity with even moderately sophisticated notation, is not, to our minds,
a reason to impede access to Bayes' thinking: the more so, because much of
what Bayes has to say is couched in the English of his day rather than in the
symbolic language of modern mathematics.  There are however certain
places where we have to use slightly sophisticated notation, and in such
places we ask for the tolerance of those to whom the notation may have little
or no meaning.  We urge them to read on, for they may well find that, with
time - years, perhaps -  they have unconsciously absorbed a great deal of
what may, at first sight, have seemed a tangle of meaningless symbols.

One small point concerns a conflict between the demands of exacti-
tude and of clarity when discussing the 'probability at a point' and the 'prob-
ability density' on a continuous distribution.  To deal with this problem, we
presume that, when using plain English, it is acceptable to write of the prob-
ability at a point on a continuous distribution as if it were a perfectly ordi-
nary quantity.  In mathematical notation, however, we use the form
P ( a ≈  x  k )  rather than P ( a = x  k ) to remind ourselves that, if one
goes much further into the matter, we encounter some rather sophisticated
mathematical issues.   Those issues are not of major importance in this
context and, were we to indulge them, they could needlessly obstruct the
access of many readers to the elements of the argument which really matter.
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So, the symbols we use are:-

  C(.) a calibration table or function defining a distribu-
tion of error probabilities

  C(e) the calibrated probability of occurrence of an error
≈ e.

dF(x) the slope of an 'xy' curve at a point on the curve
defined by a specific value of 'x'.  If the curve is
denoted as F(x), this is technically known as the
differential co-efficient of F(x).

E  denotes the happening of a defined event in a
defined trial, where it may not be known for certain
in advance of the trial whether the event will or will
not happen.

exp (x) the number 'e' raised to the power 'x', where 'e' is
the base of the natural logarithms.  It is a transcen-
dental number approximately equal to 2.7183

F'(x) an alternative way of denoting the differential dF(x)

F''(x) the second differential of a function F(x); it may be
envisioned as the rate at which the slope of F(x)
changes as we move along the x-axis.

g(.)  a shorthand to denote a function of several vari-
ables, such as ' g(x,m,n)' in which the symbols
abbreviated to ' (.) '  can be seen from the context

g'(.) the differential of  g(.)  :  see F'(x) and dF(x)

g''(.) the second differential of a function g(.) -  see F''(x)
above.

G(â,σa,  x ) a 'normal' or 'Gaussian' distribution of the prob-
ability a variable will have a value 'x', given that
the mean of the distribution is â and the standard
deviation, (i.e. the square root of the variance) is σa

~N(a,σ̂ ) similar to G(â,σa,  x ),   specifies that a variable has
a 'normal' or 'Gaussian' distribution about a mean
'a' with standard deviation σ̂

IZ(x) an information-zero distribution of probabilities
over the possible values of 'x'
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ln (x) the natural logarithm of 'x'

n → ∞ ' as the number 'n' tends to infinity'
nCm the number of different subsets which can be formed

by selecting 'm' objects from a set of 'n' distinct
objects.  All subsets are different if each has at least
one member which is not a member of any other
subset.

P(E)  the probability, expressed without further condi-
tions or qualifications, that the event 'E' will hap-
pen in a defined trial.  The same symbols may also
denote the probability that an event 'E' happened in
a trial when we know,  or assume, only that such a
trial has actually taken place and we have no fur-
ther information which would affect our assessment
of the probability of the outcome.

P (~E)  the converse of P (E) i.e. the un-conditional prob-
ability that a defined event 'E' will not, or did not
happen in a given trial.  (But see also below for the
use of the symbol '~' to denote a distribution in
terms such as  'εi ~ N(0,σi )').

P ( E2 | ... ) the conditional probability that an event E2 will
occur in a given trial if it is known or assumed that
an event denoted by the dots has occurred also in a
given trial.  The meaning of the dots is, in each
case, determined by the particular context.

P ( E2 | E1 ) the conditional probability that an event E2 will
occur in a given trial if it is known or assumed that
an event E1 has occurred also in a given trial.

P (E1  ∧∧∧∧  E2  )  the probability that an uncertain event E1 hap-
pened, (or will happen), in a given trial and that
another uncertain event E2 also happened, (or will
happen), in a given trial.  It is important to note
exactly how E1 and E2 are defined in each case.

 P (E1  ∨∨∨∨   E2  )  the probability that an uncertain event E1 hap-
pened, in a given trial or that another uncertain
event E2 also happened, (or will happen), in a given
trial.
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PH ( h  x ) the probability that an hypothesis 'h', concerning
the value of a fixed parameter is true, if it is true
that a random event 'x' has occurred.

PH* ( h  x ) the probability of a 'pseudo hypothesis' which actu-
ally relates to a random event

PR (W k) the probability that a measuring system is working
as calibrated

PR ( x  h ) the probability that a random event 'x' will occur if
hypothesis 'h' is true.

  Pu(x) a uniform distribution of the 'a priori' probability
density with respect to different values of x.

PF( Xn+1≈ xg  Xn ) a special case of  PR( Xi ≈ xg  Xj ) where Xn+1  is  a
value derived from Xn via a forecasting function.

P0 (x) An arbitrary 'a priori' distribution function, i.e. any
such function that we care to specify.

Pd in radar, etc., the probablistic frequency of detect-
ing a defined signal in a noisy environment.

Pm a probablistic frequency governing the occurrence
of a random event

$V  a monetary value of  'V' dollars

∀(i,j) for all values of 'i' and 'j'

/<  not less than, e.g.  x /<  y means 'x is not less than y'

 /> not greater than

 Σ
i=1

     N
     x i   

denotes the summation of a set of numbers, each of
which is identified by assigning a specific, consecu-
tive, integer value to the subscript 'i', starting with
the lower value and ending with the upper value.

 Π
i=1

     n
     x i   

denotes the product of a set of numbers, each of
which is identified by assigning a specific, consecu-
tive, integer value to the subscript 'i', starting with
the lower value and ending with the upper value.
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 ⌡⌠
x1

x2  
 F(x)

Technically known as a 'definite integral', these
symbols can be understood to denote the area
between the x-axis and an 'xy' curve,  denoted F(x),
between points on the x-axis defined by x1 and x2 .
Thus, if the 'y' axis denotes the density of the prob-
ability for a given value on the 'x' axis, the area
under the curve gives the total probability of an
event occurring somewhere between the points, x1
and x2.

 [ F(x) ] x1
 
x2 symbolises the value obtained by performing the

subtraction F(x1) - F(x2)

    ~  ' is distributed as '   e.g.   εi  ~ N(0,σi ) denotes that
εi is normally distributed about a zero mean, with
variance σi

2

Definitions

We quite often use the following expressions without further ex-
planation.  Where they occur, it may be assumed they have the meanings
defined below:-

Bayes' question  :  'Given the number of times in which an unknown
event has happened and failed:  Required the chance that the probability
of its happening in a single trial lies somewhere between any two de-
grees of probability that can be named'.

Bayes' theorem  :  See the Précis above and chapter 3, equations (3-51
thru 3-51f)

Bayes' solution  : In the Scholium, Bayes states:- '...... therefore I shall
take for granted that the rule given concerning the event M in Prop.9 is
also the rule to be used in relation to any event concerning the probabil-
ity of which nothing at all is known antecedently to any trials made or
observed concerning it.'.   This invokes the assumption of a uniform
prior distribution over the possible values of the unknown probability
and gives as the solution to Bayes' question:-
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PH { ( x1  < Pm  <  x2 ) | (m,n,Pu(x)) } 

                                 =               

 ⌡⌠
x1

x2
 xm (1 - x)(n - m) dx 

  ⌡⌠
0 

 1
xm (1 - x)(n - m) dx 

Further details are given in chapter 5.

delta function  :  This term is apparently not known to the compilers of
mathematical dictionaries but is widely used in the signal processing world
to denote a probability distribution in which the whole probability is con-
centrated at a unique value, such that the probability = 1 that an item se-
lected at random from the relevant population will have that unique value.

Objective, Subjective :  The meanings with which we use these words are,
we believe, those of ordinary discourse in the English language.  We have
checked this by asking a number of people how they use these words.  While
most of those asked have given meanings which are pretty well identical
with our own, the responses have not been entirely uniform and our mean-
ings certainly differ from those often adopted in philosophical and statistical
discourse.  The dictionaries are ambivalent.  Opting therefore to go with
common usage, we use 'objective' to mean an assessment of probability
which is derivable from defined external evidence and assumptions, by a
defined process of deduction which is generally accepted as valid and is
such that any number of persons or automata could be taught or pro-
grammed to reach always the same assessment, given the same evidence and
assumptions.   We use 'subjective' to mean a process of assessing probability
which is subject to influences which are private to the agent making the
assessment so that there are no reasons to believe that any two such agents
will ever reach an equal assessment given the same external evidence and
assumptions.

Random event :  An event which could occur in any or every trial of a set,
but we have no way of knowing whether it will or will not occur in any
given trial.  The occurrence of a random event within a set may, or may not,
be governed by an underlying fixed probability having a value which can be
arbitrarily close to one, or to zero, or have any value between those limits.
An event can also be, but unknown to us, 'deterministic' in a defined type of
trial, in which case the underlying probability in such a trial is either one or
zero.  We therefore view randomness and determinism as being assessed
strictly relative to the available information.
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Relative, Absolute :  We use 'relative' to mean probabilities which are as-
sessed or asserted on the basis of - in relation to - evidence and assumptions.
We use 'absolute' to mean probabilities which are asserted independently of
and without reference to any evidence or assumptions.  We therefore pre-
sume that the only rational and meaningful assertions of absolute probabili-
ties are in hypothetical statements of the form: 'If a defined event in a
defined situation has a probability of occurrence 'x', then .....'.. While such
statements may be absolutely valid, they can be dangerous, as we show in
Chapter 11.

Language
In considering language and style, we are painfully aware that many of

our sentences are long and complex but, all too often, we found that, in
trying to use shorter sentences, we were unable to achieve precision.

The second issue is the choice of a relative pronoun, where we tend to
use 'which' rather than 'that'.  This goes against certain current views on the
politically correct use of these words - albeit such views stretch back, it
seems, at least to Fowler1.  It is our view, however, that the subject we
address requires the finest possible nuances of language to achieve the preci-
sion which is its central purpose.  Therefore, with a few exceptions, we use
'which'.  

The final point concerns the word 'data'.  In Latin, this is a neuter
plural noun and would normally, in Latin, attract the plural of the verb.  We
are, however, writing English and there is no law which requires a word
which is adopted into another language to preserve all the attributes of the
original.  This is especially true when the meaning in the adopting language
is rather different from the meaning in the original language.  We therefore
generally follow academic convention by treating 'data' as a plural form, but,
noting that, in classical Greek, a neuter plural noun is often used with a
singular form of the verb, we allow 'data', occasionally, to be singular in
English also.

                                                
1 Fowler (1930). We are grateful to Professor Donald Knuth who outlined the history of
this phenomenon in an after-dinner address to the 1999 gathering of UK TEX  society.
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Chapter  1

Introduction

The Philosophical Transactions of the Royal Society for the year 1763
present a paper entitled An Essay towards solving a Problem in the Doctrine
of Chances1. The essay had been written by the Rev. Thomas Bayes and was
found among his papers after his death.  It was sent for publication by his
friend, Richard Price.  The problem, to which the title of the essay refers, is
this:-

Given the number of times in which an unknown event has hap-
pened and failed :  Required the chance that the probability of
its happening in a single trial lies somewhere between any two
degrees of probability that can be named .

The essay was published at a relatively early point in the modern style
of scientific enquiry, and it is arguable that the problem is the most basic in
science, for it involves no rulers, no clocks, no dimensional parameters of
any kind, but simply the counting of events. It is therefore, in our view, a
matter for deep concern that Bayes' problem and the deeper questions to
which it leads have been largely ignored by the scientific community:
R.A.Fisher being a notable exception who fully perceived the serious nature
of the issues2.  Often, however, the issues have been regarded as trivial snags
in the theory of statistics with few, if any, really serious implications.  Wide
sections of the professional communities in engineering, econometrics and
sociology have, perhaps unconsciously, 'looked the other way', and refrained
from pursuing issues which required Bayes' question to be answered.

Yet, whether the issues are truly trivial, and can be ignored, we shall
find cause to doubt.  For this book follows the trail of an investigation,
which starts in the middle of the eighteenth century, and concludes - or,
rather, pauses to take stock - in today's world, where it is increasingly unac-
ceptable and impossible to ignore the issues raised by Bayes' essay.  Matters
as wide-ranging as air traffic control, data mining, ethical and risk manage-
ment problems in clinical medicine and in health care policy, all require
Bayes' question to be answered. The issues raised by the essay are funda-
mental in Monte Carlo simulation which is increasingly used with computer
models of complex phenomena in, for example, electrical engineering,
                                                
1 Bayes (1763), p 376
2 His views are discussed in detail in Chapter 7.
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biology and numerical analysis.  Therefore, rather than simply accept today's
conventional view,  we go back to Bayes' essay, written at a time when
mathematical symbolism was still largely unformed.  Where today we might
simply say, 'let 'x' denote such-and-such', Bayes had to perform much of the
algebra by using whole phrases as the variables.   Quite some patience is
required to follow closely his reasoning, and this must be, at least in part, a
reason why, after nearly 250 years, his analysis has still not received the
close attention from the wider philosophical and scientific community which
we believe it merits.

The importance of the essay for real-life issues arises largely because
Bayes' approach to Probability is based adamantly in the sort of real-life
experience which is directly accessible to the vast majority of humankind.
He does not define 'probability in itself' but defines instead how probability
is to be measured.  For his definition, he writes of probability in terms of
trials and events.   He defines the probability of an event as 'the ratio be-
tween the value at which an expectation depending on the happening of the
event ought to be computed, and the value of the thing expected upon its
happening'.  That is, if we have a ticket which will be worth $1000 if a
certain event happens and the value which 'ought' to be placed on that ticket
- the value of the 'expectation' - is $200, then the ratio $200 / $1000, i.e. 0.2,
is the probability of the event.  As we shall see, this definition implies that
probability shall be computed relative to defined evidence and assumptions.
We shall also see how important it is to use a notation which explicitly
designates the evidence and assumptions on which the computations are
based.  Under Bayes' definition, a trial concerning an event can be repetitive
or unique: the definition fits both.  This turns out to be a point of crucial
significance when we come to examine the relevance of, for example,
population statistics to an individual case.  Bayes' definition also leads di-
rectly to concepts such as 'probable gain', 'probable value' and 'probable cost'
which can be of enormous help in achieving rational decisions in uncertain
situations.  That is not to claim that such decisions are correct or optimal;
but that they are rational in the sense that we can explain exactly how they
are reached and allow others to test our evidence, assumptions and reason-
ing.

It is for such reasons that we are so concerned with the exposition of a
philosophical essay which was not even published by its author in his own
lifetime, but left in his papers to be discovered and published after his death.
After that, it was largely ignored for about 100 years, then abused for a
further 100 years, and is only nowadays starting to receive close and sym-
pathetic attention.  The concept of Probability is of enormous importance, in
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pure science, in engineering, medicine, navigation and in making everyday
decisions, where often, despite large uncertainties, one has a moral obliga-
tion, not only to act, but to act on a rational basis.

It is important also to understand the basic place of the issues raised by
Bayes' essay once it is accepted that all measurements are subject to uncer-
tainty.  In earlier times, the issue of uncertainty was, understandably, over-
looked in the excitement of discovering simple and elegant mathematical
models of natural phenomena.  Yet once it is accepted that uncertainty is
inevitably present in measurement and observation, there is a correspond-
ingly inexorable requirement to face the issues of probability which Bayes
presents in stark and, arguably, irreducible simplicity.

Bayes' approach is, however, quite unlike that of, say, Kolmogorov1,
whose approach is purely directed at the axiomatisation of the theory of
random phenomena and has no declared connection with situations in which
we use evidence, inference and experience in dealing with uncertainty and
making decisions. In many situations, people need to know plain probabili-
ties - in order that they may proceed to rational decisions by clear reasoning
about probable benefits and costs.  Too often, however, they have to accept
attenuated substitutes - likelihoods and confidence limits - which provide
little or no clear basis for the making of rational decisions. In defence sys-
tems, medicine and commerce, the result is a quagmire where people need a
firm theoretical basis.  In a radar surveillance system, for example, a con-
troller needs information in plain terms such as:- "On the standard assump-
tions, there is a probability in excess of 99% that the height of this aircraft is
above 30,000ft."   In respected texts concerning radar signal processing and
tracking, however, authors such as van Trees and Bar-Shalom2 choose their
words with cautious reserve; as does Pollock, whose work stems largely
from econometrics3.  In archaeology, the report of a very precise dating for a
pre-historic timber circle appears to use quite marked circumlocutions, goes
so far as to mention 'probability' in the annotation of a diagram, but nowhere
does it plainly ascribe a probability to the remarkable result4.  The newspa-

                                                
1  Kolmogorov(1933), English translation (1950).   But see v.Plato(1994), Ch.7, for an
account of Kolmogorov's acute interest in the physical applications of probability and the
probable reasons why he chose an abstract axiomatic basis for his theory.
2 van Trees (1968), Bar-Shalom (1988)
3 Pollock (1999).
4 Bayliss (1999).
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pers, however, were not quite so reticent, the 'The Times' reporting that 'an
exact date' had been established1.

But, as we shall see, Bayes' approach requires us to make assumptions
and one in particular, the postulate of the 'uniform prior' has repeatedly been
given as a reason for denying the validity of Bayes' conclusion.  When one
reads, however, the fulminations against Bayes, and against the assignment
of probabilities to hypotheses, by authors such as Boole, Fisher, Keynes and
Fine, it is scarcely surprising that people should walk with caution over the
cracks in this academic volcano.  Yet we are forced to suspect that many
who have fulminated against Bayes may have been rather hypocritical: for
who can doubt that the whole of science is based upon assumptions to
which, in the last resort, we accede only as a matter of personal choice?
Seen in that light, Bayes' assumption is, we suggest, trivial compared with
many others which are routinely taken for granted.  Yet we then have to ask
why the postulate of the uniform prior became such a stumbling block?   Can
so many people have been so obstructive for so long without good cause?
As we shall see, the answers to these questions begin, rather subtly in what
Bayes himself wrote.  Later, and more blatantly, we find illicit use, by oth-
ers, of approaches which are superficially similar to that of Bayes, but in
problems which Bayes did not address.  Fortunately, we are able to show
that Bayes' approach can be applied, coherently, to a wide range of cases
which are of great practical importance and without entailing the apparent
contradictions which have for so long obstructed its use.

Although Bayes' essay attracted little attention for many years after its
publication, it seems that, at some time in the nineteenth century, the method
of Bayes became associated with certain other approaches to the general
problem of 'Inverse Probability' and with various fallacies and contradic-
tions.  These seem to have stemmed largely from the work of Laplace, who
casually associated the name of Bayes with his own approach.  This caused
Bayes' name to become the focus of controversy and doubts which continue
to the present time and in which too little attention has been paid to what
Bayes himself actually wrote. Fortunately, more recent authors2 have pointed
out that even eminent authorities may have seriously misunderstood Bayes'
argument.  In our view, however, those authorities often neglected and
misunderstood the precise problem which Bayes set out to address, and, by
focussing on other issues, they distracted attention from a question which is
of considerable importance in many areas of human endeavour.  This is

                                                
1 'The Times', 2 Dec 1999, p15.
2 Especially Stigler (1986a).
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especially the case where we set out to observe the number of occasions on
which an event occurs during a series of trials, and thence to infer the un-
derlying probability of occurrence.  (Some of the many assumptions which
are taken for granted in this simple formulation, we examine in later chap-
ters: for the moment, we take the formulation simply as it stands).

But it would be unfair to lay all the blame for the misrepresentation of
Bayes' original work at the feet of later commentators, for the broadening of
the issues began with the covering letter written by Richard Price, which was
printed as an introduction to the essay on its first publication.  It is for such
reasons that in Chapter 2, we reproduce, with the kind agreement of The
Royal Society, the introductory letter by Richard Price, followed by the
Essay as far as page 394 in the original publication.  We would therefore
encourage the reader to work gently through Chapter 2, at least once, in
order to get the flavour of Bayes' writing and to be more able than otherwise
to examine critically our discussion of his argument.

In Chapter 3 we begin our own exposition of Bayes' argument, taking
the essay as far as Proposition 9, (i.e. up to but stopping short of the
Scholium).  We paraphrase the argument where this seems necessary to make
the reasoning clear for the reader of our own times. For, as Stigler1 points
out, the essay is difficult: it stymied Bayes' own contemporaries, and, for a
modern reader to understand the essay in its original form may require many
hours of concentrated attention: the print is antiquated in style, important
words are used with meanings which we today find strained, the reasoning
makes extensive use of whole phrases, where we would today use mathe-
matical symbols, and it is in a style which was old-fashioned even when it
was written.

In Chapter 4 we offer an exposition of Bayes' experiment, in which
balls are thrown randomly onto a plain and level table.  Chapter 5 is an
exposition of the Scholium which Bayes placed within the essay and in
which he discusses the need to assume the uniform prior distribution of
probability.  In  Chapter 6 we expound the concepts of probability and ex-
pectation as used by Bayes.  To that point, therefore, our approach is essen-
tially one of uncritical exposition and we hold for later chapters the
criticisms and reservations which have been expressed concerning the argu-
ments which Bayes deploys to solve the problem he has set.

In Chapter 7, we discuss the views of various Critics and Defenders,
starting with Richard Price. We note their failure to read and address what

                                                
1  Stigler (1982).
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Bayes actually wrote in the essay, and how later critics preferred to address
things which other authors, such as Laplace, but not Bayes, may have writ-
ten.  We then analyse in some detail, criticisms levelled against Bayes by
R.A.Fisher, together with the daunting task of dealing with the claims which
Fisher adduced for the 'fiducial argument'.  This largely concludes our criti-
cal analysis of Bayes' essay and the classical views taken of it.

In Chapter 8, 'A Critical Case', we enter a more constructive phase by
showing how we began the excavations which seemed necessary, if we were
to find a viable basis for the use of Bayes' approach in real life.  This takes
the form of an example, where ethical value and probability come to an
acute focus in deciding whether or not a certain treatment should be admin-
istered to a critically sick person.  Having found that Bayes' approach pro-
vides, in the critical case, the only solution which is morally and rationally
acceptable, we move, in Chapter 9, 'The Ruler', to examine some further
foundations, this time in relation to the way in which professional people -
navigators, doctors and engineers - actually use a measuring device, such as
a ruler, in real life.  This is particularly important for the light it throws on
the problem which has besieged the use of Bayes' theory in questions of
parametric measurement.  That is, a prior probability which is uniformly
distributed with respect to, say, the electrical resistance of a wire, becomes
markedly non-uniform if we should choose instead to consider the current
which flows in that same wire, given a constant voltage.  The outcome of
this excavation is a simple resolution of the difficulty and a view of what is
meant by 'prior probability' rather different from that which has been as-
sumed by many previous investigators, including, if not necessarily starting
with, good Thomas Bayes himself.

In Chapter 10, 'The Individual', we explore the impact of this different
view of a prior probability on the traditional views of the relationship in
probability between an individual and a population.  The result is somewhat
disturbing for the traditional view. This line of exploration is taken further in
Chapter 11, 'The Valid Prior' to give a clarified view of  the conditions
under which prior knowledge can be used as a prior probability in the appli-
cation of Bayes' theory.  The outcome is a perspective which draws together
the findings of the previous chapters.

In Chapter 12, 'The Trajectory', we apply Bayes' theory, seen in this
new perspective, to the integration and refinement of repeated observations.
This is a fundamental issue in navigation, surveying and in many electronic
devices.  There are widespread applications in radar and in the many scan-
ning devices which have stemmed from radar1, as there are also in telecom-
munications and in process control.  We build on the results of the previous

                                                
1 Buderi (1996) ('The Invention that Changed the World'.)
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chapters to show how Bayes' theory leads rigorously, objectively, and with-
out  arbitrary or subjective assumptions, to a widely-used family of recursive
integrators, of which the Kalman filter is one example.

Chapter 13, 'The Base Rate' deals with an area where it is hard to
exaggerate the importance of the issues, such are the widespread confusions
between individuals and populations in matters so varied as medical diagno-
sis or the reliability of legal testimony.  The roots of 'base rate thinking' seem
to stem from certain cognitive psychologists who have developed a re-
markably monocular view of how Bayes' theorem applies to the real world.
It is an area where there has been an extremely serious failure to perceive the
difference between probability in the sense of a frequency within a popula-
tion and in the other sense of a degree of reason to believe a proposition
concerning an individual, based on evidence concerning the individual in
question.

In Chapter 14, 'The Probable Cause', we consider some wider issues
of common interest in situations where Bayes' theory is, at least superfi-
cially, relevant to the diagnosis of causes.  We note, however, that the diag-
nosis of causation can present some formidably difficult conceptual
problems and that cut-and-dried conclusions are rarely as easy to reach as
common sense and common parlance might seem to expect.  In Chapter 15
we summarise what we have found and we present our conclusions, some of
which are indeed disturbing when we consider the uses made of 'probability'
in the reasoning of certain sections of our society.

As we move from chapter to chapter, the views we present are not
homogeneous, as seen from the concluding position, but take the reader
along the paths we traversed as we pursued the exploration and the percep-
tions slowly unfolded1.  Throughout the exploration, however, the unifying
aim is to understand the diagnosis - in probability - of situations which are
inexorably uncertain, and to decide upon  actions which are rational, given
the evidence, and given the view of 'the rational' which is generally endorsed
by the society in which we happen to live. We accept that our argument, in
many places, sacrifices the formal rigour which is often demanded in pure
mathematics, but is totally opaque to many intelligent, well-educated read-
ers.  Thus, because our concern is with probability as an instrument of prac-
tical reason, we have aimed for clarity and precision in the practical sense of
prose writers, hoping to be understood 2.

                                                
1 As exhorted by Medawar (1963) and Bondi (1967).  See also Turkle (1995) p 59.
2 cf. Keynes (1921) p vi
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Read Dec. 23,
       1763

Chapter 2

The  Essay

The following is copied from
The Philosophical Transactions of the Royal Society

Volume 53
1763

p370

LII.  An Essay towards solving a problem in the Doctrine of Chances.  By
the late Rev. Mr. Bayes,  F.R.S. communicated by Mr. Price, in a Letter to
John Canton, A.M. F.R.S.

Dear Sir,

I Now send you an essay which I have found among the
papers of our deceased friend Mr. Bayes, and which, in
my opinion,  has great merit, and well deserves to be

preserved.  Experimental philosophy, you will find, is nearly interested in the
subject of it;  and on this account there seems to be particular reason for
thinking that a communication of it to the Royal Society cannot be improper.

He had, you know, the honour of being a member of that illustrious
Society, and was much esteemed by many in it as a very able mathematician.
In an introduction which he has writ to this Essay, he says, that his design at
first in thinking on the subject of it was, to find out a method by which we
might judge concerning the probability that an event has to happen, in given
circumstances, upon supposition that we know nothing concerning it but
that, under the same circumstances, (page  371)it has happened a certain number
of times, and failed a certain other number of times.  He adds, that he soon
perceived that it would not be very difficult to do this, provided some rule
could be found according to which we ought to estimate the chance that the
probability for the happening of an event perfectly unknown, should lie
between any two named degrees of probability, antecedently to any experi-
ments made about it;  and that it appeared to him that the rule must be to
suppose the chance the same that it should lie between any two equidifferent
degrees;  which, if it were allowed, all the rest might be easily calculated in
the common method of proceeding in the doctrine of chances.  Accordingly,
I find among his papers a very ingenious solution of this problem in this
way.  But he afterwards considered, that the postulate on which he had
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argued might not perhaps be looked upon by all as reasonable;  and therefore
he chose to lay down in another form the proposition in which he thought the
solution of the problem is contained, and in a scholium to subjoin the rea-
sons why he thought so, rather than to take into his mathematical reasoning
any thing that might admit dispute.  This, you will observe, is the method
which he has pursued in this essay.

Every judicious person will be sensible that the problem now mentioned
is by no means merely a curious speculation in the doctrine of chances, but
necessary to be solved in order to a sure foundation for all our reasonings
concerning past facts, and what is likely to be hereafter.  Common sense is
indeed sufficient to shew us that, from the observation of what has in former
instances been the consequence of a certain cause (page  372) or action, one
may make a judgement what is likely to be the consequence of it another
time, and that the larger number of experiments we have to support a conclu-
sion, so much the more reason we have to take it for granted.  But it is cer-
tain that we cannot determine, at least not to any nicety, in what degree
repeated experiments confirm a conclusion without the particular discussion
of the beforementioned problem; which, therefore, is a necessary to be
considered by any one who would give a clear account of the strength of
analogical or inductive reasoning;  concerning, which at present, we seem to
know little more than that it does sometimes in fact convince us, and at other
times not;  and that, as it is the means of [a]cquainting us with many truths,
of which otherwise we must have been ignorant;  so it is, in all probability,
the source of many errors, which perhaps might in some measure be
avoided, if the force that this sort of reasoning ought to have with us were
more distinctly and clearly understood.

These observations prove that the problem enquired after in this essay is
no less important than it is curious.  It may be safely added, I fancy, that it is
also a problem that has never before been solved.  Mr. De Moivre, indeed,
the great improver of this part of mathematics, has in his Laws of chance1,
after Bernoulli, and to a greater degree of exactness, given rules to find the
probability there is, that if a very great number of trials be made concerning
any event, (page  373)  the proportion of the number of times it will happen, to
the number of times it will fail in those trials, should differ less than by
small assigned limits from the proportion of the probability of its happening
to the probability of its failing in one single trial.  But I know of no person

                                                
1 See Mr. De Moivre's Doctrine of Chances, p. 243, &c.  He has omitted the demonstra-
tions of his rules, but these have been since supplied by Mr. Simpson at the conclusion of
his treatise on The Nature and Laws of Chance.
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who has shewn how to deduce the solution of the converse problem to this;
namely, 'the number of times an unknown event has happened and failed
being given, to find the chance that the probability of its happening should
lie somewhere between any two named degrees of probability'.  What Mr.
De Moivre has done therefore cannot be thought sufficient to make the
consideration of this point unnecessary:  especially, as the rules he has given
are not pretended to be rigorously exact, except on supposition that the
number of trials made are infinite;  from whence it is not obvious how large
the number of trials must be in order to make them exact enough to be de-
pended on in practice.

Mr. De Moivre calls the problem he has thus solved, the hardest that can
be proposed on the subject of chance.  His solution he has applied to a very
important purpose, and thereby shewn that those are much mistaken who
have insinuated that the Doctrine of Chances in mathematics is of trivial
consequence, and cannot have a place in any serious enquiry1.  The purpose
I mean is, to shew what reason we have for believing that there are in the
constitution of things fixt laws according to which events happen, and that,
therefore, the frame of the world must be (page  374) the effect of the wisdom
and power of an intelligent cause;  and thus to confirm the argument taken
from final causes for the existence of the Deity.  It will be easy to see that
the converse problem solved in this essay is more directly applicable to this
purpose;  for it shews us, with distinctness and precision, in every case of
any particular order or recurrency of events, what reason there is to think
that such recurrency or order is derived from stable causes or regulations in
nature, and not from any of the irregularities of chance.

The two last rules in this essay are given without the deductions of them.
I have chosen to do this because these deductions, taking up a good deal of
room, would swell the essay too much;  and also because these rules, though
of considerable use, do not answer the purpose for which they are given as
perfectly as could be wished.  They are however ready to be produced, if a
communication of them should be thought proper.  I have in some places
writ short notes, and to the whole I have added an application of the rules in
the essay to some particular cases, in order to convey a clearer idea of the
nature of the problem and to shew how far a solution of it has been carried.

I am sensible that your time is so much taken up that I cannot reasonably
expect that you should minutely examine every part of what I now send you.
Some of the calculations, particularly in the appendix, no one can make
without a good deal of labour.  I have taken so much care about them, that I
                                                
1 See his Doctrine of Chances, p. 252, &c.
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believe there can be no material error in any of them;  but should there be
any such errors, I am the only person who ought to be considered as answer-
able for them.

(page  375)

Mr. Bayes has thought fit to begin his work with a brief demonstration of
the general laws of chance.  His reason for doing this, as he says in his in-
troduction, was not merely that his reader might not have the trouble of
searching elsewhere for the principles on which he has argued, but because
he did not know whither to refer him for a clear demonstration of them.  He
has also made an apology for the peculiar definition he has given of the
word chance or probability.  His design herein was to cut off all dispute
about the meaning of the word, which in common language is used in differ-
ent senses by persons of different opinions, and according as it is applied to
past or future facts.  But whatever different senses it may have, all (he ob-
serves) will allow that an expectation depending on the truth on any past
fact, or the happening of any future event, ought to be estimated so much the
more valuable as the fact is more likely to be true, or the event more likely
to happen.  Instead therefore, of the proper sense of the word probability, he
has given that which all will allow to be its proper measure in every case
where the word is used.  But it is time to conclude this letter.  Experimental
philosophy is indebted to you for several discoveries and improvements;
and, therefore, I cannot help thinking that there is a peculiar propriety in
directing to you the following essay and appendix.  That your enquiries may
be rewarded with many further successes, and that you may enjoy every [ s i c ]

valuable blessing, is the sincere wish of, Sir,

Newington-Green, Your very humble servant, 
Nov. 10 1763. Richard Price
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[376]

PROBLEM.

Given the number of times in which an unknown event has hap-
pened and failed:  Required the chance that the probability of its
happening in a single trial lies somewhere between any two de-
grees of probability that can be named.

SECTION I.

DEFINITION  1.  Several events are inconsistent, when if one of them
happens, none of the rest can.

2. Two events are contrary when one, or other of them must;  and both
together cannot happen.

3.  An event is said to fail, when it cannot happen;  or, which comes to the
same thing, when its contrary has happened.

4.  An event is said to be determined when it has either happened or
failed.

5.  The probability of any event is the ratio between the value at which an
expectation depending on the happening of the event ought to be computed,
and the value of the thing expected upon it's happening.

6.  By chance I mean the same as probability.

7.  Events are independent when the happening of any one of them does
neither increase nor abate the probability of the rest.

PROP. 1.

When several events are inconsistent the probability of the happening of
one or other of them is the sum of the probabilities of each of them.

Suppose there be three such events, and which ever of them happens I am
to receive N, and that the probability of the 1st, 2d, and 3d are respectively
a
N

, 
b
N

, 
c
N

.  Then (by the definition of probability) the value of my expecta-

tion from the 1st will be a, from the 2d b, and from the 3d c.  Wherefore the
value of my expectations from all three will be a + b + c.  But the sum of my
expectations from all three is in this case an expectation of receiving N upon
the happening of one or other of them.  Wherefore (by definition 5) the



Chapter 2 The Essay

Version zh25a.doc at 18:36  on 13 July, 2001
All rights reserved.

13

probability of one or other of them is 
a + b + c

N
 or 

a
N

+
b
N

+
c
N

.  The sum of

the probabilities of each of them.

Corollary.  If it be certain that one or other of the three events must hap-
pen, then a + b + c = N.  For in this case all the expectations together
amounting to a certain expectation of receiving N, their values together must
be equal to N.  And from hence it is plain that the probability of an event
added to the probability of its failure (or of its contrary) is the ratio of equal-
ity.  For these are two inconsistent events, one of which necessarily happens.

Wherefore if the probability of an event is 
P
N

 that of it's failure will be

N − P
N

.

PROP. 2.

If a person has an expectation depending on the happening of an event,
the probability of the event is to the probability of its failure as his loss if it
fails to his gain if it happens.

Suppose a person has an expectation of receiving N, depending on an

event the probability of which is 
P
N

.   (page  378) Then (by definition 5) the

value of his expectation is P, and therefore if the event fail, he loses that
which in value is P;  and if it happens he receives N, but his expectation
ceases.  His gain therefore is N – P.  Likewise since the probability of the

event is 
P
N

, that of its failure (by corollary prop. 1) is 
N − P

N
.  But 

P
N

 is to

N − P
N

 as P is to N – P, i.e. the probability of the event is to the probability

of it's failure, as his loss if it fails to his gain if it happens.

PROP. 3.

The probability that two subsequent events will both happen is a ratio
compounded of the probability of the 1st, and the probability of the 2d on
supposition that the 1st happens.

Suppose that, if both events happen, I am to receive N, that the probabil-

ity both will happen is P
N

, that the 1st will is a
N

 (and consequently that the

1st will not is N − a
N

) and that the 2d will happen upon supposition that the

1st does is b
N

.  Then (by definition 5) P will be the value of my expectation,

which will become b if the 1st happens.  Consequently if the 1st happens,
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my gain by it is b – P, and if it fails my loss is P.  Wherefore, by the forego-

ing proposition, 
a
N  

is to 
N − a

N
 i.e. a is to N – a as P is to b – P.  Wherefore

(componendo inversè) a is to N as P is to b.  But the ratio of P to N is com-
pounded of the ratio of P to b, and that of b to N.  Wherefore the  (page  379)

same ratio of P to N is compounded of the ratio of a  to N and that of b to N,
i.e. the probability that the two subsequent events both happen is com-
pounded of the probability of the 1st and the probability of the 2d on suppo-
sition the 1st happens.

Corollary.  Hence if of two subsequent events the probability of the 1st be
a
N

, and the probability of both together be 
P
N

, then the probability of the 2d

on supposition the 1st happens is 
P
a

.

PROP. 4.

If there be two subsequent events to be determined every day, and each

day the probability of the 2d is b
N

 and the probability of both P
N

, and I am

to receive N if both the events happen the 1st day on which the 2d does;  I

say, according to these conditions, the probability of my obtaining N is 
P
b

.

For if not, let the probability of my obtaining N be 
x
N

 and let y be to x as N –

b to N.  Then since 
x
N

 is the probability of my obtaining N (by definition 1) x

is the value of my expectation.  And again, because according to the forego-
ing conditions the 1st day I have an expectation of obtaining N depending on

the happening of both the events together, the probability of which is 
P
N

, the

value of this expectation is P.  Likewise, if this coincident should not happen
I have an expectation of being reinstated in my former circumstances, i.e. of
receiving that which in value is x depending (page  380) on the failure of the 2d

event the probability of which (by cor. prop. 1) is N − b
N

 or y
x

, because y is

to x as N – b to N.  Wherefore since x is the thing expected and y
x

 the prob-

ability of obtaining it, the value of this expectation is y.  But these two last
expectations together are evidently the same with my original expectation,
the value of which is x, and therefore P + y = x.  But y is to x as N – b is to
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N.  Wherefore x is to P as N is to b and 
x
N

 (the probability of my obtaining

N) is 
P
b

.

Cor.  Suppose after the expectation given me in the foregoing proposition,
and before it is at all known whether the 1st event has happened or not, I
should find that the 2d event has happened;  from hence I can only infer that
the event is determined on which my expectation depended, and have no
reason to esteem the value of my expectation either greater or less than it
was before.  For if I have reason to think it less, it would be reasonable for
me to give something to be reinstated in my former circumstances, and this
over and over again as often as I should be informed that the 2d event had
happened, which is evidently absurd.  And the like absurdity plainly follows
if you say I ought to set a greater value on my expectation than before, for
then it would be reasonable for me to refuse something if offered me upon
condition I would relinquish it, and be reinstated in my former circum-
stances;  and this likewise over and over again as often as (nothing being
known concerning the 1st event) it should appear that the 2d had happened.
Notwithstanding therefore this discovery that the 2d (page  381)  event has
happened, my expectation ought to be esteemed the same in value as before,
i.e. x, and consequently the probability of my obtaining N is (by definition 5)

still 
x
N

 or 
P
b

1

.  But after this discovery the probability of my obtaining N is

the probability that the 1st of two subsequent events has happened upon the
supposition that the 2d has, whose probabilities were as before specified.
But the probability that an event has happened is the same as the probability
I have to guess right if I guess it has happened.  Wherefore the following
proposition is evident.

PROP. 5.

If there be two subsequent events, the probability of the 2d 
b
N

 and the

probability of both together 
P
N

, and it being 1st discovered that the 2d event

                                                
1 What is here said may perhaps be a little illustrated by considering that all that can be lost
by the happening of the 2d event is the chance I should have had of being reinstated in my
former circumstances, if the event on which my expectation depended had been determined
in the manner expressed in the proposition.  But this chance is always as much against me
as it is for me.  If the 1st event happens, it is against me, and equal to the chance for the 2d
event's failing.  If the 1st event does not happen, it is for me, and equal also to the chance
for the 2d event's failing.  The loss of it, therefore, can be no disadvantage.
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has happened, from hence I guess that the 1st event has also happened, the

probability I am in the right is P
b

 
1
.

(page  382)  PROP. 6.

The probability that several independent events shall all happen is a ratio
compounded of the probabilities of each.

For from the nature of independent events, the probability that any one
happens is not altered by the happening or failing of any of the rest, and
consequently the probability that the 2d event happens on supposition the 1st
does is the same with its original probability;  but the probability that any
two events happen is a ratio compounded of the probability of the 1st event,
and the probability of the 2d on supposition the 1st happens by prop. 3.
Wherefore the probability that any two independent events both happen is a
ratio compounded of the probability of the 1st and the probability of the 2d.
And in like manner considering the 1st and 2d event together as one event;
the probability that three independent events all happen is a ratio com-
pounded of the probability that the two 1st both happen and the probability
of the 3d.  And thus you (page  383)  may proceed if there be ever so many such
events;  from whence the proposition is manifest.

Cor. 1.  If there be several independent events, the probability that the 1st
happens the 2d fails, the 3d fails and the 4th happens, &c.  is a ratio com-
pounded of the probability of the 1st, and the probability of the failure of the
2d, and the probability of the failure of the 3d, and the probability of the 4th,
&c.  For the failure of an event may always be considered as the happening
of its contrary.

Cor. 2.  If there be several independent events, and the probability of each
one be a, and that of its failure be b, the probability that the 1st happens and
the 2d fails, and the 3d fails and the 4th happens, &c.  will be  a b b a, &c.

                                                
1 What is proved be Mr. Bayes in this and the preceding proposition is the same with the
answer to the following question.  What is the probability that a certain event, when it
happens, will be accompanied with another to be determined at the same time?  In this case,
as one of the events is given, nothing can be due for the expectation of it;  and, conse-
quently, the value of an expectation depending on the happening of both events must be the
same with the value of an expectation depending on the happening of one of them.  In other
words;  the probability that, when one of two events happens, the other will, is the same

with the probability of this other.  Call x then the probability of this other, and if 
b
N

 be the

probability of the given event,  and 
p
N

 the probability of both, because 
p
N

 = 
b
N

 x  x, x =

p
b

 = the probability mentioned in these propositions.
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For, according to the algebraic way of notation, if a denote any ratio and b
another, a b b a denotes the ratio compounded of the ratios a, b, b, a.  This
corollary therefore is only a particular case of the foregoing.

Definition.  If in consequence of certain data there arises a probability that
a certain event should happen, its happening or failing, in consequence of
these data, I call it's happening or failing in the 1st trial.  And if the same
data be again repeated, the happening or failing of the event in consequence
of them I call its happening or failing in the 2d trial;  and so on as often as
the same data are repeated.  And hence it is manifest that the happening or
failing of the same event in so many diffe-  trials is in reality the happening
or failing of so many distinct independent events exactly familiar to each
other.

(page  383)   PROP. 7.

If the probability of an event be a, and that of its failure be b in each
single trial, the probability of its happening p times,  and failing q times in p
+ q trials is E a p bq  if E be the coefficient of the term in which occurs
a p bq  when the binomial a + b| p+ q  is expanded.

For the happening or failing of an event in different trials are so many
independent events.  Wherefore (by cor. 2. prop. 6.) the probability that the
event happens the 1st trial, fails the 2d and 3d, and happens the 4th, fails the
5th, &c. (thus happening and failing till the number of times it happens be p
and the number it fails be q is a b b a b &c. till the number of a's be p and
the number of b's be q, that is;  'tis a p bq .  In like manner if you consider the
event as happening p times and failing q times in any other particular order,
the probability for it is a p bq ;  but the number of different orders according
to which an event may happen or fail, so as in all to happen p times and fail
q, in p + q trials is equal to the number of permutations that a a a a  b b b
admit of when the number of a's is p, and the number of b's is q.  And this
number is equal to E, the coefficient of the term in which occurs a p bq

when a + b| p+ q  is expanded.  The event therefore may happen p times and
fail q in p + q trials E different ways and no more, and its happening and
failing these several different ways are so many inconsistent events, the
probability for each of which is a p bq , and therefore by (page  385)  prop. 1. the
probability that some way or other it happens p times and fails q times in
p + q trials is E a p bq .
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SECTION II.

Postulate.  1.  I Suppose the square table or plane A B C D to be so made
and levelled, that if either of the balls o or W be thrown upon it, there shall
be the same probability that it rests upon any one equal part of the plane as
another, and that it must necessarily rest somewhere upon it.

2.  I suppose that the ball W shall be 1st thrown, and through the point
where it rests a line o s shall be drawn parallel to A D, and meeting C D and
A B in s and o;  and that afterwards the ball O shall be thrown p + q or n
times, and that its resting between A D and  o s after a single throw be called
the happening of the event M in a single trial.  These things supposed,

Lem.  1.  The probability that the point o will fall between any two points
in the line A B is the ratio of the distance between the two points to the
whole line A B.

Let any two points be named, as f and b in the line A B, and through them
parallel to A D draw f F, b L meeting C D in F and L.  Then if the rectangles
C f, F b, L A are (page  386)  commensurable to each other, they may each be
divided into the same equal parts, which being done, and the ball W thrown,
the probability it will rest somewhere upon any number of these equal parts
will be the sum of the probabilities it has to rest upon each one of them,
because its resting upon any different parts of the plane A C are so many
inconsistent events;  and this sum, because the probability it should rest upon
any one equal part as another is the same, is the probability it should rest
upon any one equal part multiplied by the number of parts.  Consequently,
the probability there is that the ball W should rest somewhere upon (page  387)

F b is the probability it has to rest upon one equal part multiplied by the
number of equal parts in F b;  and the probability it rests somewhere upon C
f or L A, i.e. that it dont rest upon F b (because it must rest somewhere upon
A C) is the probability it rests upon one equal part multiplied by the number
of equal parts in C f, L A taken together.  Wherefore, the probability it rests
upon F b is to the probability it dont as the number of equal parts in F b is to
the number of equal parts in C f, L A together, or as F b to C f, L A together,
or as f b to B f A b together.  Wherefore the probability it rest upon F b is to
the probability it dont as f b  to B f, A  b together.  And (componendo in-
verse) the probability it rests upon F b is to the probability it rests upon F b
added to the probability it dont, as f b to A B, or as the ratio of f b to A B to
the ratio of A B to A B.  But the probability of any event added to the prob-
ability of its failure is the ratio of equality;  wherefore, the probability it rest
upon F b is to the ratio of equality as the ratio of f b to A B to the ratio of  A
B to A B, or the ratio of equality;  and therefore the probability it rest upon F
b is the ratio of f b to A B.  But ex hypothesi according as the ball W falls
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upon F b or not the point o will lie between f and b or not and therefore the
probability the point o will lie between f and b is the ratio of f b to A B.

Again;  if the rectangles C f, F b, L A are not commensurable, yet the last
mentioned probability can be neither greater nor less than the ratio of f b to
A B;  for, if it be less, let it be the ratio of f c to A B, and upon the line f b
take the points p and t, so that p t shall be greater than f c, and the three lines
B p, p t, t A commensurable (which it is evident may be always done by
dividing A B into equal parts less than half c b, and taking p and t the nearest
points of division to f and c that lie upon f b).  Then because B p, p t, t A are
commensurable, so are the rectangles C p, D t, and that upon p t compleating
the square A B.  Wherefore, by what has been said, the probability that the
point o will lie between p and t is the ratio of p t to A B.  But if it lies be-
tween p and t it must lie between f and b.  Wherefore, the probability it
should lie between  f and b cannot be less than the ratio of p t to A B, and
therefore must be greater than the ratio of f c to A B (since p t is greater than
f c).  And after the same manner you may prove that the forementioned



Chapter 2 The Essay

Version zh25a.doc at 18:36  on 13 July, 2001
All rights reserved.

20

probability cannot be greater than the ratio of f b to A B, it must therefore be
the same.

Lem.  2.  The ball W having been thrown, and the line o s drawn, the
probability of the event M in a single trial is the ratio of A o to A B.

For, in the same manner as the foregoing lemma, the probability that the
ball o being thrown shall (page  388)  rest somewhere upon D o or between A D
and s o is the ratio of A o to A B.  But the resting of the ball o between A D
and s o  after a single throw is the happening of the event M in a single trial.
Wherefore the lemma is manifest.

PROP. 8.

If upon B A you erect the figure B g h i  k m A whose property is this, that
(the base B A being divided into any two parts, as A B, and B b and at the
point of division b a perpendicular being erected and terminated by the
figure in m;  and y, x, r representing respectively the ratio of b m, A b, and B
b to A B,  and E being the coefficient of the term in which occurs a p bq

when the binomial a + b|
 p+ q

 is expanded)  y = E x p r q .  I say that before the
ball W is thrown, the probability the point o should fall between f and b, any
two points named in the line A B and withall that the event M should happen
p times and fail q in p + q trials, is the ratio of f g h i k m b, the part of the
figure B g h i k m A intercepted between the perpendiculars f g, b m raised
upon the line A B, to C A the square upon A B.

DEMONSTRATION

For if not;  1st let it be the ratio of D a figure greater than f g h i k m b to
C A, and through the points e d c draw perpendiculars to f b meeting the
curve A m i g  B in h, i, k;  the point d being so placed that d i  shall be the
longest of the (page  389)  perpendiculars terminated by the line f b, and the
curve A m i g  B;  and the points  e, d, c being so many and so placed that the
rectangles, b k, c i, e i, f h taken together shall differ less from f g h i k m b
than D does;  all which may be easily done by the help of the equation of the
curve, and the difference between D and the figure f g h i k m b given.  Then
since d i is the longest of the perpendicular ordinates that insist upon f b, the
rest will gradually decrease as they are farther and farther from it on each
side, as appears from the construction of the figure, and consequently e h is
greater than  g f or any other ordinate that insists upon  e f.

Now if  A o were equal to A e, then by lem. 2. the probability of the event
M in a single trial would be the ratio of A e to A B, and consequently by cor.
Prop. 1. the probability of it's failure would be the ratio of B e to A B.
Wherefore, if x and r be the two forementioned ratios respectively, by Prop.
7. the probability of the event M happening p times and failing q in p + q
trials would be E x p r q .  But x and r being respectively the ratios of A e to A
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B and B e to A B, if y is the ratio of e h to A B, then, by construction of the
figure A i B, y = E x p r q .  Wherefore, if A o were equal to A e the probabil-
ity of the event M happening p times and failing q in p + q trials would be y,
or the ratio of e h to A B.  And if A o were equal to A f or were any mean
between A e and A f, the last mentioned probability for the same reasons
would be the ratio of f g or some other of the ordinates insisting upon e f, to
A B.  But e h is the greatest of all the ordinates that insist upon e f.  Where-
fore, upon supposition the point should lie (page  390)any where between f and
e, the probability of the event M happens p times and fails q in p + q trials
can't be greater than the ratio of e h  to A B.  There then being these two
subsequent events, the 1st that the point o will lie between e  and f, the 2d
that the event M will happen p times and fail q in p + q trials, and the prob-
ability of the 1st (by lemma 1st) is the ratio of e f  to A B, and upon supposi-
tion the 1st happens, by what has been now proved, the probability of the 2d
cannot be greater than the ratio of e h to A B, it evidently follows (from
Prop. 3.) that the probability both together will happen cannot be greater
than the ratio compounded of that of e f to A B and that of e h to A B, which
compound ratio is the ratio of f h to C A.  Wherefore, the probability that the
point o will lie between f and e, and the event M happen p times and fail q, is
not greater than the ratio of f h to C A.  And in like, manner the probability
the point o will lie between e and d, and the event M happen and fail as
before, cannot be greater than the ratio of e i to C A.  And again, the prob-
ability the point o will lie between d and c, and the event M happen and fail
as before, cannot be greater than the ratio of c i to C A.  And lastly, the
probability that the point o will lie between c and b, and the event M happen
and fail as before, cannot be greater than the ratio of b k to C A.  Add now
all these several probabilities together, and their sum, (by Prop. 1.) will be
the probability that the point will lie somewhere between f and b, and the
event M happen p times and fail q in p + q trials.  Add likewise the corre-
spondent ratios together, and their sum will be the ratio of the sum of the
antecedents (page  391)  to their common consequent, i.e. the ratio of f h, e i, c i,
b k together to C A;  which ratio is less than that of D to C A, because D is
greater than f h, e i, c i, b k together.  And therefore, the probability that the
point o will lie between f and b and withal that the event M will happen p
times and fail q in p + q trials, is less than the ratio of D to C A;  but it was
supposed the same which is absurd.  And in like manner, by inscribing
rectangles within the figure, as e g, d h, d k, c m, you may prove that the last
mentioned probability is greater than the ratio of any figure less than f g h i k
m b to C A.

Wherefore that probability must be the ratio of f g h i k m b to C A.

Cor.  Before the ball W is thrown the probability that the point o will lie
somewhere between A and B, or somewhere upon the line A B, and withal
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that the event M will happen p times, and fail q in p + q trials is the ratio of
the whole figure A i B to C A.  But it is certain that the point o will lie
somewhere upon A B.  Wherefore, before the ball W is thrown the probabil-
ity the event M will happen p times and fail q in p + q trials is the ratio of A i
B to C A.

PROP. 9.

If before any thing is discovered concerning the place of the point o, it
should appear that the event M had happened p times and failed q in p + q
trials, and from hence I guess that the point o lies between any two points in
the line A B, as f and b, and consequently that the probability of the event M
in a single trial was somewhere between the ratio of A b to A B and that of
A f to A B:  the probability I am in the right is the ratio of that part of the
figure A i B described as before which is intercepted between perpendiculars
erected upon A B at the points f and b to the whole figure A i B.

For, there being these two subsequent events, the first that the point o will
lie between f and b, the second that the event M should happen p times and
fail q in p + q trials and (by cor. Prop. 8.) the original probability of the
second is the ratio of A i B to C A, and (by prop. 8.) the probability of both
is the ratio of f g h i m b to C A;  wherefore (by prop. 5) it being first discov-
ered that the second has happened, and from hence I guess that the first has
happened also, the probability I am in (page  392)  the right is the ratio of f g h i
m b to A i B, the point which was to be proved.

Cor.  The same things supposed, if I guess that the probability of the
event M lies somewhere between o and the ratio of A b  to A B, my chance
to be in the right is the ratio of A b m to A i B.

SCHOLIUM.

From the preceding proposition it is plain, that in the case of such an
event as I there call M, from the number of times it happens and fails in a
certain number of trials, without knowing any thing more concerning it, one
may give a guess whereabouts it's probability is, and, by the usual methods
computing the magnitudes of the areas there mentioned, see the chance that
the guess is right.  And that the same rule is the proper one to be used in the
case of an event concerning the probability of which (page  393)  we absolutely
know nothing antecedently to any trials made concerning it, seems to appear
from the following consideration;  viz.  that concerning such an event I have
no reason to think that, in a certain number of trials, it should rather happen
any one possible number of times than another.  For, on this account, I may
justly reason concerning it as if its probability had been at first unfixed, and
then determined in such a manner as to give me no reason to think that, in a
certain number of trials, it should rather happen any one possible number of
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times than another.  But this is exactly the case of the event M.  For before
the ball W is thrown, which determines it's probability in a single trial, (by
cor. prop. 8.) the probability it has to happen p times and fail q in p + q or n
trials is the ratio of A i B to C A, which ratio is the same when p + q or n is
given, whatever number p is;  as will appear by computing the magnitude of
A i B by the method1 of fluxions.  And consequently before the place of the
point o is discovered or the number of times event M has happened in n
trials, I can have no reason to think it should rather happen one possible
number of times than another.

In what follows therefore I shall take for granted that the rule given con-
cerning the event M in prop. 9. is also the rule to be used in relation to any
event concerning the probability of which nothing (page  394)  at all is known
and antecedently to any trials made or observed concerning it.  And such an
event I shall call an unknown event.

                                                
1 It will be proved presently in art. 4. By computing in the method here mentioned that A i
B contracted in the ratio of E to 1 is to C A as 1 to n  +  1 x  E  :  from whence it plainly
follows that, antecedently to this contraction, A i B must be to C A in the ratio of 1 to n +
1, which is a constant ratio when n is given, whatever p is.
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Chapter 3

The Elements of Bayes' Probability

In this chapter we take the first section of Bayes' essay, element by
element in order to clarify the meaning in terms more easily understandable
in our own time. Although all exposition of the writings of others involves
subjective judgement as to what things are important, it is the purpose of
later chapters to evaluate critically Bayes' argument: our purpose here is to
clarify the essay point by point and to preserve the form of Bayes' original
reasoning. This approach differs from treatments by previous commentators,
for we do not re-cast Bayes' argument into a more modern form.  However
we have attempted in places to clarify the notation, e.g. by using the '$' sign
to denote (monetary) value.

Although Bayes' style of writing is not entirely homogeneous, the
structure of his argument is simple: first, the problem is defined;  next a set
of terms are defined, after which we are given a series of propositions and
corollaries derived progressively from the previous material, to establish
certain basic rules for the manipulation of probabilities. The probabilities are
generally expressed as ratios of numbers, and it is unfortunate that Bayes'
adherence to symbolising probabilities in this way rather than as 'real num-
bers' adds considerably to the superficial complexity of his argument. On the
other hand, Bayes' approach has the great advantage of allowing the argu-
ment to be presented in simple terms and plain concepts with which wide
ranges of practical people as well as mathematicians and other scholars will
be familiar.  In Section 2 of the essay, although there are variations in local
structure, the general tone is preserved until after the Scholium, where the
essay suddenly becomes concentrated upon a rather narrow mathematical
problem, which we do not discuss1.

The tone in the earlier part of the essay is therefore in the tradition of
dealing with philosophical and logical issues in plain language, with the aim
of being read and understood, rather than with the aim of achieving logical
perfection by way of symbols and manipulations which may be very hard to

                                                
1 Bayes' treatment is not particularly successful. It is discussed in detail by Stigler(1986)
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relate to real life.  The penalty of the plain language approach is, that it may
lack, or seem to lack, analytical depth: the penalty of the more formal ap-
proach is that it often fails to carry real-life conviction: the arguments may
overwhelm, but fail totally to persuade1. Somewhat ironically, however, our
attempt to clarify the presentation requires us, in several places, to use mod-
ern mathematical notation in preference to English prose; but on the whole
we leave to others the task of a rigorous symbolic analysis, a nice example of
which is to be found in Professor Terence Fine's 'Theories of Probability2'.

However, having claimed that Bayes' writing is in the 'plain words'
tradition, it may seem strange also to claim that he has often been misunder-
stood and that, in several places, significant effort is needed to tease the
meaning from his writing. It is tempting to say that the reasons are largely
due to the antiquity of the document.  For many people of our own time, this
must be indeed some part of the truth: but it does not explain why the essay
should have stymied Bayes' contemporaries nor have led to the extensive
mis-interpretation and mis-representation which we believe can be found in
the writings of Bayes' critics. To answer that question in any depth is a large
task, and the conclusions would be deeply uncertain: a plausible guess is that
the subject matter was, and is, difficult: but that would not explain how
persons of significant intellect could have failed to understand Bayes' argu-
ment. In some cases, critics may have simply taken the word of others as
regards the content and import of the essay, but that does not explain the
apparent failures of authors who quote verbatim from the essay, and would
appear to have had the original text to hand, and yet seem to have been
rendered oblivious to what the essay actually says, by their own a priori
views of its contents3.

Our purpose in this chapter therefore, is to try and make clear, in the
plainest possible language for readers of our own time, the points made in
the essay up to page 394 of the original text.  To this end, we have changed
some of the letters used by Bayes as mathematical symbols, in order to avoid
some confusing ambiguities. We are also, in places, at pains to make explicit
some very basic algebraic manipulations with the aim of allowing the reader
to follow the line of reasoning as smoothly as possible. This seems necessary
because Bayes uses cunning substitutions which often turn out to be quite
simple, once one has searched out the basis, but which might prove vexing

                                                
1 cf de Moivre  'if not to force the assent of others by a strict demonstration,  (then) at least
to the satisfaction of the Enquirer'  de Moivre, (1756, p254)
2 Fine (1973).
3 See e.g. Fisher (1956), also discussed in Appendix A below.
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to readers who do not have time to unravel the connections for themselves1

and whose main concern is to follow the argument to its conclusion, feeling
that each step has been made clear en route.

The Definitions

The problem having been presented at the head of the essay, our analy-
sis begins with the Definitions, the first four of which are fairly simple, but
may be somewhat easier to grasp with slight paraphrasing of the original:-

(1) Several events are inconsistent when, if one of them happens, none of the
rest can.

Although this definition of inconsistent may be technically acceptable, it
represents a somewhat quaint usage in modern parlance, where we might
more commonly expect to find expression such as incompatible or mutually
exclusive.

(2) Two events are contrary when, in a given trial, one or other of them must
happen but the happening of one excludes the happening of the other.

(3) An event is said to fail when the situation changes from one in which the
event could possibly happen to one in which it cannot happen. Such a
change occurs when the contrary of an event happens.

This definition of fail may also be thought slightly quaint, in that it could
include an occasion on which a trial has to be abandoned, e.g. because of
bad weather.  However, such situations do not affect Bayes' argument and
we therefore let his definition stand.

(4) An event is said to be determined when it has either happened or failed.

The fifth definition is not however straightforward:-

(5) The probability of any event is the ratio between the value at which an
expectation depending on the happening of the event ought to be computed,
and the value of the thing expected upon its happening.

To understand this definition we have to look ahead in the essay to the
manner in which it is used and it seems helpful to introduce a more explicit
notation such that the value of an object, prize or expectation is denoted in
monetary units e.g. $X, where X is a positive, real number. Thus we find, in
Proposition 2, for example, that if we denote the probability of the happen-

                                                
1 Pace Dr Hiya Freedman who, on being shown a copy of the essay, commented, 'This is not
mathematics, it is philosophy.  You can express the whole thing in a few lines of algebra.  I
do not have time to read philosophy'.  (In conversation, November 1996).
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ing of an event E as P (E) and our situation is such that, if the event happens
we shall acquire something of value $N, then the value at which our expec-
tation ought to be computed  is given by the expression:-

$V     =     $N x  P (E) (3-1)

and algebraically therefore, we can write:-

P(E)  =   
$V
$N (3-2)

The trouble with this definition is that, at first sight, it bears no obvi-
ous relation to the everyday ways in which we use the word 'probability' and
a full discussion of the matter would take us into deep and contentious
waters. It can however be resolved quite simply for the present purpose by
treating Bayes' definition not as a definition of 'probability in itself' but as a
specification of, or rule for the way in which a known probability ought to be
used by a rational person in a particular kind of situation.  Or, as Price says
in  his covering letter, 'Instead therefore, of the proper sense of the word
probability, he has given that which all will allow to be its proper measure
in every case where the word is used 1'.

Perhaps the simplest way to envisage the type of situation in which a
known probability can be used, as defined by Bayes, is in terms of betting
money on the outcome of a game.  If we are admitted to a game in which we
have a known chance P (E) of winning a prize worth $N, we can certainly
say that, if viewed purely from a financial point of view, taken in isolation,
and excluding ulterior motives, the amount P (E) x $N   is the rational
amount which it would be worth paying to gain admission to such a game.
As we feel that several points in the argument can be presented most clearly
in betting terms, we shall do so where it seems necessary, and trust that none
will take offence at this slight liberty2.

(6) By chance I mean the same as probability.

In Bayes' time, mathematical notation was quite primitive compared
with today and this added to the need for clarity in verbal reasoning about
mathematical matters.  To many people, recursive expressions such as 'the
                                                
1  Bayes (1763) p375
2 For people such as Bayes, de Moivre and Price, it was important to avoid the moral stigma
of gambling which, at that time, was 'a national disease among the leisured classes of both
sexes'.  See Turberville (1926) p86.



Chapter 3 The Elements of Bayes' Probability

Version zh25a.doc at 18:36  on 13 July, 2001
All rights reserved.

28

probability that the probability .....'. are hard to grasp, but we seem to have
less difficulty with an expression such as 'the chance that the probability
......'., even when we know that 'chance' and 'probability' have the same
meaning, and this is how Bayes uses these words.

(7) Events are independent when the happening of any one of them does
neither increase nor diminish the probability of any of the rest.

In itself this definition should give no difficulty, but it may help with
Proposition 3, later, if we give at this point an example of how the happen-
ing of one event may affect the probability of another, e.g. if we are sam-
pling the bird population of an island, the size of a particular bird in our
sample may affect the probability that the colour of the beak of the next bird
to be observed will be yellow, simply because birds tend often to associate
in flocks of similar kinds, and it may be that we are surrounded at some
point by a flock of small birds with yellow beaks1.

Proposition 1

 If individual events within a given set of possible events are inconsistent,
(i.e. mutually exclusive), the probability that one or other of them will hap-
pen is the sum of the probability of each.

Bayes supports this proposition by applying his definition of probabil-
ity to an implicit gaming situation, e.g. a lottery, in which there is a single
prize, worth $N, which we shall win if any one of three mutually exclusive
events should happen in a given trial, e.g. we are given three tickets for a
lottery and we denote by E1 the event that the first ticket wins. We likewise
define events E2 and E3 for the second and third tickets respectively. We
then let the probability of winning with the first ticket be P (E1 ), and of
winning with the second and third tickets, P (E2 ) and P (E3 ) respectively.
Then, by appropriate choice of numbers which we denote by p1, p2, p3, these
probabilities can be expressed as  P (E1 ) = p1 / N etc., such that the value of
our expectation, $V1 , depending on the happening of the first event (i.e. if
the first ticket wins) is:-

$V1  =  $N x P (E1)   =   $N 
  p1 
N    =    $p1 (3-3)

and likewise $V2 =  $p2  ,  and $V3 =  $p3 .  Bayes then states that the value
of our expectation in the situation where we stand to win the $N if any of
these events should happen, is the sum of the individual expectations i.e.
                                                
1 Bayes' definition is limited to pairwise independence.  For a fuller discussion, see Lindley
(1965), vol. I, pp14 - 16.
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$VS = $(p1+p2+p3).  But, from the way in which Bayes has defined his
terms, the probability that one of E1 or  E2 or E3 will happen can be com-
puted by taking the ratio of the value of the expectation to the value of the
prize, thus giving:-

P (E1  or  E2  or E3  )   =     $(p1+ p2+ p3 ) / $N 

=    p1 /N  +  p2 /N  +  p3 /N   (3-4)

which is the sum of the probabilities of each of the events, as stated in the
proposition1.

Corollary to Proposition 1

If it is certain that one or other of the three events must happen, then we are
bound to win $N whatever the outcome of the trial. Therefore, the sum of the
alternative expectations must be:-

$(V1+V2+V3)   =   $N (3-5)

hence, since we have shown above that $V1 = $p1 etc., it follows that:-

p1 + p2 + p3    =     N (3-6)

and it further follows that the probability of an event added to the probabil-
ity of its failure (or of its contrary) is the ratio of equality (i.e. unity).

Bayes' proof of this latter assertion is by an argument that, because the out-
come of a trial must be either the happening of a given event or its contrary,
one of these outcomes is bound to happen. Hence, if an event E1 and its
contrary  ~E1  are regarded simply as a pair of inconsistent events E1 and E2,
of which one or the other must happen, then:-

p1 + p2 = N (3-7)

whence

p2    =   N - p1 (3-8)

and since

P ( E2)  =  P (~E1)   =   p2 / N (3-9)

then by (3-8):-

P (~E1)   =     
N - p1

N (3-10)

Proposition 2

                                                
1 This proposition is discussed more critically in Chapter 6.
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With Proposition 2 we encounter a more weighty style of argument
and a result which plays an important part in much that follows:-

If we have an expectation depending on the happening of an event, then the
probability that the event will happen P (E), divided by the probability of its
failure P (~E), is equal to the ratio of our loss if it fails to our gain if it
happens.

The justification is by an argument which uses the extremely subtle idea of
computing the value of a situation:-

Suppose we have an expectation of receiving $N  if an event E happens, and
that the probability of its happening, P (E),  can be equated to a ratio
p/N.  Then, by  definition, the value of the expectation prior to the trial is

$V =  $N x (p/N)  =  $p (3-11)

Therefore, if the event fails to happen, this is equivalent to the loss of an
expectation of value $p.  However, if the event does happen, we gain $N but
lose the expectation valued at $p, hence the net improvement in our situa-
tion is equivalent to a gain of only $(N - p).

Therefore the ratio of our loss if the event fails to occur, to our gain if it
happens, is p/(N - p).  The proposition is proved by the relationships we
have established viz:-

     
p

(N - p)     =    
 p/N

(N - p)/N     =    
P (E)

P (~E)
    =    

Loss
Gain (3-12)

Proposition 3

Here, we paraphrase rather heavily to try and make the meaning clear:-

The probability that two consecutive events will both happen is equal to the
probability that the first event will happen, multiplied by the probability that
the second event will happen if it  is known that the first has happened.

A simple and extreme case which illustrates the probability of one
event being conditioned by the occurrence of a different event, is one in
which the two events are incompatible, i.e. if one happens the other cannot
happen. Less extreme cases are often found in the biological sciences,
where, for instance, particular physical characteristics, such as colour of eyes
and colour of hair may be strongly correlated in the population of a certain
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city1.   To justify Proposition 3, Bayes again uses expectations and requires
us to suppose that  we are already admitted to a two-part trial in which:-

If both events happen we are to receive $N (3-13)

The probability that both events will happen, which we denote as
P (E1  ∧∧∧∧  E2),  is proportional to a number B which is selected so that:-

P (E1  ∧∧∧∧  E2  )  =   B/N (3-14)

The probability that the first event will happen is denoted:-

P (E1  )     =     p1 / N (3-15)

and hence, by the corollary to Proposition 1, the probability that the first
event will not happen is:-

P (~E1)     =     (N - p1) / N (3-16)

The probability that the second event will happen, on the assumption that
the first event has happened is:-

P ( E2 | E1 )      =     r2 / N (3-17) 

where the symbol r2 is used rather than p2 to emphasise that the probability
is relative to E1 .

The justification proceeds along the following lines:-

Prior to the trial, the value of our expectation is:-

$V     =     $N x (B/N)    =    $B (3-18)

If in the first part of the trial, the first event happens, the expectation
changes and becomes:-

$V     =     $N x (r2 /N)     =      $r2 (3-19)

Hence the improvement in our position if the first event happens, is
$(r2 - B).

If, however, in the first part of the trial the first event fails to happen, the
loss is $B and we obtain the relationship:-

 
Loss
Gain     =      

B
(r2   - B) (3-20)

                                                
1 cf Jeffreys, H. (1939, p27)
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whence, invoking the result demonstrated for Proposition 2, i.e. that the
 loss 
 gain   ratio stemming from the completion of the first part of the trial is

equal to the ratio  P (E1 ) / P (~E1 ),  gives:-

 
Loss
Gain     =      

B
(r2 - B)     =      

P (E1 )

P (~E1 )

             =      
p1 /N

(N - p1 )/N
    =     

p1
(N - p1 )

(3-21)

Cross-multiplying the second term in (3-21) and the last term then gives:-

N x B - p1 x  B     =     p1 x  r2   -  p1 x  B 

i.e.     N x  B       =     p1 x  r2

hence   
B
r2

     =      
p1
N     =     P (E1 ) (3-22)

Then, since B/N  can be expressed as the product of two ratios:-

 
B
N     =      

B
r2

  x  
  r2

N (3-23)

and since the components of this product are, first, by  (3-22):-

 
B
r2

     =     P (E1 ) (3-24)

and, second, by definition:-

 
  r2

N      =     P ( E2 | E1 ) (3-25)

we have
B/N     =     P (E1 ) x P (E2 | E1 ) (3-26)

            =     (p1./N) x  (r2  /N) (3-27)

That is, the probability that both events will happen is the product of the
probability that the first event will happen, and the probability that the sec-
ond will happen on the assumption that the first has already happened.

Corollary to Proposition 3

If, of two subsequent events, the probability of the first is  p1 /N and the
probability of both together is B/N, then the probability of the second event
on the supposition that the first event happens, is B/p1
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This result is achieved by taking the expression (3-23)   

 
B
N     =      

B x  r2 
r2  x   N

and substituting   p1 /N  for B/r2 , as derived in (3-22) so that:-

 
B
N     =     

 p1
N  x  

r2
N (3-28)

whence

   r2 /N     =     
B/N

(p1 /N)     (3-29)

             =     B/p1  (3-30)

Proposition 4

This proposition and its justification do not make for easy under-
standing. The proposition says, essentially:-

If a two-part trial is to be conducted every day,
and the probability of the second event happening in a given trial is p2 /N,
and the probability of both events happening in the same trial is B/N,
and we are to receive $N if both events happen on the first day on which
the second event  happens,
then the probability that we will win the $N is B/p2 .

An immediate difficulty with this proposition is that where it says 'the
probability of the second event', we might expect to see, following from
Proposition 3,  'the probability of the second event when it is known that the
first has happened'.  The qualifying words are however absent, and although
it may be hard to grasp the meaning if the probability of the second event is
read as being 'un-conditional', we find as we unfold the argument that this is
indeed the meaning which Bayes intends. We therefore here use the symbol
p2  rather than r2 to denote this probability.   Bayes then proceeds to justify
the proposition by, first, supposing that the probability of winning the $N is
equal to an unknown ratio x/N, so that the value of our expectation on being
admitted to the game, and before any trial, is $N(x / N) = $x.  But also, by
the definition of the problem, the probability that we will win on the first
day is B/N and therefore the value of the expectation that we will win on the
first day, i.e. by both events happening, is $N(B/N) = $B.    But, if we do not
win on the first day, this can be due to the occurrence of any one of three
possible, paired outcomes:-
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[ ~E1 ∧∧∧∧ ~E2 ]  , or [ E1 ∧∧∧∧ ~E2 ] , or  [ ~E1  ∧∧∧∧ E2 ]  ,

but we will only have lost the expectation in the third case. In the two for-
mer cases where the second event has not occurred, we retain our place in
the game, and we are effectively once again in the starting situation: there-
fore the expectation retains its initial value of $x.

Hence we are concerned to value our expectation when we have not
won and when we have also not necessarily lost; that is, we are concerned
with the probability of occurrence of either of the two cases [ ~E1  ∧ ~ E2 ]
and [ E1  ∧ ~E2  ] under which we retain our place in the game, i.e. we are
concerned with the probability that E2 has not occurred, irrespective of the
occurrence or non-occurrence of E1.   Hence, because P ( E2  ) =  p2 /N,  it
follows, by the corollary to Proposition 1 that:-

P (~ E2  )     =     (N - p2 ) / N (3-31)
Bayes now introduces an unknown number 'y' such that

            y/x      =     (N - p2 )/N (3-32)

and therefore

           y/x       =     P (~ E2  ) (3-33)

Then, since $x  is the value of the position that we will retain if  E2  has not
happened, and the probability of this is the probability that E2 has not hap-
pened, the effective value of our position when we know only that the out-
come of the trial has been ~(E1 ∧ E2  ),  is:-

$x x P (~ E2  )     =     $x x  (N - p2  )/N (3-34)

and since
(N - p2 )/N       =       y/x (3-35)

$x x P (~ E2  )     =     $x x  (y/x) (3-36)

                               =       $y (3-37)

Bayes then writes:- 

$x x P (~ E2  )     =     $x x  (N - p2  )/N (3-38)

and since also

(N - p2 )/N          =       y/x (3-39)
$x x P (~ E2  )     =       $x  x  (y/x) (3-40)

                                   =       $y (3-41)
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But these two last expectations together are evidently the same with my
original expectation, the value of which is $x, and therefore:-

$B + $y     =       $x (3-42)

It is not easy to see immediately what Bayes means at this point, but since
the assertion concludes with the equation $B+$y = $x, it seems fairly certain
he means that, in a situation where both parts of the trial have occurred, the
possibilities can be expressed as a pair of simple alternatives: either we have
won or we have not won.  If we have not won, this does not totally amount,
in this type of trial, to having lost.  Having 'not won', our position in the
game is still worth the value of the expectation that E2 has not occurred.
Bayes seems therefore to imply that since the value of our position on being
allowed into the game is $x, then the outcome, after the trial has taken place
but before the results are known, can be divided into the two possibilities of
having won or of having not won. Hence, the $x can be divided into the two
parts, $B and $y corresponding with the values of the expectations of having
won or of having not won respectively.  We therefore have the two equa-
tions:-

       B + y  =       x (3-43)
i.e.

y        =       x - B (3-44)

and, by definition

y/x     =     ( N - p2 ) / N (3-45)

from which, by substituting  x - B   for  y  in  (3-41) we have:-

x - B
x      =      

N - p2 
N (3-46)

hence       
B
x     =      

p2 
N (3-47)

hence     
x
N       =     

B
p2 

(3-48)

and therefore, as x/N is defined as being the unknown probability of winning
an amount $N, the proposition that this probability is equal to B/p2  is dem-
onstrated.

The Corollary to Proposition 4

Continuing with the type of trial postulated in Proposition 4, let us
suppose that, before we know whether the first event has happened, we find
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that the second event has happened; then purely on the basis of this infor-
mation, we can infer that the first part of the trial has taken place but we do
not know its outcome, and therefore we have no reason to value the expec-
tation either greater or less than it was before1.

The main difficulty with this corollary is the manner in which it is presented,
particularly in the concluding phrase 'We therefore have no reason to value
the expectation either greater or less than it was before',  for it must be a
reader of superlative intelligence indeed who can see at a glance that  the
conclusion follows as a simple 'therefore' from what has gone before.  In-
deed, to support this deduction, we need to assume that the value of the
expectation depends, not upon the true situation, but rather upon what we
know, or believe, about the situation, i.e. the expectation has to be valued in
relation to the information available to us2. It is therefore better, we feel, to
pose the question as to whether there are good reasons to value the expecta-
tion as more than, or less than, or the same as it was before. Indeed, a ques-
tion of this form is implicit in the manner in which Bayes continues:-

For if we had reason to think it less, it would be reasonable for us to give
something to be reinstated in our former circumstances, and this over and
over again as often as we should be informed that the second event had
happened, which is evidently absurd.

To perceive this absurdity it helps if we make explicit a further  as-
sumption which Bayes seems to take for granted at this point, namely that
each two-part trial is independent of all others. (Bayes does, however, deal
with this question of independence in a series of identical trials, in some
detail later, as we find when we consider the Definition which follows
Proposition 6).  In the present case, however, when event  E2 has happened,
we must have either won or lost, but we do no know which; for the case of
having 'not-won' but being still in the game is excluded by the happening of
E2.

Bayes now argues that if the value of our expectation were reduced by
receipt of this information about E2, it would be financially sensible to pay
some amount, say $d, to restore our expectation to its original value, e.g. by
terminating the game and starting again. But since our expectation would be
valued still at only  $V,  it is immediately obvious that such a move would
be financially irrational, especially if we had already paid the rational limit
of $V to gain entry to the game. But even if we had paid nothing to gain

                                                
1 The temporal order of the trials is not however of fundamental importance.
2 This point is of fundamental importance; see Ch 11 below.
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entry, yet following each trial in which we were told that event E2 has hap-
pened, we were to pay $d to restore our expectation, then clearly there could
come a point at which we would have paid more than the value of the prize
itself. This is indeed absurd, and there would be no limit to the amount that
we might lose if we were to continue in such a manner.

Conversely, the like absurdity plainly follows if you say we ought to set  a
greater value on our expectation than before, for then it would be reason-
able to refuse something if offered upon condition that we would relinquish
the improvement, and be reinstated in our former circumstances; and this
likewise over and over again as often as (nothing being known concerning
the first event) it should appear that the second event had happened.

That is, there might be no limit to the amount that we might refuse, for the
sake of retaining a chance of winning a prize which has a strictly fixed value
of $N.  Therefore, because the expectation can be neither greater nor less
than it was before we knew that E2 had happened, it must have retained
exactly its previous value.  The argument then concludes, effectively thus:-

Hence if we know only that the second event has happened, the value of our
expectation is:-

$V       =        
N  x  x

N (3-49)

and hence by (3-44)

                  =        
$N x B

p2 
(3-50)

whence by Definition 5, the probability of winning is still B/p2 and, by the
above argument, this is the probability that the first event has happened
when the second event is known to have happened.

Suddenly, therefore, the nature of the probability being evaluated has under-
gone a fundamental change: for we are now abruptly concerned with the
probability of an hypothesis concerning the occurrence of an event.  The
next step is the crux of the essay:-

But the probability that an event has happened is the same as
the probability that I am right if I guess that it has happened.
Wherefore the following proposition is evident:-
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Proposition 5

If there are two consecutive events, the probability of the second
event being p2 /N, and the probability that both events will occur
together being B/N, if it is discovered that the second event has
happened, and I then guess that the first event has also hap-
pened, the probability that I am right is B/p2.

That is:-

P ( E1 | E2 ,B/N, p2/N  )    =      B/p2 (3-51)

Or, in a more condensed form, using k to denote the information conveyed
by the terms B/N, p2/N ,  this result can also be expressed as:-

P ( E1 | E2, k)    =    
P  ( (E1| k) ∧∧∧∧ (E2| k) )

P  ( E2| k ) 
 (3-51a)

or, expanding P  ( E1∧∧∧∧ E2) by Proposition 3:-

P (  E1| k, E2 )    =    
P (E1| k ) x  P (E2 | k,E1 )

P  ( E2| k ) 
 (3-51b)

Further, as we shall see in later chapters, there are numerous applications in
which it is helpful to expand the denominator in (3-51b) to cover explicitly
certain kinds of trial in which there are marked correlations between the
happening or non-happening of the events.  Thus, by Propositions 1 and 2:-

P ( E2| k ) =  P (E2| k, ~E1).P (~E1)  +  P (E2| k,E1).P (E1) (3-51c)

or, if E1 comprises the happening of one of a set of mutually-exclusive 'sub-
events' E1a,E1b,........ E1n to each of which there attaches a probability
P (E1a| k) ........ P (E1n| k) then:-

P (E2| k ) =  P (E2| k,E1a ).P (E1a| k) + P (E2| k,E1b ).P (E1b| k) + ....

                     ....... + P (E2| k,E1n).P(E1n)

which we abbreviate as:-

P (E2| k ) =   Σι P (E2| k,E1i ).P (E1i| k)  (3-51d)

or, in the case where E1 is continuously variable:-

P (E2| k ) =  ⌡⌠
 

 
P (E2| k,E1 ).P (E1| k)dE1  (3-51e)
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from which we see that the integrand in the denominator of (3-51e) is iden-
tical to the numerator and therefore, the probability1 at a postulated value of
E1 ≈ e is given by:-

P  (E1 ≈ e  | k, E2 )

=    
P  (E1| k ) x P  (E2 | k,E1 )

P  ( E2| k ) 
 

       =     
P  (E1| k ) x P  (E2 | k,E1 )

 ⌡⌠
-∞ 

 ∞ 

  P(E2| k0, E1= e) . P(E1≈ e | k)de      
 (3-51f)

 Proposition 6

As Bayes moves to Proposition 6, his style changes and the argument
based on expectations is left behind. The proposition is:-

The probability that several independent events shall all happen is a ratio
compounded of the probabilities of each.

The demonstration takes the following form:-

It is in the nature of independent events that the probability of one such
event happening is not altered by the happening or failing of any other such
event. But the probability that a second event E2 will happen, supposing that
some prior event E1  is known to have happened, is the probability that both
events will happen, i.e.:-

       P ( E1 ∧∧∧∧ E2 )       =       B/N       =       P (E1 ) x P ( E2 | E1 )

                                  =       (p1 / N) x (r2 / N) (3-52)

But because E1 and  E2 are independent,  we know that  r2  =  p2   (cf 3-17
above), whence

P (E1 ∧∧∧∧ E2  )    =       (p1 /N) x (p2  /N) (3-53)

We then consider E1  and  E2 taken together as a single event, and introduce
further independent events E3  ... En   whence:-

P ( E1 ∧∧∧∧ E2  ∧∧∧∧ E3 ∧∧∧∧...  En)
                                                
1  For an explanation of our approach to the probability at a point on a continuous distribu-
tion, see the preliminary section on Notation.
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= P (E1 ) x  P (E2 ) x P (E3 ) x  ... P (En  ) (3-54)

The first corollary to Proposition 6

If there are several independent events,  E1. E2  ...... En   then the probability
that E1  happens and  E2  does not happen, etc.,  is:-

P (E1 ∧∧∧∧~ E2 ∧∧∧∧    ......~En  )  

=    P (E1) x P (~ E2  ) x P (E3  )  x .. P (~En  ) (3-55)

The second corollary to Proposition 6

This corollary is then merely a re-expression of the first in slightly different
notation, where P (E1 ) = a, P ( E2) = b,  etc.,  such that

P (E1 ∧∧∧∧~ E2 ∧∧∧∧E3 ∧∧∧∧.....~En)   =   a x  (1-b) x  c....... (3-56)

A further definition
On page 383 of the original text there is a further definition, which is far
from easy to grasp on a first encounter:-

If in consequence of certain data there arises a probability that a certain
event should happen, its happening or failing, in consequence of these data,
I call its happening or failing in the first trial. And if the same data be again
repeated, the happening or failing of the event in consequence of them I call
its happening or failing in the second trial;  and so on as often as the same
data are repeated. And hence it is manifest that the happening or failing of
the same event in so many different trials, is in reality the happening or
failing of so many distinct independent events exactly similar to each other.

Having studied this definition at some length, we conclude that although it
appears in the original text to be typographically part of Proposition 6, it is
logically a preamble to Proposition 7.  Another problem is to determine just
what is being defined, and since Bayes does not make this explicit, we con-
clude from reflection upon the final sentence:-  'the happening or failing of
the same event in .... different trials, is in reality the happening or failing of
.... independent events', that the purpose of the definition is to make clear
what is meant when we talk about multiple but independent happenings of
the 'same event';  for in common speech, the events which constitute a mul-
tiplicity of happenings are, in principle, individually enumerable and are
distinguished by an attribute such as a unique ordinal number. Hence, in this
context, the term 'same event' must mean something special, and with this in
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mind, we can infer that Bayes' purpose was to achieve a definition on the
following lines:-

When we talk about multiple happenings of the same event, we mean multi-
ple occasions on which we get the same outcome from a given type of trial,
where each trial is of an identical probablistic nature, being governed in
every relevant aspect by identical specifications and conditions, so that each
such trial is independent of, whilst being externally similar to, each other
such trial.

Proposition 7

If the probability of the happening of an event 'E' in a single trial is 'p' and
that of its failing is 'q' , then the probability of its happening 'm' times in 'n'
trials is

P (m : n)       =       C pmqn-m (3-57)

where C is the coefficient of  pm.qn-m in the binomial expansion of (p + q)n.

In the demonstration of this proposition, Bayes begins by implicitly invok-
ing the 'further definition' discussed a few lines earlier:
For the happenings or failings of an event in different trials are  independ-
ent events. Hence, by the second corollary to Proposition 6, the probability
of a set  of 'n' outcomes forming a series such as 'E ∧∧∧∧~E ∧∧∧∧~E ∧∧∧∧E ∧∧∧∧~E ....'. is
given by the product of the appropriate 'n' components of a series such as
p x q x q x p x q .....  =  pm x qn-m, in which the product has the same value for
every arrangement having the same number of p's and q's.   
And since the number of different arrangements of these  p's and q's is the
number of different series that can be formed by the outcomes of 'n' inde-
pendent trials in which the event happens 'm' times and fails on 'n-m' occa-
sions, and because the occurrence of any one such series on any given set of
'n' trials is incompatible with the occurrence of any other series on that
same set of trials, the probability that, in one way or another, there will be
'm' happenings and 'n-m' failures is  Cpmqn-m, where C is the number of
different possible arrangements of the given number of p's and q's.

Here, we reach the end of the first section of the essay. Although the
second section is written in a noticeably different style, it makes significant
use of the results derived above and it is only by getting thoroughly to grips
with the first Section that we can face honestly the questions which are
posed in Section 2.  Hence we cannot subscribe to the view that Section 1 is
merely a recital of well-known formulae, and we shall see, as we examine
Section 2 in detail, that we require all the definitions, propositions and
corollaries of Section 1.
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Chapter 4

The Experiment

It is in Section 2 of the essay, beginning on page 385 of the original
text that we encounter the famous experiment which takes place, conceptu-
ally, upon a 'square table or plane'.  In simple terms, the experiment takes the
form of throwing a 'first ball' at random onto the table and then, it having
come to rest on the table, we are required to estimate the probability that its
distance from a defined side is between any two given values by randomly
throwing a number of similar balls onto the table and being told how many
of these come to rest between the first ball and the designated side of the
table.

Fig 4.1

Unfortunately, in Bayes' description, there are some difficulties with
the notation: Bayes writes of the experiment in terms of balls designated 'o'
and 'W' in the text, or 'O' and 'W' in the printed diagram, but identical or very
similar symbols are also used with quite different meanings in the discus-
sion; e.g. the  line through the point at which the ball W comes to rest is
designated os and there is frequent use of the symbol 'o' to denote what we
would regard as the x co-ordinate of the position of the first ball.  We have
therefore changed the designations to 'first ball' and 'second ball', trusting
that this change, and other minor changes to the notation, are of some help in

C F s

B f b A

DL

o
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making clear the finer details of the argument.  We must however mention
here, as is emphasised later, that the order in which the balls are thrown is
not vital to Bayes' argument.  At this stage, however, it is easier to think of
the experiment in such terms.

The description of the experiment begins with Postulate 1, this being
an assertion that when a ball is thrown onto the table, the probability that it
will come to rest on any one part of the table is equal to the probability that it
will come to rest on any other equal part. We assume, although Bayes does
not say so explicitly, that the equality is in the areas of the parts, and it later
becomes important to assume also that these parts do not overlap.  With
Postulate 2, we suppose that we throw the first ball onto the table and  draw
a line  os  parallel  to the side AD, through the point at which the ball comes
to rest.  Logically then, and putting aside for the moment Postulate 2, this
brings us to:-

Lemma 1
The probability that the point o will fall between any two points on the line
AB is equal to the ratio of the distance between the points to the length of the
side AB.

Although this may seem evident to ourselves, as a direct consequence of the
assertion of equal probabilities over equal areas as stated above, Bayes
devotes some two pages to proof of this Lemma.  The proof starts by mark-
ing points f and b on the side AB and through these points drawing lines fF
and bL parallel to AD to intersect side CD at F and L respectively.

Bayes then argues:-

If the rectangles Cf, Fb, LA  are commensurable to each other, they may
each be divided into the same equal parts, and, the first ball being then
thrown, the probability that it will come to rest somewhere upon a given
subset of these parts will, because resting upon any given part is inconsis-
tent with resting upon any other such part, be equal to the sum of the prob-
abilities of its coming to rest upon each such part.

An immediate difficulty with this argument stems from the way in which the
word commensurable is used, since it does not readily accord with its com-
mon usage in our own time.  Fisher1 states however, that the sense with
which Bayes uses commensurable is to be found in Euclid Book V, and if we

                                                
1 Fisher (1956, p 13). Also, The Penguin Dictionary of Mathematics [Daintith (1989)],
defines commensurable uniquely as 'Describing two quantities which are integral multiples
of a common unit'.
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look ahead in the essay to p387 of the original we find the words:-  Again; if
the rectangles  Cf, Fb, LA are not commensurable. Having studied the ar-
guments which follow, we conclude that, in this context, two rectangles are
commensurable, in the sense used by Bayes, if each can be constructed,
exactly and without remainder, by the non-overlapping conjunction of iden-
tical 'tiles', i.e. the tiles are 'the same equal parts' but the number of tiles in
any given rectangle is, proportional to the area of that rectangle. There is
then a further implication that the probability of the ball coming to rest on
any given tile is equal to the probability of it coming to rest on any other tile.
We can therefore paraphrase the argument as follows:-
If the rectangles  are commensurable, then each may be divided into an
integral number of identical tiles, and if we select from these a specific
subset, then, because the resting of the ball on any given tile in the subset is
inconsistent with its resting on any other such tile, the probability that the
ball will come to rest on a tile which belongs to the subset, is the sum of the
probabilities of its coming to rest upon each such tile. Hence, because the
probability of its coming to rest on each such tile is equal to the probability
of its coming to rest on any other such tile, the sum of the probabilities is
equal to the probability of its resting on one such tile, multiplied by the
number of tiles in the  subset.

There then follows a string of arguments which may be confusing on a first
reading, although if they are taken slowly, they are found to be very simple,
particularly if we denote the three rectangles Cf, Fb, LA by the symbols R1,
R2 , R3  respectively, and take it for granted that the number of 'equal parts'
within a rectangle is the area of the rectangle:-

Hence the probability that the ball will rest on R1 is proportional to the area
of R1, and because it must come to rest somewhere on the plane, the prob-
ability that it will not rest upon R1 is proportional to the remaining area
R2+R3 . Hence the ratio of the probability that it rests on R1 to the probabil-
ity that it does not rest on R1 is equal to the ratio of the area of R1 to the sum
of the areas R2+R3 : and as these areas are proportional to the lengths of
the sides fb, Bf and bA respectively, the ratio of the probability that the ball
will rest on R1 to the probability that it will not do so, is equal to the ratio of
the length  fb  to the sum of the lengths Bf + bA.

The demonstration of the Lemma then continues in a vein which may seem
very laboured to ourselves, but may have been necessary in Bayes' day when
serious doubts were still current as to the validity of various algebraic tech-
niques which we take for granted. The continuation is however based upon
the simple fact, demonstrated in the Corollary to Proposition 1, that the
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probability of an event added to the probability of its contrary is the ratio of
equality. Unfortunately, the argument in the original text is expressed as
algebraic operations performed on English phrases, rather than on the more
compact symbolic forms which are commonly used in our own times.  To
overcome this problem, we therefore use P (R1) to symbolise the probability
that the ball will rest on R1 and P (~R1) to symbolise its contrary. Bayes'
argument can then be expressed as:-

 
P (R1)

P (~R1)
     =     

fb
(Bf + Ab) (4-1)

hence
P (R1)

(P (R1)+P (~R1))
     =      

fb
(fb + Bf + Ab)     =      

fb
AB (4-2)

and therefore the probability that the point o will lie between f  and  b is the
ratio of the length of fb to the side AB.

In terms of the original text, we are now on page 387 and, perhaps to
the reader's concern, Bayes continues:-

Again; if the rectangles ..... are not commensurable ..... the last mentioned
probability can be neither greater nor less than the ratio fb/AB,

i.e. the probability must therefore be equal to fb/AB, which Bayes proceeds
to prove by examining the consequences if it were not so:-

We first consider the implications if the probability that the point o will lie
between f and b were less than the ratio fb/AB, and were equal to some other
ratio, say fc/AB.

To examine the implications we take the segment of line fb and on it we
select points p and t such that the length pt is greater than the length fc. We
then construct the three commensurable segments Bp, pt and tA, which,
Bayes asserts:- can always be done by dividing AB into a number of equal
parts, each being less than cb/2 in length, and then taking p and t as the
division-points nearest to f  and c respectively.
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                           B           f          p       o         c      t    b     A

Figure 4.2

The commensurable segments are, therefore, such that each can be con-
structed exactly by conjunction of an integral number of units of the same
finite length, and Bayes' argument is that such lines can always be found by
choosing a unit which is less than cb/2, and such that the line AB is exactly
divisible into an integral number of such segments. We are told that the
division (i.e. end-of-segment) which is nearest to f  (and is within the seg-
ment fb), is then chosen as the point p, and the division which is nearest to
the point c, (and is again within the segment fb), is chosen as the point t. We
note that the points p and t are defined as being upon the line fb; hence the
first division that occurs to the right of  f becomes the point p, and the first
division that occurs to the left of b becomes the point t.  Otherwise the
division that is nearest to f may be to the left of f, and therefore outside the
line fb.  Also, if the segment length is λ, the point p could be this distance to
the right of  f ; but if we were then to make the point t the nearest division to
c, this could be to the left of c, whence the length of the line pt would be less
than the length fc, which contradicts its definition. The point t must therefore
be to the right of c ; but, for us to be sure that pt  is greater than fc, we must
be sure that t is further to the right of c than p is to the right of  f.  We must
therefore be sure that the length ct is greater than λ, which is not achieved by
selecting the division next to the right of c, but is achieved, (because
λ< cb/2), if the division next to the left of  b  is selected as the point t.  This
minor correction aside, Bayes' argument then continues:-

Because the line-segments Bp, pt and tA are commensurable, so are the
rectangles based upon these segments.  Hence from the result shown above,
the probability that the point o will fall between p and t is equal to the ratio
pt/AB. But if the point o lies between p and t, it must lie between f  and b.
Hence the probability that it will be between f  and b cannot be less than
pt/AB, and, since pt is greater than fc, this probability must also be greater
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than fc/AB. Hence, the probability must be greater than any ratio which is
less than fb/AB. And, since one can prove in the same way that that this
same probability must be less than any ratio which is greater than  fb/AB, it
follows that it must be equal to fb/AB.

Lemma 2  to Postulate 2 begins at the foot of page 387 in the original text,
but we need briefly to revisit Postulate 2 for definition of 'the event M ':-

the event that the second ball comes to rest in the rectangle ADso, between
the line os and side AD in a single trial is called the happening of the event
M.
Lemma 2 then states that:-
the first ball having been thrown, the probability that the event M will occur
in a single trial is equal to the ratio of the length Ao to the length of the
whole side AB,
and this is demonstrated by the argument that:-
 in the same manner as in the previous Lemma, the probability that the
second ball will come to rest upon the rectangle ADso is equal to the ratio of
Ao to AB, and, since this is defined as the happening of the event M in a
single trial, the lemma is manifestly correct.

With Proposition 8, the style of layout in the original text reverts to that of
Section 1, the proposition beginning with a preamble describing how we
construct the curve BghikmA, (see Fig 4.3), below the base of the plane viz:-
First we mark on the base AB a number of points such as b, c, d, e, f, from
each of which we draw perpendiculars downwards to points m, k, i, h, g,
respectively. We then define variables yb, pb, qb, etc., with respect to each
point we have marked on AB such that:-

yb =  
bm
AB yc =  

ck
AB etc.

pb =  
Ab
AB pc =  

Ac
AB

etc.

qb =  
Bb
AB qc =  

Bc
AB

etc. (4-3)

and also such that each member of each (y,p,q) triplet obeys the relation-
ship:-

yb      =     nCm pb
m qb

(n - m)  (4-4)

and
yc     =     nCm pc

m qc
(n - m)        ............. etc. (4-5)
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The body of the proposition then continues effectively as follows:-

Before the first ball is thrown, the probability that:-
(a) it will come to rest with the point 'o' between points 'f'  and b,
and, it having done so, the probability that
(b) the event M will then happen 'm' times in 'n' throws of the second ball,
is equal to the ratio of the area  fghikmb to the area of the square ABCD1.

Bayes' demonstration of the proposition takes a form he seems to favour, i.e.
a geometrical demonstration that, if the proposition is not true, then a con-
tradiction is entailed. The argument is again somewhat lengthy, and in the
following exposition, we try to strike a reasonable balance between fidelity
to Bayes' original form and a form which may be easier for our own contem-
poraries to grasp:-

(1) Let P (m:n)  denote the probability that the event M will happen on m
occasions out of n throws of the second ball, and let us suppose it is equal to
a ratio G/ABCD, where G is some area greater than  fghikmb, so that
P (m:n) is greater than the ratio  fghikmb/ABCD. (The bounding outer curve,
B i A  in Fig 4.4 may be envisaged as an example of an area having the prop-
erty defined for G ).

(2) At the points such as  e,d,c, we drop perpendiculars from fb to meet
the curve AmigB at h,i,k,  respectively.
                                                
1 For a diagram showing the full square ABCD, see Ch 2 above, (p387 in the original text).

B f e d c b A

g

h

i

k

m

Figure  4.3
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Fig 4.4

(3) Let the point d be selected so that the perpendicular di is the longest
perpendicular between the line fb and the curve AmigB.

(4) We then select a number of points such as e and c, either side of d
such that the sum of the areas of the rectangles  such as bck, cdi, edi, feh
differs less from the area of  fghikmb  than does the area G.

At this point, Bayes inserts the comment:-

all which may be easily done by the help of the equation of the curve, and
the difference between G and  fghikmb being given,
i.e., he is asserting that however small may be the difference between the
hypothetical area G and the area of  fghikmb, we can, by making the number
of points on fb and the corresponding rectangles sufficiently numerous,
cause them to approximate ever more closely to  fghikmb, and hence for the
sum of their areas to differ from the area of  fghikmb by less than does the
area of G. Bayes also notes that, since the line di is, by definition, the longest
of the perpendicular ordinates from the line fb to the curve, the other vertical
lines will decrease in length as we move away from di. Hence if we consider
vertical lines such as eh, descending from the base segment AB, we see that
the ordinate eh  is longer than gf, and is longer than  any other ordinate that
can be drawn from the base segment ef. The argument then continues:-

Now suppose that the first ball comes to rest so that the point o coincides
with the point e; then, by Lemma 2, the probability that, in a single trial, the
second ball will come to rest to the right of the perpendicular through e is
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equal to the ratio Ae/AB;  and, as this is the probability that the event M will
happen in a single trial, we may write

P (M) = Ae/AB = p (4-6)

and, by the corollary to Proposition 1, the probability that, in a single trial,
the second ball will come to rest to the left of the perpendicular through e, 
is equal to the ratio Be/AB; and, as this is the probability that the event M
will not happen in a single trial, we may write

P (~M) = Be/AB = q (4-7)

Hence, by Proposition 7, the probability that, in 'n' trials, the event M will
happen 'm' times will be:-

  nCm pmq(n-m)

It follows that  because the curve AiB has been drawn in such a way that the
ratio eh/AB = y =  nCm pm q(n-m),  the ratio eh/AB is equal to the probability
that M will happen on m occasions in n trials.

Therefore, when the point o coincides with the point f, P (m:n) equals the
ratio fg/AB, and so on for any other ordinate.

Hence, as eh is the longest ordinate that can be drawn from the line-segment
ef to the curve AiB,  P (m:n) cannot be greater than eh/AB if the point o is to
lie somewhere on or between the points f  and e.

Using the above result, together with the formula for the joint probability of
consecutive events, as proved under Proposition 3,  Bayes now shows that
the probabilities of various joint events correspond to ratios which cannot be
greater than those of the areas of various rectangles inscribed upon the line
f b  to the area of the square ABCD. He does this by considering consecutive
events, E1 and E2 where:-

E1 is the event that the first ball comes to rest such that  the point 'o' is on
or between points 'e' and 'f', the probability of which was shown by Lemma 1
above, to equal ef/AB.

E2 is the compound event that, following E1, the event M happens on m
occasions out of n trials, the probability of which we have just proved can-
not be greater than eh/AB.

It then follows from Proposition 3, that the probability that both E1 and E2

will happen cannot be greater than the product (ef/AB)x(eh/AB), which is
the ratio of the area of the rectangle feh to the area of the square ABCD.
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Likewise:

The probability that the point o will lie on or between points e and d, and
that the event M will happen as before on m occasions out of n trials, cannot
be greater than the ratio of the area of rectangle edi to the area of the
square ABCD and

The probability that the point o will lie on or between points d and c, and
that the event M will happen as before on m occasions out of n trials, cannot
be greater than the ratio of the area of rectangle cdi to the area of the
square ABCD.

The probability that the point o will lie on or between the points c and b, and
that the event M will happen and fail as before, cannot be greater than the
ratio of rectangle bck to ABCD.

Thus, if we now add together all such probabilities, then Proposition 1 tells
us that their sum will be the joint probability that the point o will lie some-
where on or between point f  and b, and that the event M will happen on m
occasions out of n trials.

Hence, adding together the corresponding ratios identified above, their sum
is the ratio of the sum of the areas of the rectangles (feh+edi+cdi+bck) to
the area of the square ABCD.

But, because by definition, the area of the unknown G is greater than
(feh+edi+cdi+bck), the ratio

(feh+edi+cdi+bck) / ABCD

must be less than the ratio G/ABCD.

Therefore the probability that both E1 and E2 will occur must be less than the
ratio G/ABCD, which contradicts the initial assumption that it was equal
to G/ABCD : hence the assumption cannot have been correct.

Conversely, by denoting an area less than  fghikmb as, say L, and assuming
that the probability of E1 and E2 is equal to the ratio L/ABCD, we can
show, by considering rectangles inscribed within the curve, that the prob-
ability of E1 and E2 is greater than L/ABCD, which is again a conclusion
contradicting the assumption from which it was derived.

Therefore, as the required probability can be neither greater than 
fghikmb/ABCD nor less than  fghikmb/ABCD, it  must be equal to the
ratio of the area of  fghikmb to the area of ABCD.
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The corollary to Proposition 8
If, therefore, we make the point f  coincident with the point B, and the point
b coincident with the point A, so that the segment of interest comprises the
whole line AB, then the probability that the point o will lie on the chosen
segment and that the event M will subsequently happen on m occasions out
of n trials is the ratio of the area of the whole curved area AiB to the area of
the square ABCD. Hence, before the first ball is thrown, (and because it is
certain that the point o will lie on the line AB), the probability that M will
occur on m occasions out of n trials, is given by the ratio of the curved area
AiB to the area of the square ABCD.

Proposition 9
If, before anything is known about the position of the point o, we learn that
the event M has happened on m occasions out of n trials, and we then guess
that the point o lies between any two points, such as f  and b, on the line AB,
this corresponds to a guess that the probability of M in a single trial is
somewhere in magnitude between the ratio Ab/AB and Af/AB, and the prob-
ability that we are right in this guess is the ratio of the area fghikmb to that
of the whole curved area AiB.

The proof of this, drawing upon Proposition 8 and its corollary, and drawing
also upon Proposition 5, is as follows:-

Considering again the consecutive events E1 and E2 as above, and that:-
by the corollary to Proposition 8, the prior probability of E2  is the area-
ratio AiB/ABCD, and that
by Proposition 8 itself the probability of both events is the area-ratio 
fghikmb/ABCD, then, in the terms used in discussion of Propositions 4 and
5,
 P (E1  ∧∧∧∧  E2 ) = B/N =     f g h i k m b / A B C D     (4-8)

and
   P (E2 )      =     p2  / N      =     A i B / A B C D (4-9)

whence, if, knowing that E2 has happened, we now guess that E1 has also
happened, then the probability that we are right is:-

B/p2      =     f g h i k m b /A i B (4-10)

The corollary to Proposition 9

This corollary presents some minor problems of terminology in the
original text, the symbol o suddenly changing its significance from that of a
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point on the line AB to that of a zero numeric value. Hence we present this
corollary as:-

If on the same suppositions we guess that the probability of M lies some-
where in magnitude between zero and the ratio of the lengths Ab/AB, then
the probability that we are right is equal to the area-ratio Abm/AiB.

This concludes our exposition of Bayes' argument to the end of
Proposition 9.   In the next chapter, we examine the Scholium.
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Chapter 5

The Scholium

In Bayes' essay, The Scholium follows Proposition 9.  Its focus is on
the event E1, which is defined as occurring when Pm  has a value in an inter-
val bounded by two arbitrary values which we denote as x1 and x2. The value
of Pm is the probability that the event M, as defined in the previous chapter,
will occur when the second ball is thrown.  The purpose of the Scholium is
to discuss the difficult problem of assigning, or assuming a pre-trial, or 'a
priori' probability for the event E1, when we have no information whatso-
ever, prior to the trials, about the probabilities attaching to the many differ-
ent, but possible, values it could have. The difficulty is acute because,
according to Proposition 5, even after a set of n trials, the probability that Pm
is in the defined range can be determined only by knowing or assuming the
pre-trial, i.e. the 'prior', probability of its being in that range.

To place this problem in context, we recall the crux of the essay:-

The probability that an event has happened is the same as the probability
that I am right if I guess that it has happened.  Wherefore:-

Proposition 5

If there are two consecutive events, the probability of the second event
being p2 /N, and the probability  that both events will occur together being
B/N, if it is discovered that the second event has happened, and I then guess
that the first event has also happened, the probability that I am right is
B/p2.

That is, we are concerned to evaluate the probability that event E1 has hap-
pened, when it is known that event E2 has happened, the answer being given
in terms similar to (3-51) by:-

                      P  (E1 | E2 )     =     B/p2 (5-1)
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where

'B' is The prior probability that E1 and E2 should both occur in a joint
trial

and

'p2' is  The prior probability that E2 should occur in an identical joint
trial, but without regard to the occurrence of E1 in that same trial.

However, in the assumptions leading to the derivation of (3-51), under
Prop.4 and its corollary, Bayes does not assume that E1 and E2 are time-
ordered; he merely assumes, to use modern terminology, that they may be
correlated1.  To give clearer correspondence with the experiment carried out
on the table, we therefore define a two-part trial in which part-A comprises a
single throw to determine the value Pm  and part-B comprises a set of n
individual, probablistic throws, each governed by the value of Pm  obtained
in part-A and in each of which the event M either happens or does not hap-
pen.

We now substitute into (5-1) propositional values as follows:-

E1 Is an event such that the value of Pm obtained in part-A is
greater than x1 and less than  x2  i.e. symbolically  (x1 < Pm< x2)    

E2 Is an event such that in a set of n trials, the event M occurs in m
of those trials.

B Is the probability prior to the test that:-
(1)  The value of Pm  determined by part-A will be greater than

x1 and less than x2
and, given (1), that

(2)  The event M will happen m times and fail n-m times in
part-B

P (m | n) Is the probability that the event M will happen m times, in a test
comprising n trials.  

Hence, the problem is to evaluate:-
P  { ( x1 < Pm  <  x2 ) | (m ,n) }     =     B /P (m :  n) (5-2)

which requires us to provide numerical values for B and P (mn), given that,
by the definition of the problem, we have no prior knowledge of any of the
probabilities involved. We know only the general nature of the test set-up
and the values of x1, x2 and n which we have arbitrarily selected.

                                                
1 A simple analysis of the general case of correlation is given by Keynes (1921) Ch XXXI.
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In considering how the above problem is handled by Bayes, we learn,
from the covering letter which Richard Price wrote when he sent Bayes'
essay to John Canton, that Bayes deliberately kept the Scholium aside from
the main body of his mathematical reasoning.  Price also tells us that Bayes
had quickly perceived that he could solve the general problem addressed by
the essay:- provided some rule could be found according to which we ought
to estimate the chance that the probability for the happening of an event
perfectly unknown, should lie between any two named degrees of probabil-
ity, antecedently to any experiments made about it; and that it appeared to
him that the rule must be to suppose the chance the same that it should lie
between any two equidifferent degrees 1.  The reader is thus conditioned to
expect an encounter with the notorious 'postulate of the uniform prior distri-
bution': but this is a point on which we must ask for caution, particularly
when considering the role of the uniformly level table; for the table is, as we
show later, distinct from the general issue and serves essentially to demon-
strate the application of Bayes' approach in a particular case.  Thus, in sepa-
rating the Scholium from the main part of the essay, Bayes seems to have
been concerned to separate metaphysical disputes from the mathematics. It is
also worth noting that in the definition of probability, he adopted a purely
pragmatic approach in which the meaning of the term was equated to a rule
governing its use: an approach which he appears to have justified in the
missing Introduction. Hence it may be significant that we again find the
words 'the ... rule ...to be used' in the Scholium, which we now quote, in
modern print, paraphrasing slightly, and with some small changes also to the
layout2:-

Scholium
(1)  From the preceding proposition it is plain that in the case of such an
event as I there call M, from the number of times it happens and fails in a
certain number of trials, without knowing any thing more concerning it, one
may give a guess whereabouts its3 probability is, and, by the usual methods
of computing the magnitudes of the areas there mentioned, see the chance
that the guess is right. And that the same rule is the proper one to be used
in the case of an event concerning the probability of which we know abso-
lutely nothing antecedently to any trials made concerning it, appears from
the consideration that, concerning such an event, I have no reason to think
                                                
1  p 371 in the original text.
2 The Scholium is on pp392-394 of the original text. The rendering here paraphrases cer-
tain phrases and introduces paragraph breaks and numbers which are not in the original.
The paraphrases are marked by footnotes.
3 it's in the original text
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that, in a certain number of trials, it should happen any one possible num-
ber of times than another. For on this account, I may justly reason con-
cerning it as if its probability had been at first unfixt, and then determined
in such a manner as to give me no reason to think that, in a certain number
of trials, it should rather happen any one possible number of times than
another.
(2)  But this is exactly the case of the event M. For before the first ball is
thrown1, which determines the probability of the event M in a single trial2,
(by cor. prop.8) the probability it has to happen m times and fail n-m times
in n trials is the ratio of AiB to CA, which ratio is the same when n is given,
whatever number m is; as will appear by computing the area of AiB by
integration3.
(3)4  .... (which shows)  ........ that AiB contracted in the ratio of nCm to 1 is
to CA as 1 to (n + 1); from whence it plainly follows that, antecedently to
this contraction, AiB must be to CA in the ratio of 1 to n+1, which is a
constant ratio whenever n is given, whatever m is.
(4)  And consequently before the place of the point o is discovered or the
number of times the event M has happened in n trials, I can have no reason
to think it should rather happen one possible number of times than another.
(5)  Therefore I shall take for granted that the rule given concerning the
event M in Prop.9 is also the rule to be used in relation to any event con-
cerning the probability of which nothing at all is known antecedently to any
trials made or observed concerning it. And such an event I shall call an
unknown event.

Although the full argument which is put forward by the Scholium may
not be easy to grasp at first sight, particularly if one has been unwittingly
prejudiced by hearsay, it seems clear enough, if one reads carefully what it
says, that its basis is the plain fact, stated in (1) , that 'in the case of an event
concerning the probability of which we absolutely know nothing antece-
dently ........ I have no reason to think that, in a certain number of trials, it
should happen any one possible number of times than another'.  Bayes does
not however proceed directly from (1) to (5), but in (2) he asserts that:-  this
is exactly the case of the event M .... before the first ball is thrown ....... the
probability it has to happen m times and fail n-m times in n trials is ........ the
same when n is given, whatever number m is.  In (3) he asserts that this can

                                                
1 i.e. the  ball  W  in terms of Ch.4.
2 the original text says simply it's probability
3 In the original text the method of fluxions
4 This section is printed as a footnote to the original text
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be proved algebraically. Whence, in (4) he reiterates that:- 'consequently .....
I can have no reason to think it should rather happen one possible number
of times than another', and thence to (5) ........ therefore I shall take for
granted that the rule given concerning the event M in Prop.9 is also the rule
to be used in relation to any event concerning the probability of which
nothing at all is known antecedently

 However, if we take the description of the test up to this point, literally
as it stands, it involves a slight contradiction between the definition of an
unknown event and the fact that it is only on completion of the test that we
know the value of m - knowledge which is highly relevant to the estimation
of the probability in question. Our solution to this difficulty is therefore to
re-formulate the problem so that we are required to find, prior to conducting
the test, a rational basis on which to estimate, for each possible value of m in
the range 0 - n inclusive, the probabilities:-

(1) That  E1 will happen in part-A,
(2) Given E1,  that the event M will happen m times in part-B.
(3) That, regardless of E1, the event M will happen m times in any trial-set

of size n.

To (1), the answer of the Scholium is that:-  'the same rule', (i.e. the
rule given under Prop.9), 'is the proper one to be used'.   The problem posed
by (2) is that addressed and solved in Prop.8, albeit the technical problem of
algebraic determination of the area fghikmb was one of some difficulty, with
which Bayes struggled in the final part of the essay, and which is outside the
scope of our enquiry1.   The problem with (3) is then to find a rational basis
on which to evaluate P (m | n )  for each value of m in the range 0 - n inclu-
sive, i.e. the prior probability that, in part-B of the test, and knowing nothing
whatsoever concerning the actual or probable outcome of part-A, the event
M will happen m times.  Let us suppose, for example, we are told only that
the set will comprise 100 trials and we are asked to assess the probability
that the observed value of m will be 3: can there be any rational basis on
which to provide the requested estimate? Superficially, the answer appears
to be that, unless we make further assumptions or are given further info-
rmation, there can be no rational basis on which to give any estimate of the
requested probability.

This does not, however dispose totally of our ability to grapple with
the problem; for an alternative response, as Bayes perceived, is that we can
also express the situation in terms of having no reason to rate any given
                                                
1 See Stigler (1986) p 130



Chapter 5 The Scholium

Version zh25a.doc at 18:36  on 13 July, 2001
All rights reserved.

59

value of the probability more highly than any other possible value.  Bayes
also perceives that we know that Pm  is constrained to fall in the range 0 - 1
and that this is logically equivalent to the situation addressed in the Corol-
lary to Prop.8.  There, Bayes argues, the value of P (m | n )  is given by the
ratio of the curved area AiB to the area of the square ABCD .  Referring back
to Prop.8, we find that the curve AiB was constructed by means of the for-
mula (4-4):-

                    yb      =      nCm  pb
m qb

(n - m)

which, when integrated with respect to p, appears to show, as Bayes then
points out, that the area AiB is a function only of n, and is independent of m1.
Hence, he argues, the value of P (m | n )  is itself a function only of n and is
identical for all values of m in a trial-set of a given size.  Bayes suggests that
this corresponds with a situation in which the value of P (m | n )  is fixed by a
prior process in which all values of P (m n)  are equally probable, and as a
result of which we have no reason to rate any one value more highly than
any other value.  He suggests therefore that, the rule developed under Prop.9,
is the rule we should use to find the probability that Pm  lies between the
given values when we are faced by an 'unknown event'.

Having expounded the argument, we now seek to examine, for our-
selves, its validity, particularly with regard to the assumption of the uniform
prior distribution.  It is not however vital to the logic of the experiment that
different balls shall be used in the two parts of the experiment, nor indeed is
the order in which the balls are thrown.  For we could construct an experi-
ment which is logically equivalent to that performed by Bayes, in which a
single ball is thrown n+1 times, and, after each throw, we mark the position
in which the ball comes to rest.  We then select one of these positions as the
reference position to establish the point o, as if it had been established by a
throw of the ball in part-A.   It is also worth noting, at this point, because of
the important part played by the uniform prior distribution of Pm  in Bayes'
argument, that there is a temptation to assume that the uniformly level table
is correspondingly important.  However, a uniform prior for Pm  does not
require a level and unbiased table but can be achieved by any cumulative
probability function which increases across the table and which equally
affects the ball in both part-A and part-B, such that a one-to-one mapping
can be achieved between the uniform continuum defined by Bayes and the
space in which any given experiment takes place.2  The situation is however

                                                
1  The assumptions hidden in this assertion are discussed later in this chapter.  See also refs.
to Molina in later chapters.
2 See also Edwards (1974, 1978).
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quite different if, say, an iron ball is used and a magnet is held under the
table to produce a bias in part-A but is removed in part-B in order to restore
a uniform distribution of the point at which the ball comes to rest.

Returning to Bayes' argument, a point of great importance in the con-
text of its time, is simply the emphasis which he places on the rôle of the
prior distribution1. However, as Stigler pointed out2, and as we have seen
above, a careful study of the Scholium clearly shows that the thrust of
Bayes' argument is, repeatedly, from having 'no reason to think that, in a
certain number of trials, it should rather happen any one possible number
of times than another', to the conclusion in (5) 'that the rule given ........ in
Prop.9 is also the rule to be used in relation to any event concerning the
probability of which nothing at all is known antecedently to any trials ....'..
Unfortunately, the words of the Scholium on this matter were heavily pre-
empted in the covering letter which Richard Price wrote when he sent
Bayes' essay to John Canton. That letter was printed as an introduction to
the essay and seems, alas, to have set alight a smoke-screen of prejudice
which has only been challenged in recent years3. Yet, if Richard Price is to
be believed, the obstacle originated with some remarks made by Thomas
Bayes himself, in an Introduction to the essay which he had written at some
point, but which was not published with the essay, and which cannot now
be traced4. Price, however, tells us in his covering letter, that Bayes, per-
ceived that he could solve the problem he had posed:-  by supposing the
chance the same that the probability Pm should lie between any two
equidifferent degrees5,  and against which the critics have unceasingly
railed.  This is, however, not perhaps surprising, for Price continues:- '(but
Bayes) afterwards considered that the postulate on which he had argued
might not be looked upon by all as reasonable; and therefore he chose to
lay down in another form the proposition in which he thought the solution
of the problem is contained, and in a Scholium to subjoin the reasons why

                                                
1 A point which Bayes had emphasised also in a letter to John Canton concerning observa-
tional errors, 'he supposes that the chances for the same error in excess or defect are
exactly the same, and upon this hypothesis only has he shown the incredible advantage'.
Canton papers, vol. 2, p32.  Quoted in Stigler (1986) p94.
2 Stigler (1986)
3 Notably by Edwards, (1974,1978) and Stigler(1982, 1986), to whom thanks are due for
tackling an obstacle which had long impeded access to Bayes' argument.  But see also Dale
(1991) p39, section 3.5.
4 See Barnard (1958)
5 This and the following quotation are slight paraphrasings. The original version is given in
Ch. 2 above.
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he thought so, rather than to take into his mathematical reasoning any
thing that might admit dispute'.

The first point to note in considering this quotation is that we have
here a statement attributed to Bayes by Richard Price, and although we have
no reason to doubt the honesty or accuracy of that attribution, we have no
means of knowing when, in relation to the other parts of the essay, those
views were expressed by Bayes. As we have noted previously, there are
marked stylistic differences and these may well indicate that various parts of
the essay were written at different times, and possibly in quite different order
from that in which they are now printed. Hence the reservations to which
Price refers may well have stemmed from Bayes' views when he wrote the
Scholium, his death having prevented any later revision. There is, however,
no firm evidence that Bayes himself entertained any doubts upon the point in
question: the only doubts of which we have any evidence are Bayes' doubts
concerning the opinions of others. A corollary to this is, however, that at the
time Bayes wrote the Introduction to which Price refers, Bayes had not seen
how to show beyond doubt that the assumption of the uniform prior distri-
bution is the rule to use in the general case.  This is perhaps a point of some
significance for our understanding of the human, chronological and philo-
sophical aspects of the matter.  Hence, putting aside the possibility that
Bayes' use of the phrase 'I shall take for granted' may, (or equally may not),
indicate some residual doubt in Bayes' own mind, the question we have to
address is whether we can agree that 'the rule given concerning the event M
in Prop. 9 is also the rule to be used in relation to any event concerning the
probability of which nothing at all is known antecedently to any trials'  ?

A particular difficulty, however, is the presence of the argument that
since we have no reason to suppose any particular value of m to be more
probable than any other value, our situation is logically equivalent to that
which would follow from the value of Pm  being determined by a prior proc-
ess in which all values of m are equally probable. Certainly if we take also
into consideration the physics of an actual experiment, we see that Bayes has
pointed out an additional element which, as a matter of physical logic, has an
essential role in any such experiment, i.e. the necessary existence of a prior
process by which the value of Pm  is determined.  But the reasoning is falla-
cious if we equate a state of ignorance concerning the prior probabilities of
different hypotheses, with the state of our knowledge if we know that the
probabilities have been made equal by the operation of a prior process.
Philosophically, and indeed in common life, we cannot, and we do not, argue
that because a state of ignorance on a particular matter has a consequence in
common with a state of factual knowledge, that the former state can be
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equated with the latter !  We might not know an Emu if we saw one, and we
might not know the name of the bird on the lawn, but we do not thereby
infer that it is an Emu.

But Bayes, in fact makes no such inference, and it is inconceivable that
he would have committed such a patent fallacy. All he says is that, from a
pragmatic point of view, in performing the calculations, we use the same
rule in both cases. (If we have heard that Emus are dangerous, we might be
well advised to give the unknown bird a wide berth, just in case it should
indeed be an Emu.) Nevertheless, it seems that all who read the Scholium
feel uneasy at the lack of any clear, formal justification, to the standard
found elsewhere in the essay, for the use of the rule, and for many years it
has been commonplace to believe that Bayes' conclusion was at best of very
limited application, and, at the worst, fallacious1.  Also, as Murray and
Molina later showed,2 a uniform prior is necessary if the value of P ( m | n )
is to be uniform over all values of m.  Although the tone of their papers is
sympathetic to Bayes, it seemed thereafter clear that any reliance by Bayes
upon the prior uniformity over the possible values of m, must weaken his
case.  Although the proofs used by Murray and Molina involve some fairly
difficult mathematics, it is easy to see that, if one were able to bias arbitrarily
the resting place of the ball in part-A, but not in part-B, then it would de-
stroy the topological equivalence to uniformity over both parts of the trial
and thereby destroy the uniformity of probability over the possible values of
m.  However, although there are, in the Scholium, strong hints in the direc-
tion of positively equating the unknown probabilities with equal probabili-
ties, Bayes nowhere makes that equation explicit.  Which is why, perhaps,
some sixty years after Bayes' death, Laplace was moved to write:-  'Bayes
produced, albeit with some embarassment, a solution which was both ele-
gant and ingenious '.3

 The difficulty is that we are, by the very definition of the problem, in a
state of absolute ignorance concerning Pm , and we have so far seen no rea-
sons for believing, nor even for assuming as a pragmatic rule, that all the
possible values of Pm  in the range 0 - 1 are equally probable.  Therefore, we
really have to consider the matter in some depth.  So, let us define the prior
probabilities over the values of Pm  by an increasing cumulative distribution
function,  F(x)  such that:-

                                                
1 cf Hacking (1965) pp 200-201.
2 Murray F.H. (1930) and Molina E.C. (1931).  See also the discussion in Ch 8.
3 'il y a parvenu d'une manière fine et très ingénieuse, quoiqu'un peu embarassée' Laplace
(1820) p iv (Preface)
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P (E1)     =      ⌡⌠
x1

x2  
 dF(x)    =    [ F(x) ] x1

 
x2

(5-7)

Then, in general, we know, or assume, by Bernoulli's theorem, that when
we are given Pm , the probability of  m events in  n trials is1:-

nCm Pm
m (1 - Pm )(n - m) (5-8)

so that, explicitly introducing F(x) as a prior probability weighting function
over the values of x,  the numerator in (5-1)  becomes:-

P ( (E1 ∧∧∧∧ E2 ) | F(x) )     =     nCm ⌡⌠
x1

x2  
 xm (1 - x)(n - m) dF(x) (5-9)

and the denominator in (5-1) becomes the value given by integrating (5-9)
over all the possible, and duly weighted values of Pm  such that:-

P ( m | ( n, F(x)) )     =     nCm ⌡⌠
0  

  1
 xm (1 - x)(n - m) dF(x) (5-10)

whence            
P  { ( x1  < Pm  <  x2 ) | ( m,n, F(x) ) }

      =    

 nCm⌡⌠
x1

x2
 xm (1 - x)(n - m) dF(x) 

 nCm ⌡⌠
0 

 1
xm (1 - x)(n - m) dF(x) 

(5-11)

At this point, as the grounds for assuming a uniform prior distribution
look remarkably bleak, it may be appropriate to ask whether our quest is
reasonable: do we truly have any grounds for believing that an answer is
possible ?  Is it indeed reasonable that, when we have conducted n trials and
obtained m occurrences of the previously unknown event M, that we should
feel justified in having some idea of the magnitude of Pm  over this set of
trials? And do we have any justification for believing that we ought to be
able also to quantify the uncertainty concerning the true whereabouts of Pm
on the basis of the evidence provided by the trials?  From this sceptical point
of view, therefore, we can see no grounds on which to assess our uncertainty,
and it would seem reasonable indeed to doubt that grounds can be found.

                                                
1  See Keynes(1921) Ch XXIX (p337 et seq.), for an exposition of the limitations which
apply to the validity of Bernoulli's theorem .
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Yet, from another point of view, if we accept Bernoulli's theorem and be-
lieve that, as n increases, so m/n →  Pm , it seems an insult to our reason to
suggest that we can conduct a lengthy test of the form described, obtain the
results, and yet be no better informed on the value of Pm  than before we
undertook the trials. This leads us, therefore, to look further into the impli-
cations of asserting that, on the evidence available, it is more probable that
Pm  is equal to the ratio m/n than that to any other value, for there is indeed
no evidence to support any other value, and the only evidence which we
have, is that which supports the value m/n.

To examine this point in more detail1, we consider the cases when F(x)
is at least twice differentiable so that, in terms of probability density, the
post-trial probability that Pm  is within an infinitesimal element2 dx at any
point in x is given by:-

P( Pm ≈ x )  =  
  xm (1 - x)(n - m) dF(x)

  ⌡⌠
0 

 1
xm (1 - x)(n - m) dF(x) 

(5-12)

Hence, to accord with a belief that, relative to our knowledge and reasonable
assumptions, (for there can be no other rational basis for any belief on such
matters), m/n is the most probable value of Pm , we require that (5-12) shall
have a unique maximum when x = m/n.  However, because the denominator
is integrated over all possible values of x, its value will not vary with differ-
ent values of x in the numerator.  Hence the result which we require is that
which maximises the numerator with respect to x.  Further, since the value of
the term  xm(1 - x)(n - m) is determined, for each value of x, by the result of the
test, any additional constraints must operate on dF(x) to ensure that the
maximum occurs at the required point. To resolve this, in cases where F(x)
is such that its second differential with respect to x exists, and to keep the
notation tractable, we define a function g(.) such that:-

g(x,m,n)  =  xm (1 - x)(n - m) (5-13)

and, hence we can re-express (5-12) as:-

                                                
1 The next few paragraphs contain some rather arid mathematical pedantics, the essence of
which is to show that an assumption of a non-uniform prior will, in general, produce an
indefensible result with an apparently most-probable value other than at m/n.  The general
reader may proceed without loss to the paragraph marked with an asterisk.
2  In this case, ⌡⌠

 

  
 (dF(x)/dx)dx = ⌡⌠

 

 
dF(x) : See e.g. Rao (1973)
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  g(x,m,n) dF(x)

  ⌡⌠
0 

 1
g(x,m,n) dF(x) 

    =    
  xm (1 - x)(n - m) dF(x)

  ⌡⌠
0 

 1
xm (1 - x)(n - m) dF(x) 

(5-14)

Then, denoting the differentials of dF(.) and g(.) with respect to x by F" (.)
and g'(.) respectively, we require, at the point where (5-14) has its maximum,
that:-

g(x,m,n)F' '(x) + g'(x,m,n)dF(x)     =      0 (5-15)

However, g(x,m,n) already has a unique, positive, non-zero maximum when
x = m/n.  We therefore let ξ = m/n, whence  

g'(ξ , m,n) dF(ξ)     =     0 (5-16)

and, to satisfy (5-15), we require also that
g(ξ,m,n) F' '(ξ)     =     0 (5-17)

which implies that F ' ' (ξ) = 0  whatever the value of ξ,  i.e.  we require that
dF(x) shall have the same value for every value of x over the open set
(0 - 1).

For completeness, however, we must also consider the possibility that
F(x) might not be twice differentiable, as assumed above, but might contain
'steps'.  Physically, such a situation could be created by placing an iron bar
under the table and placing a magnet inside the ball used in part-A.  We
would then have a concentration of probability along the line of the bar,
producing a sharp step in the cumulative probability function at the position
of the iron bar as illustrated in figure 5.1:-

0 1

1

F(x)

x

Fig 5.1
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If we then consider the impact of applying such a function as a multiplier
over g(x,m,n),  it is immediately clear that any non-uniform prior, would, in
general, seriously disturb the natural maximum of g(x,m,n) at x = m/n,
illustrated in figure 5.21.

This can be shown more formally2 by using the concept of alignment be-
tween elements in a given space and in its dual, i.e. between g(x) and dF(x),
and hence showing that because g(x) has a unique maximum when x = m/n,
it is necessary that dF(x) shall be constant for all values of x in the open
interval (0,1) if that maximum is to be preserved. We then have two special
cases to consider where spikes could be present in dF(x) without affecting
the maximum of g(x).  The first such case occurs if dF(x) has a finite3 spike
at x = 0.  This would have no effect upon the maximum of g(x) for values of
m/n > 0, because in all such cases the value of g(x) is itself zero.  In the
particular case where m = 0, and g(x) has its maximum at x = 0, the effect of
the spike at x = 0, is simply to reinforce the maximum of g(x).  Conversely,
the only effect of a spike at x = 1 would be to reinforce a maximum of g(x)
at that point due to a test returning a value of m equal to that of n.  However,
while such spikes at the extremes would not contradict a requirement to infer

                                                
1 See also Ch 12, Figs 12.2 and 12.3
2 Luenberger (1969) Ch 5.
3  i.e. the total probability within the spike must be less than 1.  If it is equal to 1, it implies
no possibility of m > 0.
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the value of m/n as the most probable value of Pm , an assumption of their
presence would be totally at odds with the assumption of prior ignorance.

* We conclude therefore that, when we interpret the results of Bayes'
experiment, the assumption of a uniform prior distribution of probability for
Pm , over the closed unit interval, is a necessary condition for any rational
inference regarding the probable value of Pm .  If we refuse to make that
assumption, then we are making an implicit assertion that observation can
tell us nothing about the probable value of such a parameter.  A case indeed
of 'Hobson's Choice1'.   Which, in itself, proves nothing.  But Nature, in the
form of experiments, rarely - arguably never - proves anything.  Nature
provides evidence - which we are beholden, rationally, to interpret.

However, if we now go back to the Scholium, and read it very care-
fully, we find that it can be understood in several different ways.  Stigler2

suggests an interpretation in terms of a uniform distribution over the possible
outcomes of a Bayes trial, i.e. in terms of the observables, rather than in
terms of the unobservable a priori probabilities.  But Stigler's argument is
not, we find, compelling.  Indeed, another interpretation is that Bayes is
actually arguing by analogy between the probabilities of outcomes in the
experiment and the probabilities of outcomes in the case of the unknown
event.  On this interpretation, his argument by analogy is, precisely as
Murray and Molina showed by analysis, that a uniform prior over the possi-
ble values of Pm is a necessary condition for uniformity of probability over
the outcomes.  While it is arguable, as so many have indeed argued, that the
assumption of a uniform prior for Pm is a contradiction of our axiomatic
ignorance on this very point, it is also arguable that Bayes may have actually
been asserting that it is precisely the uniformity which represents our igno-
rance - i.e. the prior uniformity necessarily and uniquely entails that 'before
the place of the point o is discovered or ....(before)....  the number of times
event M has happened in n trials .... (is discovered) ..... , I can have no
reason to think it should rather happen one possible number of times than
another'.

Before we leave this discussion of the Scholium, it is as well that we
consider a further consequence of assuming a uniform prior, for we can ask,
and perhaps we ought to ask, how good is the estimate which it yields?
Clearly, in cases of total ignorance concerning the prior itself, we shall be
unable to answer this question, taken simply as it stands.  That inability
                                                
1 In the days before cars and trains, Mr Hobson hired horses to travellers.  The choice of
horse offered to his customers was "Take it or leave it."
2 Stigler (1982)
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might seem to indicate a fairly serious weakness in the argument.  Yet, if we
consider a case where we are given prior information about the value of Pm

but we ask to be told also the probability that the information is in some way
defective, we are likely to receive, at best, a vague answer.   For, in general,
by asking to be told the recursive values of probabilities, i.e. 'What is the
probability that the probability that the probability ....... ', one will very
quickly push any respondent into an admission of ignorance; and this, it
seems, is likely to apply to even the best constructed and authenticated
experiment.   Hence, we are led to suggest that, in the case of Bayes' experi-
ment an acceptable evaluation of  our estimate of P ( x1 < Pm  <  x2 ) is the
simple statement that it is the 'best possible'.  This is, we would suggest, a
completely objective statement of a kind which is widely accepted in a great
range of human affairs.  Indeed, in the case of Bayes' experiment, the
strength of the statement is remarkable, for not only is it the best possible
estimate, but, denoting our assumption of the uniform prior by Pu(x),  the
estimate of probability given by Bayes' rule, i.e.

P { ( x1  < Pm  <  x2 ) | (m,n,Pu(x)) } 

                                 =               

 ⌡⌠
x1

x2
 xm (1 - x)(n - m) dx 

  ⌡⌠
0 

 1
xm (1 - x)(n - m) dx 

(5-18)

is the only rational estimate.   This does not mean that we have here a good
estimate, for as Ehrenberg1 asks in a not wholly dissimilar context, we also
have to ask 'How good is best ?'.   While the best can be indeed pretty awful,
the alternative, here, is silence.

                                                
1 Ehrenberg  (1982)
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Chapter 6

Probability and Expectation

The purpose of this chapter is to discuss some historical and logical
points concerning the formal 'Problem in the Doctrine of Chances' addressed
by Bayes, and, in particular, the concepts of Probability and Expectation
which he employs in its solution. The problem is also of historical interest
and seems to have been posed first by James Bernoulli.  Although this is not
mentioned in the main body of Bayes' essay, it is noted quite prominently by
de Moivre, who commends Bernoulli thus:-  'I  .... shall conclude this re-
mark with a passage from the 'Ars Conjectandi' of Mr James Bernoulli, Part
IV Cap 4, where that acute and judicious writer thus introduceth his solu-
tion of the problem for:- Assigning the limits within which, by the repetition
of Experiments, the probability of an event may approach indefinitely to a
probability given, 'Hoc igitur est illud Problema &c'. This says he is the
problem which I am now to impart to the Public after having kept it by me
for twenty years: new it is, and difficult, but of such excellent use that it
gives a high value and dignity to every other branch of this doctrine'. 1

Richard Price, however, in his introduction to Bayes' essay, is careful
to point out the limitations in the problem addressed by Bernoulli and de
Moivre, and goes on to suggest that Bayes' approach is superior, in that it is
'more directly applicable..... (to) ........confirm the argument taken from final
causes for the existence of the Deity': a justification which could easily
strike one, today, as hollow if not indeed thoroughly disingenuous. The
sincerity and ability of Richard Price are not, however to be doubted, for it is
well-established that his arguments on such matters were treated seriously
by many people, including David Hume2.  A  related point is the concern of
Price, in his covering letter, to assert the serious nature of the study of prob-
ability.  De Moivre also took pains in the Dedication of his work to contra-
dict  many who are possessed with an opinion that the doctrine of chances
has a tendency to promote Play3. However, nowhere in the essay does Bayes
                                                
1de Moivre (1756, p254).
2 See Gillies (1987), Thomas, D.O. (1977), and Mossner (1954).  Bernstein (1996) gives an
admirably succinct picture of the respect accorded to Price.  See also Broad, C.D. (1918).
3 i.e.  gaming or gambling for money
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even hint at the relevance of his subject to gaming, nor indeed does Price in
the covering letter. The omission from the essay could be explained on the
grounds that its concerns were purely with the logic and mathematics of the
problem, and required no external justification. Indeed, inclusion of such
reasoning within the main body of the paper could have been deemed im-
proper, (cf the reason given by Price for the separation of the Scholium), but
no such restriction would have applied to Price's covering letter.  De
Moivre, in contrast, has no hesitation in acknowledging the social problem
presented by the gaming fever, which, in England, at that time, had reached,
together with gross consumption of gin and port wine, epidemic propor-
tions1.

With regard to the technical content of the problem, Bayes' formula-
tion advances on that of Bernoulli in several respects, and a full discussion
of the differences is given by Stigler2.  In brief, Bayes' problem is better
defined and is more general than that of Bernoulli.  Bayes also is strong in
his insistence that the trials relate to an unknown event: a point not men-
tioned by Bernoulli. Although Bayes does not define 'an unknown event' in
the Definitions, he does so at the end of the Scholium viz:- '..... any event
concerning the probability of which nothing at all is known antecedently to
any trials made or observed concerning it.  However, it is ironic that al-
though Bayes addresses only those problems in which we have absolutely no
a priori information, we find that nowadays people often use the term 'Baye-
sian' for problems of precisely the opposite kind, i.e. in which a priori in-
formation is indeed available: or is invented.

Turning now to Bayes' Definitions, the first four, concerning Incon-
sistent events, Contrary events, Failure of an event, and a Determined event,
are straightforward. Definition 5 is however surprising and is central to the
concern of this chapter:-   The probability of any event is the ratio between
the value at which an expectation depending on the happening of the event
ought to be computed, and the value of the thing expected upon its happen-
ing.  In Definition 6 Bayes then tells us that when he uses the word chance,
he means the same as probability, thus showing that in his time, as in ours,
the tendency to use any one of a number of words to denote this same un-
derlying concept was already quite strong. An interesting contrast however
to the meaning which Bayes assigns to expectation, and in a context practi-
cally identical to that set by Bayes, is provided by Hartley 3:- An ingenious

                                                
1 Pearson (1978).  See also the reference to Turberville (1926) on p26, above.
2 (1986, Chaps 2,3) See also Hacking (1975,Ch 17).
3 Hartley, D. (1749), p339
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friend has communicated to me a solution of the inverse problem, in which
he has shown what the Expectation is, when an event has happened p times
and failed q times, that the original ratio of the causes for the happening or
failing of an event should deviate in any given degree from that of p to q1.
Hence it is clear that, in Bayes time, the word expectation had a variety of
meanings, but, in Bayes essay, the meaning seems to be consistently that of
a monetary value.

In more recent times, there have been, various attempts to assign
other, associated, words to particular aspects of the underlying concept.
Possibly the most successful of these attempts has been that which would
reserve the word 'Likelihood' to denote a  measure of the relative degrees to
which various hypotheses are supported by some given set of evidence.  In
specialist writings, such as those of Fisher and his followers2, a semantic
convention of this kind is acceptable, provided it is clearly defined for the
sake of readers not privileged to be of the cognoscenti: but this does not
alter the fact that, in the general use of the English language, there is no such
convention. In that wider context, probability and likelihood are as close in
meaning as are probability and chance, and every person is entitled to use
these words in this way, in normal discourse, without apology.  Theoreti-
cally, we could argue that scientific discourse would benefit considerably if
we could achieve general agreement to reserve these various words for
particular uses.  Thus, we might reserve use of the word chance for sit-
uations involving, or analogous to, the throwing of dice. The word credibil-
ity, we might reserve, as suggested by Bertrand Russell3  to denote the de-
gree to which it is rational to believe an hypothesis or assertion.  For,
although it is often doubtful whether we can rationally form any view of the
absolute degree to which an hypothesis may be credible, the fact is that, in
ordinary speech, people do use the word credible in this sense, perhaps
indicating thereby a belief in some common body of knowledge, or assump-
tions, and of proper modes of inferring some measure of credibility which, if
not absolute, is at least generally accepted.

Another aspect of Bayes' equating of chance with probability, con-
cerns the recursive use of these words, as mentioned in Chapter 3, i.e. we
find it awkward to talk about the 'probability that the probability ......'., but
we have no difficulty with a phrase such as 'the chance that the probability'.
However, while this variation may be soothing for our minds, it distracts
                                                
1  Cited by Stigler (1983)
2 See also the discussion in Chapter 7 below.
3 Russell (1948), p359.  See also Hacking (1975), p158.
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attention from the remarkable recursive property of the word probability and
its synonyms.  That is, it seems intuitively clear that, if we are concerned to
establish the value of some underlying probability, such as of the kind which
Bayes is concerned to measure, then it makes sense to talk of 'the probability
that the probability has a value in some specific range', This can however
obscure the fact that in this single phrase, we can use the word probability in
two different senses, one sense being 'epistemological', i.e. concerned with
how certain or uncertain we are on a matter of knowledge, the second being
'aleatory' and concerned with the frequency of an occurrence in a dice-like
trial1. More obscure, however, are the rules and conditions under which we
can validly, and meaningfully, use recursive expressions such as 'the prob-
ability that the probability .......... '.

 Bayes' concept of the 'value of an expectation' has however little
direct connection with the modern concept of an 'expected value', for  the
meaning which Bayes attributes to the word 'value' is very close to that
which we mean when we speak of  monetary value and he links it closely to
the probability of a singular happening of an event in a trial.  In mathematics
of our own time, the expected value is often taken to mean a summation of
parametric magnitudes multiplied by the corresponding probabilities i.e.:-

EEEE(x) = ΣΣΣΣ [ x i   x P (x  i ) ] ;
the units of which are the units of x and are not necessarily similar to a
monetary value: a point which Jeffreys misses in his brief discussions of this
matter2.  Historically, however, the matter is not straightforward, for we find
that de Moivre, whose writings, we would expect to have been known to
Bayes, says forthrightly 3:- 'The method of Huygens ....... I was absolutely
resolved to reject',  drawing our attention to the fact that, in the 'De Rati-
ociniis in aleae ludo' of 1657, Huygens takes the notion of an expectation as
primitive and from it derives the value of a probability.  In Bayes' case,
however, it seems clear from his definition of probability that the values of
expectations are scalar monetary values, amenable to multiplication, and
hence, we may assume, amenable also to addition, subtraction and division:
properties which are, as we see later, vital to the cogency of the argument.
Hence, by defining this simple relationship between probability and mone-
tary value, Bayes creates an instrument of remarkable power by which we
can judge the degree to which propositions concerning mathematical opera-

                                                
1 See Hacking (1975), p 149.
2 Jeffreys, H. (1983), p53. Hacking (1975) devotes a chapter to discussion of expectation
(Ch 11).
3 In the Preface to the 1717 edition of The Doctrine of Chances
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tions on probabilities merit our assent. Indeed, it is notoriously the case that,
without a tangible yardstick of this kind, some remarkably fallacious propo-
sitions concerning probabilities can be made to appear mathematically rea-
sonable, a trap into which many have fallen1.  Jeffreys, for example, points
out that the modern definition of expectation can lead to results which, from
the viewpoint of common sense, are sheer nonsense: e.g. the mathematically
'expected value' from a trial can be a value which cannot possibly occur in
practice.  In Bayes' terms, however, no sane person would give any value
whatsoever to the expectation of such a result, and Bayes,  throughout the
demonstrations of the Propositions, repeatedly appeals to an assumed self-
evidence of propositions concerning financial prudence in order to seal the
argument.  From a purist mathematical point of view, this appeal may be
questionable: yet who is to say that Bayes' concern is with a matter of 'pure
mathematics' ?  On the contrary, the whole object of the essay is to discuss
what is essentially a matter of natural philosophy concerning inference from
experiment2.  It is interesting therefore to note the contrast with the view of
Ramsey3 that:-  The laws of probability are ... an extension to partial beliefs
of formal logic. ... based ... on the idea of mathematical expectation.  Ram-
sey also rejects money as a measure because of its alleged diminishing
marginal utility4. He then resorts to a concept of 'values' which can be ma-
nipulated in accordance with certain axioms, prior to which he has nomi-
nally discarded the assumption that values are additive5. We are however
extremely doubtful as to the validity and consistency with which he has
carried this through, for he also introduces notions of worlds, and values of
worlds, designated α and β, such that α being preferable to β corresponds
with the relationship 'the value of α is greater than the value of β'. This
implies therefore that we could make some change in the world-state β such
as to make it identical with world-state α and it is hard therefore to see why
the making of such a change should not be regarded as precisely equivalent
to an operation of 'adding value' exactly as with money.

                                                
1  cf Keynes (1921) Ch 30 and particularly the statement:-'we will endeavour to discredit
the mathematical charlatanry by which, for a hundred years past, the basis of theoretical
statistics has been greatly undermined'. (p367).
2 cf Hacking (1975), p93: 'The doctrine of chances is applied mathematics arising from
vulgar practice'.
3  Ramsey (1931), p183
4  Many measuring devices suffer diminishing utility outside certain magnitudes but are
perfectly useful within their designed limits. A glass thermometer has a zero marginal utility
above the temperature at which it explodes.  An excellent and concise discussion of utility is
given by Savage (1954), pp 91-104
5 Ramsey (1931), p 176
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However, as we remarked earlier, another difficulty with Bayes' Defi-
nition 5 is that it bears no obvious or direct relationship to the ways in which
we normally use the word 'probability', and Bayes actually treats his defini-
tion, not as a definition of 'probability in itself', but as a definition of the
manner in which a known value of a probability ought to be used in certain
types of situation. Evidence that Bayes took this approach with some delib-
eration is provided by Richard Price in the covering letter:-  Mr Bayes .....
has also made an apology for the peculiar definition he has given of the
word Chance or Probability . His design herein was to cut off all dispute
about the meaning of the word, which in common language is used in differ-
ent senses by persons of different opinions, and according as it is applied to
past or future facts. But whatever senses it may have, all (he observes) will
allow that an expectation depending on the truth of any past fact, or the
happening of any future event, ought to be estimated so much the more
valuable as the fact is more likely to be true, or the event more likely to
happen. Instead therefore of the proper sense of the word probability, he
has given that which all will allow to be its proper measure in every case
where the word is used.1

Clearly, therefore, Bayes is only concerned with probabilities which
are, at least in principle, numerically comparable. We may infer from other
sources that philosophers, their concepts, and a fortiori their disputations,
were not to his taste2.  Hence we may guess that the concept of non-
comparable probabilities propounded by Keynes3, would have held little
interest for Bayes, and would certainly have had no rÔle in the essay.  Thus,
while we may agree with Keynes that many probabilities may be neither
enumerable, nor relatively comparable, there is no place here for a digres-
sion into that argument.  Bayes, it would seem, decided to treat  probability
as a primitive and essentially numeric concept, requiring no further defini-
tion, and then to define a rule of how we ought to use the numeric value of a
probability in the type of financial operation on which his argument is based.

Hence, from a philosophical point of view, Bayes' approach is a re-
markable and early expression of a pragmatic and positivist attitude: he
phlegmatically 'gets on with the job' leaving others to waste their time in
disputes which can be never resolved.  Although such attitudes may now be
common among people who equate the meaning of a term with its opera-
tional use, it is very much to be doubted that such attitudes were common in
the time of Bayes.
                                                
1 p375 in the original manuscript. Reprinted in Ch. 2 above
2 cf Barnard (1958)
3 Keynes (1921), Ch 3
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Fisher1 also comments pointedly on Bayes' understanding of 'prob-
ability' seeming convinced, and perhaps excessively concerned to assert that
Bayes' view is essentially 'frequentist', being based on the ratio of actual occ-
urrences of an event to the number of trials in which it could possibly have
occurred.  Bayes however does not make this equation of meaning, and we
can find nothing in the essay to suggest that Bayes believed the meaning of
probability to be constrained in this way.  Clearly, Bayes' view of probability
includes those probabilities which can be equated to occurrence-ratios, for it
is at the estimation of exactly this type of probability that the essay is di-
rected; but had his understanding of probability been confined in this way,
he could easily have said so: yet he did not, and his definition, (or perhaps
we could better say 'rule'), has the countervailing advantage that it can be
used in unique situations where there is no possibility of any repetition of
the trial, yet where we are able to form an estimate of the probability in
question and are required to take corresponding monetary action, e.g. for
investment or insurance purposes, or simply as a gamble.

A much later work which also takes expectation as fundamental, is
that of Whittle2 but it seems to us misleading3 to equate Whittle's approach
with that of Bayes, for Whittle quite explicitly bases his concept of Expec-
tation on a frequentist model.  In certain cases, we can apply Bayes' general
principle to multiple trials of dice-like events, exactly as does Bayes himself,
and in those cases it seems entirely reasonable to expect the observed fre-
quencies of occurrence to be distributed about the true value of the prob-
ability. There are however in real life many cases of a quite different type
where we are, for example, uncertain about the precise state of a system or
about the dynamics of a trial, but our knowledge is sufficient for us ration-
ally to assign different probabilities to different outcomes and therefore to
evaluate, in Bayes' sense, the expectation. Yet the trial may be of a kind
which is entirely deterministic, and although we may be totally uncertain,
prior to the first such trial, as to the outcome, we may equally know that,
however many times it may be repeated, the result will be invariably the
same: the essence of the problem being in our uncertainty as to the initial
state and dynamics of the trial. Real life, presents us with innumerable in-
stances of this kind, and with many others, which are similar in terms of the
nature of our uncertainty, but where the trial is unique and there can be no
repetition.

                                                
1 Fisher (1973), p14
2 Whittle (1970)
3 cf Hacking (1975), p 97
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The differences between these types of trial are also important for the
logic of Bayes' general argument which is critically dependent upon the
concept of the same event happening in a probablistic manner in independ-
ent trials. As we saw in Chapter 3, the concept of an event being 'the same'
in independent trials seems to require an identical specification governing
each trial. Hence, if the outcome of the trial is fully determined by the speci-
fication, albeit we may know neither that this is the case nor what the out-
come will be prior to the first trial, yet we observe after some number of
trials that the outcome on each occasion has been the same, then we may
entertain strong suspicion that the trial is indeed of the fully deterministic
kind, and that P (E) is unity, or zero. We can, however, never be absolutely
certain that this is the case if the sum of our relevant knowledge is confined
to knowing the results of trials, and the whole aim of Bayes' endeavour is to
enable us to calculate at each point a measure of our uncertainty.

In sum then, Bayes' rule for the use of known numeric probability
defines the rational use of such information in uncertain real-life situations.
Hence, although there can be no confining of Bayes' view of probability to
the 'frequentist' or to the occurrence-ratio view, it is interesting to note that
Bayes' view is directly applicable to the situation of a financier who has to
take many investment decisions, each unique, and provides an entirely ra-
tional basis for such decisions, both individually and collectively. Certainly
we could not express disapproval of a financier who behaved in such a way,
and indeed, we may well believe that this is the way in which financiers, in
making investment and insurance decisions, ought to behave. The 'St Pe-
tersburg' problem can then be overcome by adding further rules governing
financial prudence, e.g. to the effect that one ought not to enter any deal
where the effect of a loss would be ruinous1.

It is remarkable that little attention has been given to Bayes' use of the
word 'ought' in this context, with its strong connotations of  ethical objectiv-
ity, and hence an implication that all rational persons, finding themselves in
a given position, should, behave in the same way2. It is however notable that
even Ramsey3 is concerned to avoid ways of measuring degrees of belief
which are variable from individual to individual4.  Our own view is that

                                                
1 cf Keynes (1921), pp 316 et seq.; Ramsey (1931), p172; Jeffreys, H. (1983), p31
2  Earman (1992) p8 does however comment on this point.
3 Ramsey (1931), p172
4  A difficulty arises however if we are dealing with an 'unknown event' whose probability
can be estimated, but only in a probablistic manner, by means of repeated trials: i.e. in such
cases, how do we determine which is the value of probability that we ought to use, when
there is a whole range of values from which we can choose ?
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there is considerable danger in the use of the term 'subjective probability'
and that it is not acceptable to apply this term to Bayes' approach.  It may be
true enough that many a punter at the races will be influenced in the placing
of bets by an entirely personal and subjective feeling: but one has no right to
expect that feeling to be shared by the next person. In Bayes' essay, the use
of the word 'ought' clearly indicates that the estimation of probability ought
to be objective, relative to the evidence and to rationally demonstrable as-
sumptions.  Thus everything in Bayes' argument is in line with the view of
W.E.Johnson, Keynes, Jeffreys, and others, that the probability relationship
is logical, objective and that strictly, we ought always to speak of a prob-
ability relative to specific evidence and assumptions1.

It is also important to note that the assessment of probability in a given
situation depends, not upon the truth about that situation, but upon what is
believed to be true in the making of the assessment.  Although Bayes gives
no prominence to this point, we find that, in the Corollary to Proposition 4,
he writes:- 'suppose that before we know whether the first event has hap-
pened, we find that the second event has happened; then purely on the basis
of this information, we can infer that the first part of the trial has taken
place but we do not know its outcome, and therefore we have no reason to
value the expectation either greater or less than it was before2'.  It follows
that, to support this deduction, we need to assume that the value of the
expectation (and therefore of the corresponding probability) depends, not
upon the 'true situation', but rather upon the facts which we know, or believe
to be true, about the situation.

 However, a difficult problem, not addressed by approaches to prob-
ability which are based on the concept of expectation, does concern objec-
tivity. Putting aside the philosophical problem of defining exactly what we
mean by 'objectivity', there is, in our time, the difficult practical problem of
designing automata to 'act rationally' in probablistic situations. In certain
types of situation, one may expect automata to accumulate experience based
on repetitions of trials concerning an 'unknown event'.   In general, however,
automata are likely to be faced with series of events, each being in certain
respects unique, and in other respects similar to other events which have
been recorded.   In such situations, it is hard indeed to see how an automaton
could resort to a primitive notion of expectation within itself, and certainly
with the outlook which is likely to be common to  most readers of this book,
we would expect automata to be programmed to look for relevant evidence,

                                                
1 See also the discussion of this topic in Chapter 11, below
2 See Chapter 2, above, also Chapter 3.
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and, on that basis, to form a view of the spectrum of probabilities relevant to
the situation1.  Reflecting therefore upon the way in which people proceed
when required to form probablistic judgements in 'unique' situations, we
would suggest that a normal approach is to look for similarities with situa-
tions previously encountered and to form judgements of probability based
upon the numbers of such similarities, their degrees of similarity, and our
view as to the weights they should carry.  In such cases, we are, in principle,
quite close to the populations from which Whittle2 derives expectations by
means of 'indicator functions' and one can, in principle, envisage the pro-
gramming of an automatic device to operate on such a basis.  This approach
also has the attraction that it allows for the fully deterministic trial in which
the result will always be the same, and our uncertainty as to the result stems
from our imperfect knowledge of the situation and the dynamics of the trial.
In a totally unique situation, having no similarities with anything of which
we have previous experience, we may be totally unable to form any prior
estimate of probabilities and therefore, as we show in later chapters, the only
non-irrational path will be the assumption of the uniform prior.

We now turn to the questions which arise concerning the addition of
probabilities.  In Proposition 1, Bayes deals with the additivity of the prob-
abilities of mutually exclusive events. This is not demonstrated: it is simply
asserted that, in the case of three mutually exclusive events, the values of the
expectations  $V1,, $V2 etc. are additive, and thence, by Definition 5, that the
probability of one or other of such events happening is (p1 + p2 + p3 ) ,   where
p1 =  $V1 / $N, etc.    It is remarkable therefore, in view of the great detail of
Bayes justifications of later points, many of which we could today accept as
directly obvious, that he makes no attempt to justify the equation which he
makes between the sum of the values of the individual expectations, and the
value of a joint expectation dependent on mutually exclusive events. Of
many possible reasons for this omission, one is that Bayes considered the
assertion so obvious as to need no demonstration; another possible reason is
that, when he died, he had not fully revised the essay: and indeed, there are
other signs that the essay, as we have it, is a preliminary joining together of
sections, written at different times, and needing further work to make it
complete and fully coherent.  Additivity, however, seems to have given
trouble to many writers: we see later how Ramsey attempted, (and in our
view failed), to avoid an assumption of additivity: Jeffreys3 makes no at-

                                                
1 cf. Popper (1973) p.43.
2 Whittle (1970), p28
3 Jeffreys, H. (1983), p19
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tempt to give a logical justification of additivity in the case of probabilities
but claims it is merely a convention.

With Bayes' approach, however, of using a linear mapping between
probability and financial expectation as a fundamental concept, it is possible
to show that the additivity of the probabilities of mutually exclusive events
is a consequence of the amenability of expectation to additive union, and
conversely to subtractive partitioning. This can be illustrated by the follow-
ing example:- We take, in the first instance, and as Bayes does in the Corol-
lary to Prop.1, a pair of complementary events, (in the terminology of Bayes'
Definition 2, 'contrary' events), these being alternative and exclusive out-
comes possible from a single trial, where one person, let us call her Sarah,
has an expectation of winning a prize $N dependent upon the happening of
the event, and her expectation is valued at $V1.  Another person, Jack, has a
contrary and complementary expectation, valued at $V2, dependent upon the
not-happening of the event. Clearly in such a situation:-

$V1+ $V2  =  $N (6-1)
We now extend the situation to a second trial and two further persons, Sue
and Sam who have expectations from the second trial if, in the first trial,
Sarah wins. The expectations of Sue and Sam are however contrary and
complementary, i.e. if Sarah wins, then Sue has an expectation valued at
$V11, and Sam has an expectation valued at $V12. Clearly in this case:-

$V11 + $V12  =  $V1 (6-2)
and

$V11 + $V12 + $V2 =  $N (6-3)

whence following Definition 5, we find the corresponding probability values
by dividing each term in (5-3) by  $N giving:-

p11 + p12 + p2  =  1 (6-4)

This result is however particular to the type of trial illustrated. To achieve
the result which we need for Proposition 1, we have to show good reasons
for believing an assertion that  the joint value of a set of mutually exclusive
expectations is invariant under operations of partition and combination1. For
it is obvious that this is not true of all value-objects: life provides many
examples, a precious vase, for example, where the value of the original
union greatly exceeds the joint value of the parts after a partition. And there
are converse cases where the joint value of separate parts exceeds that of
their combination: as in the case of a feast at which the guests eat the

                                                
1  'if not to force the assent of others by a strict demonstration,  (then) at least to the satis-
faction of the Enquirer'  de Moivre, (1756), p254.
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courses of the meal in succession, in contrast to a single course in which all
is mixed together1.

Continuing therefore the illustration, we introduce a further person,
Sally, whose position entitles her to receive whatever gains are received by
Sue and Sam, and whose expectation is therefore equal to that of Sarah: i.e.
it is realistic and acceptable to assume that, if it is valid to partition an ex-
pectation into sub-expectations, each depending upon the happening of one
of a set of mutually exclusive events, then it is conversely valid to combine
a set of sub-expectations into a greater expectation depending upon the
happening of any one of the corresponding events.  If this is granted, then it
follows by Definition 5 that if pX1 , pX2 , pX3  etc. are the probabilities of
mutually exclusive events eX1 , eX2 , eX3  etc.,  then the probability of the event
eX, which we define as an event in which one or other of the subsidiary
events occurs, is given by:-

pX    =    pX1 + pX2 + pX3  +  . . . .  etc.  (6-5)

and Proposition 1 is demonstrated2.

We now discuss a minor, but intriguing hitch which arises when we
compare Bayes' Problem with the rule which he gives for the computation of
a probability. In the problem, he is concerned with the chance that a given
hypothesis is correct. In the latter case he gives us a rule by which we should
determine the probability of an event. It would therefore be stretching the
meaning of words too far to argue that these two concepts can be equated by
some expedient such as defining a case in which an hypothesis is true as
being an event.  It seems therefore, that we have here a point on which
Bayes requires some posthumous assistance, i.e. we have to find a way of
converting the merely probablistic, and therefore only arbitrarily decidable,
hypothesis which is the subject of the problem, into a form which is objec-
tively decidable by inspection of agreed evidence as to whether a defined
event has happened, or has not happened.  That is, merely probable results
are not acceptable, nor, we feel, are degrees of belief as suggested by Ear-
man3.

To deal with this matter, we first re-formulate the problem, slightly, as
follows:- Given that an unknown event has happened m times and failed n-m

                                                
1  cf Jeffreys, H. (1983), p32
2 It is salutary to compare the logic which governs a joint expectation dependent upon the
happening of any one of a number of mutually exclusive events, with that which governs a
joint expectation in the case of independent events, where the value of the joint expectation
is also equal to the sum of the parts.
3 Earman (1992) pp8 et al.
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times in n trials : Required the chance that the probability, p, of its hap-
pening in a single trial lies somewhere between any two values, α  and β ,
that can be named. We then translate the problem into pragmatic and deter-
minate terms as follows:- Given the number of times m that an unknown
event has happened in a set of  n  independent, identical trials, what is the
probability that the event will happen not less than u times and not more
than v times in a further set of s identical, independent trials?   However, if
we read  probability in this formulation in its normal sense, it will seem that
this formulation fails to meet the stated objective. To achieve that objective
it is necessary to substitute for probability Bayes rule for the computation of
probability viz:-  Given the number of times  m  that an unknown event has
happened in a set of  n  independent, identical trials, what is the ratio at
which the value of an expectation dependent upon an event of the same kind
happening not less than u times and not more than v times in a further set of
s  identical, independent trials ought to be computed in relation to the value
of the thing expected ?   This is not identical to Bayes' original problem but
it does have the advantage that, given the results m and n from the first set of
trials, followed by specification of logically compatible values of u,v,s1, we
can compute the required ratio, precisely. We can then carry out the further
set of s trials in which we observe the number of times t on which the event
happens. From this we can decide by inspection, whether the assertion
'u < t < v' is true or false. Hence, although it is always possible that a true
value of p that is less than u/s or is greater than v/s will be capable of giving
a result in the specified range, we can make the probability of this as small
as we please by making s as large as we wish2.  Conversely, it is always
possible that the true value of p satisfies the assertion 'u/s < p < v/s'  but
that, in the second set of trials, t turns out to be either less than u or greater
than v. Again, however, we can make the probability of this being the case
as small as we please by making s as large as we wish.

Although this approach is, we believe, logically sound, it does not lead
directly to a simple wager. If the reward for predicting the outcome of the
second set correctly in terms of u,v is fixed, then one could be always certain
of success  by selecting u = 0  and v = s  and the bookmaker would then
rightly insist upon a stake being paid which was equal to the total payable on
conclusion of the trial. If however the client selects less-certain values for u
and v, then a more conventional kind of wager becomes possible. Thus,
despite the fact that our modified specification of Bayes' Problem leads to a

                                                
1 Values which entail contradictions are not acceptable.
2 The quantification of this probability is discussed further in Ch 11 below.
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somewhat unusual form of wager,  it is nonetheless viable. Hence we con-
clude that, from a pragmatic point of view, Bayes Problem and his rule for
the computation of a probability are valid and acceptable, if not, perhaps, to
the most stringent formal analyst, then at least to those who have to form
conclusions in practical situations, and act accordingly.

A final matter which we have to address in this chapter is the need to
deal with 'probability' as a 'degree of rational belief'; a view which receives
no explicit mention in Bayes' essay.  It is our view, however, while one can
neither prove the correspondence analytically, nor test it empirically, the
semantic correspondence is close to being tautological, or at least axiomatic,
and the numerical correspondence is exact. That is, given evidence and
assumptions k, in relation to which the degree to which it is rational to be-
lieve an assertion A to be true, is some function F(Ak), then it seems self-
evidently true, referring back to equation (3-1) and Bayes' argument in sup-
port of the corollary to Proposition 4, that to value an expectation dependent
upon the truth of the assumption as anything other than

$V     =     $N x  F(Ak) (6-6)
would be self-contradictory.  That is, the degree to which we rationally
believe the assertion to be true is given by:-

F(Ak)     =   $V / $N (6-7)
which is numerically identical with Bayes' measure of the probability that
the assertion is true.

Implicit therefore in Bayes' reasoning are the assumptions that prob-
ability is objective, relative to the evidence, and represents the degree to
which it is rational to believe the assertion.  The probability is objective in
the sense that every rational agent, given the same facts, assumptions and
rules of inference will form the same estimated value for the probable truth
of the assertion.  A change in the probability can only be brought about by a
change in the information or assumptions which are believed to be true.  The
degree of the agent's rational belief is measured by an expectation ratio
which is numerically identical, and is, arguably, conceptually identical, with
the probability as defined by Bayes.
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Chapter  7

Critics and Defenders

In this chapter, we discuss some important opinions about Bayes' essay
which have been expressed by various scholars, and which we do not ad-
dress elsewhere.  However, in attempting to assess the opinions which have
been expressed over the past 250 years, two notable difficulties are encoun-
tered.  First, many criticisms have been levelled against Bayes, relating to
things which he neither says nor implies, but which do concern valid and
important further questions which stem naturally from the essay. Other
criticisms are framed in terms that we have found deeply obscure, defying
rational analysis and, in some cases, verging upon the mystical. To deal with
all the published opinions would be a large task and would take us down
many paths. We therefore concentrate, in this chapter, on comments which
directly concern Bayes' essay, and on matters which are particularly relevant
to our own exploration.

Concerning therefore the content of the Essay, study of the critics,
favourable and unfavourable, must begin with Richard Price, whose report-
ing of Bayes' views on 'The Postulate' we have noted in Chapter 5. But also,
Price went on, in his covering letter, to claim that:-   '[T]he problem now
mentioned is by no means a curious speculation .... , but necessary to be
solved in order to assure foundation for all our reasonings concerning past
facts, and what is likely to be hereafter. Common sense is indeed sufficient
to shew us that, from the observation of what has in former instances been
the consequence of a certain cause or action, one may make a judgement
what is likely to be the consequence of it another time, and that the larger
number of experiments we have to support a conclusion, so much the more
reason we have to take it for granted. But it is certain that we cannot deter-
mine, at least not to any nicety, in what degree repeated experiments con-
firm a conclusion, without the particular discussion of the beforementioned
problem; which, therefore, is necessary to be considered by any one who
would give a clear account of the strength of analogical or inductive rea-
soning; concerning which, at present, we seem to know little more than that
it does sometimes in fact convince us, and at other times not; and that, as it
is the means of acquainting us with many truths of which otherwise we must
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have been ignorant; so it is, in all probability, the source of many errors,
which perhaps might in some measure be avoided, if the force that this sort
of reasoning ought to have with us were more distinctly and clearly under-
stood.   After a brief digression to comment on certain aspects of de Moivre's
work, Price continues:-   The purpose, is to shew what reason we have for
believing that there are in the constitution of things, fixed laws according to
which events happen, and that, therefore, the frame of the world must be the
effect of the wisdom and power of an intelligent cause; and thus to confirm
the argument taken from final causes for the existence of the Deity.......
(and) ........ it will be easy to see that the problem solved in this essay is more
directly applicable to this purpose; for it shews us, with distinctness and
precision, in every case of any particular order or recurrency of events,
what reason there is to think that such recurrency or order is derived from
stable causes or regulations in nature, and not from any of the irregularities
of chance.1

Price has therefore here presented claims for what is achieved in the
Essay, which go far beyond anything claimed by Bayes himself, and far
beyond the terms of reference established by Bayes in the clear and pre-
cisely-bounded definition of the problem with which he was concerned.
There are therefore solid grounds on which one could take exception to the
claims adduced by Price and whose sincerity or motives one might have
thought were rendered  questionable by the fact that he could put forward an
argument so riddled with  seeming 'non sequiturs'  at a time when Hume had
already shown the extreme difficulty, if not impossibility, of justifying
inductive generalisations by deductive logic2.  It is however clear from other
sources that Price was a man of ability and integrity3. He was known person-
ally to Hume, and their positions on matters of probability and induction
were remarkably close, while Hume appears to have had no ready answers to
certain points made in support of the religious orthodoxy of the time by
Price4.  We have also to bear in mind that the above quotation is taken from
a private letter written by Price to John Canton, albeit the letter was later
used as an Introduction to Bayes' essay. Price is therefore well within his
rights to express such views in such a communication, where he may have
thought it prudent to suggest a politico-religious agenda which was not even
mentioned by Bayes.  Nevertheless, it does appear that, in doing so, Price

                                                
1 The original text is reprinted in Ch. 2, above. The version given here is a mild paraphrase
with correction of occasional peculiarities in the spelling and punctuation of the original.
2 Hume (1748) Sect IV, Part II.
3 Thomas, D.O. (1977), Gillies (1987) , Bernstein (1996)
4 Mossner (1954)
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has put aside Bayes' clear, albeit un-stated assumption, that throughout the
series of the observations, there is a fixed and stable probability. Nowhere
does Bayes even hint at the possibility of proving such stability by inference
from observation. For, if the probability of success in any given trial were to
vary in any way, Bayes' argument would collapse.  In his discussion of the
Experiment, Bayes takes for granted the stable probability which Price
would seem to claim could be inferred from the results. But we should not
under-estimate the significance of the point being made by Price.  For, by
means of Bayes' result, it became possible for the first time to address em-
pirical questions concerning the statistical stability of probablistic phenom-
ena. More serious perhaps were the adverse effects of the connection which
Price implied between Bayes' result and the massive questions, philosophical
and empirical, which concern probability and causation. This was possibly
the first step towards a path of reckless mathematical fantasy in which con-
nections with reality became remote and weak1.

Serious analytic criticism of Bayes' approach seems however not to
have appeared until some hundred years after the publication of the Essay.
One of the earlier of these Victorian critics was George Boole2, in Chapter
20 of The Laws of Thought3, although he, remarkably, makes no direct
mention of Bayes.  This omission may have occurred because Boole may not
have had direct access to the relevant volume of the Philosophical Transac-
tions, and may have been working therefore upon hearsay and second-hand
evidence. This surmise is perhaps supported by the fact that, in the discus-
sion of Michell's paper 4, the name is mis-spelt as Mitchell and the problem
discussed has only a loose correspondence with Michell's published paper.
Chapter 20 of Boole's work is however entitled 'Problems Relating to the
Connexion of Causes and Effects' and the greater part of that chapter is
devoted to the calculation of a priori probabilities when the values of all
necessary parameters are given in the formulation of the problems.  Some of
these problems are decidedly complex and Boole concludes the discussion of
them thus5:-  It is remarkable that the solutions of the previous problems are
void of any arbitrary element. We should scarcely, from the appearance of
the data, have anticipated such a result. It is however to be observed, that in

                                                
1 cf. 'The mathematical charlatanry by which, for a hundred years past, the basis of theo-
retical statistics has been greatly undermined'.  Keynes (1921) p367.
2 George Boole is a salutary example of what could be achieved by self-education in the
nineteenth century.
3 Boole G. (1854) .
4 Michell (1767).
5 Boole (1854) pp 379 et seq., here paraphrased slightly.
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all those problems, the probabilities of the causes involved are supposed to
be known 'a priori'. In the absence of this knowledge, it seems that arbitrary
constants would necessarily appear in the final solution, and some confirm-
ation of this is provided by a class of problems to which considerable atten-
tion has been directed, and which are now briefly considered.

At this point, Boole turns to the type of problem addressed by Michell,
Laplace1, de Morgan, and others who were concerned to know if it were
possible to determine the chances that phenomena such the clustering of
stars in the constellation of the Pleiades, the co-alignments of the planes of
circulation of the planets around the sun, or the co-alignments of the axes of
polarisation in rock crystal etc. were attributable to random dispositions, as
opposed to particular causes. Our prime concern at this present point is
more, however, with Boole's attack on attempts to assign probabilities to
hypotheses in the absence of prior information. In the course of this, he lays
down the lines of what were to become a standard reason for rejecting Bayes'
solution2. The attack opens with a broadside:  'The general problem, in
whatsoever form it may be presented, admits only of an indefinite solution'.
He continues:-   'Let 'x' represent the proposed hypothesis, 'y' a phenomenon
which might occur as one of its possible consequences, and whose calcu-
lated probability, on the assumption of the truth of the hypothesis, is 'p', and
let it be required to determine the probability that if the phenomenon 'y' is
observed, the hypothesis 'x' is true. The very data of this problem cannot be
expressed without the introduction of an arbitrary element. We can only
write

Prob. x       =     a

Prob. xy     =     ap

'a' being perfectly arbitrary, except that it must fall within the limits 0 - 1
inclusive. If  then 'P' represents the conditional probability sought, we have

P     =    
Prob. xy
Prob. y      =      

ap
Prob. y  (7-1)

Boole's wording is not, however, as clear as we need in order to effect
a comparison with Bayes' analysis. For a phenomenon will not, in general,
be observed as a consequence of an hypothesis but as a consequence of an
event.  The hypothesis will generally take a form such as an assertion that,
on a given occasion, a defined event was the cause of an observed phenome-

                                                
1 Laplace (1820) p 276
2 Boole (1854) p 381
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non.  We therefore re-phrase the problem posed by Boole, using the notation
and definitions as in our previous discussion of Bayes' analysis:-

h   : an hypothesis that an event E1 occurred on the occasion of a par-
ticular trial.
E1  : an event , the occurrence of which creates a probability r2 that a
further event E2 will occur1.
p1 : the probability that the event E1 will occur in any given trial of the
relevant kind.
r2  : the conditional probability that the event E2 will occur in a particular
trial, if E1 has already occurred in that trial.
p2  : the unconditional probability, i.e. without regard to E1, that in any
trial of the relevant kind, the event E2 will occur.
P  ( h | E2 )  :  the probability that the hypothesis h was true of a particular
trial in which the event E2 occurred.
This therefore gives us, by substitution into  (7-1):-

P            =        
P ( E1 ∧ E2)

P ( E2)
         =              

p1 r2
 p2   (7-2)

Boole then analyses this equation by means of his calculus of logic and
concludes that:-

P ( h | E2 )     =      
p1 r2 

p1 r2 + c (1 - p1)
 (7-3)

where c is the probability that the event E2 will occur in a trial in which the
event E1 has failed to occur.  Boole also asserts that p1 and c are arbitrary
constants, but he does not analyse these terms in relation to Bayes' problem,
where:

E1 is the event that  x1 < Pm  <  x2

p1 is the prior probability that  the assertion 'x1 < Pm  <  x2' will be true
of any given trial.
E2 is the outcome of a trial-set of size n in which the event M occurs on
m occasions and fails to occur on n-m occasions.
c a  parameter in  (7-3), represents the probability that the event M will
occur on m occasions in n trials under the condition that the assertion
' x1 < Pm  <  x2'  is false.

We know, however, from Chapter 5, that the assumption of the uni-
form prior is a necessary condition for rational quantitative inference con-
cerning the probable value of P ( m | n), and we know from the work of
Murray and Molina, that, given a uniform prior, the unconditional prob-
                                                
1  The expression 'will occur' includes, for brevity 'or will be found to have occurred'.
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ability of E2 is a function only of n and is identical for all values of m; we
therefore denote this number as Kn.  Further, the unconditional probability
of E2 can be partitioned into the mutually exclusive and exhaustive condi-
tional cases:-

i.   when the assertion 'x1 < Pm  <  x2'  is true
ii.  when the assertion 'x1 < Pm  <  x2'  is false.

It follows that:-

the probability that 'x1 < Pm  <  x2' is true,
the probability that 'x1 < Pm  <  x2' is false
and that E2 will not occur     =      (1 - p1)c    (7-4)

thus giving the identities

P ( E2)     =     Kn     =     p1 r2 +  (1 - p1)c  (7-5)

Boole's expression is therefore exactly equivalent to that of Bayes.  Hence,
if our view of Bayes' result is valid, Boole's rejection must either collapse or
be as valid as a refusal to accept that Bayes' Experiment tells us anything
about the probable value of Pm .

The views expressed by Murray in 1930, Molina in 1931 are of interest
in that, while they indicate reservations similar to those of Boole, they are
essentially supportive, rather than destructive in their attitudes towards
Bayes' argument.  In Murray's case, the analysis shows that a uniform prior
distribution of probability over the possible values of Pm  is a necessary
condition for the prior probability of each possible number of successes, i.e.
m, from n trials, to have the constant value 1/(n+1) for all legitimate val-
ues1 of m and of Pm .  Murray interprets this result as showing that the as-
sumption of all values of Pm  being equally likely is equivalent to the
assumption of any given legitimate number of successes in n trials being just
as likely as any other legitimate number2. This view is also supported by
Molina who writes:-  ' if any outcome of throws not yet made is as likely  as
any other, then any value of x is as likely as any other. This ..... theorem was
submitted to Dr F.H.Murray, who obtained an elegant proof 3'   Molina,
however, is cautious. In his summary he states:- 'Bayes' theorem is the
answer to a special case of the general problem of causes.  The special case
postulates that the 'a priori'  ....  probabilities  ....... are equal.   .......  To
justify this  ... Bayes takes the attitude that a state of total ignorance re-
garding the causes of an observed event is equivalent to the same .... igno-
                                                
1 The number of successes in n trials can be 0,1,2 .... n,  i.e. n+1.
2 Murray (1930) p129, footnote.
3 Molina (1931) pp34-5
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rance as to what the result will be if the trial .... has not yet been made.
Laplace, Poincaré and Edgeworth have shown that the 'a priori' existence
function w(x) , which appears in the Laplacian generalisation of Bayes'
theorem, is of negligible importance when the numbers N and T are large.
Therefore, when this condition holds, one need not hesitate to use Bayes'
restricted formula for the solution of a problem of causes'.  Stigler, whose
views1 were particularly instrumental in motivating our own work, takes a
much more positive attitude, as we discussed in Chapter 5.

We now come to the criticisms which have been levelled by Shafer at
Bayes' treatment of the basic theorems of probability2. Shafer argues that:-
'the temporal order of Bayes' 'subsequent events'  is crucial to the validity  of
the argument3'.  and that 'the .......  argument which leads to Bayes' fifth
proposition does not stand up to scrutiny 4'.  Although Shafer directs his
open attack against Bayes, he also hints at a deeper and very important
implication:- 'Our current ways of thinking about conditional probability
seem very deeply entrenched, and the thesis that these ways of thinking need
to be or even can be changed will leave many readers incredulous.   ........
Our current ideas are not as old and may not be as permanent as their
constant repetition in textbook after textbook makes them seem 5'.  Unfortu-
nately, rather than concentrate on this deeper issue, Shafer switches repeat-
edly into making contentious assertions against Bayes.  This makes it
extremely difficult to follow either argument or to feel that either is con-
vincing.  That is a pity, for Shafer's use of 'rooted trees' seems to be poten-
tially useful in areas of Bayes' essay which are certainly not easy to follow
and where there may well be subtleties which could benefit from some clear
new light.

The gist of Shafer's argument against Bayes seems to be contained in
the following three consecutive paragraphs 6:-

- Why does Bayes, in the statement of his third proposition, refer to the
two events he is considering as 'subsequent'?
- Imagine a situation in which it is not known beforehand which of two
events A and B will  happen  (or fail) first.  In such a situation we cannot
say beforehand what the probability of B will be immediately after A hap-

                                                
1 Stigler (1982), (1983), (1986).
2 Shafer (1982).
3 Shafer (1982)  Section 1 para 5
4 Shafer (1982) p1075 - Synopsis.
5 Shafer (1982) Section 1 para 7
6 Shafer (1982) Section 3, paras 2,3,4.
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pens; that probability will be one if B has already happened by then,  zero
if B has already failed  by then, and something in between if B has not yet
happened or failed.  Saying that B is subsequent to A may be an attempt on
Bayes's part to resolve this ambiguity.
- But the attempt is not fully successful. Once we admit that the timing
of events may be contingent, we must guard not only against the possibility
that B itself may or may not  have happened by the time A happens but also
against the possibility that other events affecting the probability of B may
or may not have happened by then.   

However, although Shafer has possibly identified a point of some
interest in terms of the effects of temporal order on probably-causative
relationships in the physical world, we can see no justification for imposing
an assumption of a probably-causative structure on Bayes' argument, nor for
assuming that such a structure is a necessary part of all probablistic trials in
which events are ordered in time. For, although the general issue raised by
Shafer is much more important than the question as to why Bayes chose to
write of 'subsequent events', a simple, and possibly correct explanation of
Bayes' phraseology, is that he needed this phrase to picture the possibility of
correlation between the events in question, and to make the argument read-
able. As we have noted previously, Bayes' essay is written in that noble
tradition of philosophy, going back at least to Plato, where the aim is to
establish a lively communion with the reader, and decidedly not to numb
one's senses with incomprehensible sophistry. It has also to born in mind,
when attacking Bayes, that it was Price, not Bayes, who sent the unfinished
essay for publication. Heaven knows what improvements Bayes might have
made, had he been spared a while longer.

Shafer seems however to have rather seriously mis-read, or misunder-
stood, what Bayes wrote at a number of points. A notable instance is where
Shafer writes 1:- Bayes puts the question of when events happen at the very
base of his concepts. In Definition 5, for example, he makes it clear that the
'value of a thing' depends on what events have happened at the time the
value is to be computed. The truth is that Definition 5 reads:- The probability
of any event is the ratio between the value at which an expectation depend-
ing on the happening of the event ought to be computed, and the value of the
thing expected upon its happening. We find it hard indeed to interpret such
words in any sense other than that the value of the thing expected  is utterly
invariant with respect to the happening of events.  In fact, the sequence of
events which Bayes invokes in support of propositions 3, 4 and 5 is an

                                                
1 Shafer (1982) Section 2 para 2.
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artificial, but entirely rational, construction.  The aim is to satisfy a reasona-
bly intelligent and objective reader that the propositions are valid. The spirit
of Bayes' demonstration is entirely in line with that of Euclid: the temporal
sequences which Bayes uses are as irrelevant to the validity of the argument
as are the temporal sequences in a construction used to illustrate a geometri-
cal proof. Bayes' examples are merely typical of the artificial challenges
enjoyed by the gambling fraternity. The order in which dice are rolled, or in
which cards are drawn from a pack, is utterly irrelevant if they are concealed
from us. What may matter, is the order in which they are made known to us,
or the order in which we choose to inspect them, and the wagers that we may
choose to make at these various points. All that is needed to make Bayes'
argument viable on this score, is the reasonable acceptance of his Defini-
tions, and a degree of correlation between the events.

Indeed, as we have shown in Chapter 5, the temporal ordering in the
Experiment, is not essential to the argument, which can equally be couched
in terms of a single ball which is thrown n + 1 times.  In real life there are
countless cases which are analogous to the generation of a governing pa-
rameter by the throwing of the first ball and the series of trials conducted
with the second ball. It is however of the essence of the Experiment as
defined by Bayes that all other effects are constant in their influence, so that
the two parts of the trial form a close-coupled pair into which nothing further
can intrude. Although Shafer specifically excludes consideration of Part II of
the essay,  (i.e.  the Experiment), from his  paper, we find nothing there to
raise doubts concerning the validity of the experimental set-up as an exam-
ple that falls within the scope of Bayes' demonstrated propositions.

Turning next to Keynes1 and Fine2, we here encounter critics of out-
standing calibre, whose views have much in common and are cogently
expressed.  Keynes' criticisms are expressed mainly in the superbly con-
structed Treatise on Probability 3, the final part of which provides a detailed
philosophical critique of statistical inference 4. Fortunately, the critique does
not depend to any significant degree upon Keynes' own view of probability:
a view utterly different from that adopted by Bayes.  However, the criticisms
in Keynes' treatise occupy several chapters and we therefore have to be
highly selective in our reflection of them.  Essentially, two aspects seem to
be important.  The first concerns the validity of Bernoulli's Theorem in

                                                
1 Keynes (1921)
2 Fine (1973)
3 Keynes (1921).
4 op. cit. pp325 et seq.
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practical situations; the second concerns the inexorable limitations on our
ability to compute the probability of an hypothesis concerning 'unknown
events'.  Keynes presents a generalised definition of the problem addressed
by Bernoulli, such that if a defined event can occur on a series of occasions,
and the probability of occurrence on each occasion is known, we are re-
quired to deduce the probable numbers of occasions on which the event is
expected within the series.  'Yet', he says, 'the theorem exhibits algebraical
rather than logical insight.  ....  and requires conditions, before it can be
legitimately applied, of which the fulfilment is rather the exception than the
rule1'.  Keynes is particularly concerned with the implicit assumption that, if
an event has occurred on every one of r - 1 occasions, we shall not change
our view of its probability of occurrence on the r'th occasion, whatever the
magnitude of r.  Interestingly, however, Popper2, who frequently refers to
Keynes, pays no special attention to Keynes' difficulty in this assumed in-
variance of belief as a trial progresses.  Popper's concern is, however, with
issues which are very much wider than those raised by Bayes' essay, and are
indeed much wider even than those suggested by Richard Price

With regard to the inverse of Bernoulli's problem, Keynes uses a form
which is more general than that used by Bayes.  It is framed in terms of
propositional functions A(x) and B(x) which can both be true of a given
argument x.  If we are then told that B(x) is true for a certain proportion of
the values of x for which A(x) is true, we require to know what is the prob-
ability, if A(x) is true for a further value, x = α  , that B(x) will also be true ?
Keynes does not produce a precise answer to this question.  He points out
that an assumption of a uniform prior for the distribution of the unknown
probability3 Pm , is easily shown to yield m/n as the most probable answer,
but he does not point out that it is also, in general, a necessary condition4.

Keynes also refuses to accept the postulate of the uniform prior in the
general case of the 'unknown event'. but argues along the following lines: He
deduces an expression closely analogous to (5-18) above but in which the
possible values of Pm  are  confined to a finite subset of the positive rational
fractions, whence, denoting the intervals between the fractions by δx, he
makes an assertion5 equivalent  to:

                                                
1 op. cit. p341
2 Popper, (1972).
3 We largely retain our own notation which differs from that used by Keynes.
4 There is however an important special case which we discuss in Chapter 11.
5 We believe there is a mis-print in the original which, in Keynes' notation reads
f(q)/h . f(q')/h . f(q) but ought to read f(q)/h . f '(q')/h . f(q)
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P( Pm  = x )   =   
  g(x,m,n) fo(x)δx

 ⌡⌠
 
 g(x,m,n) fo(x) δx 

Keynes then says that he can see no reason to assume that all values of the
term corresponding to fo(x)δx are a priori equal1, but he goes on to conclude
that 'as the number of instances is increased the probability, that m/n is in
the neighbourhood of Pm, tends towards certainty   ....... (and) we know that
we can get as near certainty as we choose by a finite number of instances,
but what this number is we do not know.   This is not very satisfactory, but
.... it accords with common sense2'.  Keynes does not however point out, nor
does he investigate that fact that convergence of m/n to Pm will occur even if
the a priori probability given to the true value of Pm  is zero. That is, regard-
less of the assumed a priori distribution fo(x), as n increases, the ratio m/n
'converges in probability' on the true value of Pm ,  i.e. as  n → ∞,  P(m/n →
Pm  )→ 1 3.   This is a fact on which we shall later have cause for quite some
reflection.

A little later, Keynes cites an example given by Professor Karl Pear-
son4 in which Pearson argues, essentially on the basis of Bayes' result, that if
a sample of 100 from a given population shows 10 people afflicted with a
certain disease, then the number so afflicted in a second sample of 100 is as
likely to fall inside the range of 8 to 14 (approximately), as it is to fall out-
side that range.  Against this, Keynes argues that 'it does not seem reason-
able upon general grounds that we should be able on so little evidence to
reach so certain a conclusion. ..........  The method is much too powerful .......
it invests any positive conclusion, which it is employed to support, with far
too high a degree of probability.  Indeed, this is so foolish ....... that to en-
tertain it is discreditable'.   Keynes failed however to notice the paradox in
the wording of his rebuke: for, if we consider a pair of complimentary inter-
vals, it is impossible that we should produce over-estimates of both the
respective probabilities!

We turn now to R.A.Fisher, who, among all Bayes' critics, was pre-
eminent.   For some 50 years prior to his death in 1962, Fisher repeatedly put
forward claims for his own doctrines, while constantly deploring, and often
mis-representing, Bayes' solution to the 'Problem in the Doctrine of
Chances'.  Fisher could never bring himself to accept that empirical knowl-

                                                
1 op.cit. p 387
2 We have substituted the symbols m/n for q and Pm for q'.
3 Bernoulli (1713)
4  Pearson (1907)



Chapter 7 Critics and Defenders

Version zh25a.doc at 18:36  on 13 July, 2001
All rights reserved.

94

edge might be accessible to us only at the price of an arbitrary assumption
concerning the prior distribution of the probability in question.  This was a
view with which Keynes1, and many others, had quite some sympathy, and it
led Fisher to pursue, over many years, the concepts of fiducial probability
and of likelihood.  The concept of fiducial probability was directed at
achieving a measure of probability, applicable to observable natural phe-
nomena, which could be regarded as being, in some sense, absolute and free
from arbitrary assumptions.   This was despite the fact that as early as 1911,
Fisher was aware that the analysis of data always requires us to make arbi-
trary assumptions2.  Many of those assumptions he chose to ignore, but
following a nasty squabble with Pearson and others over the matter of a prior
probability3, Fisher became obsessionally concerned to avoid the assumption
of the uniform prior.  Thereafter, he made repeated claims for the ability of
the fiducial argument to avoid the need for that assumption.  Therefore,
although nowadays the issue of fiducial probability is often regarded as a
matter of only minor interest4, the fact is that Fisher's claims in this area
present a formidable challenge, not only to Bayes' analysis, but also to our
own understanding.  If Fisher was wrong, we need to know why he was
wrong, not just in particular cases5, but in principle.  Merely to ignore the
claims does not refute them.   Nor can we hide behind the confusion which
permeates Fisher's writings on the matter6.  His reputation is still high; we
believe he is widely read, and it is necessary to deal both with his comments
on Bayes' achievement, (or, in plainer words than Fisher cared to employ, on
Bayes' lack of achievement), and with Fisher's claims for his own success7.
Further, the fiducial manner of reasoning presents a tempting, ever-present
trap8, into which anyone can fall.

Although we have found no document in which Fisher gives a clear
definition of fiducial probability, and, indeed, the concept seems to have
varied from paper to paper, the central thrust seems to be the 'logical inver-

                                                
1 Keynes (1921) p389.  See also Chapter 10 below.
2  Fisher(1911)
3  Fisher(1915), Soper et al (1916),  Fisher (1921)
4 See e.g. Bernardo and Smith, (1994), p458
5  e.g. the 'non-identifiable sub-set'.  See Zabell, (1992) .
6In our view, however, the lack of detail and explanation in Fisher's writings in this area,
coupled to the fact that, in many cases, his arguments seem to be fallacious and his conclu-
sions wrong, would make a detailed, step-by-step exposition impossible. As Keynes says of
Laplace's notorious 'Principle of Indifference', 'it is not easy to give a lucid account of so
confused a doctrine', [Keynes (1921) p374].
 7 See Fisher (1911), (1930), (1962), and, in particular, (1956).
8  Piattelli-Palmarini (1994) Chapters 4 and 5.
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sion of a random variable1'.  That is, if we are told there is a fixed probability
underlying the occurrence of a random event2, and we are told the value of
that probability Pm, then Bernoulli's theorem tells us the distribution of
probabilities over the various possible outcomes of an (m,n) trial.  The 'logi-
cal inversion' sought by Fisher, attempts to argue from the result of such a
trial to a distribution of probabilities over the possible values of Pm, in cases
where we have no prior information about Pm, and without invoking Bayes'
postulate of a uniform prior distribution.  In Fisher's hands, this amounts, by
and large, to an attempt to solve Bayes' problem without using Bayes' theo-
rem.   In words close to those used by Fisher, the essential argument is that,
in certain cases, random samples of a population, can allow us to deduce the
probability that a parameter, which governs the distribution of probabilities
within that population, lies in any given range.  By fiducial reasoning, Fisher
asserted, this can be achieved, in certain cases, when nothing is known prior
to the observations, and without assuming any prior distribution of probabil-
ity over the parameter in question.   He was, indeed, strongly of the view
that, by using his approach it is possible to arrive at 'a complete specification
of .... precision3' , and  that 'Exactly verifiable probability statements .......
can be assigned when the fiducial argument is available4'.  A stark example,
to which we return later, concerns the median of a population.   If we take a
single sample, at random, then clearly the probability that its value is less
than the median, is 0.5. Can we not then assert that there is also a probability
of 0.5 that the value of the median is greater than that of our sample ?  The
prima facie relationship of such questions to Bayes' problem is clear, but to
produce a fair and thorough assessment of the fiducial argument is a gruel-
ling task. For, while precision and clarity are central in Bayes, this cannot be
said of Fisher's writings in this area5.  Nevertheless, we shall find that the
clarification of Fisher's arguments is an important step along our path.

The difficulties with Fisher arise from a number of causes and they are
compounded by the manner in which, with the passing of the years, he
addresses an ever wider range of aims.  Unfortunately, Fisher provides little
open guidance to make the reader aware of this fact, nor of which aim is
being addressed at any particular point.  Given such a complex of motivation
and expression, it is impossible to be certain that a correct interpretation of
Fisher's meaning has been, or ever can be achieved.   For, particularly in the
                                                
1 Fisher (1945), p131
2  Please see Definitions.
3  Fisher (1956) p60
4  Fisher (1956) p70
5 'No branch of statistical writing is more mystifying ..'. Hacking (1965) p133.
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later writings, Fisher rarely explains his mathematical assertions.  The reader
is, it seems, expected to know, or to accept without question, many sophisti-
cated algebraic results concerning probability distributions1.   These asser-
tions may, rightly, alarm anyone who is aware of the danger that, in dealing
with probability, our algebra can, too easily, depart from the reality it is
meant to describe2.   The later writings abound also with imprecise allusions
to authors and teachers, alleged by Fisher to hold views opposed to his own.
We are too often, however, denied the references which would allow us to
check what these people actually said. We are told that Boole's deprecation
of 'supplying by hypothesis what is lacking in the data, points to an abuse
very congenial to certain twentieth-century writers3', yet we are given no
advice as to where to find such writings, nor indeed, as to how we might
avoid them.  But two people are repeatedly named: Pearson and Neyman.
They are rebuked, yet often when the alleged offence has only minor rele-
vance to the point4.  Then, with the further passage of time, Fisher seems to
have been sadly motivated by an increasing range of 'sore points', as, for
example, in the discussion which concludes his paper 'Some Examples of
Bayes' Method5'.  Yet also, and apparently in the belief that he had bettered
Bayes, Fisher seemed increasingly concerned to assert the superiority of his
own achievements.

Despite these difficulties, we have formed the view that, in his attitude
to Bayes' Essay, and to the general matter of inference from observations,
Fisher's conscious motive was to assert a philosophical and political point
concerning the objectivity of empirical science and the ability of the natural
world to speak for itself via scientific observations made upon that world.
Thus he seeks to achieve an 'objective' or 'absolute' solution to Bayes', and
similar, problems.  For, Fisher seemingly could not bring himself to entertain
the possibility that the acquisition of empirical knowledge by observation of
nature, might depend upon a purely personal and arbitrary decision to as-
                                                
1 Quite to the contrary, he apologises, or purports to apologise, for 'the reiteration of simple
and, it should be, obvious points'. See Fisher (1962) p123. For comments on Fisher's
reluctance, even at an early age, to explain his mathematical conclusions, see Box (1978)
pp13-14.
2 For a similar comment by De Morgan, see Fisher (1956) p29.
3 Fisher (1956) pp23-4.
4 But note also the following quotation from the Foreword to the combined volume in which
Fisher (1956) was re-issued in 1990.  This foreword was written by F.Yates, and tells us
that:- 'Fisher ... was remarkably forbearing in his criticisms of Neyman in 'Scientific Infer-
ence'. For a fuller account of the conflict  .... (see) .... (Yates') .... review of a biography of
Neyman by Constance Reid (J.Roy.Stat.Soc.,A, Vol 147, 1984)'. [See also Bennett (1990)
pp. xxvi-vii].
5 Fisher (1962)
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sume a uniform prior. It is also, perhaps, important to note Fisher's remarks
on freedom of thought, and on the integrity of the scientific method, which
occur in the preface to Statistical Methods and Scientific Inference1, for there
can be little doubt that political concepts of 'correct thinking' can present an
appalling threat to the integrity of scientific standards2.  Perhaps, therefore,
this threat may have also played a considerable part in evoking from Fisher
the repeated claim to show cases in which observation, although subject to
uncertainty, could, without a priori assumptions or axioms concerning
empirical matters, yield precisely quantified probablistic knowledge3 .

It is therefore in the tangle of these complexities that we have tried,
first, to find the essential thrust of the fiducial argument and, second, to
evaluate its validity.  In this, we were however, further hampered by the
many different views of previous authors about the point where the concept
of fiducial probability first appears in Fisher's writings.   Eventually, we
decided that the essential point arises in the title of one of Fisher's earliest
papers 'On an absolute criterion for fitting frequency curves4'.   In that
paper, there is no open mention of Bayes, nor of any prior probability distri-
bution, but the essence of Fisher's unease is clear in the opening words:- '......
we are met at the outset by an arbitrariness which appears to invalidate any
results we may obtain'.  The importance of this point in Fisher's writing is
that it shows, first, his early concern about making an arbitrary or subjective
choice and, second, it allows us to see the point of conception against a
philosophical background in a period of still-solid Victorian assurance,
before the 1914-18 war, and where mathematics must have appeared to
many as a fortress of objectivity.   And, if mathematics was such a fortress,
then a fortiori so was empirical science based simply on observing and
counting events.   Yet a potent lesson of Bayes' essay is that, if the conclu-
sions to be drawn from his primitive and fundamental experiment are inevi-
tably dependent upon assumptions that we choose to adopt, then it is
possible that the whole of quantitative science is, in that sense, subjective
and arbitrary. Or is based upon an act of faith to which members of the
scientific community generally subscribe. But to Fisher, such implications
may well have been anathema. Hence, much though we may resent the

                                                
1 Fisher (1956) p7
2 It is possible that research into the impact, (if any), of Lysenko upon Fisher might be
revealing in this connection.  See also v.Plato (1994) p206 for comments on related aspects
of 'Lysenkoism'.
3 We have to let the reader decide the conundrum posed by the words 'precisely quantified
probablistic knowledge'.
4 Fisher (1912)
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contortions in his attempts to avoid those implications, we have to credit him
with sensing the problem, even if he could not fully face it.

Returning to the 1912 paper, Fisher, having pointed out the lack of any
theoretical justification for the form of the equations implied by the 'method
of moments', abruptly switches to a generalised discussion in which he
declares:-   ' If  f   is an ordinate of the theoretical curve ....., then

                              log P = ∑
1

n
 log f (7-6)

(and) ... the most probable set of values .....  will make P a maximum.1'    In
conclusion, he writes:-    'We have now obtained an absolute criterion for
finding the relative probabilities of different ... values for the elements of a
probability system ..... .   It would now seem natural to obtain an expression
for the probability that the true values .... should lie within any given range.
Unfortunately .... the quantity P ...(is a) ... relative probability  ..... incapable
..... of giving any estimate of absolute probability'.  However, these claims,
even with respect to relative probabilities2, are invalid.  As we have already
shown in the case of Bayes' experiment, which is probably the simplest
possible case, the assumption of the uniform prior is, generally, a necessary
condition if the point where Fisher's criterion achieves its maximum is to be
accepted as the most probable value of a parameter.  However, we cannot
assume that this early paper represents Fisher's mature view and it would be
unreasonable to dismiss the whole of his work in this area on the basis of
this single invalid claim.   Nevertheless, we have here the first signs of
crucial weakness in the fiducial argument.

The next paper directly relevant to the fiducial argument is entitled 'On
the probable error of a coefficient of correlation deduced from a small
sample' and was published in 1921.   In this paper, the arguments swirl and
break like eddies in a turbulent stream, but among them we find 3:- 'The
attempt made by Bayes ...... depended upon an arbitrary assumption, so that
the whole method has been widely discredited .... .  ... two radically distinct
concepts have been confused under the name of 'probability' and only by
sharply distinguishing these can we state accurately what information a
sample does give us respecting the population from which it is drawn'.

                                                
1   op cit. p.157
2 These probabilities are 'relative' in the sense that each is multiplied by an identical but
unknown constant.  Fisher seems not to consider the sense in which they are relative to the
data.
3  op. cit. p4
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Unfortunately, here, and as so often in Fisher's writing, he brings us to a
point of great expectation and then swings into a massive digression.   Thus,
it is only when we come to page 16 that the argument is sensibly resumed:-
'.... what I previously termed the 'most likely value', ... I now, for greater
precision, term the 'optimum' value .....  .  It therefore involves no assump-
tion whatsoever as to the probable distribution . .....  As ... I pointed out in
1912 the optimum is obtained by a criterion which is absolutely independent
of any assumption respecting the 'a priori' probability of any particular
value. It is therefore the correct value to use when we wish for the best value
for the given data, unbiased by any 'a priori'  presuppositions'.   There is
then an abrupt break in the philosophical argument and it is only eight pages
later that, without warning, we find a 'Note on the confusion between Bayes'
Rule and my method of the evaluation of the optimum' which reads:-   'My
treatment differs radically from that of Bayes (who) attempted to find, by
observing a sample, the actual probability that the population value lay in
any given range.  .....  Such a problem is indeterminate without knowing the
statistical mechanism under which different values ... come into existence: it
cannot be solved from .... any number of samples.   What we can find from a
sample is the likelihood of any particular value ....., if we define the likeli-
hood as a quantity proportional to the probability that, from a population
having that particular value .... , a sample having the observed value .....
should be obtained. .......  So defined, probability and likelihood are ....
entirely different. ..... Numerically, the likelihood may be measured in terms
of its maximum value; the likelihood of the optimum being taken as unity.
........  The concepts of probability and likelihood are applicable to two
mutually exclusive categories of quantities. ....   We may discuss the prob-
ability of occurrence of quantities which can be observed or deduced from
observations, in relation to any hypotheses which may be suggested to
explain these observations.  We can know nothing of the probability of
hypotheses .....  On the other hand we may ascertain the likelihood of hy-
potheses ....... by calculation from observation ...... '.

There is, therefore, across the two papers so far considered, a consider-
able change of position.  Unfortunately, at no point does Fisher acknowledge
the change. He merely leaves the reader to make what one can from the
shifts of meaning and it is in this manner that we meet Fisher's formalisation
of the concept to which he attached the name 'likelihood'.  This was, how-
ever, rather high-handed, for 'likelihood' was, and is, an ordinary word in the
English language which was, and still is, used both by ordinary people and
by specialists, in a variety of ways.   Serious misunderstandings can there-
fore follow when the meaning of such a word is arbitrarily confined by a
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technical clique to some new and narrow meaning.   However, whatever the
rights and wrongs of the linguistic issue, it is a plain fact that, in the techni-
cal discourse of twentieth century statistics, the term 'likelihood'  has become
restricted to the sense assigned by Fisher, i.e. it is a number proportional to
the probability that a defined population, or probablistic process, should
yield, from a random sample, a value in a specified range.   Hence, if we are
considering a pair of alternative values, v1 and v2 for a parameter which
characterises a given population, and we have an observed value 'r', such
that P (r | v1) = 0.9  and P (r | v2) = 0.1, then we may say that the likelihood
of v1 is nine times greater than that of v2, relative to the observed value 'r'.
The existence of such relationships had however long been known and it is
interesting to note that De Morgan, had written that 'causes are likely or un-
likely, just in the same proportion that it is likely or unlikely that observed
events should follow from them.   The most probable cause is that from
which the observed event could most easily have arisen1'.   One hundred and
fifty years earlier, however, writers, such as Leibniz and Jac. Bernoulli, had
been aware of the pitfalls in this mode of reasoning2 and, as Keynes so aptly
comments, 'If a cause is very improbable in itself, the occurrence of an
event, which might very easily follow from it, is not necessarily, so long as
there are other possible causes, strong evidence in its favour3'.   Yet, while
it must be acknowledged that Fisher's appropriation of 'likelihood' as a
verbal tag has been useful in simplifying statistical discourse, it would have
been even more helpful had he acknowledged the connection with Bayes'
third proposition4:-

 P  (E1 ∧ E2)    =      P  (E1) x  P  (E2 | E1) (7-7)

That is, if E1 is the event that an hypothesis H relating to an event E2 is true,
then the likelihood of H, which we may denote L (H), is a quantity propor-
tional to the probability of occurrence of the event E2, if we are given E1 ;
that is, L (H) = k x  P (E2 | E1), where k is an arbitrary constant.

Ten years later, Fisher returned to the subject in a 1930 paper to the
Cambridge Philosophical Society under the title Inverse Probability.   This
paper was later reprinted in a collection5, where Fisher added the comment:-
' The importance of the paper lies ..... in setting forth a new mode of rea-

                                                
1 According to Keynes (1921) p178, the quoted view was expressed by De Morgan in The
Cabinet Encyclopoedia, p27.  See also below, Ch 11, p162
2 See Keynes(1921) pp368-9
3 Keynes (1921) p 178.
4  See eqn (3-26) in Ch 3 above
5 Fisher(1950) p22.527a
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soning from observations to .... hypothetical causes'.  The paper is, in fact,
indispensable for anyone attempting to understand the fiducial argument.1 It
presents a number of impeccable insights, starting with the first paragraph
where, in commenting on Bayes' essay, Fisher notes that 'Laplace takes for
granted in a highly generalised form what Bayes tentatively wished to pos-
tulate in a special case'.   The significance of this remark, in our context, is
the open acknowledgement that Bayes was dealing with a special case and
that the illicit generalisations were, in fact, due to others.   Unfortunately,
Fisher seems later to have lost sight of this fact and there is little doubt that
the quality of his further work in this area was seriously degraded by his
failure to discriminate between what Bayes actually wrote and the misuse of
Bayes' work by others. The next item of significance in 'Inverse Probability'
is the paragraph which reads 2:-  'The ..... development of the subject has
reduced the original question of the inverse argument in respect of prob-
abilities to ....... a series of .....  analogous questions 3; the hypothetical value
.... may be a probability, but it may equally be  .......  any physical magnitude
about which the observations may be expected to supply information'.
Clearly, this paragraph shows a precise understanding by Fisher, at that time,
of the strict bounds which had been placed by Bayes on the problem ad-
dressed in Bayes' Essay. Later however Fisher fails to remember the contrast
between that original, firmly bounded problem, and, on the other hand, the
plethora of conceptually related but logically distinct problems.  The con-
trast, however, is crucial to the understanding and analysis of all these mat-
ters.

The next eleven paragraphs or so of Inverse Probability then present
an outstandingly clear exposition of the problem which arises if a uniform
prior distribution is assumed in the case of a dimensional variate, i.e. a prior
distribution which is uniform for one formulation of the unknown may be
utterly non-uniform for an alternative, equally valid, formulation.   A simple
example of this is easily seen in the distributions of times and velocities
which result when a given distance is travelled by a population of vehicles
moving with various speeds.   However, although Fisher also notes that
divisions of a population into equally sized groups will preserve that equality
under many transformations, he fails to point out that it is precisely this type

                                                
1 Hacking (1965) p133 (footnote), however describes Fisher's 1945 paper on The Logical
Inversion of the Notion of the Random Variable as containing the clearest available state-
ment of Fisher's views on fiducial probability.
2 Fisher (1930) p529
3  Fisher actually writes quite analogous. The use of the word quite in this context seems
however peculiar. The phrase not quite analogous would seem to make better sense.
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of limited case which Bayes actually addressed by confining his experiment
to the counting of events in a specified group.  Fisher then concludes this
section of 'Inverse Probability' with the challenging point that although we
may be unable to give a priori reasons for the assumption of a uniform prior
distribution, the method of inverse probability, based on that assumption,
could claim the justification that it did at least yield information of a sort on
things which were previously unknown, and avoided the hugely greater
problem of saying that observation of the unknown could yield no improve-
ment in our knowledge.  In Fisher's words:- ' Inverse probability has ....
survived so long in spite of its unsatisfactory basis, because its critics have
.... put forward nothing to replace it as a rational theory of learning by
experience'.   However, it is only after some digressions to mention Gauss
and to claim 'supreme value' for the method of maximum likelihood, that,
with the last paragraph on page 532, we come to the nub of the matter con-
cerning fiducial probability:-  'There are however certain cases in which
statements .... of probability can be made with respect to the parameters of
the population.  ........  In many cases the random sampling distribution of a
statistic, T, ......  is expressible solely in terms of a single parameter, of
which T is the estimate found by the method of maximum likelihood.  If T is a
statistic of continuous variation, and P the probability that T should be less
than any specified value, we have then a relationship of the form
P  =  F(T,θ)'.

Here, we have to interrupt Fisher's argument in order to point out a
simple fact that he takes for granted, but which is necessary for a smooth
understanding of what follows: namely, that the above expression assumes a
sample of a specific size n from a population which is characterised by a
specific value of θ .   If, therefore we are told that the sample size is 4 and
that θ   has a value of 0.5, P then denotes the probability that the statistic T
will have a value less than, say, 0.49, the magnitude of that probability being
returned by evaluation of a function which we would prefer to denote as
FT(θ,n).   With this in mind, we return to Fisher, albeit with slight para-
phrasing and modifications to his notation:-   'If now we give to P any par-
ticular value such as 0.95, we have a relationship between the statistic T and
the parameter θ  such that  we can define T0.95  as the 95 per cent (probabil-
ity) value corresponding to a given θ , ....... '  With that assertion we have no
disagreement.   Fisher then continues with the statement:-   '... and this
relationship implies the perfectly objective fact that in 5 per cent of samples
T will exceed the 95 per cent (probability) value'.  This assertion is, how-
ever, patently false; for the most that can be said is that the expected propor-
tion of samples in which T will exceed the 95% probability value is 5%.   He
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then says:-  'To any value of T there will moreover be usually a particular
value of θ  to which it bears this relationship; we may call this the 'fiducial 5
per cent value of θ  corresponding to a given T '.   ....... (and) ....... If as
usually if not always happens, T increases with θ  for all possible values, we
may express the relationship by saying that the true value of θ  will be less
than the fiducial 5 per cent value corresponding to the observed value of T
in exactly 5 trials in 100 '.   This last assertion, however, is again false:
patently so, for the reason given above, concerning the expected proportion,
and is more subtly fallacious, for reasons that we put aside for a moment
while Fisher continues:-  'By constructing a table of corresponding values,
we may know as soon as T is calculated what is the fiducial 5 per cent value
of θ , and that the true value of θ  will be less than this value in just 5 per
cent of trials 1.  This then is a definite probability statement about the un-
known parameter θ , which is true irrespective of any assumption as to its 'a
priori' distribution'.   We shall however show presently that such probability
statements concerning θ  are, in general, fallacious.   However, we shall also
find that, in certain important cases, Fisher's assertions are indeed true, albeit
his reasoning was seriously at fault.  In the meantime, after a detailed illus-
tration, using the correlation co-efficient as an example2,  Fisher continues:- '
It is therefore important to realise exactly what such a probability statement,
bearing a strong superficial resemblance to an inverse probability state-
ment, really means '.   Unfortunately, having aroused the expectation that we
are on the point of being told precisely what such a probability statement
really means, the reader is then treated to nothing of the sort, but merely to a
few lines describing instances in which the fiducial probability differs from
the result achieved by the method of 'inverse probability'.

In 1956, many years after the publication of 'Inverse Probability', the
fiducial argument received a new twist in Chapter 3 of Fisher's 'Scientific
Methods and Statistical Inference'.  Here, he describes an imaginary experi-
ment, concerning the random emission of radio-active particles, to which
Fisher refers in numerous other publications.   The section in which the
experiment with radio-active emission is described, begins with the heading

                                                
1 These precise numeric assertions are, of course, totally false and could be extremely
misleading for a naïve reader. The truth is that if we take numerous independent sample-sets
of a given size, we will only expect the frequency of cases with which the assertion is found
to be correct, to follow, yet again, a distribution of the general binomial form. There is no
guarantee that the expected frequency will occur in any sample-set whatsoever, let alone in
any given sample.
2 Thus hitting back, as Zabell (1992), points out, at Pearson who, some years earlier had
treated Fisher rather shabbily on a closely related question.
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'The fiducial argument 1'.  Fisher explains the meaning of fiducial as fol-
lows:- 'In the Bayesian argument the observations are used to convert a
random variable having a well defined distribution 'a priori' to a random
variable having an equally well-defined distribution 'a posteriori' .... .   By
contrast, the fiducial argument uses the observations only to change the
logical status of the parameter from one in which nothing is known of it, and
no probability statement about it can be made, to the status of a random
variable having a well-defined distribution'.   Taken at their face value, the
assertions contained in this quotation are staggering: that which concerns the
Bayesian argument ignores, totally, and yet again, the fact that Bayes defined
his problem as concerning the case in which 'nothing at all is known antece-
dently'.   We can, however, make more sense of Fisher's assertions if we
assume that Fisher's attitude to Bayes was utterly ambivalent, believing with
one half of his mind, that Bayes had failed to solve the defined problem, and
that Bayes' success was therefore limited to the demonstration of various
rather elementary propositions 2.  Yet Fisher could not bring himself to say
this openly; the reason was, we suspect, that the other half of his mind could
not accept that a scholar as accomplished as Bayes could really have failed
so dismally; or, perhaps indeed Fisher could intuitively, but only subcon-
sciously, perceive that Bayes' postulate might be not so arbitrary and unwar-
ranted as it was then fashionable to assert3.   Whatever the truth, and it is
now probably indeterminable4, it is certainly the case that Fisher's paper of
1962 reveals a marked change of attitude and could well be symptomatic of
a subconsciously perceived truth slowly working its way into a verbalised
consciousness5.

If however we view Fisher's primary aim as being to present, some-
what covertly, a contrast between his own (claimed) success and Bayes'
(implied) failure, it becomes clear that we have to parse the phrase 'the
fiducial argument uses the observations only to change the logical status of
the parameter' in such a way that the term 'only' qualifies observations,
rather than the infinitive, to change.   Hence, re-arranging the words to
eliminate the ambiguity gives us:- 'the fiducial argument uses only the ob-
servations'.  That is, we have a contrast with Bayes' solution where we
                                                
1 Fisher (1956), p54
2 It is remarkable that although Fisher quite often damns the work of others, such as Pearson
and Neyman, in his writings, he appears to treat Bayes with an awed reverence, despite the
repeated implications that Bayes' essay utterly failed to achieve the stated objective.
3 i.e. in contrast to a pragmatic convenience.
4 i.e. failing discovery of previously unknown papers by Fisher.
5 The rôle of the intuitive part of the mind in mathematics is strongly argued in Penrose
(1989), p538.
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require both the observations and an assumption about the prior distribution.
We also find, in the above quotation, a stark admission of the claim, previ-
ously only implicit, that '.... the fiducial argument change(s) the logical
status of the parameter ..... to (that) ....... of a random variable having a
well-defined distribution',  albeit we are not told whence we obtain the
specification of this allegedly well-defined distribution.

However, on p55 of 'Scientific methods and Statistical Inference',
Fisher asserts:-  'If direct and exact observations could be made on the
parameter itself, a similar change of logical status would be effected by the
observation of its value, from one in which it was wholly unknown, ........ to
one in which it could be assigned a definite value.   It is, therefore, perhaps
not surprising that similar exact observations, though not on the parameter
itself yet on variates having distributions known in terms of the parameter,
should be able in favourable cases to effect, at a lower level, a similar
change of status'.   Thus, here, in the words  variates having distributions
known in terms of the parameter, Fisher is yet again invoking prior knowl-
edge of a kind which may not be identical to Bayes' assumption of the uni-
form prior, but is remarkably similar in a general sense.  It is again
staggering that Fisher could not see this for himself.   He then gives as an
example of his own mode of reasoning, the radio-active source emitting
particles at instants which are 'completely independent' of each other but
such that the time-interval between any two successive emissions is ran-
domly distributed with a probability governed by an exponential distribution.
This is followed by several pages of appallingly obscure argument where,
without the help from other sources, we would have found it utterly impos-
sible to see at what Fisher was driving.  Fortunately, there is a clue on page
60, in the Section headed Accurate statements of precision.  The section
begins 'The possibility of making exact statements of probability about
unknown constants of Nature supplies a need long felt of making a complete
specification of the precision with which such constants are estimated........'..

Later, a paper in the Journal of the Royal Statistical Society for 1962,
provides a further clue1, leading us to a more lucid, and perhaps more sym-
pathetic, understanding of Fisher's aims.  The paper begins:- 'It has become
realized in recent years (Fisher, 1958)2 that although Bayes considered the
special axiom associated with his name for assigning probabilities 'a priori',
and devoted a 'scholium' to its discussion, in his actual mathematics he

                                                
1 Fisher (1962)
2 The date 1958 may be a misprint. The references in the paper contain no publication with
that date.
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avoided this axiomatic approach as open to dispute, but showed that its
purpose could be served by an auxiliary experiment, so that probability
statements 'a posteriori' at which he arrived were freed from any reliance on
the axiom, and shown to be demonstrable on the basis of observations only1,
such as are the source of new knowledge in the natural sciences '.   Putting
aside the fact that Bayes actually used the experiment in order to support, in
the Scholium, the assumption of the uniform prior, it remains interesting that
Fisher then outlines parallels which, he asserts, can be drawn between his
thought-experiment with the radio-active source and Bayes' experiment. He
indicates four problems which can be considered in relation to such experi-
ments, and in discussion of these experiments he displays the slow change in
his attitude to Bayes on which we have already remarked.   Unfortunately, he
does not finalise the change but remains fixed on the superficially opposite
objective of ensuring  that no probability statement need be made axiomati-
cally2.   This, he seems to believe he demonstrates in his discussion of
'Problem A' of the paper, in the conclusion to which he writes:-  'In fact, as
by Bayes, the unknown p is evaluated as a random variable, and ....   The
dogma that direct observations cannot serve to express an unknown pa-
rameter of Nature as a random variable cannot be sustained.3 '   Although
Fisher gives no indication as to where we might find any assertion of the
alleged dogma, we have, perhaps, come as close as we shall to a clear and
concise expression of the motive that actually seems to dominate Fisher's
writing in this area, i.e.  to demonstrate that direct observations can serve to
express an unknown parameter of Nature as a random variable.

With this motivation established, many other parts of the puzzle fall
into place, but we should not pass without mention the attempt to claim
Bayes' support for the evaluation of  'the unknown p ....... as a random vari-
able': this being yet another appalling distortion of Bayes' argument.  For
Bayes unswervingly evaluates p as a governing parameter in a statistical
process.  However, it is worthwhile considering a variant on Bayes' experi-
ment in relation to the emission of radioactive particles, in terms of a trial
which tests whether a particle is emitted in a time-interval of a fixed dura-
tion, starting at an arbitrary instant.   Clearly, a set of n such trials has the
same logical form as Bayes' original experiment, and the emission of parti-
cles in m of these trials can be analysed in terms of, (an assumed constant),

                                                
1This is, in our view, a gross and utterly reprehensible misrepresentation of Bayes approach.
It is totally at variance with what Bayes wrote in the Scholium, which we have examined in
detail in Chapter 4 above.
2 Fisher (1962) p.119
3 Fisher (1962) p.120.
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underlying probability.  This does not quite meet the objective which Fisher
would like to achieve, i.e. determination of the underlying average rate of
emissions to within definable probability-limits.   To achieve this, we make
the duration of each trial short enough to make the probability of more than
one emission in a single trial, vanishingly small.   By this means, we effec-
tively eliminate the time-dimension from the problem and we are able to
treat it, as in Bayes' experiment, as a  problem in the estimation of a pure,
non-dimensional, probability, i.e. we have a set of n identical trials in which
a given event occurs on m occasions, and the chance that the underlying
probability of that event lies between any two given values can be computed
exactly as shown by Bayes.

The case of the radio-active experiment is however a complex example
which depends critically upon taking for granted the exponential model of
the underlying process, and it seems totally to escape Fisher's notice that the
magnitude of the epistemological and experimental problem of justifying
such an assumption, may well seem to render Bayes' assumption of the
uniform prior trivial in comparison.   It is better therefore to take the much
simpler example of Fisher's contention which is given in his 1945 paper
entitled The Logical Inversion of the Notion of the Random Variable.  In this
paper, after dealing with a somewhat complex case involving the mean
values of normally distributed variates, he continues:- ' It is instructive to
compare the general form of the fiducial argument set out above with a
special case of great simplicity, suitable for examining its logical cogency.
Let µ  be the median of a distribution of which nothing is known save that its
probability integral is continuous ........  Let x1 and x2 be two observations of
the variate;  then for any given value of µ  it will be true that:      (1)  in one
case out of 4 both x1 and x2 will exceed the median,   (2)  in two cases out of
4 , one value will exceed and the other be less than the median,  (3) in  one
case out of 4, both will be less than the median,1  (Hence) .......... we may
argue from two given observations, now regarded as fixed parameters that
the probability is 1/4 that µ  is less than both x1 and x2, that the probability is
1/2 that µ  lies between x1 and x2, and that the probability is 1/4 that µ
exceeds both x1 and x2.   The argument thus leads to a frequency distribution
of µ , now regarded as a random variate.  The idea that probability state-
ments about unknown parameters cannot be derived from data consisting of
observations can only be upheld by those willing to reject this simple argu-
ment'.   Thus we have here an example of the fiducial argument in what is
probably its most plain and simple form.   Although the argument received a

                                                
1 Taken at face value, these numerically precise assertions are again simply false.
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further twist in terms of a non-recognisable subset which was later shown to
be indeed recognisable1, it is our view that the essence of the argument is
adequately represented above and it is now appropriate to evaluate in more
detail its validity.

We start by noting that we are concerned with the probabilities of three
different types of event:-

Type 1 :  A defined event, randomly occurring within a distribution
which is governed by one or more parameters, occurs in a
specified trial.

Type 2 :   A defined, deterministic, but uncertain event occurs in a
specified trial.

Type 3 :   An inference concerning a governing parameter, based
upon observation of a Type 1 or Type 2 event2, in a speci-
fied trial, is correct.

That is simple. It is also often simple, at least in principle, to define the
rules by which we compute the probability if the assertion concerns, for
example, the number of occasions on which a Type 1 event occurs in n
independent trials, and we are given, either as an assumption, or as evidence,
the probability of its occurrence in a single trial. In such cases, the mapping
operation which we symbolise by P( . ) proceeds mechanically.  In determi-
nistic Type 2 situations, as we saw in chapter 6, there are fixed causal factors
but we are unsure of their magnitudes and relationships, and the aim is to
compute the probability of an event in a specific situation. In such cases
there is, however, no random independence between trials. A given situation
always produces the same result.  Types 2 and 3 differ, however, from
Type 1, in a number of ways, starting with the fact that, whereas Type 1
events have a fairly straightforward interpretation in terms of relative fre-
quencies, no such interpretation can be placed on probabilities of Type 2 or
Type 3. With Type 3, however, the fact that an event, which may belong to
Type 1 or to Type 2, has or has not happened, comprises the evidence, from
which, in conjunction with certain assumptions, we are required to compute
the probability that a defined hypothesis concerning a governing parameter,
is true.  (As an aside, it is worth noting that a great deal of nonsense about
the probability of sunrise stemmed from a failure to perceive that the rising
of the sun is a deterministic Type 2 event.  Commentators who treated it as a
random Type 1 event were therefore liable to some ridicule.  Price, however,
                                                
1 See Buehler and Feddersen (1963)
2 Or set of events,
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in his addendum to Bayes' essay1, is punctilious in his analysis of these
issues, albeit he unfortunately fails to differentiate formally between Type 1
events and Type 2 events).

However, for each type of case, we have hitherto used a symbolic
assertion of the single form P(E) = x to denote all these different kinds of
probability and we have often overlooked the need, in every case, to define
the evidence and assumptions on which the proposition is based. In every
assertion of probability, however, the argument has three parts:-  (i) the
proposition, (ii) the evidence, (iii) the assumptions.  Given the marked dif-
ferences between the three types of assertion, it seems misleading and un-
justifiable, that we should continue to use the same symbolic expression in
each case, without distinction. We therefore propose, tentatively, the sym-
bols PR, PD and PH to denote the assignments of probabilities in the three
cases2.  Thus we use the symbolic term  PR(E | k, A ) to denote the probabil-
ity, given evidence k and assumptions A, that a random Type 1 event, E, will
occur in a defined trial.  Similarly, we let the symbolic term
PD(D | k, A ) denote the probability that a deterministic Type 2 event, D, will
occur, given k, A.  Finally, we let PH( H | k, A ) denote the probability that a
defined hypothesis, H, concerning the governing parameter of a trial in
which an event of Type 1, or of Type 2 occurred, is true. These symbols,
however, still do not differentiate sufficiently between the types, for the
nature of the support, k,A, which is required by a Type 1 assertion, is quite
different from that required by a Type 3 assertion.   Specifically, a Type 1
assertion requires that the term k,A shall provide information about the
governing distribution over the possible values of the event E.  In contrast, a
Type 3 assertion requires that k,A shall provide information about the occur-
rence of a Type 1 event E.  (We are here putting aside further consideration
of Type 2, which is not part of our main enquiry and will be better investi-
gated elsewhere).  Hence, in relation to Type 1 and Type 3, we have to elabo-
rate the symbolic expressions to denote the specific structure which is
required in each case. That is, for a Type 1 assertion we require a symbolic
term equivalent to ' PR(E | G(k,A) ) ', where G(k,A) denotes evidence and
assumptions relating to the governing distribution over the event E.  Corre-
spondingly, for Type 3, we require a symbolic term equivalent to
' PH(H | J(k,A) ), '  where J(k,A) denotes evidence and assumptions concern-
ing the occurrence of a Type 1 event.

                                                
1 Bayes (1763) pp.409-410.
2 Lindley (1970, Section 5.1) uses 'p' where we use PR  and 'π ' where we use PH
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Returning to the fiducial argument, we can now see that, where in a
Type 1 assertion, the random event E, is an algebraic proposition, defining a
relationship between a random Type 1 variable and one or more given pa-
rameters, a true assertion will be true for all other propositional values of E
which are algebraically equivalent1.  For example, if E has the propositional
value 'e > 0.1', where e is a random variable having a distribution given by
G(k,A), and if it is also given that

PR(e > 0.1 | G(k,A) ) = 0.5 (7-8)

then all other assertions of the form PR(E | G(k,A) ) = 0.5, where E can take
on any propositional value which is algebraically equivalent to 'e > 0.1' will
also be true. For example,

PR(0.1 < e | G(k,A) ) = 0.5 (7-9)

will be true, as will
PR(1.1 <1+e | G(k,A) ) = 0.5 (7-10)

In the fiducial argument, a fundamental problem, which is concealed
by the ambiguous notation, now becomes clear. That is, the fiducial argu-
ment asserts that if a statistic T is derived from a set of n events of Type 1,
drawn from a population governed by a parameter θ, and we are able to
make an assertion of the form2

P( T <  θ − a )  =  F(n,a,θ) (7-11)

(where a is an arbitrary offset from θ),  then, Fisher asserts, we are con-
versely able to assert:-

P( θ > T + a )  =  F(n,a,θ) (7-12)

which has the superficial appearance of an assertion concerning a probability
distribution over the possible values of θ .  If however we use the unambigu-
ous notation presented above, we get, instead of (7-11):-

PR( T < θ − a  | G( a,θ, A) )  =  F (n,a,θ,A) (7-13)

and, although the equivalent expression

PR( θ  >  T + a | G( a,θ, A) )  =  F (n,a,θ,A) (7-14)

                                                
1 The equivalence must, of course, be unique.  A relationship such as x^2 = 4 is not a
unique equivalent of x=2.
2 The expressions F(n,x,θ) and FR(n,x,η,A) simply denote functions which return values
which we can equate to probabilities.
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has the superficial appearance of an assertion concerning the distribution of
θ,  a glance at the conditioning term  G( a,θ, A) shows immediately that the
values of both θ  and a  are given and that the assertion actually concerns the
distribution of the statistic T.   In these situations, θ is a governing parame-
ter which does not vary randomly from trial to trial, but is fixed for the set. It
is therefore contradictory to treat a random variable, such as T, derived from
the outcomes of a trial-set as if it could also be a governing parameter in that
same trial.  Being based on this contradiction, it follows that the fiducial
argument is clearly fallacious.  The relevance of the 'statistical mechanism'
which brings θ  into existence is however a question to which we return in
Chapter 10.

A further, and important illustration of fallacious reasoning in the
fiducial argument is provided by the case of a median, symbolised by µ ,
which is known to have a value, say 0.3, in a given population, and an ob-
ject, selected at random from that population, the value of which is un-
known, but is symbolised by t.   By the definition of the median, this allows
us to assert:-

PR ( t > 0.3 | µ  = 0.3 )   =   0.5; (7-15)

or indeed to assert

PR ( 0.3 < t | µ  = 0.3 )     =   0.5        (7-16)

However, if we examine the sample and find that t = 0.4, an expression of
the form

 PR  ( µ  < 0.4 |  t = 0.4 )   =  0.5 (7-17)  

which appears to be, and indeed is, an assertion that µ  is a random Type 1
variable, is yet again self-contradictory and therefore fallacious, in that µ  is
already defined as being a governing parameter, fixed for the entire trial-set,
while t varies randomly from trial to trial within the set. 

The approach which we actually require, if we wish to make a probab-
listic assertion concerning the value of µ , based upon a trial in which we
have measured t, is to evaluate an expression of the form

x   =    PH( µ  < t | t )  (7-18)

i.e. we are required to assess the probability that an inference concerning the
value of a governing parameter, based upon observation of an event, is
correct.   This question is addressed by Bayes, quite generally1, in Proposi-

                                                
1 i.e. Bayes' treatment is not tied to the discreet, binomial problem at this point in his essay.
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tions 4 and 5, and in the Scholium.  Also, we shall later find, by following
Bayes, that the assertion, so similar to (7-17) 

 PH( µ  < 0.4 |  t = 0.4 )   =  0.5 (7-19)

is indeed both logically valid and numerically correct.  Fisher's conclusion,
in the case of the median, was correct; his reasoning was flawed. 

A less fundamental, but also self-contradictory, aspect of the fiducial
argument, is that the knowledge of the distribution governing the occurrence
of Type 1 events, upon which Fisher bases the fiducial argument, is totally
dependent upon the pre-existence of a governing parameter.  And it is indeed
central to the fiducial argument that the value of a governing parameter is a
valid object of a probability assertion.   Yet, while Fisher asserts that cases
exist in which the prior distribution of probabilities attaching to different
values of governing parameters is known, and to which the method of Bayes
can be validly applied1, Fisher also claims that if we lack this knowledge, the
fiducial argument will allow us to compute the required probability without
reference to the missing parameter.   Yet, if we lack prior information con-
cerning that parameter, it is inconceivable that an abstract argument can
supply the missing data.  The fact is that in cases where we have no prior
information, we have three options.   We can:- (1) refrain from any inference
concerning the value of the probability in question, or, (2) we can state
likelihood ratios based on the observations and various hypotheses, or (3) we
can assume the uniform prior, and accordingly give our estimate of the
probability in question.   However, in later chapters we shall see that, despite
the flaws in the fiducial argument, Fisher's concerns were indeed valid and
are capable of  resolution, albeit not on his terms.

We must also sound a note of caution concerning the use of likelihood.
For there can be a temptation to avoid the difficulty and tedium of cons-
idering prior probabilities by choosing to work only in terms of likelihood,
and implicitly pleading that admission of the fact provides a justification for
the deed.   Careful consideration shows, however, that one should always,
before using likelihood as a deciding factor, consider the effects that 'prior'
information might have on one's views.  A relatively minor problem can
arise if one is using likelihood because, when dealing with 'unknown events'
one refuses to accept Bayes' postulate of the uniform prior, but an unex-
pected discovery of prior information then requires, at least conceptually, a
major revision of views.  A more serious danger is illustrated by Fisher's
mice, discussed in the Appendix, where the likelihoods of a pair of mutually
exclusive hypotheses are in the ratio of 128 : 1, yet the probability of either
hypothesis can be raised to certainty if certain facts become known, or if
                                                
1 See e.g. below, Appendix A, 'Fisher's Mice'
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certain events were to happen.   The likelihood ratios, however, give no
indication that these crucial sensitivities are present and it is a plain fact that
decisions based upon likelihood in such situations, could lead to mistakes
and catastrophes which would be avoided by paying proper attention to the
probabilities and, wherever possible, to the acquisition of decisive evidence.

Postscript to Chapter 7

It is important to note that, according to the circumstances, Bayes' theorem
can be expressed in various forms e.g. :-

P H(E1| k, E2 )    =    
PH (E1 |  k  ) x  PR (E2 |  k,E1  )

PR ( E2 |  k ) 
 (7-20)

or

P R(E1| k, E2 )    =    
PR (E1 |  k  ) x  PR (E2 |  k,E1  )

PR ( E2 |  k ) 
 

In (7-20), P H applies to a value that is fixed for a set of trials in which the
event, or set of events denoted by E2 has occurred.  In (7-21), P R(E1.....)
applies to an event which can vary at random within a set of trials and may
be only loosely correlated with the occurrence of E2.   The essential points
are, first, that E1 and E2 can be events of any kind - provided they are events
to which probabilities can be assigned - and, second, that the symbols must
correctly represent the physics of the situation.
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Chapter 8

A Critical Case

Chapter 31 of Keynes' 'Treatise on Probability' is entitled 'The Inver-
sion of Bernoulli's Theorem'.  Keynes sums up the works of many predeces-
sors in the area as 'the children of loose thinking and the parents of
charlatanry.1' , but he also says:- 'It is reasonable to presume that, subject to
suitable conditions .... an inversion of Bernoulli's Theorem must have valid-
ity'.  He then deals in an elegant and thorough manner with a general version
of the problem addressed by Bayes, concluding2:- 'therefore, ..... as the
number of instances is increased the probability that the true value3 is in the
neighbourhood of m/n  ..... tends towards certainty ...... But we are left with
vagueness ..... respecting the number of instances we require.  We know that
we can get as near certainty as we choose by a finite number of instances,
but what this number is we do not know.  ..... It would be very surprising, in
fact, if logic could tell us exactly how many instances we want, to yield us a
given degree of certainty in empirical arguments.  ....... Yet many persons
seem to believe that ..... we can attribute a definite measure to our future
expectations and can claim practical certainty for the results of predictions
which lie within relatively narrow limits.  Coolly considered, this is a pre-
posterous claim, which would have been universally rejected long ago, if
those who made it had not so successfully concealed themselves ......  in a
maze of mathematics'.  To a sensitive ear, these words may sound like the
thuds of heavy nails fixing the lid on the coffin of Bayes' theory.

However, all assertions of probabilities concerning phenomena in the
physical world, are empirical in nature;  they are never analytically, neces-
sarily or tautologically true;   they are always to some degree uncertain, they
can therefore never be asserted with absolute confidence, but are dependent
upon a basis of knowledge, or assumptions, about the physical world. They
can be made only relative to that basis.  Any assertion of a probability con-
cerning a specific situation can be wrong in the sense that the totality of the
assertions and the assumptions does not match the actual situation.  Hence,
every assertion of probability must always be, itself, subject to a governing

                                                
1 Keynes (1921) p384
2 op.cit. p389, but with little direct reference to Bayes.
3 The true value is denoted by the letter q in the original.  The ratio m/n is denoted by q'.
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probability.   Superficially, this leads to an infinite regress, which, in the
limit, would drain every assertion of an empirical probability of its meaning-
ful content. But the infinite regress can be avoided by, at any stage, stating
the facts and assumptions which, if themselves true, will be sufficient to
make the statement of probability also true.

Statements of prior distributions concerning phenomena in the physi-
cal world are likewise empirical assertions, subject to uncertainty, and to
statements, or questions, of probability concerning their correctness. If
therefore we have, on the one hand, an assertion of a prior distribution of
probabilities over the possible outcomes of a trial, and, on the other hand we
have an outcome which, on the basis of the prior, had an extremely low
probability of occurrence, we can take the prior as given, and compute a
posterior distribution in which the intensity of our confidence that the truth
is in the region of the experimental result is attenuated by the prior, or we
can allow the experimental result to attenuate our confidence in the correct-
ness of the prior distribution.  The latter course is equally reasonable and
suggests that, in real-life situations, it will often be rational to require a fair
degree of correspondence between the prior and the trial, for the pair to be
jointly credible: in which connection one can use the denominator in Bayes'
equation:-

                     nCm ⌡⌠
0 

    1

x(m) (1-x)(n - m)P0(x)dx 

as a measure of the joint credibility of the prior and the observed data.  But
there are, of course, situations which involve intensely concentrated prior
probabilities, surrounded by bands where the prior probabilities are very low,
but the correspondingly rare events are by no means impossible.

Yet it may be thought that because there is only a very low probability
- arguably infinitesimally small - that the assumption of a uniform prior, in a
trial of an unknown event, is correct - there is a correspondingly low prob-
ability that the solution to Bayes' problem as in equation (5-18) will be
correct.   This is however fallacious.  If a statement of probability concerning
an hypothesis is of the form PH( . ) = f(d, a1, a2 ...... an ), where d denotes the
observed data and    a1 ... an denote the assumptions, there is a temptation to
assume that if the truth of each assumption is governed by a probability
PH(ai) then the resultant value of PH( . ) is attenuated by a proportional
uncertainty.   This is not, however, true.

The true situation is in general complicated and delicate, for the impact
of the probability concerning each assumption can only be assessed by
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careful consideration of the influence which each has on the resultant value
of PH( . ), taken in the context of all other assumptions, their own probabili-
ties and, not least, the observed data.  Thus the impact of assuming a uni-
form prior in a Bayes' trial of an unknown event needs to be examined quite
carefully in relation to possible forms of the true, but unknown, prior and
also in relation to the magnitudes of m and n.   More generally, we have the
fact that, although an assertion may be qualitatively wrong, a quantitative
assessment may show the error to be of no practical consequence.  In this
regard, authors1 who felt that Bayes' equation was invalidated by the (alleg-
edly arbitrary) assumption of the uniform prior, were, perhaps understanda-
bly, failing to discriminate between, on the one hand, a conclusion to an
argument which is deemed qualitatively invalid because it can be shown not
to follow rigorously from the premisses, and, on the other hand, a conclusion
which may be qualitatively invalid but is, quantitatively, of acceptable accu-
racy.  In practice, the latter may be much better than an assumption of total
ignorance, to which we might be led by purely qualitative reasoning.  No
physicist, setting out to measure the speed of sound, can show that there is
no possibility of error in the experimental set-up.  Hence, by purely qualita-
tive reasoning we can easily show that a decision to accept the results from
such an experiment is 'arbitrary', and therefore, by facile extension, 'worth-
less'.  From a practical point of view, however, it may be essential to accept
such a result as the best available, and to bear in mind that it may be not
totally dependable in all situations.  It is, in this context of quantitative
reasoning, and considering the connection between morality and probability,
intriguing to note Kant's view that 'Empirical principles are wholly incapa-
ble of serving as a foundation for moral laws.2'  In our view however, quan-
titative reasoning, which is profoundly empirical in its essence, together with
Bayes' concept of probability are, unless and until some better method be
found, fundamental to the rationality of moral behaviour in the conditions of
uncertainty under which many people feel that they have to live their lives.
Some, however, blessed with feelings of total certainty in all situations, may
feel no need of Bayes, but may little realise that their feelings of blessed
certainty may manifest themselves as appalling inflictions on others.  From a
quantitative and pragmatic point of view, therefore, the assumption of the
uniform prior may be a matter, not of theoretical necessity, but of practical
necessity for those who have to balance uncertainties concerning empirical
facts against the probabilities, penalties and rewards of alternative actions.

                                                
1 e.g. Boole, Keynes, Fisher, Fine,
2 Kant (1785).  See p60 of Abbott (1959).
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The following scenario illustrates, the crux of the matter.  Suppose that
a sample of blood from a critically ill patient, shows that, in a total of n cells,
a number m of those cells are of type-M.   The scenario permits no possibil-
ity of acquiring further information and we have to decide, from the evi-
dence provided by the sample, on a course of action according to a rule that,
if the true proportion of type-M cells, Pm, is less than a threshold T, the
correct treatment is to administer drugs, otherwise do nothing.  If we take the
wrong action, the patient dies.   The scenario also requires us to assume:-  (i)
the validity of Bernoulli's theorem, and (ii) that Bayes' solution is valid in
cases where a prior distribution is known.  So, we consider the possible
courses of action, which appear to be:-

(1) do nothing, or
(2) administer the drug, regardless of the evidence (m,n), or
(3) decide by the flip of a coin whether to administer the drug , or
(4) accept m/n as our best estimate of Pm , such that, if it is less than

T, we administer the drug, otherwise we do nothing, or
(5) we adopt Bayes' solution, we assume the uniform prior, and  we

compute the probability that Pm is below the threshold, i.e.
PH{(0<Pm <T)|m,n,Pu )}.   If the result is a probability
greater than 0.5,  we administer the drug;  otherwise we do
nothing.

We now consider each possible course of action and thence determine the
values of the parameters which we would have to use in Bayes' equation in
order to get a result which would (just) justify the given action.

Regarding (1) above, defences for that course could be based on one of
two claims:- either (a) that, if the true prior distribution is unknown, then
Bayes' equation is irrelevant, or (b) that, in the scenario situation, Bayes'
equation has no solution; hence, there is no rational basis on which to make
a choice.  These defences are however vitiated both by the existence of the
information (m,n), which has been, apparently, deemed to be of no relevance
in the formation of the decision, and by the fact that, if Bayes' equation is
accepted in situations where the prior is known, then the decision to do
nothing implies the existence of a prior distribution P0(x),  such that, what-
ever the values (m,n), the probability that the true value is less than the
threshold is always less than 0.5. The assumption of such a prior distribution
amounts, however, to an a priori decision to ignore the data (m,n).  We
conclude that the course of action (1) is irrational and indefensible.    By the
converse reasoning, the course of action (2) is likewise irrational and inde-
fensible.
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The third course of action, i.e. to flip a coin, is, in its relevant logical
features, pretty well identical with (1) and (2), and we therefore move on to
(4), where, if m/n is less than T, we administer the drug;  otherwise we do
nothing.    Here, instead of ignoring the value of m/n as in the previous
cases, we use it, by implication in the following way:-

 [m/n > T ]   ⇒⇒⇒⇒   PH{(T<Pm <1) |m,n}> 0.5   ∴∴∴∴  →→→→  Do not administer1

[m/n < T]    ⇒⇒⇒⇒   PH{(0<Pm <T) |m,n}> 0.5  ∴∴∴∴  →→→→  Administer the drug

whence, by principles of continuity etc., there is an implicit assertion that if
m/n  = T,  then the probability that Pm< T is exactly equal to the probability
that Pm> T and therefore

PH{ (0 < Pm < m / n ) |m , n}  

= PH{(m / n < Pm < 1 ) |m , n} =  0.5 (8-1)

However, Bernoulli's theorem tells us that the result (m,n)  could be due to
any value of Pm  in the interval (0→1).   If, therefore we consider the prob-
ability that each possible value of Pm  should produce the result (m,n) and
integrate these probabilities, with uniform weighting over all the possible
values of Pm,  the probability of the result (m,n) is given by:-

        PR(m | n,0<Pm < x ) =   nCm ⌡⌠
0 

 1
x(m) (1-x)(n - m) dx (8-2)

Hence, it is only when m = n/2, giving a symmetrical binomial distribution
about m, that the integrated probabilities are equally divided on each side of
the point m/n as is needed to satisfy (8-1).   Therefore, if the posterior prob-
abilities are to be equally balanced about m/n, whatever the value of that
ratio may be, this can only be achieved if the posterior distribution has been
reached via a prior distribution which has the property of ensuring that m/n is
always the median of the posterior probabilities.  This would imply that
certain values of Pm  had a greater prior probability than others and would
constitute a significant and unwarranted assumption of additional knowledge
above anything justified in the definition of the scenario.  Furthermore,
whenever the value of T can be equated to a rational fraction a/b, that same
fraction can be generated by any trial in which m = Na and n = Nb,  where N
is any positive integer.  However, although the resultant value of m/n will be
a/b in each case, the curve on which the putative prior distribution has to
operate, acquires a progressively narrower peak as N increases, which would
                                                
1 i.e. If m/n is above the threshold value, we infer that the probability of the true value (Pm)
also being above the threshold, is over 50%.  Therefore we administer the drug.
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imply that the prior distribution itself must change as a function of N: this is
utterly irrational and is incompatible with the nature of a prior distribution
which is, by definition, fixed before the trials take place.  Such notions are
therefore, at least qualitatively, untenable.

However, having rebuked others for failing to remember that qualita-
tive errors may be quantitatively trivial, we must not ourselves fall into that
same trap; for, in practice, on countless occasions, in practical situations,
people do commonly compare a ratio m/n against a threshold T, when de-
ciding upon a course of action.  They do not stop to compute the median of
the posterior probabilities according to Bayes' equation.  The justifications
for this simple approach are, first that it is practical, without requiring the
use of calculators etc. in complex and physically arduous situations.   Sec-
ond, over much of the central range of possible values of Pm ,  the point
defined by the ratio m/n is numerically 'close' to the median of the binomial
distribution. Towards the edges however, i.e. where Pm → 0  or Pm → 1 ,  the
approximation breaks down. Thus, it may be defensible to use a simple
comparison of m/n against T when we are working with well conditioned
values of m and n, and we can assume a uniform prior distribution over the
possible values of the unknown parameter Pm .  Our conclusion is, therefore,
that, while qualitatively speaking, the course of action defined in (4) entails
contradictions and is qualitatively irrational, if we adopt a quantitative point
of view, it is reasonable and acceptable when appropriate conditions are
fulfilled.

In action (5), we accept Bayes' theory and we assume the uniform prior
distribution. The reasoning which allows us to do this is simply that, all the
available information being contained in the numbers (m,n), the only rational
point-estimate which we can give of Pm  is the ratio m/n.   This is, as we saw
in Chapter 5, our best estimate, even though we may have little or no idea as
to how good or bad it may be.  Having therefore allowed the assumption of
the uniform prior in deciding that m/n is our best estimate, we may further
continue that assumption into the assessment of the bounds on Pm .   Indeed
we must do so, for not to do so would be to create a contradiction within our
reasoning.  Yet, we have here a case where the rational decision has to be
made, not upon the 'most probable' value of Pm , but upon our estimate of the
point about which the posterior odds are evenly balanced  i.e. the posterior
median, µ.  Therefore, we use the assumption of the uniform prior together
with the equation :-

PH{(0<Pm <µ) |m,n} =  PH{(µ<Pm <1) |m,n}=  0.5 (8-3)
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in order to reach a decision.  However, while this is the best we can do, it
seems to be a best of extremely dubious quality.   The essence of the matter
is that, in the situation of ignorance, as defined in the scenario, when we are
faced with, in Bayes' terms, 'unknown events', a procedure based on Bayes'
postulate is the only non-irrational means of deciding whether to administer
the drug or to refrain.  To do nothing, even on the basis that we are totally
ignorant of the true prior, is not a neutral option because, as shown above,
the practical implication is equivalent to knowing a non-uniform prior distri-
bution, which gives higher probabilities to some values than to others. In a
purely mathematical context, we normally deem a conclusion which does not
follow rigorously from the premisses to be invalid and we may therefore
deem any course of action based upon such a conclusion to be likewise
invalid.  But, as Keynes pointed out, we do not expect reasoning which is
purely mathematical, to determine questions of an empirical nature, nor
indeed to determine questions of a moral nature.  Our reasoning is not,
therefore, purely mathematical, for we have extended it to moral and other
practical dimensions where the rules of reason hold good as rigorously as in
mathematics, but are subject to additional constraints and considerations.  It
is however the practical element rather than the moral element which is
fundamental to the issue for, clearly, one can construct fundamentally similar
scenarios around the distillation of perfume or the brewing of tea, from
which one may perceive that the crucial elements in such situations are the
combination of the binary choice and the prior distribution which is implicit
in the decision.

Putting aside therefore the fact that, in a practical situation, acceptance
of Bernoulli's theorem entails 1 strong assumptions, none of which can be
justified from the simple data (m,n) defined in the scenario, the aspect of
Bayes' solution which is conventionally regarded as the least tenable is the
value computed for P H{(x 1 < Pm < x 2 ) | m , n , P 0 (x )}  when we assume the
uniform prior distribution.  However, denoting the assumed prior distribution
by Po(x),  we can express a fairly general form of Bayes' equation as:-

                                                
1 Keynes (1921) Chapter XXIX
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P H {( x1 < Pm  <  x2 ) | m, n, Po(x)} 

       =       

 ⌡⌠
x1

x2
 xm (1 - x)(n - m) P0(x) dx 

  ⌡⌠
0 

 1
xm (1 - x)(n - m) P0(x) dx 

(8 - 4)

However, if we set Po(x)equal to the uniform distribution Pu(x), then (8-4)
reduces to:-

P H {( x1 < Pm  <  x2 ) |  m,n,Pu(x)  } 

       =               

 ⌡⌠
x1

x2
 xm (1 - x)(n - m) dx 

  ⌡⌠
0 

 1
xm (1 - x)(n - m) dx 

(8-5)

For, when  m and n are the totality of our information, it seems intuitively
clear that the ratio m/n is the only rational estimate and is therefore the most
probable value of Pm , relative to the only information available.  However,
as it would be perfectly rational and acceptable for a person who was totally
ignorant of Bayes' equation to form such a conclusion, it seems that the
deeming of m/n as the most probable value is not strictly dependent upon the
assumption of a uniform prior, in the sense that, even without Bayes' equa-
tion, we would be capable of intuitively reaching that same conclusion.
Hence, it seems that the result m/n and the assumption of Pu(x) are inter-
dependent in the sense that the uniform prior is necessary for Bayes' equation
to produce the only acceptable answer in the defined situation.  It still seems
however, as Keynes protests, that it is stretching our credulity too far to ask
our assent to a bald and naïve assertion that the probability that Pm lies
between x1 and x2 is given absolutely by the expression:-

P H ( ( x1  < Pm  <  x2 ) | m,n  )  =  B ( x1 ,  x2 , m, n )

where, as in (8-5) above,   

B ( x1 , x2 , m,n )   =        

 ⌡⌠
x1

x2
 xm (1 - x)(n - m) dx 

  ⌡⌠
0 

 1
xm (1 - x)(n - m) dx 

(8-6)
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However, the reality, which Keynes and many others unfortunately failed to
perceive, is that (8-6) gives us, not an absolute value, but an estimated value
based on the data (m,n) and certain assumptions.  It should therefore be
expressed as, at least:-

P H ( ( x1  < Pm  <  x2 ) | m,n, Pu(x)  )  =  B ( x1 ,  x2 , m, n ) (8-7)

Yet, even if we are prepared to assert that, on the information available
in m and n, the value returned by B(.) is the 'best estimate' of PH(.), we
seem at present to have no means of quantifying just how good this estimate
actually is, nor indeed of quantifying just how awful it might be.  For, in any
situation where Bernoulli's theorem is valid, it is mathematically and physi-
cally possible that, if Pm   has any value other than 0 or 1, then m may have
any value in the closed interval [0→n] .  It is therefore mathematically quite
conceivable that, whenever m is greater than zero, Po(x) could be a delta
function at any point in the open interval (0→1).  On the other hand, we
also know that if Po(x) were a delta function very close to 0, the probability,
of observing 100 events in a set of 100 trials, would be extremely small.
This fact suggests that we might, therefore, integrate the probabilities
P R(m |n) over all the possible values in the range 0→x1, and over the range
x2→1 ,  the sum of which, let us call it Σq, could easily appear to be the
probability of observing the event (m,n) if the true value of Pm  were in the
interval 0→  x1  or in the interval x2→  1,  i.e.

Σq  =   PR{(m,n) |((0<Pm <x1)∨∨∨∨  (x2<Pm <1))} (8-8)

whence one could be led to believe  that the probability of Pm being within
the interval x1 → x2 is given by:-

1-Σq  =  PR{(m,n) |(x1<Pm <x2)}  =  B(x1,x2,m,n) (8-9)

Therefore, it could be argued, the probability of  getting the result {m,n}
from a value of  Pm  which is outside the interval x1 →  x2  is equal to 1 - B (.).
Correspondingly, it can also be argued that B ( . )  gives us the probability,
when the value of Pm  is in the range x1 →  x2 , that we will obtain the trial
result {m,n}.   However, seductive though such reasoning may be, there is
within the integral denoted by B (.), an implicit assumption of a uniform
prior probability over the possible values of Pm , and, although complaints
about such assumptions in the calculation of direct probabilities, PR( . ) , are
rare, their arbitrary nature is just as problematic as in calculating inverse
probabilities.
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Yet, it is clearly informative to consider the implications of various
possible values of Pm.   If, for instance, Pm = 0, the probability PR(m |n,Pm )
for any value of m > 0 is also zero.  If we then progressively increase the
possible maximum value of Pm and plot the integrated probability of m
events in a trial of size n, (i.e. PR(m | n, Pm < x ) ),   we get the type of
result illustrated in figure 8.1:-
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Figure 8.1

On this basis we could imagine a technique by which to measure the 'intrin-
sic' quality of  m/n as an estimate of Pm.  For example, we could find a value
x1, such that PR( m | n,Pm < x1 ) = ½ x 10 -6 and on this basis, assert that the
chance is less than one in two million that an event (m,n) would be produced
by a value of Pm  which is less than x1.  Likewise, further to the right of x =
m/n, we can find the point x2, such that the chance is less than one in two
million that an event (m,n) would be produced by a value of Pm  which is
greater than x2.  We could then assert that the chance is less than one in a
million that an event (m,n) would be produced by a value of Pm  which is
outside the range  x1 → x2.  Hence we could use the width of the interval x1
→ x2  as a measure of the quality of the ratio m/n as an estimate for the value
of Pm .   
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 However, while such an approach seems to avoid any direct entangle-
ment with the postulate of the uniform prior, and might seem to have much
in common with both Fisher's method of likelihood and the concept of
'confidence limits', closer consideration shows that the process of integra-
tion, as suggested above, accidentally introduces an implicit assumption of a
uniform prior distribution.  This can be seen by considering a case where we
know that the different possible values of Pm are governed by a weighting
function Po(x).  In such a case, the probability that Pm = x and that there will
be m events in a trial of size n, is the product of the 'Bernoulli' probability of
m, given x and n, and the probability that Pm = x, given Po(x), i.e.:-

PR ( m | n, x,Po(x))   =    
nCm Po(x) x(m) (1-x)(n - m) (8-10)

Hence the probability that Pm will fall in the interval 0→ x1 and that m
events will occur in a trial of size n  is:- 

PR ( m | n, x,Po (x), Pm < xa )   

           =    
nCm ⌡⌠

0

   xa
 xm (1 - x)(n - m) Po(x) dx (8-11)

If, however, we omit the term Po(x) from (8-10), this is equivalent to im-
posing a uniform, unit value on Po(x), and therefore imposing a uniform
prior on the possible values of Pm.  Further, as the approach we have just
considered has quite a lot in common with the methods of both likelihood
and confidence limits, it would appear that those methods also may be not
entirely free from a hidden assumption of a uniform prior when considering
the possibility that the value of Pm may be in a defined interval.  However,
the crucial difference between those methods and Bayes' solution is that the
numerical value returned by the function B(.) is, explicitly and directly, an
estimate of a probability concerning the true value of Pm .  The numerical
value returned by B(.) can therefore be multiplied by a monetary value and
used, quite rationally, to compare the probable values or probable costs of
alternative courses of action, given the specified assumptions.

In sum, therefore, in real-life situations, probabilities can be computed
only relative to our own perceptions and assumptions.  Absolute probabili-
ties, if they 'exist', (whatever that may mean), are not accessible to us. The
critical case described above is realistic and requires a rational decision;  that
is, a decision which is at least internally consistent and does not contradict
the scenario definition.  To make such a decision, given the extremely lim-
ited information, requires us to make assumptions. Clearly, we should as-
sume the minimum which is needed to reach a rational, self-consistent
choice of action. And, although it is conventional to assume without ques-
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tion the validity and relevance of Bernoulli's theorem, it is arguable that to
do so involves far more in terms of additional structure etc. than is involved
in the assumption of the uniform prior.  We therefore conclude that although
Bayes' solution may not be mathematically justified, in the sense that it
cannot be rigorously deduced from the axioms normally accepted as funda-
mental to mathematics, it is certainly justified in situations which require
that our decisions and conduct shall be rationally justifiable and consistent.
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Chapter  9

The Ruler

Although some readers may find the arguments and conclusions of
Chapter 8 fairly reasonable, there remains, as with Bayes' Scholium,  an
unsatisfying lack of deductive rigour.  It brings to mind yet again Keynes'
'children of loose thinking and parents of charlatanry'.  We therefore, in this
chapter, make a stern effort 'to do better', taking as our starting blocks the
blatant conflict which seems to exist between the parametric demands of
Bayes' theorem and the everyday practice of mankind.  While we can little
doubt or dispute the rigour with which Bayes derived Proposition 5, and
even less the achievements of Kolmogorov, Jeffreys or de Finnetti in corre-
sponding regards, we equally cannot doubt our ability to weigh a bag with-
out needing to know what it contains, or to measure the length of a stick
found on the beach, without knowing the characteristics of the population
from which it was taken.  The Egyptians built pyramids with astronomical
precision, thousands of years before Bayes.

Since there is here prima facie evidence that, in a situation of direct
measurement, Bayes' theorem is not relevant - for it is certainly not often
used, (at least consciously), by carpenters, doctors, nor indeed physicists - it
is necessary for us to ask how such irrelevance, or at least neglect, could
come about, given that Bayes' analysis seems to be quite general ?  We are
forced to consider that although Bayes' theorem is undoubtedly a true repre-
sentation of valid reasoning in certain problems concerning probabilities, it
may not be, in its conventional interpretation, the whole truth and there may
well be other forms of equally valid, and not-incompatible, probablistic
reasoning. Fisher clearly suspected this to be the case in his pursuit of 'fidu-
cial probability', and we may find this to be implicitly the case in our use of
measuring instruments such as kitchen scales and builder's rulers.  Such
devices also raise the difficult point that, if a uniform prior probability has
been assumed when measuring, say, a resistance in an electrical circuit, the
corresponding prior if we chose instead to measure the potential difference,
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would be decidedly non-uniform1.  However, if we let EA denote the event
that a certain stick has a true length l and let EB denote the event that its
measured length is m, then the algebraic form of Bayes' theorem, (3-51),  can
be expressed as:-

PH ( EA | k, EB )  =    PH(EA | k)  

 PR(EB | k) 
  x   PR (EB | k,EA ) (9-1)

where k denotes the supporting knowledge and assumptions.  However, both
the term PR(EA | k) and the term PR(EB | k)  represent probabilities in which
the 'other event' does not appear and, as with their ratio PR (EA | k) / PR(EB | k),
it is rare for any of these terms to play any explicit or acknowledged part in
human activities which are concerned with measurement.  Furthermore,
although probability is, it seems, a vital part of rational behaviour in a world
which combines great regularities with great uncertainties, there are many
situations where perfectly rational people feel totally unable to supply any
value for those terms, as they seem to be conventionally understood.
Equally, there is no doubt as to the ability of people to act rationally and in
accordance with sensible estimates of the probabilities which they consider
relevant.  Even more disturbing is the fact that, in many situations, it seems
that whatever effort we might make to determine, by observation, and in the
best traditions of science, the appropriate values for PR (EA | k) and PR(EB
| k), if these terms are to be understood as prior probabilities over the true
length of a stick and its measured length, respectively, we shall be forever
unable to do so.   We could therefore, almost in desperation, consider the
possibility of taking the line of Chapter 8, where we analysed various deci-
sions in terms of their implied assumptions regarding PR ( EA | k ) and PR(EB
| k).  However, in the cases we are here considering, that analysis may not be
acceptable to the person making the measurement as a true representation of
their position. For, although our analysis may produce a valid analog of their
position, we cannot validly assert that the analog actually is that position.

 An alternative approach is therefore to challenge the common assump-
tions, ('common' that is, among philosophers and statisticians), that:-
(i) Bayes' 'first event' equates to a true value being in a given interval, and
(ii) that Bayes' 'second event' equates to our measuring a value also in an
interval belonging to the same set of values as the first event.  In contrast to
these assumptions, if we actually consider how builders, doctors, physicists
and engineers go about the making a measurement, we see that they (i) place

                                                
1 Jeffreys, H. (1983), Ch 3, discusses in great detail various techniques for overcoming
problems of this type in specific, practical cases but seems to have no general solution.
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an object against a ruler, or vice versa they place a ruler against an object,
and (ii) they call out, or write down, a value.   Relating this process to Bayes'
analysis which we discussed in Chapter 3, the general problem is to evaluate
the probability that event EA has happened, when it is known that event EB
has happened, the answer being given in terms similar to (3-51) by:-

PH ( EA | EB , ..... )     =     
 PR (EA ∧∧∧∧ EB | ..... )

PR (EB | ..... ) 

                             =       
PH ( EA | .... ) x PR( EB | EA , ....) 

 PR( EB |..... ) 
    (9 - 2 )

In the context of measuring the length of a stick, and given  that EB is an
event of the form 'the length of the stick, as measured on the ruler, is
x inches',  and that EA is an event of the form 'the true length of the stick is
in the interval x± δ x  inches', there is an immediate temptation to ask for a
prior population distribution, PR ( EA | .... ), to describe the lengths of the
sticks to be found in the world at large, or, perhaps, on our part of the beach.
Fortunately, the question is so ludicrous as to arouse our immediate suspi-
cion; but, had we formulated the question in terms of the heights of people,
it would be all too easy to avoid any hint of suspicion, such is the degree to
which the ideas of Quetelet 1 and his followers have saturated our minds.
However, it also yields little sense to let the laying of a pencil alongside a
ruler constitute the 'first event', and the calling out of a measurement the
'second event', thus creating a situation in which Bayes' theorem allows us to
determine the posterior probability that the pencil was laid against the ruler.

However, we have seen several times in previous chapters that, in
Bayes' analysis, the order of the events is not fundamental and that, the terms
'first event' and 'second event' are merely names used to denote different
events.  These names must be taken neither to imply that either event has
happened nor that the events happen in any particular order.  In principle, a
'second event' can occur without the occurrence of a 'first event'.  This possi-
bility is an integral part of the question which is addressed by Bayes in
proposition 5:-  'if it is discovered that the second event has happened, and I
then guess that the first event has also happened, the probability that I am
right is B/p2' .   However, while there are in these different situations, subtle
differences of meaning in the terms used, none of these differences removes
the fact that a second event can occur independently of a first event and that,

                                                
1  Hacking (1990) p108
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by this fact, Bayes' analysis acquires a generality concerning the correlation
of events which it might otherwise lack.  Bayes' analysis would therefore
allow for my calling out a number before the pencil is laid alongside the
ruler, or indeed without there being any object to be measured.   In the case
of measuring the pencil and other 'given objects', however, we do not require
the generality which Bayes allows, and we are not required to consider a
situation in which I sit at my desk, I call out a number, and an observer is
required to guess whether I was measuring a pencil.  The fact that I am
measuring a pencil is defined in the scenario.   Indeed, the scenario tends to
include an axiomatic assumption that the declaration of a measurement is
always and only made in response to the input of an object, albeit, as we see
later, it is highly desirable, and is arguably essential, that the scenario shall
allow for mistakes and mechanical failures.  But equally, in the measuring
process, there is a sense in which both events are assumed, by the definition
of the scenario, to have happened, i.e. we accept that we have loaded an
object into a measuring device and that the measuring device has subse-
quently declared a measured value.

 Thus, we accept that, in such cases, the ordering of the events is es-
sential.  Otherwise the declaration of a value prior to the loading of the
object would betoken a non-operational machine.  These things therefore
suggest that we should investigate the implications of assuming an equal and
reciprocal relationship in probability between the length of the object we are
measuring and our reading of the ruler.  In abstract terms, we are interested
in arguments of the form 'PR (EA | k,EB     ) = PR (EB | k, EA )'.  For example, if
we are asked to measure the length of a pencil on a regular schoolroom ruler,
we shall have no hesitation in answering that the pencil is approximately,
say, 155mm in length and that our answer is accurate to, say, +/- 2mm. Thus,
leaving ourselves a small allowance for extraordinary errors, we might
confidently assert an ability to confine our errors to less than +/- 2mm in
95% of cases.  The choice of words is however important, for, bearing in
mind the constraints of Bayes' theorem, we must not immediately assert that,
in 95% of cases, the true length of the pencil will be within +/- 2mm of the
measured value.

Having however claimed that we can achieve a certain performance in
measuring the lengths of pencils, we may be challenged to show supporting
evidence.   One way of answering this challenge is to show that the error
limits are well-supported by consideration of the physics involved, as is the
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case in radar and similar devices 1.  Another, and not incompatible answer is
to put the matter to a practical test in which we use a machine as a judge, and
we then measure 1000 pencils.  If all our answers are judged to be correct,
we can use Bernoulli's theorem and assert, as discussed in Chapter 8, that the
probability of this result being produced by an underlying performance
worse than our claim is not greater than 1 : 10 25, which would rather seem
to support the claim.  We may however be asked to justify the assertion that
the claimed performance of 0.95 is indeed a 'probability'.  Conventionally
this requires us to show, for example, that (a) it has a non-negative value in
the range 0 - 1;   (b) that the probabilities of the mutually exclusive outcomes
sum to 1; (c) assuming that the probability of error is in each case unaffected
by the outcome in every other case, that the joint probability of measuring 'n'
pencils correctly is not less than (0.95)n etc..  The answers to all of which
questions are clearly in the affirmative.

 This approach can therefore be extended to give a calibrated perform-
ance for a measurement process, which we can define in terms of an object
which provides a true or 'input' value, followed by the 'addition' of errors in
the measurement process, followed by the output of a reading.  In the termi-
nology of electronic systems, we have an input signal  a randomly  additive
error 2 ε , and an observed value m, so that  m  =   +  ε.   If we also postulate
that the variations and uncertainties in the magnitude of the error ε  shall
have the characteristics which are essential in a variable which is to be
manipulated by the conventional probability calculus, we can assert that,
given the true value , the probability of observing a value m is precisely the
probability of occurrence of an error ε  = m - ,  that is:-

PR {m |  k, , C(.)  }  = PR {ε ≈ m - | k, C(.)}    (9-3)

where C(.) denotes the calibration which has given us the distribution of
probabilities over the possible magnitudes of the error ε .

Thus, because the random errors in measuring devices are, over the
ranges of objects encountered, either fully independent in magnitude of the
true value or vary only slowly with the true value, they can be assumed

                                                
1 See Woodward (1964), Ch 5.  The assumption of a 'uniform prior' which Woodward
mentions on line 10 of p84, concerns the positions of radar targets and is a necessary
condition for the production of a bias-free measurement.  This is required to deal with
unpredictable target manoeuvres which could otherwise be obscured by a prior expectation.
2 Often called 'noise' in electronic systems.  Originally this was a reference to errors pro-
duced by phenomena associated with the 'hissing' noise in a radio receiver.
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independent in any given part of the scale1.   Quantisation errors, particularly
in automatic measuring devices, are often of this kind. The assumption of
additive independence is also made by many common methods in statistical
inference, e.g. in the use of the arithmetic mean, the method of least squares
with its many variants, and the 'normal' or 'Gaussian' error distribution2.  The
assumption is not, therefore, especially presumptive and is often justified
both by the physics of the measuring device and by the approach taken to the
overall modelling of errors.  That is, provided that the amplitude of the
randomly additive error is small compared with the magnitude being meas-
ured, even those errors which are a function of the magnitude can be han-
dled by other terms.   In other cases, even where errors on individual
observations are large compared with the underlying true value, additive
independence allows filtering and smoothing techniques to be applied and
the true value to be derived to high degrees of accuracy.   Such conditions
are common to probably all measuring devices and it is likewise probable
that a device which does not conform to these conditions will be unusable as
a measuring instrument.  There is here, therefore, no assumption of any
arbitrary or privileged position.

 Thus, if we define events such that, in measuring a property of an
object, we let E  denote the event that the random error has a given value, or
falls in a defined range, and D  denotes the event that the measuring device
declares a measured value, Bayes' theorem gives:-

PH ( E | D , k )     =    PH ( E | k ) x   
PR(D  | E ,k) 

PR(D | k ) 
    (9 - 4 )

Therefore, assuming that the calibration provides a true model of the ran-
domly additive error probabilities, it follows that the calibration provides an
objective basis on which to assert a value for the prior probability PR (E | k).
That is, the calibration gives us the probability that the error on any meas-
urement is of a defined magnitude.

Taking the term PR(D | k), we see that D, the event that the machine
declares a measured value, only has meaning in response to the input of an
object which is to be measured.  We may, for example, have a machine,
which is activated by a 'go button' indicating that we have loaded an object,
and which 'bleeps' when the measured value is declared.  We therefore

                                                
1 Bias and scale errors are covered by other techniques, albeit bias can be included in a
probablistic calibration table.
2 Keynes (1921) Ch. XVII
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define our underlying assumptions and data etc., denoted by k, to include the
calibration data and the fact that an object, which is to be measured, has been
loaded into the machine and that the 'go button' has been pressed.  Hence, the
term PR (D  | k, E ) denotes the probability that a measured value will be
declared, given that an object has been loaded into the machine, and that the
'go button' has been pressed, and that an additive error defined by E has
occurred.  The term PR(D | k) simply denotes the probability that a measured
value will be declared if it is given that an object has been loaded into the
machine, and that the 'go button' has been pressed.

The physical meaning of the ratio PR (Dk, E ) / PR (D | k) can then be
clarified by taking, as a general model, any process which comprises a de-
vice for the generation of errors and a device which reports the values ob-
served.  Normally, we will expect all values to be reported and therefore
both numerator and denominator to have the value 1.  If, however, there is a
bias in the reporting mechanism such that, when the error has the value
defined by E, some, or all, reports are suppressed, the numerator PR (Dk, E )
will have a value less than 1 to reflect this fact.  The suppression also affects
the denominator, as can be seen if, as in (3-51d), it is expanded to the form:-

P (D| k ) =   Σι P (D| k,Ei ).P (Ei| k)

where the set {Ei} represents the possible values of the error.

It is however important to consider the place of the calibration in
relation to this model of the meaurement process.  As it will generally be
necessary to have the reporting device in place in order to carry out the
calibration, the calibration will include the bias at that time.  The ratio
PR (Dk, E ) / PR (D | k) thus represents the probability that the process is, in
this regard, working according to the calibration.

We must however point out that a bias of the form just described is an
extremely theoretical notion.  That is not to say that such bias could not
occur in any realisable mechanism, for it is a trivial matter to write an algo-
rithm which displays such bias.  The practical issue is that the biasing proc-
ess needs to be supplied with the value of the error and it is unusual for the
value of an error to be available within a measuring system and yet not used
to correct the output.  However, in practice, this sort of effect could be
caused by anomalous coupling between electronic circuits such that an
interfering signal both introduces an error in the measuring device and,
coincidentally, causes a blocking of the reporting mechanism.  While phe-
nomena of this kind are rarely experienced by the majority of users of elec-
tronic devices, they are quite often encountered by engineers who are called



Chapter 9 The Ruler

Version zh25a.doc at 18:36  on 13 July, 2001
All rights reserved.

133

upon to diagnose the reasons for 'inexplicable' random failures in complex
equipment.

The phenomenon of 'drift' is however common, especially where
digital devices are not available and 'analogue' or continuosly variable de-
vices have to be used as 'transducers' to convert a representation of a mag-
nitude from one physical form to a different form, such as the conversion of
a pressure to a voltage.  Such devices are often subject to many different
physical influences, e.g. microscopic changes in shape due to the effects of
steady forces over a period of time, and, as a result, the performance of the
device changes.  When using such devices, it may therefore be necessary to
adjust the calibrated error-distribution to allow for drift since the time of
calibration, or to allow for operation at a different temperature, etc.

Thus, summarising the symbols, we have:-
C( . ) the calibration data
C(e) the calibrated probability of an error e
C'(e) the adjusted probability of an error e at the time of measure-

ment
E the error has a magnitude e
D the observing device declares an output value
k other assumptions and data, including the calibration C( . )
 the true value

m the measured value
PR (Wk) the probability that the measuring system is working as cali-

brated,
and the probability that an assertion E  is true, is given by:-

PR (E | k, D )             

    =  PR (E | k )  x  PR (D | k, E  ) / PR (D | k)       

    =  C(e)  x  PR (Wk)   =  C'(e)      (9-5)

We therefore have a situation in which the measured value m is a
random variable,  formed by the addition of a fixed, but unknown, governing
value  and the random error e so that m =   + e.  Hence, as a fact of arith-
metic,   = m - e.  If, therefore, we are told the value of m,  and we are told
the probability C'(e), then the probability of the hypothesis that  has the
value m - e is:-

PH (  ≈ m - e  k, m ) = C'(e) (9-6)
which accords precisely with common practice.
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That is, where we are dealing with random additive errors, which are
independent of the sample value, we can, by using Bayes' theorem, and
without assuming any prior probability over the true value, achieve the result
for which Fisher strove so hard and so long 1  i.e.  'The possibility of making
exact statements of probability about unknown constants of Nature ......
(and) ..... making a complete specification of the precision with which such
constants are estimated ........'..  It is also important to note that the chal-
lenging case of the median 2 can be viewed as a form of measurement, sub-
ject to an additive error, or uncertainty, which is independent in its
magnitude from the sample value.  In its bare bones, the definition of the
median µ  constitutes an a priori calibration which tells us that, if we observe
a value m =  + ε , then there is a probability of 0.5 that µ  ≥ m  and an equal
probability that µ  ≤ m.  Thus, provided that the errors on each observation
are randomly independent, if we are given a pair of observed values m1 and
m2, then, exactly as Fisher asserted, there is a probability of 0.5 that µ  lies
between  m1 and m2.   This is, however, achieved without any change of
logical status between fixed quantities and random variables: once  is
given, it is fixed and does not vary; the independent random variable re-
mains ε , and the essential statement of probability remains that of (9-3).
Given (9-3), the assertion (9-5) is a simple statement of arithmetic.  If we are
told there is a probability of 0.95 that a random variable ε  has a value e, then
there is correspondingly a probability of 0.95, given a value z, that the ran-
dom variable z+ε  has a value z+e.  It also follows that if a statistic T(m1 .....
mn ), derived from observed values, is distributed about the true value  in a
manner which is independent of , then our knowledge of that distribution
constitutes a calibration.  This allows us both to assert a probability con-
cerning the true value and to avoid the provision of any prior distribution of
probability over that true value.  Hence, while there are here superficial
similarities with Fisher's fiducial argument, there are also profound differ-
ences.  It is sad that, although Fisher was pursuing a thoroughly valid objec-
tive with the fiducial argument, he failed to find a valid way of achieving
that objective.

We conclude, therefore, that, in using Bayes' theorem, we have a
remarkable freedom to define 'first event' and 'second event' to suit our
purpose and that the chosen definitions can have marked effects upon our
ability to supply values for the required parameters. That is, always provided
that the chosen events and the 'trials' by which they are determined are such

                                                
1 Fisher (1956) p60.  See also Ch 7 above
2 See Ch 7 above.
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that valid probabilities can be assigned to all the possible outcomes of the
trials1.  As we show below, examination of alternative outcomes can be
important and revealing.  It must also be emphasised that the independence
of the calibration C(.)  from the value of  is critical in the above argument
and cannot be assumed to be true in general.  It is, in particular, not true in
the case of Bayes' experiment 2.  There are however many cases of measure-
ment in everyday life where this assumption is sufficiently valid for practical
purposes and allows people to operate very successfully in accordance with,
but without ever referring to, or knowing of, Bayes' theorem.

Further, it should be noted that, in the above approach, where we are
given independent additive errors, the prior distribution relates only to the
uncertainties and errors in the measuring process, and is in no way related to
the object being measured.  Thus, we have disposed of any need to consider
'populations of sticks' when we wish to measure the length of the stick which
the dog brought back from the beach.  Likewise, we have eliminated from
the process of measurement the need for invariance of the prior distribution
when the parameter being measured is subject to a non-linear transforma-
tion, as when, for example, we measure potential difference where we have
previously measured resistance. That is, the only prior information we re-
quire is that which concerns the performance of the measuring device at the
point of measurement. Transformations of the input signal prior to the act of
measurement are, by virtue of additive independence, irrelevant to the prob-
ability of error in the measurement.  This dissolves a problem in many im-
portant applications for Bayes' method which, though long-ignored in
practice, has been deeply disturbing to those more concerned with matters of
principle .  Jeffreys3, for example, was strongly concerned to solve this
problem and was delighted with his own discovery of certain distributions
which avoided the problem.  More recent authors4, aware of the difficulty
and aware also of the force in successful common practice, have had to
satisfy themselves, (if not perhaps all their readers), with arbitrary rules such
as accepting Bayes' approach where the unknown parameter is a 'random
variable with a prior probability density function', or, where 'there is an
unknown true value', of ignoring the issue of probability and simply using
the 'maximum likelihood' estimate.

                                                
1 For an understandable treatment of these requirements, see Howson, C. and Urbach, P.,
(1993) esp. Ch.2.
2 See Ch 13
3 Jeffreys, H. (1983).
4 e.g. Van Trees (1968);   Bar-Shalom and Fortmann (1988)
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It is therefore satisfying to find that, in the case of direct measurement,
the use of calibrated instruments allows us to assign probabilities to the
possible values of unknown parameters and thus reconcile common practice
with the fundamental principles in Bayes' theory of probability.

Further and more complex aspects of the dimensional measurement
problem arise in radars and other devices which may have to make meas-
urements of weak signals which may be moving through a noisy environ-
ment. Such issues are often addressed by repeating and integrating the
observations, in order to improve the relevant probabilities.  The application
of Bayes' methods to these situations is the subject of Chapter 13.

One caveat remains to be addressed. If the calibration of a ruler, or
analogous device, is determined by empirical tests and histograms of errors,
we will often have a situation where the calibration is effectively based on a
'Bayes trial' from which we have to determine the probability that the un-
derlying frequency of errors in a defined band, falls within defined limits.
Although this means that our investigation has turned a full circle, we are not
exactly back at our starting point, for we are at a significantly greater depth
and the resolution of this problem forms the central issue of the next two
chapters.
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Chapter  10

The Individual

Although we have, in previous chapters, made some useful progress in
the matter of ruler-like devices, where we can reasonably assume that the
error-probabilities are effectively independent of the magnitude we are
measuring, we have seen also that Bayes' experiment1 falls not into that
category, yet is often fundamental to the process of calibration.  We are
therefore forced, yet again, to confront the issue of the prior distribution:
albeit, having shown the population prior to be of no relevance in the case of
a direct measurement, we may, not unreasonably, wonder just how relevant,
if at all, it may be in the case of measuring Pm, i.e. an unknown probablistic
frequency 2.   Also, we are sceptical as to whether, in the case of measuring
an individual value of Pm, it can ever be valid to introduce information
derived from other individuals.  However, that doubt seems immediately to
be dispelled if we simply consider a population within which there are just
two values of Pm, taking 0 and 1 as an extreme case.  If a member is selected
at random from such a population, a single trial immediately determines the
Pm value of the selected member.  The objective relevance of the population,
considered as a prior distribution, appears to be indisputable.  To take an
even more extreme case, we can consider a population which is defined and
selected to consist entirely of people called Smith.  Within such a popula-
tion, the probability of finding anyone called Jones - the possibility of mis-
takes being excluded - is zero.

We also have to question the means by which we can acquire knowl-
edge of a prior distribution.   If we were of a doctrinaire disposition, it would
be tempting to lay down an over-arching rule that valid knowledge of a prior
distribution can be acquired only by knowing the process by which the prior
is created, e.g. by knowing that a ball is thrown randomly onto a smooth and
level table.  Indeed, in his 1921 paper, Fisher argued 3  that:-   'Such a prob-
lem is indeterminate without knowing the statistical mechanism under which
different values ... come into existence : it cannot be solved from .... any

                                                
1 Ch 4 above.
2 See Notation and also Ch.5 above.
3  Fisher (1921) in a 'Note on the confusion between Bayes' Rule and my method of the
evaluation of the optimum'



Chapter 10 The Individual

Version zh25a.doc at 18:36  on 13 July, 2001
All rights reserved.

138

number of samples.   There seems however to be neither proof nor justifica-
tion for such a strong assertion.   Perfect knowledge of the distribution can
be acquired by measuring every individual within the population.  But where
we are dealing with hypothetically infinite populations or we are con-
strained, as in Bayes' experiment, to observe only a sample sub-set, then
there would seem to be serious doubt of our ability to deduce, from samples,
valid limits for the true distribution.

To progress the matter, we consider a  scenario where, in samples, say
of blood, taken from randomly selected members of a population, the pro-
portion, Pm , of cells of type-M, falls outside limits x1→ x2 only rarely.  The
actual distribution of values outside the known concentration in the band
x1→ x2  is assumed to be uniform.  For example, we may have a population,
where the normal limits of Pm  are between 0.29 and 0.31, and the total
probability of a person, (selected at random etc.), being outside these limits
is only one in a thousand, (fig 10.1):-
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Figure 10.1

Suppose then that a sample taken from a patient shows that, of 100 cells
which have been tested, 50 cells are of type-M and we wish to compute the
resultant probability distribution with respect to the possible values
of  Pm  for this patient.  If we use Bayes' theorem to combine the data from
the sample taken from the patient with the prior knowledge of the popula-
tion, we find the post-trial distribution shown in Figure 10.2.   In such a
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situation, we may feel well-advised to seek a larger sample and Figure 10.3
shows the result of increasing the size of the sample to 500 cells with a
corresponding attenuation of the prior so that the probability of  Pm  in the
region of the population norm is some ten orders less than that of a value in
the region of 0.5.
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But the issues go much deeper than merely whether we need a bigger
sample, for assuredly, if we make the sample big enough and the ratio m/n
remains at 0.5, the peak of the posterior will also converge ever more
closely on that value, albeit without ever quite getting there.   The deeper
point concerns, as Keynes warns1, the loss of contact with common sense in
a maze of mathematics.  For, with scant justification, we are applying a
prior probability distribution, derived from a sample of a population, to
measurements, taken on a specific person who was possibly not even a
member of the sample on which the population statistics were based: even
worse, we are treating the measurements made on this individual as if they
were part of a single statistical continuum with the rest of the population,
and in which the population takes on the rôle of a governing process over
the individual.

                                                
1 Keynes (1921), p389
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Figure 10.3

These are ghastly errors.  The statistics of a population do not affect
our ability to count accurately, nor do they affect the variability of m/n in
samples taken from a given person: the taking of successive samples from
that person is a process utterly distinct from that of taking successive sam-
ples from different members of the population.  The fact that we may have
before us a person whose M-count is measured as being well above the norm
will never give us reason to assess the true count as being somewhere be-
tween the norm and the value we actually counted.  The statistics of the
population are of massive irrelevance.  If we need a better answer, we in-
crease the size of the sample, or we look for other information relevant to the
object under examination; we do not need the epistemological lunacy of
looking at other people in order to improve our estimate of the level of M-
cells in the person before us1.

It is important, therefore, that we seek an explanation for the clash
between, on the one hand, the views of authorities such as Boole, Keynes,
Fisher, Fine; and, on the other hand, the common practice of objective meas-
urement.  For the great authorities, differ though they may on many matters,
are united in their outright rejection of the assumption of the uniform prior:
conversely, they are united in affirming relevance of the prior distribution,
                                                
1 See e.g. Wonnacott (1972), p 367.  This is an excellent introductory text which clearly
describes, without attempting to justify,  the basic techniques of contemporary statistics.
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when it is indeed known.  Yet, an important attribute of the uniform prior is
that it has no bias against the unexpected and, at every point, gives the
maximum weight to the observed data which is rationally consistent with a
priori ignorance as to the actual value of the parameter in question.  This can
be particularly important when we need to be alert for the occurrence of
events which are rare, but not impossible.  Furthermore, in the common act
of measurement, it is widely regarded as serious malpractice to allow exter-
nal prior probabilities to impede the objectivity of the metric process.  Mul-
titudes of engineers, builders, scientists, doctors and navigators, in every
minute of every day, use counters, and similar instruments to estimate prob-
able values of attributes and, indeed, probability limits on those values, with
never a glance in the direction of an external prior distribution.  Counting
heads does not, decide such arguments: but it gives us good reason to pause
and reflect.

In the context of Bayes' essay, which seems to have exercised enor-
mous influence on perhaps every author who has subsequently examined the
issue,  the fault seems, metaphorically speaking, more geological than moral,
in that all seem to have failed to perceive the discontinuity between the
population and the individual 1.  For, even in the case of Bayes' experiment,
once the first ball has been thrown and has come to rest, we are in a situa-
tion, essentially, of measuring the distance of a particular ball from the edge
of the table. To that process of measurement, the prior distribution of prob-
abilities over the possible positions in which the first ball can come to rest, is
irrelevant.  The root of the matter is that, once an individual has been chosen
from a population, the distribution over the population, of the values of the
attribute in which we are interested, is of no relevance to the measurement of
the value of the attribute within the selected individual. Within the individ-
ual, the value of the attribute is now fixed 2, and any statistical variations will
be induced by the metric process.  The act of selecting a specific individual
causes the question of probability distributions to shift from the population
from which the individual was selected, to the process which is used to
measure the value of the attribute within the individual.

 Yet we have the case, illustrated above, where a prior distribution over
a population of two members with values 0 and 1 respectively, enables a
single trial immediately to determine the value of the selected member.
Something is paradoxical, or simply wrong in our thinking.  A clue towards

                                                
1 Clear acknowledgement, in conversation, of this independence is however common
among many educated folk in circles such as teaching, engineering and medicine.
2 i.e. putting aside the matter of a time-varying attribute, which is not here at issue.
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the resolution is however obtained if we also consider another population of
two members, but this time where the values of Pm are extremely close to
each other, say, 0.4999 and 0.5000.  If one of these is selected at random, the
size of the trial needed to determine to any reasonably high degree of confi-
dence which was selected, will clearly be large.  The relevance of the popu-
lation as a prior in the determination of the value of an individual is now
small and, as the difference between the values of Pm diminishes, so does the
significance of the prior.  Indeed, if we consider members of a population
which are arbitrarily close, then we immediately see that only the assumption
of a bias-free uniform prior will be capable of discriminating between those
members.  Which suggests that, in our conventional approach to such issues,
we may be taking too much for granted and it seems right to wonder
whether, or under what conditions, a 'population prior' is ever objectively
relevant to an individual case.

This, however, raises a further serious issue in connection with popu-
lations, namely that of defining the population to which an individual shall
be deemed to belong.  For there is generally nothing essential about an
individual being a member of a given population, and there is no limit to the
number of different populations we can define, of which a particular indi-
vidual is a member1.  It may therefore be a matter of arbitrary choice as to
which population we use on a particular occasion: a fact which casts yet
further doubt on the use of population data as a prior distribution within a
metric process which is directed at individuals.

These questions force us, therefore, to ask where is it, and how, that
prior knowledge of a population can be so powerful in providing knowledge
of an individual ?  The answer, we would suggest, is that the power arises
when the population prior identifies classes, within which certain character-
istics of members are confined to highly specific values, or to narrow bands
of such values.  The process of measurement then allows us to identify an
individual as being, to some degree of probability, a member of a certain
class. Given such an identification, we can then use the precise prior defini-
tion of class membership to determine any number of attributes and values.
Similar considerations apply when we know that objects in a given set are
limited by well-defined bounds, e.g. we may know the lengths of the longest
and shortest pencils in a given bundle.  In such cases, the limits clearly apply
to any pencil selected from the bundle.

In relation to Bayes' experiment we therefore consider a scenario
where prior information tells us that a certain population comprises two
                                                
1 cf. Popper (1972), p.210, who makes a similar point.
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classes of objects X and Y.  In a certain type of trial, all members of X have a
probability of success, Pm(X) = x, and all members of Y have a correspond-
ing probability of success Pm(Y) = y.   Suppose then that objects are picked
randomly from this population and we are required to judge, on the basis of
an 'm/n' trial in each case, whether the object is from X or from Y.  This
situation is, in many ways, similar to that of the critical case discussed in
Chapter 9 and we can adopt an appropriate strategy.  The point special to this
case is however that, having reached a decision, the a priori information tells
us, if our decision is correct, the exact value of Pm.  This is, of course, a
generalisation of the cases illustrated above, where we considered  popula-
tions of just two members with Pm values of 0 and 1 in one case and of
0.4999 and 0.5000 in the other case.    Superficially, very superficially,
therefore, all these cases appear to show that a priori information concerning
values of Pm within a population can help us achieve better estimates of the
Pm values than could be achieved entirely on the basis of the observed m/n
results.  At a deeper level however, the truth is that these 'better values' are
not achieved by combining according to Bayes' theorem, the observed m/n
data with an a priori probability distribution, for the distribution scarcely
enters the picture. Rather, we are here using the observed values of m/n in
order to make a probablistic identification between the object being observed
and membership of a class which is know to us a priori.   Indeed, many
radar surveillance systems use precisely this type of procedure when they
exploit the relationships between:- (i) the observed 'blip/scan ratio' on a
particular radar target, a parameter which equates exactly to an observed
m/n, and (ii) the radar performance parameter denoted by Pd, which corre-
sponds exactly with our Pm, and (iii) the aspect angle and 'echoing area' of
the target, and, finally, (iv) pre-defined libraries of characteristics for known
types of aircraft, ships, etc..  On this basis it is possible, in certain cases, to
proceed by entirely valid inference from an observed blip/scan ratio to a
classification which will have a very high probability of being correct.

Similarly, in many other real-life situations, previous experience and
memories provide libraries of classification data such that measurements on
an individual allow us to identify, with some degree of probability, member-
ship of a class.  We move from measurement to identification: to diagnosis.
The a priori data which are used to support the identification are not used in
the measurement process.  Were the data to be so used, it could cause serious
errors which would not otherwise occur.  Prior to an individual being se-
lected, randomly, from a population, the relative sizes of classes within the
population clearly determines the probability that an individual will be
selected from any given class.  After a random selection has been made, the
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probability, relative to the population data, that the individual will be found
to be a member of a given class is again determined by the relative sizes of
the classes.   But the size of a class does not influence, the probability, rela-
tive to the measurement data, that an individual, having been selected, is a
member of that class.  We do not balance the size of the class against the
improbability of a possible magnitude in deciding the probability of mem-
bership.  To do so is to make the size of the class implicitly equivalent to a
measurement made upon the individual, which is decidedly not true.  Indeed,
the use of population data as prior information on an individual, must, al-
most always in a measurement process, degrade the accuracy of the process
and cause the resultant almost never to converge on the true value.

This line of argument leads to yet another point.  That is, the metric
process which does best in each individual case must necessarily do best in
the aggregate of such cases.  This view however seems flatly to contradict
the common experience that actions decided by reference to a population
prior will often perform better in a real-life situation than will actions based
on attempts to measure precisely each individual.  For example, if we have a
population in which one million objects are of Type-X and only one object is
of Type-Y it will often be a waste of time to even acknowledge the existence
of the Type-Y object.  But this is by no means always true: it will not always
be a waste of time to look for a single diamond which has been lost among a
million fragments of glass: all depends upon the value of the diamond, and
the probable cost of finding it.  We have, here, a door to a new world.
Bayes' theory of probability, stemming largely from his choosing to define
not 'probability in itself', but rather a rule for the determination of its magni-
tude in any situation, i.e. the ratio between the value at which an expectation
depending on the happening of the event ought to be computed, and the
value of the thing expected upon its happening 1, leads automatically to
worlds in which we shall try to 'optimise' our conduct in accordance with our
scheme of values and the limited resources which are available 2.  Often, but
not always, we shall be operating over a whole population: the population,
that is, becomes an individual object and it becomes the convolution of our
scheme of values with the probability distribution over the population which
determines the overall degree of success.  Yet, fundamentally, our knowl-
edge of a population depends upon our ability to measure the distribution of
probability over the possible magnitudes in each individual case, and to
converge on certainty wherever necessary.

                                                
1 Bayes' Definition 5.
2 Polak, (1997)
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Even so, this view still seems to conflict with Bayes' theorem regard-
ing the joint occurrence of events in that, if we consider direct probabilities,
the expected frequency with which combined events such as 'E1 = individual
picked at random' and 'E2 = M-count in range x1→ x2'  will occur, is given
correctly by Bayes' third proposition 1.   Therefore, in that Bayes' Proposi-
tion 5 is crucially dependent upon Proposition 3, it seems clear that there
must be a sense, or a context, in which the population validly enters the
picture when we reason inversely from a finite set of observations to the
governing value of probability.  This is certainly true when the population
itself is the individual object with which we are concerned and we can val-
idly equate 'probability' with the expected frequency with which we will find
an hypothesis concerning a 'first event' to be true, taken over the whole
population.  This is however in stark contrast with an equally valid view of a
probability as a 'degree of reason to believe' an hypothesis to be true in an
individual case; for there is a wide difference in meaning between 'believing'
in the case of the individual and 'expecting' in the aggregate.  Yet there is no
fundamental conflict, for even in the case of the rational financiers 2, if they
make the effort to get the answer right in each individual case, they will
inexorably get it right in the aggregate 3. In contrast, procedures which base
decisions about individual cases on population statistics have no such guar-
antee.  In many practical situations, however, where time and resources are
limited, financiers and others may be coerced, openly or implicitly, into the
adoption of constrained optimisation procedures which will entail operating
on the basis of population statistics rather than on individual assessment.
This will often produce acceptable overall results at an acceptable cost, for a
time, but will also, with a probability approaching certainty, cause a number
of failures, and, given enough time, a set of exceptional cases which is large
enough to make a catastrophe.   In contrast, procedures which treat each
individual as a unique case, can make the probability of catastrophe vanish-
ingly small, and can be applied equally where there is available to us no
information whatsoever concerning any relevant population.

In this context, it is however, extremely disturbing to contemplate the
procedures adopted by certain British 'Health Authorities' who arbitrarily
exclude people, on the basis simply of their age, from certain forms of medi-
cal treatment.  Certain authorities arbitrarily exclude, for example, physio-
                                                
1 See above, Chs.2 and 3
2 See Ch 6 above.
3 These assertions are, strictly, subject to the assignment of appropriate degrees of prob-
ability.  We can however, in principle, achieve any required degree of certainty by raising
the probability threshold in each individual case.
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therapy for people who have suffered a stroke and are over the age of 65.
This is, of course, equivalent to assigning a dogmatic prior value of precisely
zero to the probability of improvement in such persons who may be, and
often are, restored if they can afford private treatment, or move to an area
where no such policy is in force.   The moral irony can however be further
illuminated by considering the fact that, under such policies, a 65 year old
nurse or doctor would be excluded from treatment while, in contrast, a 64
year old criminal would qualify.   It is therefore perhaps fortunate that ad-
vances in our understanding of the mechanisms of disease may progressively
cause such decisions to focus more on the individual - including the knowl-
edge and judgement of the individual patient's own doctor - and less on some
arbitrary subset of the population to which patients are assigned.  We must,
however, emphasise 'perhaps', for it is terrifyingly easy to substitute a dis-
guised, but politically acceptable population for one that is obvious and
politically unacceptable.  As Ridley points out in the context of the human
genome project1: 'To test somebody for a disease that is incurable is dubi-
ous at best ...... the prediction might be wrong'.   But, Ridley also goes on to
say: 'The genome will revolutionise medicine by forcing doctors to treat the
individual, not the population'.

Our own criticisms should not, however, be taken to imply that deci-
sions to exclude certain people from treatment, simply because they belong
to an easily identified subset of society, are taken lightly.  Nevertheless it is a
fact of political and legal reality that, while discrimination against certain
subsets of the population is apparently deemed acceptable by British, and
probably many other governments, the identification for such purposes of
certain other subsets would be blatantly unacceptable and decidedly illegal.

That the issues here raised are difficult, is plain to see; but, there are no
grounds to believe that they would remain insoluble if addressed by persons
of adequate education, intellect and political acumen.  Yet, even from our
own, narrowly theoretical point of view, the questions raised by such prac-
tice are profoundly important because of the value of the expectation which
they imply, for the implicit use of the dogmatic prior and for the exclusion of
individuals - doctors and patients - from the decision making process.

Nevertheless, putting aside all considerations of morality, political
expedience, and legality, our analysis shows that, as a matter of simple logic,
the distribution of an attribute within a population does not provide a valid
basis for the assignment of a prior probability in the case of an individual
selected from that population. When we need a prior probability for the
                                                
1 Ridley (1999a).  See also Ridley (1999b).
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individual, it is elsewhere we must look and to that matter we shall turn in
Chapter 11.

Before doing so, however, we have to face that fact that our discus-
sion of the individual has raised some important questions concerning the
calibrated ruler, for that technique clearly involves a transition from a fre-
quentist view of random error-probabilities to a probability concerning the
true value of the individual object which has been measured.   The calibra-
tion may tell us that 90% of errors are within given limits, e.g. +/-2mm, but
it is not clear how this allows us to assert a "90% confidence" or "degree of
reason to believe" that a specific object has a true length within +/-2mm of
the measured value.  Conceptually it seems that when we use a calibrated
device under properly controlled conditions, the calibration is passed-on to
any appropriate object1 which is subsequently measured, precisely as a
degree of confidence or of 'reason to believe'.  This appears to be the im-
plicit assumption that supports the use of calibrated devices but neither its
justification nor its implications are immediately obvious.   If we ask the
meaning of an assertion such as:- "There is a 90% probability that the true
length of the pencil is within +/-2mm of the measured value",  one answer
is given by Bayes' definition of probability, namely that 90% of the prize-
value is the amount at which one ought to value the expectation in a trial
where the pencil is measured against the calibration standard 2.  This may
seem a vacuous response but, translated into an operational context, it can
easily be given effect in terms of decisions about the allocation of resources
and the prudent disposition of reserves.

It is also useful to consider that, while random selection of a pencil,
even from a known set, can, only in special cases, tell us anything about the
length of that pencil, a calibrated measurement despite its random error, can
often tell us a great deal.  That is, when we make a measurement, we gener-
ally expect that a reduction of uncertainty will occur.  Thus, if a pencil has
been selected from a set, all of which are between 170mm and 180mm long,
knowing the distribution of lengths within the set gives us no reason to
believe anything about the length of the selected pencil, other than that it
must be between the known limits.  However, if we now measure the length
of the pencil, using a ruler which is known by calibration to be accurate to
+/-2mm, we shall effect considerable reduction in uncertainty.  This is true
to an even greater degree in cases where we have no knowledge of the

                                                
1 A piece of string might not be appropriate in a device designed to measure the length of
rigid, pencil-like objects.
2 Subject to the wager being within a prudent limit. cf.  the St Petersburg problem in Ch.6
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population or limits on the object which has been selected.  This is, in effect,
the reasoning which supports the use of calibrated devices in a great deal of
medical, engineering and navigational practice, where, after calibration, we
assert that a properly-working device is accurate to +/-εmax , and therefore
any actual error ε  is governed by:-

PR(ε  > εmax  k,C(.)) = 0
whence the measured value m and the true value , must satisfy:-

PH( (m - εmax )  ≤   ≤  (m+ εmax )  k, C(.),m )   =  1 (11-1)

  Even so, we have to face the inductive chasm:  i.e. however large the
calibration trial, it can never 'prove' the impossibility of errors greater than
those observed.  The practical answer to this problem, pace Boole and
Fisher1, is, first to declare the assumption and, second, to allow for the
probability that the device may not be working as calibrated.  If we do not
make these, or equivalent declarations, rational decisions and actions be-
come impossible and we open the gates to anarchy and wild guesswork.
There may indeed be no possible analytic justification for these assump-
tions.  The justification is plainly pragmatic: given the assumptions and the
corresponding disciplines, we can design and build things that work.  Such
'things' range from wheelbarrows to models of the observable universe.
Given calibrated rulers, these things can be made to work reliably; other-
wise they do not.

 The justification of the transition from a frequentist calibration to a
probability concerning the true value of an individual object remains a more
difficult issue.  If we consider just a single observation, it is, at first sight,
hard to say exactly why it is appropriate to take the object as a fixed quan-
tity and the error as a probablistic variable.  If the object has been selected
at random from a set with a known distribution, its standing might seem to
correspond exactly with that of the error on a single observation - also se-
lected at random from a known distribution.    

However, if we think of the observations rather than the errors, we see
that the measurement process directed at an individual object comprises, in
principle, a set of measurements and our prime interest is in the properties
of that set.  When we make just a single measurement, and infer probabili-
ties concerning the true value of the object, we are using the single meas-
urement, together with the calibration, to estimate the properties that we
would expect to find in a larger set of observations.  The inference here is

                                                
1 Fisher (1956) pp23-4.
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from the individual to the population. We know from the calibration the
general properties of the error-set and we are using a single observation to
estimate its location.

Thus each calibrated observation is specifically informative about the
object being measured and can be integrated with other observations of that
same object.  It follows that the calibration is specifically informative in
each individual case.  When using a calibrated instrument, independent
measurements of a given object are cross-informative.  Each measurement
both improves our knowledge of the object and provides information about
the magnitudes of the errors on the other observations.  That is, we use a
computable function of the observations - a smoothing or filtering function
- which closes progressively on the true value as the size of the set in-
creases1.  In the process of measurement, the error-set is a population-object
about which the calibration provides valid prior information.

This is in marked contrast to the objects which are being measured,
where, in general, an error in the measurement of a selected object cannot
be in any way improved by involving random selections of different ob-
jects2.  It is also in marked contrast to the population distribution, which, as
we have seen earlier, is generally misleading in any individual case and
actually prevents the metric process from ever converging absolutely on the
true value.

Thus, while the distribution of a population from which an individual
object has been selected, gives us degrees of reason to expect the object to
have a property of a given magnitude, it gives us no reason to believe that
the magnitude actually has that value.  In contrast, the calibrated distribu-
tion of errors gives us no reason to expect anything about the magnitude of
an object prior to an observation, but, following an observation, it gives us a
great deal of reason to believe, or not to believe, that it is of a given mag-
nitude.

In sum, the transition from a frequency-based calibration to a degree of
confidence in a measurement is achieved by equating our degree of confi-
dence to the frequency with which the measuring device has been shown, by
calibration, to perform to the specified level.  It seems that, in practice, we

                                                
1 It may be possible to show that there are theoretical distributions for which no smoothing
function can exist.  It may, equally, be possible to show the opposite.  We are not however
aware of any such work.
2 There are however situations where the deliberate introduction of randomly additive
errors of a known distribution can provide, via a filtering function, significant improve-
ments in accuracy.
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regard calibration of an instrument as akin to assessing the credibility of a
witness.  It is a characterisation of the device, which then gives us "degrees
of reason to believe" in the probabilities of different errors. This assumes
either stability in the characteristics of the measuring system, or that we can
know the probability of drift.  Such assumptions are however widespread in
the gathering and application of scientific knowledge and it is not unreason-
able, therefore, to make them here.
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Chapter 11

The Valid Prior

Although there are, as we have seen, many instances where a popula-
tion can be regarded as an individual object, there are also many cases where
our interest is in an attribute of an individual, independent of any population
to which it may belong, and on which we may have no prior data.  Where
the attribute of interest is a dimensional parameter, measurable on a con-
ventional scale, and the uncertainties etc. are independent of the magnitude
of the attribute, we can assess the probability distribution over the possible
magnitudes of that attribute by the logic of the calibrated ruler which we
discussed in Chapter 9.  However, when the attribute of interest is a probab-
listic frequency, as with the magnitude of Pm in Bayes' experiment, the
uncertainties are not independent of the value of  Pm and we  again have to
face the unresolved issue of the prior probability.  Further, it is unfortunate
that, in Bayes' essay, the unacceptability of the population data as a prior
distribution over an individual is obscured by Bayes' use of the table, upon
which, the value which is to be measured, is determined by the throw of the
first ball, followed by the repeated use of an effectively identical ball as the
measuring device.  The 'first event' is that the first ball generates a value, or
position, Pm relative to the frame of the table on which the later throws take
place and the 'second event' in Bayes' analysis is the result that, in n further
throws of the ball, it comes to rest to the right of the position corresponding
to Pm on m occasions.  However, the fact that our ability to determine the
position of the first ball depends in no way upon our knowing the prior
distribution of probability over the possible positions of that ball can be seen
in a scenario where a person, who can be selected by any process whatso-
ever, is asked to place the first ball on the table.  The second ball is now
thrown n times and comes to rest to the right of the first ball on m occasions.
Assuming that the table is level etc. the position of the first ball can be
estimated with progressively improving accuracy, from the ratio m/n, pro-
vided that the resting points of the second ball are randomly and uniformly
distributed across the table.  If we bias the result by any undeclared, non-
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uniform distribution of the second ball, this must, in general, degrade the
accuracy of the result.  Similarly, the result will be degraded if we assume
any non-uniform prior probability over the possible values of Pm unless we
can be assured that the peak of the prior will always coincide with the true
value of Pm.  While one can be tempted into believing that such a coinci-
dence will generally have a vanishingly small probability of occurrence, we
shall see below that there are indeed  cases where this coincidence is the
rule, rather than the exception.

We can, however, make Bayes' experiment even more general if we
consider a case where the first ball is thrown onto a large dance floor.  We
then place, wherever we wish, but enclosing the first ball, a rectangular
frame, into which the second ball is thrown n times.  With the frame in
position, we count m and we estimate the position of the first ball relative to
a given corner of the frame.  We can then choose any other position for the
frame and repeat the experiment.  Not only shall we get a different answer
for each different position of the frame, there actually will be a different, and
true, answer for each of the infinitely many possible positions of the frame.
Clearly therefore, the prior distribution over the positions on the dance floor
has no relevance within the metric process, but there can equally be no
doubt that in every case the first ball has a true position relative to the frame.
That position can be given the logical force of Bayes'  'first event', to the
probability of which there is one prior which is compatible with, and invari-
ant for, any position of the frame, and will lead to an unbiased rate of con-
vergence in every case: that is, the uniform prior.  It seems therefore that a
uniform prior distribution has special and powerful properties within the
metric process which is invoked by Bayes' experiment and by logically
equivalent cases, and is a matter quite distinct from the process which posi-
tions the first ball. Therefore, although several points mentioned in earlier
chapters1 concerning the uniform distribution of Pm  stand as stated, they are
a separate matter, and do not undermine the validity of the rôle of the uni-
form distribution within the metric process on Bayes' table.  Furthermore,
although, in the above illustration, the order in which the balls are thrown
seems fundamental to the metric process, a little reflection shows that the
essential features are present simply in the positions in which the balls come
to rest.  For, after all the balls have been thrown, their positions can be
marked and we can arbitrarily designate one such position as being that of

                                                
1 See esp Ch 5 and the references there to  Murray, Molina, Stigler, Edwards et al.
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the 'first' ball.  We can then place the frame, at will, and proceed as de-
scribed  above 1.

We therefore decided to put these views to the test by conducting a set
of experimental trials 2, similar to Bayes' experiment, but where the true
value of Pm  is determined arbitrarily and there is no knowable prior prob-
ability distribution over the possible magnitudes.  Following each trial, we
were told that the event M happened m times in n throws and we were re-
quired to decide whether the value of Pm  probably was, or probably was not
within limits x1→ x2  and to invest accordingly an amount determined by our
estimate of that probability.  Modelling such a set of games and allowing the
band defined by x1 and x2 to be chosen at random, we found a remarkably
high number of games in which Bayes' method correctly determined whether
Pm  was within the limits, and therefore achieved a remarkably high average
gain e.g.:-

True value of     Pm  = 0.5
Throws in a game   nt   = 5
Games in a set     Ss  = 100
Lower bound     x1  = 0.04704
Upper bound    x2 = 0.219

RESULTS
Won 96, Lost  4 ;

Mean gain per game = 0.8407

Examination of such results shows however that, if we allow x1 and x2 to be
chosen at random with uniform probability, there is a relatively high prob-
ability that they will bracket a section of the posterior distribution where the
probability of its containing the true value of  Pm  is so very low as to make
the probability of Bayes' method giving the right answer correspondingly
high.  A more stringent test was to force  x1 and x2 to bracket the true value
of  Pm   quite closely e.g.:-

True value of    Pm  = 0.5
Throws in a game  nt  = 5   
Games in a set Ss = 100
Lower bound x1 = 0.4
Upper bound x2 = 0.6

RESULTS
Won  0, Lost  100 ;
Mean loss per game = 0.7192

and we then found that we had to increase nt, the number of throws in each
game, to 21, before we reached a state of generally winning:-

                                                
1 For comments on surface effects etc., see Chapter 5.
2 The trials were conducted using a MATLAB simulation.
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True value of Pm  = 0.5
Throws in a game nt = 21
Games in a set Ss = 100
Lower bound x1 = 0.4
Upper bound x2 = 0.6

RESULTS
Won 66, Lost  34 ;
Mean gain per game = 0.1718

However, when we increased  Pm  to 0.9, we found:-

True value of Pm  = 0.9
Throws in a game nt = 2
Games in a set Ss = 100
Lower bound x1 = 0.8
Upper bound x2 = 0.999

RESULTS
Won  0, Lost  100 ;
Mean loss per game = 0.5912

and an abrupt transition from losing to winning as nt was increased from 2
to 3:-

True value of  Pm  = 0.9
Throws in a game nt = 3
Games in a set Ss = 100
Lower bound   x1 = 0.8
Upper bound   x2 = 0.999

RESULTS
Won 74, Lost  26 ;
Mean gain per game = 0.2179

This led us to consider values of Pm  spaced evenly across the unit interval,
for each of which we iteratively computed the number of throws per game
which were necessary, at each value of Pm , in order to make a net gain from
following Bayes' rule.  The results are illustrated in Fig 11.1:-
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Figure 11.1

Now, although these results are few, experimental and crude, almost
to the point of being merely anecdotal, they are sufficient to cause suspicion
that Keynes may have been not entirely right when he wrote:-  ' ..... as the
number of instances is increased the probability that [the true value]1 is in
the neighbourhood of [m/n]  ..... tends towards certainty ...... But we are left
with vagueness ..... respecting the number of instances we require.  We know
that we can get as near certainty as we choose by a finite number of in-
stances, but what this number is we do not know.   For, what Keynes failed
to point out is that, once a value for Pm  is determined, the ratio m/n will tend
to that value at a rate and with a probability which are determined entirely
by the binomial distribution. Indeed, a conventional prior probability may be
thoroughly misleading as to the true value of Pm  whereas even a very short
trial may provide a highly informative result.  The situation therefore seri-
ously demands an explanation in that our experiments seem to show that
Bayes' rule is highly effective, despite the massive criticisms levelled against
the postulate of the uniform prior by so many authorities.

                                                
1 Keynes denotes the true value by the letter q.  The ratio m/n is denoted by q'.
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We therefore need to explore more deeply the reasons why Bayes' rule
works so well in the cases illustrated.  This takes us back to Bayes' funda-
mental question, posed in the opening words of his essay, before the intro-
duction of the experiment with the table, concerning the case where we
simply count n throws and m events and, as ever, wish to know the prob-
ability that the value of Pm  lies between any two defined values.  To answer
this question we have to consider fully the nature of this type of metric
situation, which comprises three elements:- (i) the identification of events,
(ii) the counting of n throws and m events, and (iii)  the random variations in
m induced by the binomial process.  Assuming there are no errors in (i) and
(ii), it remains to look quite closely at (iii), where the process which pre-
determines the value of Pm ,  is irrelevant to the subsequent problem: that is,
we are now concerned only with the numerical value of Pm  and with the
variations in (m,n) which are induced by the binomial process.

The core of the problem is the fact that, for any value of n > 0, and for
any value of Pm  which is greater than zero and is less than unity, any value
of m which is not greater than n can occur.  Conversely, therefore any given
result (m,n) can be produced1 by any value of Pm  which is greater than zero
and is less than unity.  Further, the probability of any such result in this type
of case, unlike in cases which are analogous to that of the calibrated ruler 2,
can be quite strongly dependent upon the true value of Pm.   At this point, we
may feel that we have turned yet another full circle and are back to where we
began.  It is, however, more appropriate to think of descending a spiral
towards the roots of the problem, one such root being the fact that Bayes,
followed by countless other authors, fell into the trap of using language
which implies that we are dealing in 'absolute probabilities' and that they
are, in principle, knowable.  Indeed, in the analysis by Keynes quoted
above 3, and despite his use of the symbol ' a / h ' ,  Keynes fell into this same
trap.  This is sadly ironic, for as Betrand Russell pointed out in his review of
Keynes' Treatise:-  ' ... a proposition does not have a probability in itself,
but only in relation to certain data.  It may have different probability rela-
tions to different sets of data  ..........  The probability of a proposition 'a'
relative to data 'h' is represented .. [in Keynes' Treatise] .. by 'a/h'.  .......  It is
remarkable how often the logic and philosophy of mathematical concepts
has gone astray through the employment of symbols which did not contain
explicitly all the variables upon which their value depended.  If one were to
employ such a symbol as (say) 'P(a)' for "the probability of 'a' ", adding a
                                                
1 There are of course certain restrictions at the extremes where Pm = 1 or Pm = 0.
2 See Ch 9 above.
3  Keynes (1921) p388
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proviso that this should be taken relatively to certain data 'h', it would be
impossible ....  (always) to remember .....  the relevance of 'h', and one's
analysis would be certain to suffer ......     The introduction of the symbol
'a/h' is therefore of great importance. This symbol means the degree to
which 'h' makes 'a' probable 1'.

Unfortunately, Keynes did not consistently bear in mind, that although
probabilities may be 'objective', they are defined only in relation to certain
data and assumptions: in any process of inference from observation to an
underlying truth, which we attempt to express by images, be they verbal,
mathematical or graphic, the mapping from the underlying realities onto the
image-field requires us to make assumptions and adopt conventions.  All
assertions of probability concerning empirical matters are therefore derived
by operations which combine observational data with assumptions and
conventions, all of which are needed to formulate the inference.  Every
assertion of a probability concerning an empirical matter ought therefore to
state or designate the data and the assumptions, relative to which it is made.
As we saw earlier 2, the values we compute for empirical probabilities can
themselves be only probable to some degree, and again relative to data,
albeit this fact is not explicit in Bayes' essay and is overlooked by many
others.   Thus, when Bayes defines his problem as being to compute the
probability that Pm  lies between any two given values, the computation can
only be relative to the data and the assumptions.  Unfortunately, Bayes'
language and that of many others, frequently gives the impression that they
are dealing in absolute values 3.   Yet, if we refer back to Chapter 3, we find
that, in Bayes' Corollary to Proposition 4 the value of the expectation (and
therefore of the corresponding probability) depends, not upon the full truth
about the situation, but rather upon what we believe, assume, or think that
we know.

In the metric situation represented by Bayes' experiment, and by logi-
cally equivalent situations, a declaration of the prior distribution which is
assumed is, therefore, a vital factor.  Yet we are not free to assume at whim
any arbitrary distribution.   For, we know that the ratio m/n tends to Pm  as
n increases and we know 4 that only two priors yield m/n as being, relative to
the data, the most probable value and most accurate estimate of Pm : one such
prior is the uniform, the other is that which has, in each case, its peak at Pm.
Hence, if we lack a prior with a peak at Pm,  wherever that may be, there is
                                                
1 Russell (1922)
2 Chapter 8 above
3 See also Edwards (1992) p3 on the rejection of 'absolute belief'.
4 See Ch 5 above.
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no alternative to accepting the uniform prior as the basis for estimating the
probability that Pm  lies in any given interval: for we cannot rationally as-
sume a different prior distribution in estimating the probability that Pm lies
within defined limits, i.e. PH { x1< Pm < x2 | m , n , ....... } ,   from the prior
which we assume in estimating Pm itself.  We therefore have to assert that, in
the absence of any other valid prior distribution over the possible values of
Pm, Bayes' rule that we should assume a uniform prior in computing the
probability, relative to the experimental m,n data, that Pm lies in a defined
interval is valid.  There is, however, no knowable measure of the probability
that the result is, in any absolute sense, true.  The result is valid and correct
in relation to the information and assumptions.  As is true of every valid and
correct assessment of probability.

Nothing we have said, however, implies that there can never be a valid
non-uniform prior in a Bayes trial. An illustration of such a prior can be
provided by a stick which has an unknown length , which we wish to de-
termine.  To measure   by means of a common ruler, we first align one end
of the stick with the zero mark on the ruler and we then examine the other
end of the stick in relation to the gradations in that area of the ruler, follow-
ing which we report, for example that the length of the stick is 'About 90.5
millimetres'.  Answers of that type will be about as good as we can get by
this approach: no matter how many times we measure the stick, we shall,
within the limits of  patience, give the same answer.  If, however, we have
calibration data, we can use that data to give a distribution of probability
over the possible values of .  If, however, we need to go further and arrive
at a more refined answer than is possible simply by means of the ruler, we
can devise a procedure in which we create a direct connection between
Bayes' experiment and the problem of measuring a stick.  That is, in Bayes'
experiment:-  the event that the red ball comes to rest in the rectangle ADso,
between the line os and side AD in a single trial is called the happening of
the event M ..... (and) .....  the white ball having been thrown, the probability
that the event M will occur in a single trial is equal to the ratio of the line
segment Ao to the length of the whole side AB 1.  Conversely therefore, one
may envisage fairly simple conditions under which the length Ao is equal to
the unknown probability Pm multiplied by the length of the side AB.  Hence,
as Bayes' experiment provides us with a means of estimating Pm to whatever
accuracy we require2, simply by making the number of trials, n, sufficiently

                                                
1  Lemma 2  to Postulate 2.
2 This accuracy can be measured as the probability of getting the observed results if the
true value were outside given limits. See also Ch. 9 above.
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large, it likewise provides us with a means of estimating the length Ao, in
relation to the length AB, to whatever precision we require.

 Thus, to refine our estimate of the length of a stick, we may construct
a table, level and uniformly flat, in which the side AB is formed by the ruler.
We then lay the stick alongside the edge AB, with one end of the stick
aligned to the point A, and the other end of the stick we equate to the point o
in Bayes' experiment. To refine the distribution of probabilities over the
length of the stick , we throw a suitable ball n times and we count the
number of occasions on which it comes to rest to the right of the line os1.
Given then that the result is m successes out of n trials, we can apply Bayes'
theorem in its full form2:-

P H {( x1 <  <  x2 ) | m,n,P0 (x)} 

=                

 ⌡⌠
x1

x2
 xm (1 - x)(n - m) P0 (x) dx 

  ⌡⌠
0 

 1
xm (1 - x)(n - m) P0 (x) dx 

(11-1)

where P0 (x)denotes the prior distribution derived by combining a conven-
tional measurement and the calibration data for the ruler.  Such a prior will
generally peak at a probability of zero error and thus lead to a distribution of
P0 (x) which correspondingly has its peak at the true value .    

Hence, although the distribution of an attribute within a population
cannot be used as a prior probability distribution over the possible values of
that attribute in an individual, perfectly valid prior information can be de-
rived from previous3 observations which have been made upon that same
individual.  The essence of the matter is that, if the object to which we wish
to apply Bayes' theorem is an individual, then both event E1 and event E2 in
equations (3-26), (3-51) etc. must relate specifically to that same individual.
That is not to assert any blanket logical prohibition against the use of popu-
lation statistics in applications of Bayes' theorem.  We do, however, assert
that the result of doing so is a probability in the sense of a proportional
frequency among the population and does not provide evidence about an

                                                
1 Being severely practical, we accept that individual trials will occur when we cannot
decide on which side of the line the ball has come to rest. Various techniques can however
be envisaged for dealing with this problem.
2 See also equation  (5-11)
3 The temporal order is not necessarily significant; it is the logical order which determines
the prior.
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individual drawn from that population.  Thus, where we know that a prob-
ability Pm is selected randomly by a known statistical mechanism, we can
make valid statements of the form PR(Pm ≈ x| k ) = y but, once Pm is se-
lected, it becomes a fixed governing parameter and, on the basis of experi-
mental results {m,n} derived under Pmwe can only make statements of the
form  PH(Pm ≈ x| k,m,n ) = y

We return now to the fundamental question of this chapter which
concerns the validity of assuming uniform prior distributions in cases which
are logically equivalent to Bayes' 'unknown event' and against which so
many authors 1 have strongly argued, essentially because the assumption is,
or seems to them, so major and so lacking in warrant.  To some of those
authors,  a further and conclusive objection is that, in a dimensional case, a
prior distribution which is uniform in relation to a given form of measure-
ment, may be seriously non-uniform if we choose instead to measure some
other function of the parameter.  As we mentioned in Chapter 9, if a uniform
prior probability has been assumed when measuring, say, a resistance in an
electrical circuit, the distribution of the reciprocal if we chose instead to
measure the potential drop under a constant current, would be decidedly
non-uniform2.  We have however shown in Chapter 9, that when dealing
with dimensional quantities, the logic of the calibrated scale removes the
need to provide an initial prior for the object being measured, for we may
indeed not know what it is that we are measuring and we may, even less,
understand what is meant by a 'prior probability' in such cases.  Instead, the
calibration of the measuring device provides the prior distribution of prob-
abilities and uncertainties for the first observation, and that result becomes,
in turn, the prior distribution over the possible values of E1 as further obser-
vations are made.

We are left, therefore, with the central and fundamental objection that,
in cases which are logically equivalent to Bayes' experiment, there is no
warrant for the assumption that all possible values of Pm have a uniform
prior probability.  Yet, in view of our own previous discussion, we are
forced to wonder whether the problem may not stem more from the name
'uniform' than from the substance which it represents3.  For the essence of
the matter is not that we have to assume all the probabilities to be equal, it is
that we have no information to rate any probability more highly, or less
                                                
1 e.g. Boole, Keynes, Fisher, Hacking, Fine
2 Jeffreys, H. (1983), Ch 3, discusses in great detail various techniques for overcoming
problems of this type in specific, practical cases but seems to have no general solution.
3 cf. 'much confusion may lie in the use of symbols and the notion of variables in probabil-
ity';  Keynes (1921) p58
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highly, than any other.  'No information' is the crucial point and we therefore
require a means of representing this fact in Bayes' equation.  Tentatively,
therefore, we abandon the name 'uniform prior' and call it instead the 'Infor-
mation zero'  distribution, symbolised IZ ( . ).

It is now worth noting that, if we were to assume that zero information
about the prior probability of an event required us to set that probability
itself to zero, then Bayes' equation would collapse to 0/0 and become im-
ponderable: which might seem, to some people, a fair representation of the
situation.  On the other hand, it is also arguable that setting the prior prob-
ability to zero would be not only equivalent to claiming a great deal of in-
formation where we have specified there to be none, it would also deem the
occurrence of the event M to be impossible, which would be immediately
contradicted by any (m,n) trial in which m has any non-zero value.   It there-
fore seems much better to maintain that probabilities are always relative to
the information available;  and that, for the reasons just given, we cannot, in
the case of an unknown event, set the prior probabilities to zero; nor can we
make the prior probability of any possible value of Pm greater than that of
any other possible value; and therefore, considering  algebraically a set of
possible, but exhaustive and mutually exclusive values x1, x2, ....  xn  for Pm,
we have the following very simple equations.  First, as we can, in no case set
PH( Pm= xi  IZ (x)) = 0, all must be greater than zero:-

PH( Pm= x1  IZ (x))    > 0;   PH( Pm= x2  IZ (x) ) > 0; .........  

PH( Pm= xn-1 IZ (x) )  > 0;   PH( Pm= xn  IZ (x) ) > 0; (11-2)

Then, as we can set no value greater than, nor less than any other value:-

PH( Pm= xi  IZ (x) )   /<      PH(  Pm= xj  IZ (x) );  ∀(i,j) (11-3)
PH( Pm= xi  IZ (x) )    />      PH(  Pm= xj  IZ (x) );  ∀(i,j) (11-4)

from which it follows that:-

PH( Pm= x1  IZ (x) )   =   PH( Pm= xi  IZ (x) )  ........

                                    =  PH( Pm=xn  IZ (x) ); (11-5)

That is,  if we define the probability of a proposition, relative to the known
data etc., as the degree of reason to believe the proposition to be true, then,
clearly the a priori degrees of reason that we have to believe each such
proposition  Pm= (x1  IZ (x)) , and Pm= (xi  IZ (x)),  and  Pm= (xn  IZ (x)), are
the same in every case.  Hence, it seems clearly to follow that the probabili-
ties, relative to the data, must be equal.
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This inference, was, however,  fiercely attacked by Boole1, who casti-
gated it as an unwarranted postulate of "the equal distribution of our igno-
rance."  Boole was, however, as was Karl Pearson many years later2, under
the disadvantage that, at the time of their writing, the concept of 'informa-
tion' as a measurable quantity had not been formalised3.  They could not,
therefore, see clearly that a situation of zero information can be defined as a
situation in which all probabilities are equal - relative to the available data.
More fundamental, therefore, was their failure to remember that probabili-
ties in real life can only be assessed in relation to the available evidence.

Keynes4 also devotes considerable attention to a closely related topic
under the heading of the Principle of Indifference, and points out a number
of difficulties.  For example, nothing in equations (11-2) thru (11-5) asserts
or implies any uniformity in the distribution of the possible values x1, x2,
.... xn-1,  xn, each of which can represent a point, or a range of values.  This
may seem, at best paradoxical or self-contradictory, and at the worst, ludi-
crous.  For, taken in isolation, it implies that, into whatever arbitrary set we
may partition the totality of possibilities, each will have an equal probability.
We may look at a group of tourists and ask, 'Are they Australians, Musco-
vites or New Englanders ?' and it is clearly not acceptable to apply a uni-
form prior across such a partition.  Hence, we would suggest that whenever
we are dealing with non-numeric partitions, an acceptable procedure may be
to form binary pairs from each attribute and its opposite and, where feasible,
to  evaluate each pair separately, e.g. 'Australian' or 'not-Australian'  etc..

In the case of a Bayes' experiment, however, we are not free to use any
arbitrary partition, for we require that, whatever the true value of Pm may be,
the peak of the posterior distribution shall be able to converge on that value
'absolutely', at least in the sense that we can make the value of any rational
fraction m/n converge as closely as we wish on the value of any given real
number in the 0-1 interval.  Hence, the need for a uniform partition of the
unit interval, within which we assign the priors equally, is forced upon us by
the requirement that the posterior shall be allowed to converge without
hindrance or bias on the true value of Pm.

Thus, when we then apply (11-5) to a uniform partition of alternatives
among the real numbers in the 0→1 interval, and apply the result in Bayes'
equation, we find that the prior, being a constant in both numerator and

                                                
1 Boole (1854) p.370
2 Pearson (1920)
3 See Hartley (1928) and Shannon (1948)
4 Keynes, (1921), Ch 4.
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denominator, graciously disappears of its own accord 1. This saves us from
the embarassment which would be caused by its presence in the expression
which is actually evaluated.  It can therefore be argued, and not unreasona-
bly, that this disappearance is not a meaningless algebraic fluke, but actually
provides welcome support for the belief that the algebra is a valid image of
the information present in the physical reality 2.   It also follows  that, if we
are using a Bayes table to refine the measured position of a pointer, then it
does not matter whether the pointer designates volts or ohms, for, in either
case, the uniform partition and the assignment of equal probabilities to the
segments of that partition, simply denote zero prior information and permit
unbiased convergence on the true value, regardless of the units in which that
value is measured.

As an aside, it is also worth noting that the value of specific evidence,
in relation to a set of competing hypotheses, can be measured by the differ-
ence which that evidence makes to the relative probabilities of the hypothe-
ses.  If the evidence makes no difference to those probabilities, its
information value is zero in relation to that set of hypotheses.  Thus, given
evidence k and a set of competing hypotheses, h1,....... hn,  we can take the
hypotheses in pairs and use the sum of the logarithms 3 of their probability
ratios, relative to the evidence, as a measure of the information-value rela-
tive to those hypotheses 4.  On this basis, we can define an Information-value
function I (h1,.... hnk) for evidence k  in relation to hypotheses h1 .... hn  
such that:-

I (h1, .... hnk)       =      
1
2 Σ  i, j  ln 

PH(hi k)

PH(hj k) 
  (11-6)

and therefore, if k conveys no information 5 regarding the given set of hy-
potheses, the magnitude of the index in relation to that set will be zero.
Finally, in this connection, it is worth noting that Jaynes6 and many others
have shown that the density function which maximises entropy is uniform if
the density is constrained within a known interval.  Such works claim that
                                                
1 i.e. it multiplies both the numerator and denominator in eqn (5-18) and therefore disap-
pears.
2 The precise nature of the 'physical reality' which we call 'probability' is a nice question.
3 The arguments for the use of logarithms are given succinctly in the Introduction to Shan-
non (1948).  See also Hartley, R.V.L. (1928).
4 Summing over all pairs, including i = j, we take the modulus of the logarithm of each
probability ratio and halve the result to allow for the duplication.
5 See also Medawar (1963).  His 'law' of the conservation of information is a useful adjunct
to this argument.
6 Jaynes (1982).
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entropy, defined as ∫ P(x)logP(x)dx is a good measure of 'freedom', and
therefore that maximum entropy corresponds minimising assumptions.
Hence, the uniform prior can be claimed to minimise the assumptions when
we only know that the probability is constrained to the unit interval.

Resuming the main theme, if we now look back to equation (5-18) and
re-write the left hand term as PH { x1 < Pm < x2m,n,IZ(x) }  it clearly fol-
lows, because the items denoted m,n,IZ(x)  constitute the totality of the
evidence, that the most probable value of Pm in relation to that evidence can
only be the ratio m/n.  This, in the case of an 'unknown event', where a prior
observation is excluded by definition, is only the case when we assign the
same value to the prior probability of each possible value of Pm.

We conclude therefore that, far from our having no reason to assume
a priori equal probabilities, the reasons for doing so are, in fact, compelling.
To the objections of Boole, Keynes, Fisher and Fine that, by assuming these
probabilities to be equal, we are implicitly claiming that empirical knowl-
edge can be known a priori, we would answer that, precisely as we have
demonstrated, it is by making these probabilities equal that we actually
express the absence of prior information. In sum, where we are trying to
measure the underlying probability of an event, about which we have no
previous knowledge, Bayes' rule, with the explicit assertion of the 'informa-
tion zero' prior, leads to a result which is valid, objective, and corresponds
with a great deal of everyday practice.  We infer therefore, that, in con-
structing a calibration table, and excepting valid reasons to do otherwise, we
can, and we must, assume a uniform, 'Information-zero' prior.

 It is therefore important to note that calibration histograms which are
constructed in this way, do not cause a non-informative prior to become
informative if we change the units of measurement.  This is because the
error-rate in a band is simply the ratio of two positive, finite, non-
dimensional integers. The denominator is the number of trials and the nu-
merator is the number of occasions on which the error falls into the given
band. The uniform prior is therefore also non-dimensional.  Thus, if the
units of measurement are changed, say from ampères to watts, the widths of
the error-bands are automatically scaled.  There is no contradiction of the
assumed ignorance and there is no assumption of a privileged position.

In academic circles, there has been an awareness of, and embarass-
ment by the question mark which has hung over Bayes' rule for the past 150
years and, in consequence, there has been a marked reluctance to speak
clearly and openly of probabilities derived by inference from observation.
This embarassment has helped no one: it has led to confusion, to bitter inter-
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personal conflicts 1 and a failure to deal with questions which have seemed
clear and simple enough in themselves and to warrant clear answers.  Yet,
time and again, where we seek clarity, we find ourselves thrown into confu-
sion by problems over the nature of the prior probability.  Although we
would suggest that this matter can be resolved, as shown above, in the case
of a Bayes' experiment, there remain, in other scenarios, difficulties which
we have not  yet resolved .

These difficulties are particularly acute when we wish to establish
probable explanations, probable causes, and probabilities of hypotheses.
Putting aside the philosophical difficulties of defining precisely what we
mean by 'cause' etc.2, the essence of our difficulty is nicely summarised by
Keynes, who first quotes De Morgan:- Causes are likely or unlikely, just in
the same proportion that it is likely or unlikely that that observed events
should follow from them.  The most probable cause is that from which the
observed event could most easily have arisen3.  Keynes however then argues
against De Morgan:- If this were true the principle of Inverse Probability
would certainly be a most powerful weapon of proof, even equal, perhaps to
the heavy burdens which have been laid on it.  But the proof given in Chap-
ter XIV 4, makes plain the necessity in general of taking into account the 'a
priori' probabilities of the possible causes.   Apart from formal proof this
necessity commends itself to careful reflection.  If a cause is very improb-
able in itself, the occurrence of an event, which might very easily follow
from it, is not necessarily, so long as there are other possible causes, strong
evidence in its favour.

However, although we have shown one case of a valid non-uniform
prior, i.e. where we have a previous measurement of the attribute in ques-
tion, we have not, so far, shown any general basis on which we can distin-
guish a valid prior from one which is not valid. We can, however, illustrate
the problem, and propose a solution by considering an air traffic control
highway, an 'air lane', for which we have available full statistics concerning
types of aircraft, departure times, heights, speeds etc. going back many
years.  Suppose, then, that we have a  radar which is surveying this air lane
and, at a certain time we get an initial detection of a new aircraft.  This
detection gives us the geographic position of the aircraft, but no further
                                                
1 See e.g. Fisher (1937), Neyman (1961).
2 See e.g. the article on Causation in the Cambridge Dictionary of Philosophy.  The author
is not listed.
3 Keynes (1921) p 178; quoted from De Morgan's Essay On Probabilities in The Cabinet
Encyclopaedia, (no date).
4 i.e. in Keynes (1921)
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information, and we would like to know, without waiting for a further de-
tection, the probabilities attaching to various hypotheses as to the heading,
height and speed of the new aircraft.  Given, therefore, all the statistics
which are available to us, it is easy to assert, that, for example, '90% of all
aircraft which use this air lane and are initially detected in this position,
have a heading of  090o± 2o, a height of 20,000ft± 1000ft, and a speed of
420 kts± 50kts'.  Further, it is easy and entirely valid to regard these data as
providing 'probabilities' in the sense of  'rational expectations of proportions,
based on previous history, within the population of aircraft using this air
lane'.

It is then tempting, but quite invalid, to use the statistics to provide a
distribution of probabilities over the initial parameters for a particular air-
craft.  The depth of this invalidity is easily shown by considering the impli-
cations if the pilots of aircraft were to follow similar reasoning in the
exercise of their own duties and were to assume, for example, that the speed
of the aircraft could be gauged to some degree by considering the speeds of
other aircraft on other occasions.  The results would quickly be disastrous
because such reasoning is totally fallacious, notably in that information
about a population of previous flights conveys no information whatsoever
about the actual state of any specific aircraft 1.  If however we consider a
flight plan for a specific aircraft and we know, for instance, that the plan is
used by an on-board computer to control engine settings etc., then we may
be in a totally different kind of situation, where the provision of the flight
plan may be logically equivalent to separate evidence directly relevant to the
specific case.  Yet, as with the ruler, we must allow some probability that
the system is not working as intended.

The essence of the matter thus appears to be that, for data to provide a
valid prior probability about a specific situation, the data has to be informa-
tive about the physics of that specific situation.  The fact that a given flight 2

has always, on previous days, been above a certain height at a certain point
in the air lane, tells us absolutely nothing about its height at that point on a
new occasion.  It may tell us what it is reasonable to expect on a new occa-
sion, especially if we know no reason to expect anything unusual, but it tells
us nothing about what we should believe to be the case.

                                                
1 In cases where the population statistics are complete and include the specific aircraft, they
may however provide valid information about the maximum and minimum possible values
of parameters.
2 We are here using the term 'flight' in the special sense used for airline timetables.
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The distinction between statistical expectation and probablistic belief
can also be important in deciding the true performance of, say, a radar, when
flight-trial results appear to be in conflict with the design intent 1.  For, in the
case of a radar, the detection performance is generally determined by means
of a Bayes trial against a known aircraft and it is arguable that the design
intent constitutes a valid prior, with a logical status akin to that of a previous
measurement.  The logic of this situation is again closely related to that of
the calibrated ruler 2, and it is therefore arguable that, if the design intent is
to be introduced as a prior, then a term denoting the probability that the
radar is actually operating according to the design intent, should also be
included.

Different, but related examples are provided by Fisher's mice, which
are discussed in the appendix, and which actually create several logically
distinct types of situation.  For example, if the parents of the mother mouse
were known to be genetically RR ∧ RR, then the physics relevant to the
mother are absolutely specific and we know with certainty, without refer-
ence to her offspring, that the mother must also be of genetic type RR.
Conversely, if the mother's parents were RR ∧ gg, we know without refer-
ence to her offspring, that the mother must also be of genetic type Rg.  How-
ever, a litter of seven red offspring and an assumption of the 'information
zero' prior would have given the Rg hypothesis a probability rating of only
0.0078; a fact which serves to re-emphasise just how important it is to de-
clare one's assumptions and to beware of inferences which may be dramati-
cally sensitive to errors in those assumptions.  Yet, as shown in Chapter 8,
qualitative errors in our assumptions may have quantitatively trivial impli-
cations and it is therefore important to consider each case on its merits.  In
contrast, however, to the above cases where the genetic facts of the mother's
parents are such that they specifically determine the genetic constitution of
the mother, there are other cases where the mother's parents determine only
the probable expectation of genes and provide no specific information to
support any degree of reasonable belief about the mother's actual genetic
constitution.

It therefore appears that we may here have some further problems of
notation and of semantics in relation to the differences between 'probability'
meaning 'a reasonable expectation concerning the frequency of an event' and
                                                
1 The difference does not always reflect unfavourably on the true performance.  The
authors know of one radar where the true performance greatly exceeded the design intent.
This was eventually traced to the omission of a scaling factor in the specification of the
antenna.
2 See equation (9-4).
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'probability' in the sense of 'the degree of reasonable belief about a specific
situation'.  However, the notational problem is not severe, if we always
remember that the symbol PR denotes an expectation concerning the fre-
quency of an event within a population, and the symbol PH denotes an hy-
pothesis or belief concerning a fixed value in a specific case.  In operational
systems, however, it is probably desirable to further emphasise cases where
a displayed value is merely an expectation derived from statistics in contrast
with those cases where the displayed value is derived from evidence con-
cerning the specific object.  For example, in radar surveillance systems,
there are many statistical correlations between parameters such as the posi-
tions, heights, speeds and identities of aircraft.  Quite commonly, the ge-
ometry of the earth's curvature is used to give an estimate of the height of an
object at the first detection.  This 'guesstimate' of height can then be used to
produce a further 'guesstimate' of speed on the basis that, especially in air-
ways, the heights and speeds of aircraft are strongly correlated. Hence, quite
often the figures thus produced will be fairly accurate.  Yet, occasionally,
the object detected will turn out to be a stray meteorological balloon and the
'guesstimated' speed will be badly in error.  Experienced operators, however,
often draw upon regular correlations in the interpretation of radar returns
and it is not unusual to find that such correlations are assumed in the for-
mulation of operational procedures, e.g. there may be an axiomatic assump-
tion that all aircraft within the coverage of the system are flying according to
known rules.  Equally, however, many systems provide for the measurement
of specific parameters and it will often be the case that a value which is
measured specifically will be displayed to a controller in preference to a
value which is inferred from procedural rules or statistics.  It therefore seems
clear that where the values displayed to the users of a system can be of these
different kinds, the display should make clear what type of value is being
shown and that the users should be given an adequate understanding of the
differences in origins and dependability.

These issues raise a further question when a probability based on
observation of an individual is combined with a population-based probabil-
ity.   For example, radar data, R may show that a specific aircraft, observed
in a known airlane, is one of two types T1 and T2 such that PH( T1 | R ) = p1

and PH( T2 | R ) = p2.  Statistical data S may also give the relative frequen-
cies with which aircraft of those types use the airlane such that
PR( T1 | S ) = f1 and  PR( T2 | S ) = f2.  Hence there may easily arise a strong
desire to combine these two sources of data.  However, while we may feel
uneasy about such combinations, we can see no grounds upon which to
deem them invalid - provided there is a clear understanding that the resulting
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probability relates to a random event in the sampling of a population and not
to an hypothesis about the specific aircraft.  That is, the population com-
prises the aircraft on which the statistics are based and the combined prob-
ability PR( T1 | R,S ) represents the relative frequency with which aircraft of
type T1 occur in that population and are expected to give radar returns R.
Conversely for T2.   The addition of the statistical data tells us nothing be-
yond that which we know from the specific observation R about the individ-
ual case.

There is also a problem with the use of the term 'prior probability' in
relation to belief about a situation, for this term may heavily pre-condition
and distort our understanding of its meaning, especially if it is denoted
symbolically by, for example, PH( E1 ) with the impression of an absolute
probability being conveyed by the omission of the conditioning term.  It is
therefore important to understand that, in relation to belief about a situation,
the term 'prior probability' denotes a probability based on prior evidence, (or
assumptions), about that specific situation. Even so, the term 'prior evidence'
is better understood as 'separate evidence'; for, as we have seen many times,
the temporal order is not fundamental 1 and we can often exchange the val-
ues assigned to the terms E1 and  E2 without changing the reasoning or the
result.

We now return to the questions of probabilities of hypotheses and
causes and to Keynes' assertion, against De Morgan, that there is:- the ne-
cessity in general of taking into account the 'a priori' probabilities of the
possible causes.  If a cause is very improbable in itself, the occurrence of an
event, which might very easily follow from it, is not necessarily, so long as
there are other possible causes, strong evidence in its favour.  In this con-
text, Keynes seems to be thinking not so much of the fairly simple quantita-
tive a priori probabilities which we have considered above, but much more
of the dogmatic priors which, in contemporary scientific culture provide
massive defences against a plethora of individual and ad hoc explanations
being deemed 'most probable' in relation to anything and everything which is
observed.  Here, the dogmatic priors channel our thinking in generalising,
and often 'reductionist' directions.  The dogmatic prior is however an in-
strument very different in nature both from a prior expectation over a popu-
lation and from the prior belief stemming from direct observation of an
individual.  For it is via the dogmatic prior, even though often hidden, that
we give effect to the principles of simplicity and generality, enjoined upon
us by Empedocles 2 and Occam1: the focal axes in the 'modernist' scientific

                                                
1 In the case of independent additive noise, as discussed in Ch 9, the events are effectively
simultaneous.
2  See Ross (1936) p487
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view of the natural world.  Dogmatic priors are therefore a means of creating
high, often insuperable, barriers against explanations etc. which are viewed
as being a priori unwanted, absurd, or perhaps impossible2.

For example, one explanation of the apple which reputedly hit New-
ton's head, is that a demon pulled it from the tree and threw it at Newton.
Indeed, everything that happens can be explained as the activity of demons,
which is a massively reductionist form of explanation, but is dogmatically
outside the contemporary scientific ethos and is arguably not so much
'wrong' as 'unwanted' by the scientific community.  It is therefore excluded
from our thinking when we consider the inference of probable causes and
explanations.  Dogmatic priors are however dangerous instruments; for the
fantastic, surprising or outlandish explanation is not ipso facto improbable
in a specific case: rather, the probability in the specific case has to be deter-
mined by reference to the specific evidence3.

We therefore conclude that, when we are concerned to evaluate the
distribution of probabilities over the possible magnitudes of an attribute of
an individual, and the techniques applicable to the calibrated ruler are not
available, the only valid prior distributions are, in one case, those derived
from prior observation of the specific individual, or, in the other case, a
distribution which represents zero information in the specific context of the
attribute and the measure being employed.  In the next Chapter we look at
some practical applications for the procedures which follow from these
principles.

                                                                                                                           
1  Although the famous 'razor' has never, we understand, been found in the known writings
of William of Occam, the version to be found on pottery at the parish church of Ockham, in
the county of Surrey in England, reads 'Frustra fit per plura quod potest fieri per pauciora'
i.e. 'it is vain to do by more that which can be done by less'.
2 See also Richard Jeffrey's discussion of Dogmatism in Jeffrey, R. (1992), p.45.
3 This can be illustrated by the case of a penny which, flipped 20 times, gives 'heads' on
every occasion. If the penny came from the bank, we are surprised.  If however the penny
was purchased at a joke shop, there is very little surprise.
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 Chapter  12

The Trajectory

From the seventeenth century onwards, increasing importance, com-
mercial and military, and therefore also political, became attached to the
accurate computation of the trajectories of stars and planets across the sky
and of ships across the oceans1.  The aim was to improve the safety and
efficiency of maritime navigation.  There were many aspects to this prob-
lem, involving navigators, surveyors, astronomers, together with many
scientists and mathematicians who joined in the search for solutions.  The
search led to the realisation that, by combining a series of observations along
a trajectory, we can often improve the quality of information over that pro-
vided by treating the observations separately.

Much later, the 20th century saw a great widening of the field to which
people, particularly communications and control systems engineers, found
that they could apply the modern versions of the methods which, 300 years
earlier, began their steady development to improve navigation and astr-
onomy.  The 20th century expansion was directed at many different devices,
systems and processes which change in a progressive manner but are subject
to probablistic uncertainties, both in their observability and in their evolu-
tion. Navigation, communications and aerospace surveillance systems still
provide prime examples of such phenomena, all over the world and in the
inter-planetary space, where large numbers of micro-processors are, implic-
itly, using Bayes' theorem thousands of times every second.

These are serious matters, for such technologies not only provide vital
support for the economic, cultural, sporting and military activities of
wealthy nations, but also provide means which are vital to the effective
execution of international missions of mercy and protection.  Serious also
are the evil uses to which such technologies can be applied.  To debate that
balance is not our purpose; rather it is, in this chapter, to explore the rea-
                                                
1 See e.g. Adrewes (1996); Sobel (1996).
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soning which supports the designs of these devices which have, as their
essential purpose, the progressive integration and refinement of observa-
tional data obtained at successive points on the trajectory of an evolving
process.

We shall therefore discuss means by which Bayes' reasoning, albeit
often un-perceived and un-acknowledged, is applied to such situations.  We
must however point out that, in many of these situations, apprehensions
about prior probabilities, particularly those affecting the first observation of
a series, have caused many people to avoid the issue of probability alto-
gether and to work rather in terms of likelihood.  The consequence has been
a widespread inability to pursue questions to their logical conclusions in
terms of  'expectation', or 'probable cost'.  This seems to be especially the
case in aerospace systems and may well be also true in economics and social
studies.  However, as observations are often made by means of a calibrated
ruler, or some logically equivalent device, the difficulties with priors, which
have previously prevented the assignment of probabilities, can, as we saw in
Chapter 9, be overcome.  This should enable many deeper operational aims
to be pursued through conceptual thickets previously thought to be impene-
trable.

To illustrate a simple process of the relevant kind, we imagine a group
of children who amuse themselves on the school bus by taking turns to
guess the speed of the vehicle.  We suppose that the guessing errors have a
known distribution and we suppose that the speed of the vehicle is deter-
mined by numerous factors such as the speed limit, traffic density, road
conditions etc., plus other random elements which are individual to the
vehicle and its driver.  In this situation, if one child guesses the speed of the
vehicle as, say, 30mph, this guess conveys prior information as to the prob-
ability that the next guess will be, say, 35mph and the true speed, say 36mph.
Another example is where we wish to model the acceleration of an aircraft.
Here, the thrust  of the engines will vary randomly by small amounts and our
measurements of the speed will be subject to random errors.

In such situations, Bayes' reasoning, often combined with simplifying
models of the physics, allows us to make a series of observations and to
improve progressively the quality of the resultant information. While we
must be careful not to over-generalise from specific examples, it is useful to
regard the observations as being related so that if the attribute at the n'th
observation has a true value Xn then the probability that the attribute at the
next observation will have any 'guessed' value xg, is given by a forecasting,
or transitional probability function symbolised by the expression
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PF ( Xn+1≈ xg  Xn ).  By this means we can model a great variety of proc-
esses and linked activities where we know, or can reasonably assume, that
the prior probabilities over the possible values of Xn+1 are entirely deter-
mined when the probabilities over Xn are known, or are assumed to be
known.  This is known as the Markov1 property and, coupled to Bayes'
theorem, it allows us to construct computable models for a wide range of
serially connected events.

As another simple example, we consider a series of measurements,
taken with a calibrated ruler, where the object of interest is a pencil and the
attribute of interest is its length.  The first measurement gives, say 98.95mm,
and we wish to know the probability that the true length is, say, 100mm +/-
0.01mm.  In the case of additive errors which are independent of the length
of the pencil2, this corresponds with wanting to know the probability that
the error was between 1.04mm and 1.06mm, which we can obtain from the
calibration table.  That is, we can, on the basis of such a calibrated meas-
urement, make a plain statement of probability about the true length of the
pencil without the inhibitions concerning priors which have for so long
precluded such statements.  Further, such probabilities can be multiplied by
monetary values in order to achieve the magnitudes of probable costs.

If however we are to improve our knowledge by making further 'inde-
pendent' measurements, we have to consider quite carefully the logical basis
upon which this can be done.  Conceptually,  the task can be viewed as one
of estimating and progressively refining the posterior distribution of prob-
abilities over the possible values of a fixed attribute, which we can observe
only via measurements, y1 ...... yn, each of which is independently subject to
an additive error such that yi = X + εi, where X is the true value and ει has a
probability distribution, known by calibration.  We include this fact in a
term k0 which denotes our relevant knowledge prior to the first observation.
The first observation, y1, then expands the information so that k1 includes k0

and y1.

Thus, having observed a value y1 we wish to know the probability
distribution over the possible values of the attribute. We therefore apply the
logic of a calibrated ruler, as described in Chapter 9, such that, in terms of
Bayes' analysis3, E1 is the event that the error ε1 has the value y1 - xg and E2

                                                
1  Markov (1906).
2 Provided that the calibration table is sufficiently detailed, it is necessary only that the
errors shall be sufficiently small, in proportion to the true value, to support the assumption
of independent additivity.
3  See equations (3-51) - (3-51f).
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is the event that the measuring device is working according to the calibra-
tion.  Hence, because the calibration, C(.), tells us the probabilities appropri-
ate to different errors, we know that the probability of the true value being
equal to the guessed value xg is :-

PH(X ≈ xgk1 ) = PR(ε1 ≈ (y1 - xg)  C(.) ) (12-1)

The second observation further expands the information so that k2

includes k0 and y1 and y2 .  However, equation (12-1) now provides a prior
probability, based on k1, that X has the guessed value xg.  This allows the
observed value y2 to have the logical force of E2, whence Bayes' theorem
gives us:-

PH(X≈ xgk2 )   

=    PH(X≈ xgk0 , y1 , y2 )  

=  
 PH(X≈ xgk1 ) . PR(y2k1, xg)

PR(y2k1 )
  (12-2)

An important detail in (12-2) concerns the term PR(y2k1, xg) which
expands, first, to PR(y2 k0 , y1 , xg ) and further, with a small re-
arrangement to PR(ε2 = y2 - xg  k0 , X ≈ xg , ε1 ≈ y1 - xg ).  This denotes the
probability that we will observe y2,  if:-  (i) we are given k0, and (ii) X ≈ xg is
true, and (iii) the error on the first observation was ε1 ≈ y1 - xg.   One of our
main assumptions is, however, that observational errors are independent of
each other, whence it follows that the probability of an error ε2 ≈ y2 - xg is
independent of ε1 and therefore the probability of observing y2 at the second
observation, if the true value of X is xg , i.e.  PR ( y2k0 , xg ),  is independent
of the previously observed value y1.  At first sight, this may be very surpris-
ing and may seem to contradict relationships which are implicit and impor-
tant in, for instance, the guesses of the children on the school bus.  The
essence of the matter is however that the errors on the guesses of the chil-
dren are independent while all the guesses convey strongly correlated infor-
mation about the true value.  And it is precisely our purpose to extract that
strongly correlated component.  We therefore reduce the term PR(y2k1, xg)
to:-

PR(y2k1, xg)  = PR(y2k0, xg) (12-3)

whence:-

PH(X≈ xg  k2 )  =     
 PH(X≈ xgk1 ) . PR(y2k0, xg)

PR(y2k1)
  (12-4)
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Hence, given further observations y3 .... yi .... yn, we have, for similar rea-
sons:-

PH(X≈ xgki+1 ) =   
  PH(X≈ xgki ) . PR(yi+1k0, xg)

PR(yi+1ki  )
    (12-5)

That is, on making a new observation yi+1, we obtain the updated estimate of
PH(X≈ xgki+1 ), by taking the value of the term PH(X≈ xgki ) from the
result of the previous calculation and we compute the values of the terms
PR(yi+1k0, xg) and PR(yiki ) to substitute in (12-5).  Also, it follows from
equation (3-51e), that the total probability of observing yi+1, as represented
in the denominator of (12-5) is found by integrating over all the possible
values, the product:-

 PH( X≈ xg ki ) .  PR(yi+1k0, xg)   

expressed in the numerator, i.e. the probability of X ≈ xg, given the infor-
mation contained in k0 and the previously observed y1........yi,  multiplied by
the probability of observing yi+1 if X ≈ xg.  That is, although the errors af-
fecting the observations are independent, the fact that we have previously
observed a value such as yi exerts a definite influence on the probability,
relative to our knowledge, that the next observation will be reasonably close
to yi.

For example, we can imagine a group of children who are engaged in a
game of guessing the height of a telegraph pole and the variation in their
guesses is known rarely to exceed 1 metre.  Then, if the first child guesses a
height of say, 7 metres, it is very probable that the next child will guess a
height between say, 6 metres and 8 metres.  Thus, when we are given yi and
the form of the error distribution, the prior probabilities attaching to the
various possible values of yi+1 are thereby affected.  Therefore, replacing the
denominator in (12-5) by the integral of the numerator, as in (3-51f), the
resulting distribution of probabilities over the possible values of X is given
by:-

PH(X≈ xgki+1 ) 

=    
  PH(X≈ xgki ) . PR(yi+1k0, xg)

 ⌡⌠
-∞ 

 ∞ 

  PH(X≈ xgki ) .  PR(yi+1k0, xg)dx    
    (12-6)

Yet, although there are many instances in practical life where we are
required, as above, to estimate the value of a fixed parameter, there are also
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important cases where the parameter in which we are interested is not fixed
but changes from observation to observation according to some law or
distribution of state-transition probabilities.  Thus, using PF ( . ) to denote the
forecasting function, we may symbolise such transitions by
PF (Xi+1≈ xgXi= xf ).

   To model this more complex example of a Markov process, we mod-
ify (12-6) to reflect the fact, following a series of observations y1 ..... yi  the
resulting probability that Xi has a value xg is given by: -

PH (Xi ≈ xgki ) 

=          
  PH ( Xi≈ xgki-1 ) .  PR (yi k0 , xg )

PR (yiki-1 )
   (12-7)

However, to evaluate (12-7) we have to go back to the posterior distribution
over the previous state Xi-1 at the point where we had received and evaluated
the previous observation to determine PH (Xi-1 ≈ xfki-1 ).  Given this infor-
mation, we use the forecasting function PF ( . ) to project the prior probability
that the next object Xi  will have a value xg.   This requires us to consider all
combinations of all possible values of  both Xi-1 and of Xi, which we desig-
nate by the intermediary variables xf and xg respectively.  Notionally, we
start by fixing an extreme, but possible, value for xf and, having done so, we
sweep through all the possible values of xg and, at each point1, we compute
the probability of the hypothesis (Xi-1≈ xfki-1 ) and the probability of a
transition to the state Xi ≈ xg if Xi-1 ≈ xf.  Multiplying together these prob-
abilities gives us the contribution to the prior probability that Xi ≈  xg due to
the possibility that Xi-1 might have had the value xf.  Hence, by integrating
these contributions over all possible values of xf , we obtain the total prior
probability appropriate to the postulated value of xg. Therefore we have to
perform, or be able to approximate these computations for all possible val-
ues and combinations of  xf and xg.  Hence, the prior distribution over all the
possible values of Xi is given by:-

PR ( Xi≈ xg ki-1 ) 

=  ⌡⌠
-∞ 

 ∞ 
PF( Xi≈ xgXi-1= xf ) . PH (Xi-1≈ xf ki-1 )dxf   (12-8)

                                                
1  See the comment in the 'Notation' section,  regarding our treatment of the probability at a
point on a continuous distribution.
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and the full expression describing the posterior distribution, after the obser-
vation yi is:-

PH (Xi≈ xgki ) 

=  ⌡⌠
-∞ 

 ∞ 
PF ( Xi≈ xgXi-1= xf ) . PH (Xi-1≈ xf ki-1 )dxf   

     x    
PR (yi k0 , xg )

PR (yiki-1 )
    (12-9)

Although the approach outlined above is conceptually pure, such
generalised approaches have hitherto received little attention for two re-
markably different, but connected reasons.  The first and probably major
reason, stems from the computational demands in terms of both memory and
processing effort which made such approaches almost impossible to con-
ceive and totally impossible to implement prior to the advent of electronic
digital computers.  The second reason concerns the analytic intractability of
the procedures, i.e. the difficulty of showing by rigorous deduction that they
possess properties which are often considered desirable, a typical example
being the yielding of an 'unbiased' estimate.

In contrast, however, to the generalised procedure, it emerged early in
the nineteenth century, following the efforts of Simpson, de Moivre, Legen-
dre, Bayes1, Laplace, Gauss2, and, no doubt, many others, that the assump-
tion of a 'normal' distribution of errors directly justified both the taking of
the arithmetic mean as the most probable3 value of a fixed quantity and also
the use of the method of 'least squares' to estimate the line of best fit to a
linear trajectory.  The consequent procedures are both minimally demanding
of computational effort and are amenable to clear algebraic analysis.

One hundred years after Gauss, Fisher generalised and formalised such
approaches in his notable 1922 paper. In that paper, Fisher defined and

                                                
1 Not in 'The Essay', which was little read at that time, but in conversation and correspon-
dence.  See Stigler (1986a)
2  See Stigler, (1986a)
3  The reasoning which lead to the 'most probable' value seems to have been based on the
belief that it was necessary to assume a uniform prior over the possible values of the true
magnitude.  Keynes seems to find this acceptable for the analysis of errors, (Keynes (1921)
p 196), but unacceptable for the inversion of Bernoulli's theorem, or Bayes' experiment,
(ibid. p 387).  Fisher found it totally unacceptable.
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explained numerous concepts which are of great utility in the algebraic
analysis of statistical procedures, in particular the concept of a 'sufficient
statistic'.  The essence of this concept is that, in cases where a population is
known to be, or, as is perhaps more often the case, is assumed to be, distrib-
uted according to a simple algebraic expression, a small set of parameters,
computed from the observed values, is notionally sufficient to summarise all
the information provided by the observations.  This is, in modern terms, a
form of 'data compression' and it is enormously useful in simplifying statis-
tical calculations.  In particular, where we have to make repeated observa-
tions of an unknown object, and each observation is corrupted by error, it
leads to procedures which, being synoptic and recursive, can be executed in
simple electronic circuits, or algorithms, and thus produce, with minimum
demands on the computational memory, progressively refined distributions
of resultant probabilities over the values in which we are interested.

The synoptic property of these procedures stems from the fact that the
existence of 'sufficient statistics' allows us, at least nominally, to summarise
all the information in a small set of parameters.  The recursive property
stems from the application of Bayes-Markov techniques where, on receipt of
a new observed value, the previously estimated distribution of probabilities
is treated as a prior distribution and is then combined, according to Bayes'
theorem, with the new observation to produce a further and more refined
estimate of the probability distribution over the possible values of the attrib-
ute in which we are interested.
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Figure 12.1

The key features are therefore the combination of Bayes' method, with
a Markov process and the concept of synoptic statistics, such that the prior
probabilities over a new state are fully determined by our knowing the one
or two parameters which summarise the probability distribution over the
previous state and the assumed transition function.

Some notable cases to which these procedures can be applied, and
which are often encountered in contemporary practice, arise when we know,
or, more often, we assume, again for computational and analytic conven-
ience, that the errors on the observations have independent 'normal' distribu-
tions, similar to those illustrated in figure 12.1.  This is a technique with
which some readers will be so familiar that it may seem  to them strange that
anyone who does not share that familiarity should read this book.  Our
concern however, being with matters of logic and philosophy, makes it
possible that the readers will include others who may have no such familiar-
ity.  Therefore, rather than relegate the matter to footnotes and appendices,
we take here a few lines to set the scene for the examples which follow.

Historically, the name1 'normal' seems to have become attached to
these curves, by accident; an alternative name is 'Gaussian': but neither name

                                                
1 The name is discussed in Stigler (1980)
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is easily justified.  In this chapter, we reluctantly use the name 'normal', but
caution that in this usage, 'normal' is a peculiar proper name and should not
be taken to mean that the curve is normal in any ordinary sense.   We also
find that the name is sometimes loosely applied to any bell-shaped curve, of
the general shape illustrated in figure 12.1, which can be defined, or ap-
proximated, by an equation of the form:-

P (xr )  =   
1

√(2πσ 2) exp  
- ( x - x̂  )2

 2σ 2  (12-10)

This equation has many convenient properties; but it is important to
note that, while many other equations generate bell-shaped curves, they do
not, in general, have the convenient properties of (12-10), where the curve is
defined by the two parameters  ( x̂ ,σ).   However, one can often find values
for the parameters ( x̂ ,σ) which will produce an adequate fit, for practical
purposes, to a set of points which lie roughly on such a curve.  In the central
portion, this is usually fairly easy; the problem becomes more difficult as
one involves the tails.  These symbols differ slightly from common usage;
the choice of  x̂  to denote the central (mean) value is unusual: 'µ ' being
more common.  The symbol σ  denotes the half-width of the curve at the
points of inflexion which occur symmetrically about the mean value; it is
often called the 'standard deviation' of the distribution.  However, to keep
the wording as simple as possible, we later write of the 'width' of a normal
distribution being 'defined by σ  '. The phrase should therefore be understood
in the sense that the distance between the points of inflexion is equal to 2σ.
The value of σ 2, known as the 'variance', is equal to the mean-square devia-
tion from the mean value of the distribution.  In statistical writing, it is
common to define a normal curve by the mean and the variance, e.g. ( x̂ ,σ2):
here, however, in order to reduce the symbols to the simplest possible form,
we write ( x̂ ,σ) and we symbolise the fact that a quantity has a normal dis-
tribution by an expression of the form  ~N( x̂ ,σ  ) .  We also use expressions
of the form G( x̂ ,σ , x ) as abbreviations for the full form of (12-10); the
symbol 'G ' being to acknowledge the 'Gaussian' name.

Looking briefly at some properties of the normal distribution, we find
that an expression of the simple form:

 y =  exp  
- ( x - x̂  )2

 2σ 2   (12-11)

has many of the properties sought by early investigators for the 'law of error'
with which they were largely concerned.  A theoretical defect, however, is
that its value does not fall (quite) to zero beyond a certain point, but it does
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fall to a value which is often small enough to be negligible for practical
purposes.

Another problem is that the area under such a curve, representing the
total probability of all possible values, does not integrate to unity but rather
to the value √(2πσ 2).   However, while it is merely a convention that the
total probability should sum to unity, it is an extremely useful convention,
and since the problem can be regarded merely as a matter of adjusting a
scale, the factor  1 /√(2πσ 2) is introduced to produce the required result.
If this strikes the reader as a somewhat cavalier act, it should be acknowl-
edged that this whole field is populated by arbitrary and 'ad hoc' acts of a
similar kind, their purpose having been, historically, to produce algorithms
which would yield answers of practical value from the computing devices
which were available at the time.

Further, a remarkably useful property of the normal distribution arises
because probabilities relating to the addition of variables or the joint occur-
rence of events, are easily computed by simple operations on the parameters.
Thus, we have the simple theorems:-

Theorem 12.a : A variable which is the sum of two normally-distributed
variables is also normally distributed

That is, if variables a and e are normally distributed such that:-

PR ( a ≈ x k0 ) = G(â,σa,x )  and   PR (e ≈ x k0 ) = G(ê,σa,x )

then their sum is also normally distributed such that:-

PR ( a+b ≈ x k0 ) = G( (â+ê), σa+e,  x )

where σa+e =  √ ( σa
2 + σb

2).   This is illustrated in Figure 12.1 which shows
the broadening of the resultant distribution when variables are added arith-
metically1.

Theorem 12.b : A variable which is a direct multiple of a normally-
distributed variable is also normally distributed

That is, if variable a is normally distributed with probability:-

 PR ( a ≈ x k0 ) = G(â,σa,  x )

and there is a second variable e such that e = ca, then e will be normally
distributed such that:-

 PR ( e ≈ x k0 ) = G( câ, cσa,  x ) (12-12)
                                                
1 This has to be distinguished from the narrowing which occurs when information is added,
as shown by the resultant variance in equation (12-19)
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Resuming now the main theme, if we assume that the errors on a
series of observations y1 ... yi ... yn  have independent normal distributions,
and are symmetric about the true value of X, we can write:-

  yi = X + εi ;   εi ~ N(0,σi ),

and this assumption or knowledge we include in k0.  Hence the probability
that an error ε i has a value 'e'  is denoted by:-

PR
 ( εi ≈ ek0 )  =  G(0,σ i,e ) (12-13)

In such cases, when we are given the first observation y1 and the width
of its error distribution 2σ1, the probable correctness of a guess that X ≈ xg is
equivalent to guessing that an error ε1 ≈ y1 – xg  has occurred.  Hence:-

PH(X ≈ xgk0,y1,σ1)  =  PR(ε1≈ (y1 – xg)  k0 ) 

=  G(0,σ1,(y1 – xg) ) (12-14)

Following the second observation y2, we need to compute, as in (12-6) the
probability of X ≈ xg given that we have now observed, with unknown er-
rors, both y1 and y2. Thus:-

PH(X≈ xgk2) =  
PH(X≈ xgk1) . PR(y2k0 , xg )

PR(y2k1)
  (12-15)

Taking the terms of (12-15) in order, we have:-

(1) from (12-12):-

PH (X≈ xgk1 ) =  G(0,σ1,(y1 – xg) ) (12-16)

(2) PR (y2k0 , x) is the probability of occurrence of an error e2 = y2 – xg,
whence:-

 PR(y2k0, xg ) =  G(0,σ2,(y2 – xg ) ) (12-17)

(3) following (12-6), we have for the denominator:-

PR(y2  k1 )  =  ⌡⌠
-∞ 

 ∞ 
G(0,σ1,(y1 – xg) ) G(0,σ2,(y2 – xg) ) dx (12-18)

and therefore, combining (1),(2),(3) the resultant probability that  X≈ xg 
simplifies as shown in Appendix E, to a normal distribution of the form:-

PH ( X≈ xg   k0,y1,y2 )  =   G(ŷ2, σ̂2 , xg ) (12-19)

where, the 'hat' symbols denote synoptic parameters:-
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 σ̂2
2 =   

σ1
2.σ2

2

(σ1
2+ σ2

2)  and  ŷ2   =  
σ2

2y1 + σ1
2y2

σ2
2σ1

2      (12-20)

The reasoning can then be generalised to show that as further observa-
tions are made, the information which they contain can be expressed by the
synoptic parameters which are produced by each iteration, that is:-

PH (X≈ xgki )  =  G( ŷi, σ̂i , xg ) (12-21a)

where  σ̂i
2 =   

σi-1
2.σi

2

(σi-1
2+ σi

2)  and  ŷi   =  
σi

2yi-1 + σi-1
2yi

σi
2σi-1

2    (12-21b)

Having thus dealt with normally distributed errors in the case of a
fixed attribute, we now illustrate a case where we know or assume a transi-
tion function such that the true value of the attribute Xi comprises a known
multiple of the true value of its predecessor,  cXi-1 , plus a random variation
ν i so that Xi = cXi-1 + ν i.  We also assume that the random variation has a
normal distribution, N(0,σνi 

2 ), centred in each case on the systematic com-
ponent cXi-1 but having a width which can change from case to case.  Each
observation yi also remains subject, in addition, to a random, normally
distributed error εi which has a zero mean value and a  width 2σεi.  In this
scenario, therefore, each observed value, after the first observation, can be
regarded as the sum of three components:-

yi =  cXi-1 + ν i + ε i (12-22)

However, because it is also true to make the equation yi = Xi + ε i it
follows by simple arithmetic that Xi = yi - ε i and therefore, taking into ac-
count only a single observed value yi, the probability that the true value Xi at
that point was equal to some guessed value xg is the probability that the
error ε i should have been equal to yi - xg .  That is:-

PH( Xi ≈ xgk0, yi )  =   PR( ε i ≈ (yi - xg ) k0 , y i )

=  G(yi , σεi , xg ) (12-23)

At the first observation therefore, because there is no predecessor, the
probability distribution over the possible values of X1 is given by (12-16) .
However, with a view to further generalisation, we can also write:-

PH ( X1≈ xgk0 , y1 )  =  G( ŷ1,σ̂1, xg ) (12-24)

where ŷ1 = y1 , the mean of the posterior distribution, and the spread is given
by σ̂1

 = σε1.  At the next step, we observe y2 and require to compute the
consequent distribution over the possible values of X2, taking also into
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account the information provided by y1 and the prior knowledge k0.  That
is 1:-

PH (X2≈ xgk2 ) 

=  
  PR ( X2≈ xgk1 ) .  PR (y2 k0 ,xg )

PR (y2k1 )
   (12-25)

Taking first the term PR (X2≈ xgk1 ) we use the transition function PF ( . )
and, at least notionally, a  guessed value xg to compute the prior distribution
over the possible values of X2, given that our information k1 now includes
both k0 and y1,  viz:-

PR ( X2≈ xgk1 ) 

=   ⌡⌠
-∞ 

 ∞ 
  PF (X2≈ xgX1= xf ) . PH (X1 ≈ xfk1 )dxf (12-26)

However, the assumptions of independent normal distributions over
ν i and ε i allow us to escape from the need to deal explicitly with the inte-
gration because the forecasting function, combined with some standard
theorems, allows us to proceed directly from (12-22) to the result we require
in (12-23).  This simple resolution of what may otherwise be somewhat
complicated, stems from the reasoning that, because we have an estimate ŷ1,
from the first observation, which is normally and symmetrically distributed
~N(0,σ̂1 ) with respect to X1, we can project ahead to the second observation
and denote a variable δ2 which, notionally, comprises:- (i) the projection of
the difference between the first observed value and the first true value,
plus, (ii) the random variation ν2 on the true value of the second object.
That is:-

δ2 = c(y1 - X1 ) + ν2 (12-27)

Therefore, as we know that the value of the term (X1 - y1 ) is distributed
~N(0,σ̂1 )  it follows from Theorem 12b above that the value of the term
c(X1 - y1 ) will be normally distributed ~N(0, cσ̂1 ).  Also, as ν2 is, by defini-
tion, normally distributed ~N(0,σν2 ) it follows that δ2 is the sum of two
normally-distributed variables, each of which has a zero mean value, and
therefore δ2 will also be normally distributed about a zero mean with a
spread σδ2 = √ (c2σ̂1

2  + σν2 
2  ).  Further, since the prior distribution which we

are here seeking, PR ( X2≈ xgk1 ), concerns a random event, and also be-
cause:-

                                                
1  See equation (12-9) above.
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X2 =  cX1+ ν2 =   cŷ1 - c(X1 - ŷ1) + ν2   =   cŷ1 - δ2 (12-28)

we can proceed directly to show that the prior distribution of  X2, given k0

and y1 will be a normal distribution of width 2σδ2 around the projected
value cy1, that is:-

PR ( X2≈ xgk1 ) =  PR ( (cŷ1 - δ2 ) ≈ xgk1 )   
=  PR ( δ2≈ ( xg - cŷ1 )k1 )
=  G( cŷ1 , σδ2 , xg )   (12-29)

Returning to (12-22), we now consider the term, PR (y2 k0 ,xg ),
where we know, as with the first observation, that the parameter y2 - X2 = ε2

is normally distributed ~N(0,σε2 ), whence it follows that the probability
PR( X2≈ xgk0 ,y2  ) is given by:-

PR( X2≈ xgk0 ,y2  )  =  G( y2 ,σε2, xg ) (12-30)

Further, since we know from (3-51f) that the denominator in (12-25) is
equivalent to the integral of the numerator over all possible values of xg it
follows that we can express (12-25) as:-

PH (X2≈ xgk2 )  

=   
G( cŷ1 , σδ2 , xg ) .G( y2 ,σε2, xg ) 

 ⌡⌠
-∞ 

 ∞
 G( cŷ1 , σδ2 , xg ) .G( y2 ,σε2, xg )  dxs

 (12-31)

Therefore, as it is shown in Appendix E that an expression of the form of
(12-31) results in a further normal distribution, we have:-

PH (X2≈ xgk2 )  =  G( ŷ2 ,σ̂2 , xg  ) (12-32)

where  σ̂2
2 =   

σδ2 
2  .σε2 

2  
(σδ2 

2  + σε2 
2  )   and  ŷ2   =   

σε2 
2  ŷ1 + σδ2 

2  y2

σε2 
2  σδ2 

2       (12-33)

and therefore, by extension of the same reasoning:-

PH (Xn≈ xgkn )  =  G( (ŷn ,σ̂n , xg  ) (12-34)

where, for n = 1:-

σ1 ^     =     σε1  and  ŷ1  =   y1; (12-35)

and, for n > 1:-

σδn 
2    =      c2σn-1

^ 2  + σνn 
2 (12-36)
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σ̂n
2   =     

σδn 
2  .σεn 

2  
(σδn 

2  + σεn 
2  )      (12-37)

ŷn     =     
σεn 

2  ŷn-1+ σδn 
2  yn

σεn 
2  σδn 

2       (12-38)

Although the above expressions may seem not exactly simple to a lay eye,
Fig 12.2 shows the ease with which the expressions can be implemented in a
recursive device, such as a Kalman filter1.

In such applications, however, the use of a calibrated measuring de-
vice is fundamental and, where the errors are assumed to have a normal
distribution, calculation of mean and variance from the calibration data is a
matter of simple arithmetic - a further case of the apparently magical power
of a normal distribution to dispose of awkward problems.  Yet, despite the
large following enjoyed by devices based on assumptions of normal distri-
butions, there are people who have long been unhappy at the temptation,
presented by the amenity of these devices, to the skimping of the analysis
and to the over-simplifying of the physics and mathematics.

It is therefore a welcome fact that the speed and capacity of electronic
computers now makes it practical to handle distributions and their integrals,
such as (12-9) above, which were previously beyond practical possibility.
However, instead of computing the values of the integrals by traditional
techniques of numerical approximation, it is also possible to use 'Monte
Carlo' simulation in order to obtain results which, while still approximate,
appear often to be much faster and of an accuracy comparable to those
obtained by traditional methods.  We must however point out that there may
be in a Monte Carlo procedure, a hidden postulate of the uniform prior.
This assumption may often be entirely rational and defensible, provided it is
made clear both to the perpetrator and to the reader.

                                                
1  Kalman (1960).  See also Norton (1986).
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        y1          σε1

ŷ1   =   y1

σ1 ^    =   σε1                                                                     σνn

                 σδn 
2    =      c2σn-1

^ 2  + σνn 
2                           σεn

                    σ̂n
2   =     

σδn 
2  .σεn 

2  
(σδn 

2  + σεn 
2  ) 

                                                                                  yn

           ŷn   =   
σεn 

2  ŷn-1+ σδn 
2  yn

σεn 
2  σδn 

2   

                                         n > 1

                n = 1

                                              ŷn 

                                                        σ̂n
2

                                               Fig  12.2
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Chapter  13

Base Rate

Introduction

Although it may seem clear from the previous discussion that popula-
tion statistics will, in general, provide no information about an individual,
there is, it seems, at least one school of thought where the opposite view is
held.  The view that the population is indeed informative, seems to be espe-
cially common among cognitive psychologists, who are concerned to detect,
understand and correct failings which are widespread and potentially serious,
in the modern world, in our intuitive responses to situations which involve
issues of probability and uncertainty.  This concern has led to the publica-
tion, since the 1955 paper by Meehl and Rosen1,  of a considerable volume
of books and papers, notable among which are: "Judgement under Uncer-
tainty" by Kahnemann, Slovic and Tversky2, Poulton's "Behavioral Decision
Theory3, and, of special interest in relation to this chapter, the papers by Bar-
Hillel4 Cohen5 and Koehler 6.  Another author who gives excellent insights
into the matter is Piattelli-Palmarini 7 whose very readable book shows many
entertaining and enlightening examples of cases where we are all prone to
cognitive slips.   There is, however, a school of thought among the cognitive
psychologists where, in our view, perceptions seem undesirably limited and
over simplified.  In this school of thought - the 'base rate school' - it is be-
lieved that, when computing a post-trial probability concerning an individ-
ual, it is axiomatic that the prior probability must be taken from the rate of
occurrence among the population, group, or reference class8  to which the
individual belongs, i.e. the 'base rate.'  Members of the school seem to be-
lieve that the use of the base rate is an integral part of what they refer to as

                                                
1 Meehl and Rosen (1955)
2 Kahnemann (1982)
3 Poulton,  (1994)
4 Bar-Hillel, (1980), (1983), (1990)
5 Cohen, L. J. (1979) et al.
6 Koehler (1996)
7 Piattelli-Palmarini, (1994).
8 For definitions of the reference class, see Kyburg (1974) and (1983).
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Bayes' Law 1.  It does however seem that few of the school may have actually
read Bayes' essay, where the base rate plays no part in the derivation of the
theorem2, and Bayes hints at the use of the base rate only very hesitantly in
the Scholium.

However, in the belief that the base rate is fundamental to Bayes'
theorem, the school have produced a number of paradigm cases to illustrate
what they believe to be common 'cognitive mistakes' where people ignore
the base rate in the evaluation of test results and testimonies.  The school
have also, in conjunction with at least one reputable statistical society, set up
a task group to indoctrinate young lawyers with their view of  'correct
thinking' on this matter3.

The Taxi Cab Case

One well-known paradigm used by the base rate school concerns a taxi
cab which is involved in a hit-and-run accident4.  There is just one witness
who reports the colour of the cab as blue.  However, there is in the city a
total of 1000 cabs operated by two companies.  One company operates 850
cabs, and they are green.  The other company operates 150 blue cabs.  Tests
show that the witness has imperfect colour vision and gets the colour right
on only 80% of occasions.  Given these facts, we are asked to compute the
probability that the cab involved in the accident really was blue.  As the base
rate school make no distinction between probability in the frequentist PR

sense for the expected rate of occurrence of a random event and the PH  sense
concerning hypotheses about a value that is fixed for the duration of a trial,
they hold that the correct calculation has the form :-

P (TB k,DB) =  P(TB k) . 
 P (DB k,TB)

P (DB k)  
 (13-1)

where:-
TB →  the true colour  is blue
k →  background data and assumptions
DB →  a blue cab is declared

We now expand the denominator in terms of cases when the true colour is
green, (TG) and cases where it is blue, giving :-

P (DB k)  =  P (DB k,TB).P (TB k) + P (DB k,TG).P (TG k)
                                                
1 Piattelli-Palmarini, (1994).
2 cf. Ch. 2, Prop 5; Ch.3 Prop 5.
3 See :  http://www.maths.nott.ac.uk/personal/rsscse/lawyersp1.html
4 Piattelli-Palmarini, (1994), pp.83 and 207.
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Assigning values :-

P (TB k)  =  0.15 P (DB k,TB) =  0.8

P (TG k)  =  0.85 P (DB k,TG) =  0.2

thus gives  P (DB k)   =   0.8x 0.15 + 0.2 x 0.85  =  0.29

and therefore   

 P(TB k) . 
 P (DB k,TB)

P (DB k)  
    =    0.15 x  

0.8
0.29  

i.e. P (TBk,DB)  =  0.4138 (13-2)

whence it is argued that there is a probability of only just over 40% that the
cab truly was blue.

 If however we differentiate between PR  as the probability of a random
event and and PH as the probability of an hypothesis, and define:-

KP the population statistics
C(W) the calibrated performance of the witness
k background data and assumptions
K1 =   (C(W), k), i.e. C(W) and k are both given
K2  =  (KP, C(W), k) i.e. the population statistics and C(W) and

k are given

we find by analogy with (13-2) that PR(TG K2,DB) =  0.4138. If however
we formulate precisely the question to which this result is the answer, we
find that it is as follows:- If all the cabs in the city were to be driven past the
witness a large number of times, and the witness were asked in each case to
identify the colour, then, in what proportion of the cases in which the colour
was identified as blue, would we expect the identification be correct ?

In contrast, the question we are really trying to answer concerns the
probability that a specific cab, declared to have been blue, really was blue.
Thus, given that only one cab was involved, it seems strange that 999 other
cabs, which were not involved, are somehow deemed to provide evidence
about the cab which actually was involved.   However, as with other types of
observation, a single observation in such a case is merely a sample from a
potentially large set.  That is, there could have been, in principle, any num-
ber of witnesses to the event in which the unique cab was involved.  Such
witnesses may then provide a set of randomly varying observations about the
specific cab, from which our concern is to determine the probability of an
hypothesis concerning the colour, which is a fixed value in the context of the
accident.  Therefore, as the single witness has been calibrated and the prob-
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ability of error is asserted to be independent of the true colour of the taxi, we
can, by analogy with the calibrated ruler, write:-

PH( E   DB,K1 ) =  PR( E K1 ) . 
 PR( D  E ,K1 ) 

 PR( DK1 )
 (13-3)

where E signifies that the witness was in error and D signifies simply that
the witness declares a colour.  Assuming then, as described in Chapter 9,
that there has been no change in the error-probabilities since the calibration
of the witness,  we can set the ratio

 PR( D  E ,K1 ) 

 PR( DK1 )
    =   1

whence

PH( E    DB,K1 ) =  PR( E  K1 )  =   C(W)  =  0.2 (13-4)

and therefore, as the probability that the taxi truly was blue is the compli-
ment of the probability that the witness was in error, we have:-

PH( TB  DB,K1 )  =  1 - PH( E  DB,K1 )  =  0.8 (13-5)

that is, there is a probability of 80% that the hypothesis that the taxi was
blue is correct.

Clearly, therefore, in cases which are logically equivalent to that of the
taxi cab, there can be marked differences between the value of PR which is
given by the base rate approach, taken over the whole population, and the
value of PH which is given by evaluating the probability of an hypothesis
concerning a specific object, in relation to specific evidence.

A further point of special interest emerges if we consider the human
aspect of the term PR( D  E ,K1 ): that is, the probability that the witness
will declare a colour, given that the declaration will be in error.  For, a hu-
man witness, being conscious of a tendency to err in certain cases, may
refuse to make a declaration if it is felt that the case in point is doubtful.
Similarly, it is easy to envisage an automatic measuring device which will
suppress the declaration of a measured value if the 'signal-to-noise' ratio is
below some threshold of acceptability.   Clearly, if we assume that the per-
formance of the witness or measuring device is stable, the suppression of a
declaration will not invalidate the calibration: the point is, rather, in clarify-
ing the real-world meaning of an algebraic term that may be otherwise ob-
scure.
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Medical screening

Another case used as a paradigm by the base rate school1 concerns a
medical screening test which is loosely said to have a one-percent false
positive rate.  This appears to mean that if a large number of people who are
clear of the condition are tested, then, on average, one percent of those
people will produce a result which, wrongly, indicates that the condition is
present.  It is also assumed that the test never fails to indicate the condition if
it is actually present.  In addition, we are told that, taken over the whole
population, only one person in 1,000 has the condition.  It is then shown, by
using these figures in conjunction with Bayes' theorem, that, if a person
selected at random from the population is tested 'positive,' the probability
that the person actually has the condition, is only about 9%.  In outline, the
reasoning behind this conclusion is of the form that, if one million people,
selected randomly, are tested, then 1,000 of those people will have the con-
dition and will show positive.  In addition the test will show positive for 1%
of the remaining 999,000 people, i.e. in nearly 10,000 cases.  Thus, out of a
total of 11,000 positive declarations, only 1,000, or about 9 % will be cor-
rect.

To apply Bayes' theorem, we first have to ask whether the probability
that is to be determined concerns an attribute which varies randomly
throughout a trial, or whether it concerns the value of an attribute in an
individual case that is fixed for the trial ?  Clearly, in terms of the reasoning
just shown, the concern is with an attribute which varies randomly as differ-
ent members of the population are tested.  We therefore define the symbols
to be used:-

D+ a positive detection is declared
DF+ a false positive detection is declared
DT+ a true positive detection is declared
T+ the true condition in the case is positive
T- the true condition in the case is negative
K2 the supporting data and assumptions:-

KP the population statistics
C1 the calibrated performance of the test in this context
k background data and assumptions

This gives for the average expected rate of occurrence across the popula-
tion:-

                                                
1 A closely similar case is given by Piattelli-Palmarini, (1994), pp.80 and 204-207.
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PR( T+ D+,K2 )  =  PR( T+K2 ) . 
PR( D+ T+,K2) 

  PR( D+K2)
 (13-6)

We now expand the denominator in terms of cases when the true condition
is positive and when it is negative:-

PR(D+K2)  =  PR(D+ T+, K2) .P R (T+K2) . . . . . .

                    +  PR(D+T-, K2) .P R(T-K2) (1 3 - 7 )

whence

PR( T+ D+,K2 ) (13-8) 

=   
PR( T+K2 ) .PR(D+ T+,K2)

 PR(D+ T+, K2) .P R (T+K2)+  PR(D+T-, K2) .P R(T-K2)
 

Substituting:-  PR(D+ T+,K2)  =  1.0 ; P R (T+K2)  =  0.001;

       PR(D+T-, K2)  =  0.01; P R(T-K2)  =  0.999;

gives:- PR( T+ D+,K2 )  =   0.090992 (13-9)

That is,  relative to the information and assumptions K2 there is only a
9 . 1 % probability that the condition will actually be present in a member of
this population, selected at random, and for whom the test gives a positive
result.  Superficially, therefore, this result seems to contradict the premiss
of the one percent false positive rate on which it is based and gives the
appearance of a paradox.

The truth is, however, that the presentation of the problem is ambigu-
ous and involves deceptive shifts of meaning.  The appearance of self-
contradiction, for example, stems from the fact that the false positive rate is
initially defined as the ratio of positive declarations to total declarations
when a large number of condition-negative people are tested.  The final
result of 9 % is, in contrast, the ratio of correct positive results to total posi-
tive results when a large population of a mixed, but known, composition is
tested.

Serious points also concern the definition of the false positive rate and
its relevance to the individual.  Introducing the problem, above, we took
care to explain that a "one-percent false positive rate" appeared to mean
that, if a large number of people who are clear of the condition are tested,
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then, on average, 1 % will produce a false positive result.  This is to be
contrasted with an alternative definition that, if a particular condition-
negative individual is tested a large number of times, then, on average, 1 %
of those tests will show a false positive result.  A significant feature of this
alternative definition is that it relates to a fixed value, namely the true state
of the individual under examination, and therefore supports a PH statement
of probability of the form:-

PH( T+ D+,K1 ) =  PH( T+K1 ) . 
 PR( D+  T+,K1 ) 

 PR( D+K1 )
 (13-10)

where K1  denotes:-
C2 the calibrated performance of the test in this context
k background data and assumptions

Unfortunately, although the error-probability has been derived by
calibration, the errors in this case are neither randomly added to a true
value, nor is the probability of error independent of the true state of the
individual.  (For it is given in the definition of the problem that the test
never fails to indicate the condition if it is actually present). Hence, the
techniques which are available in the case of the calibrated ruler, are not
available here: but the facts do allow us to set the value
PR( D+T+,K1 ) = 1 .

To evaluate the term PR(D+K1) in the denominator of (13-10), re-
quires expansion in terms of the mutually exclusive positive or negative
true state of the individual.  This invokes the prior probabilities PH(T+K1),
and PH(T-K1) but excludes any reference to the population statistics.
However, because the positive and negative states T+  and T- are mutually
exclusive and exhaustive, PH(T-K1 ) = 1 - PH(T+K1 ).  The (assumed)
absence of information concerning the individual prior to the test therefore
requires that we set  the prior probability that the true condition is negative
equal to the prior probability that the true condition is positive, i.e.
PH(T-K1 ) = PH(T+K1 ) =  0.5. Expansion of the denominator into com-
ponents corresponding to these two possibilities and the calibrated perform-
ance of the test then gives:-

PR( D+K1 ) 

=  PR( D+T+,K1 ).PH( T+K1 ) + PR( D+T-,K1 ).PH( T-K1 )

=  1 x 0.5 + 0.01 x 0.5 = 0.505 (13-11)

which, substituted into (13-10) gives:-
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PH( T+ D+,K1 ) =  PH( T+K1 ) . 
 PR( D+  T+,K1 ) 

 PR( D+K1 )
  (13-12)

=    0.5 x 
1.0

0.505    =   0.99 (13-13)

i.e. on this basis it appears there is a 99 %  probability that a positive result
is correct.

Three factors make important differences between these two results.
The first factor is the distinction between the PH probability of an hypothe-
sis concerning a fixed value in testing an individual and the PR probability
of a random event in a group.  The distinction explains why we are able to
derive probabilities, in individual cases, from calibrated procedures without
knowing or referring to a population from which the individual is deemed
to have been drawn.  This is a crucial re-assurance. Without this distinction,
the estimation of probabilities after, for example, weighing a bag of un-
known contents, would appear to be arbitrary or illogical, and would, in
effect, deny the possibility of objective measurement.

The second factor is the difference between the calibrated variability
of a test when applied repeatedly to a given individual and the variability
which is encountered in testing different members of a group.  In the former
case, it is important to understand the reasons for the variability of any
given test.  In some cases, the variability may stem entirely from 'noise' in
the measuring process.  In such cases, the technique of the calibrated ruler
may apply.  Variability may also arise because a substance may be not quite
homogeneously distributed e.g. within the blood stream.

In a different category, a wrong result from a test of an individual may
stem from an imperfect correlation between the test criteria and the condi-
tion which is of interest.  This is important for indirect medical screening
procedures which are based on examination of samples for characteristics
which are associated only statistically with a given condition but are simple,
quick and inexpensive compared with direct examination. Indirect tests may
also involve much less risk to a patient.  However, in an indirect test, there
may be no significant error in the measured value of the test parameter, but
a wrong interpretation may stem from a lack of correlation between that
value and the existence of the condition in the specific individual.

The third factor concerns differences between the supporting infor-
mation and assumptions.  In the group case, the statistics are essential but,
in the individual case, they are excluded.  This is vital for the first detection
of a disease in a population where there have previously been no confirmed
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cases. That is, if we were to assume a zero probability that a person selected
at random would have the condition, then, regardless of the accuracy of the
test, substitution of P R (T+K2)  =  0.0 in Eqn.(13-6) will give
PR( T+ D+,K2 ) = 0.  This answer is clearly spurious and brings out a
further, implicit assumption in the base rate theory i.e. that the base rate is
fixed.

These factors are crucial for the understanding and use of the resultant
probabilities.  Bayes' theorem supports valid inference in both cases.  Yet,
whereas a direct observation of an individual provides evidence about that
individual, a random probability derived by base rate thinking provides no
evidence about an individual; its evidence is to the rarity or otherwise of an
event within an arbitrary population.

The length of a pencil

We now turn to a problem concerning the length of a pencil.  The
pencil is chosen at random from a box containing 1000 pencils which have
been cut precisely to a length of 200mm ±0.01mm and one further pencil
which has been cut precisely to a length of 201mm ±0.01mm.  The chosen
pencil is placed in a calibrated measuring device for which there is a prob-
ability of 0.99 that the measurement error will be less than ±0.01mm  and a
probability of 0.01 of an error of +1mm ±0.01mm.   The measured length of
the pencil is 201mm and we need to know the probabilities, on the different
methods of reckoning, that the true length of the pencil is, to within
±0.01mm,  either 200mm  or 201mm.

Taking the base rate view,  we will argue that, if all the pencils are
measured, then we will expect 10 of the 200mm pencils to be measured at
201mm and the single 201mm pencil also to be measured at 201mm, with a
slight possibility that it could be measured at 202mm.   On this basis, there is
a 90% probability that the pencil in the test-case is actually 200mm in length
and a 10% probability that it is 201mm in length.  Taking the independent
view, however, the corresponding probabilities are 1% and 99% - a fairly
dramatic difference.

To this point, our reasoning is similar to that in the previous examples.
Now, however, we make the point that the base rate view seems to be im-
pacting on our ability to measure a pencil, using a calibrated device, and
state the resultant distribution of probabilities over the possible values.  That
this is not truly the case can be seen by recalling that the base rate gives us
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the PR  value on the basis that all the pencils are tested, whereas the inde-
pendent view gives us the PH  value for a single, selected pencil.

For further illustration, the example can be extended to a case where
the lengths of the pencils have a normal distribution N ( o,σ  ) and the error
probabilities also have a normal distribution  N ( 0,σε  ).   If we then measure
the length of a given pencil as m, we may reasonably ask what is the most
probable true value ?   On the base rate view, we have the probability of the
random event that the true length of a pencil is x, given that its measured
length is m :-

PR(  ≈ x k,m )  =   PR(  ≈ x k) . 
PR(m k,x)

PR(m k)
 (13-14)

Using the notation described in Chapter 12 for normally distributed vari-
ables, the terms of the numerator can be immediately written:-

PR(  ≈ x k) =   G( o,σ , x) (13-15a)
PR(m k,x) =   G( 0,σε , (m - x )) (13-15b)

Evaluation of the denominator PR(m k) requires, however, that we compute
the prior probability, taken over all the pencils and all the possible errors,
that the sum of the true length of a randomly selected pencil and the error on
the measurement will equal the measured length, that is:-

PR( m k )  =  ⌡⌠
 

 

PH (  = xk) . PR (ε = m - x )  dx 

=  ⌡⌠
 

 

G( o,σ , x) . G( 0,σε , (m - x )) dx (13-16)

Hence, substituting into (13-14):-

PR(  ≈ x k,m )  =   
G( o,σ , x) . G( 0,σε , (m - x ))

⌡⌠
-∞ 

 ∞ 

G( o,σ , x) . G( 0,σε , (m - x )) dx 

  (13-17)

           =     
G( o,σ , x) . G( m,σε , x)

⌡⌠
-∞ 

 ∞ 

G( o,σ , x) . G( m,σε , x ) dx 

 (13-18)

Therefore, as shown in Appendix E, putting
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σc
2 =  σ 2σε

2/(σ 2 + σε
2)

and    c    =  ( oσε
2 +  mσ 2) / (σ 2+ σε

2)

gives

PR(  ≈ x k,m )  =    G( c, σ c , x ) (13-19)

which has a maximum when   x  =    c.   Hence, the 'most probable' value, on
the base rate view, is a weighted average between the mean of the pencil
population and the value actually measured.  It follows that, the further the
measured value is from the mean of the population, the greater will be the
difference between the measured value and the apparently 'most probable'
value.  That is, the 'accuracy' of the measuring process is apparently affected
by a relationship between the set from which the pencil is drawn and the
actual length of the pencil.  This has the remarkable implication that we
could move the pencil to a box where its length is very close to the most
common value, then take it back to the same measuring device, using the
base rates of the new box, and obtain a 'most probable' value extremely close
to the measured value.  The silliness in such reasoning is a simple conse-
quence of the failure to distinguish between probability as the PR  frequency
of a random event in a population, and the probability of an hypothesis in
the PH sense about a specific object and specific evidence concerning that
object.  The value of c derived by base rate thinking actually tells us that, if
we were to measure all the pencils many times, and consider all the different
combinations of true length and error which could give rise to a measured
length m, then the most common combination would be that in which the
true length was c and the error m - c.  That was not however the question :
we were asked to measure a specific pencil and state its most probable
length.   We also have to bear in mind that a single measurement of a given
object is but a representative of a set of measurements of that same object.
To enlarge the set, we might well ask a number of different people to meas-
ure the pencil and we might well use a number of different rulers: but no
sane person would set about measuring other pencils in order to produce a
better answer for the pencil in hand.

Thus, it is clear that, not only does the base rate view fail to distinguish
the expected frequency of a random event from the probability of an hy-
pothesis concerning a specific case, it also fails to acknowledge the funda-
mental rôle of direct and repeatable observations in the specific case.  For,
without the independence and objectivity of specific observation, there can
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be no knowledge of a base rate.  The base rate view requires, and tacitly
assumes, the pre-existence of independent observation.

Yet this does lead to a further question.  Suppose that we measure each
pencil in a consignment of 10,000 pencils, using a calibrated device which
has a normal error distribution, and then construct histograms showing the
measured rates in different bands: the fact is that the measured rates will
generally not be the true rates.  Fortunately, in many cases, we can use re-
petitive independent measurements in order to improve the accuracy of the
independent process.  For example, if the errors on a single measurement of
a pencil have a Gaussian distribution with a zero mean and σ  = 0.2mm, then
averages of two independent measurements will also have a Gaussian, but
sharper, distribution with a zero mean and a width of σ  = 0.144mm.  Nev-
ertheless, the accuracy with which a base rate can be known remains subject
to the uncertainties on individual measurements and the consequent distri-
bution of probabilities over hypotheses concerning the possible true values1.

Aviation and medicine

The practical implications of the above considerations are deeply
important in many areas.  If base rate thinking were applied directly to air-
craft navigation and control, the chances of safely completing any flight
would be slim indeed, for we would be relying not only on what the instru-
ments tell us about this particular flight, but also on flight plans and instru-
ment readings relating to other aircraft.  In fact, it is only with the assured
objectivity of calibrated instruments2, that we can relate what is known to be
safe practice in aviation with the mathematical fact of Bayes' theorem.  In
aviation, the logical status of a calibrated instrument, with the vital term
reflecting the probability that the instrument is still working as calibrated, is
reflected in the duplication of instruments and in the training of aviators to
constantly cross-check the coherence of the readings.

Base rates are, however, by no means irrelevant to the safety of avia-
tion.  If an aircraft, on taking off,  appears, according to an altimeter, not to
be gaining height as would be normally expected, given the power settings,
attitude, airspeed etc., the discrepancy should raise the question whether the
altimeter might have failed.  Even though the base rate for altimeter failures
is extremely low, instances are known where this has occurred and led to
terrible accidents.  Thus, comparison of the base rate for take-off perform-
                                                
1 This matter will be addressed in more detail in a future section on the number of meas-
urements which are required to provide any defined degree of probability that a true rate is
greater than or less than a defined value.
2 Ch. 9, "The Ruler"
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ance against the reading of the altimeter can provides a valuable warning of
an unusual and possibly dangerous condition.  In medicine, a doctor will,
understandably, be cautious about declaring the existence of a rare and
serious disease if general experience in the population is that the test often
produces a false positive result and the disease is extremely rare.  But a low
true-positive rate in the population at large gives no a reason to equate that
rate with the probability for a person who gives a positive result under test.
There are many serious diseases where prior indoctrination with base rate
thinking may tragically distract the doctor's attention from the surprising and
unwelcome conclusion to which the individual evidence actually points.

False doctrine

There are therefore serious dangers in teaching students to believe that
the base rate version of Bayes' theorem is a mathematical law, when it is
merely a special case to which the theorem can be applied.  It is also seri-
ously wrong to teach the base rate doctrine while failing to point out the
distinctions between probability in the PH  sense and in the PR sense - prob-
abilities concerning individuals and probabilities in populations. We also
need to understand both the objectivity of calibrated instruments and the
possibilities of drift and failure in such instruments.

Arbitrary populations

It should also be emphasised that the assignment of an individual to a
population is often a totally arbitrary act and that, when we are dealing with
an individual of any complexity, there are numerous populations, groups, or
'reference sets' which we can construct around that individual.  It is a conse-
quence of this little-acknowledged freedom to define arbitrary populations
that Bayes' theorem can be too-easily used to provide an appearance of
support for fallacious inference concerning an individual when the inference
is in fact a projection of a property which is merely a characteristic of an
arbitrary set.

Another important aspect,  which seems little-acknowledged in base
rate thinking, is that, if the probability of correct diagnosis really were de-
pendent upon knowledge of the relevant base rate, it would be impossible to
form any view of the probability in cases where the relevant base rate is not
known.   Further, whatever set is chosen, it will be possible to indicate other
sets of which the individual is undoubtedly a member, and for which the
base rate may be, in practice, utterly unknowable.  These things present,
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however, no obstacle to our knowing the probabilities over the possible
hypotheses concerning the specific individual stemming from a specific
observation.  They are merely an obstacle to our knowing the frequency with
which certain phenomena will be observed in repeated tests of a given set.  

The objectivity of a calibrated process gives us coherent, disciplined
scientific, engineering, medical and navigational practice.  It also directs our
attention to the independence and integrity of the individual.

The ace detector

We now consider what is, perhaps, the most difficult problem raised
by our criticism of base rate thinking.  The problem concerns the rational
assignment of resources, following Bayes' definition of probability, which
we discussed in Chapter 6.  The cases of the taxi cab and the medical
screening test, however, raise ethical issues where it is not easy to assign
monetary values, e.g. to a human life or the wrongful conviction of an inno-
cent person.  To explore the question, we therefore postulate a set of trials
involving a stack of playing cards and an hypothetical device known as an
'ace detector'.  The total number of cards in the stack and the number of aces
in the stack can be of any size we choose.   The ace detector is a device
which samples a number of points on the back of a card and, on that basis,
reports 'ace' or 'not ace'.  The detector also has the following properties:-

- it is designed to change, on each test, the points which are sam-
pled and thus ensure that the probability of a false positive on
any given test is not affected by the occurrence of a false posi-
tive on any other test.

- it has a zero false negative rate
- it can be tuned to give any desired probability of false positive

detection.

We now set up a situation in which the stack comprises 1001 cards, of
which just one card is an ace.  We tune the detector to have a false positive
rate of 1:4; that is, when tested against a large number of non-ace cards, one
quarter of those cards are, on average, wrongly reported as aces.  A card is
then taken at random from the stack, is tested and is given a positive assess-
ment.  We now require to consider how much it would be worth paying for a
lottery ticket which will yield a prize of $1000 if the card really is an ace.

On the base rate view, we reason that, if all 1001 cards were passed
through the detector, there would be 251 positive declarations, of which just
one would be correct.  That is, by analogy with the base rate view of the
medical screening test, PR( T+ D+,K2 ) =  1 / 251 =  0.00398 and it would
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therefore be worth paying a maximum of  $3.98 for a ticket1.   Taking the
independent view, however, that the base rate provides no evidence about
any given card, we get, by similar analogy PH( T+ D+,K1 ) =  0.75 and it
would be worth paying up to $750 for a ticket.  Clearly there is here a prob-
lem, and if this game were played a large number of times under the same
conditions, anyone following the independent line, as just described, would
probably lose a lot of money.

There are however many variations that we can make to this scenario.
We may, for instance, tune the detector to a false positive rate of 10 -6, which
makes a base rate of 1:1000 effectively irrelevant.  If however the stack is
increased in size to, say, 50,000,000 cards, of which just 50 are aces, the
base rate again becomes significant in relation to the false positive rate and
the appearance of conflict between the two views returns.

However, the appearance of conflict may actually stem from unstated
assumptions and implications in the scenarios we have drawn.  There are, for
example, unstated assumptions of simplicity and financial symmetry in the
lottery scenario.  This becomes clear if, instead of considering just simple
gains and losses, we consider penalties, rewards and costs for backing differ-
ent views in a given situation.  If the detector declares an ace and we back
the detector and it is correct, there may be a reward of $500.  If we refuse to
back the detector and it is correct, there may be a penalty of $1000.  If we
ask for a further test, we may have to pay a fee of $100.  If we do not make a
decision within a certain time, there may be a penalty of $2000.  And so on.

Fundamental point

Yet there is, in all this reflection, an implicit 'bottom line' which tells
us that while, in many situations, both the base rate and the independent
view  can be relevant to decisions in which costs and penalties are involved,
the independent view in the individual case is fundamental.  There are two
reasons for this.  First, there is the dependence of a knowable base rate upon
the assessment of individual cases.  Second, there is the fact that, in princi-
ple, there will be a set of tests which can be integrated to provide any re-
quired degree of refinement and which will, in any individual case,
overwhelm the base rate with precise evidence concerning the individual.
Thus the threat of ruin can often be avoided by refining the independent tests
to the point where, taking account of all the costs, benefits and risks, the

                                                
1 Not being experienced gamblers, we are assuming that the price paid for the ticket is not

returned in the event of winning.
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ratio of false-positives to true positives is either favourable or is, at least, in a
state of balance.

Complex decisions

Nevertheless, in the real world, refinement will often incur costs and
cause delays.  In medicine, particularly in public-funded, resource-limited
situations, doctors are implicitly forced into an intuitive balancing of ex-
tremely complex issues of probability, cost and risk, taking into account all
their patients.  In privately-funded situations, where a patient's entitlement to
treatment is more directly determined by individual insurance cover and the
ability to pay, the responsibility for balancing the probabilities costs and
risks is, in the last resort, a matter for the individual patient.  We must how-
ever leave to others further discussion of the enormously complex moral,
mathematical and political issues to which these reflections point.

Dangers of indoctrination

Finally, we return to the dangers in the indoctrination of people such as
doctors and aircrew, who are often called upon to make rapid decisions
under conditions of great stress.  It is entirely desirable to encourage such
people to understand the probabilities, risks and costs which have to be
balanced.  To propagate the idea that there is a single, simple and correct
way of viewing all such situations is reprehensible and must inevitably lead
to unnecessary accidents, suffering and litigation.  Even more dangerous, is
the strong possibility that simplistic rules of base rate thinking will be built
into 'expert systems' and that people will be taught that, without question or
reflection, such systems should be believed and obeyed.
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Chapter 14

The Probable Cause

In previous chapters the discussion has related largely, if at times only
implicitly, to issues of measurement.  While such matters are important for
our understanding of the theoretical basis on which much of modern life
stands, there are many questions of probability which we encounter in the
control of communications devices, in the operation of radars, in using
clinical instruments and in a wide range of situations where we are con-
cerned in one way or another with diagnosing a probable cause and deciding
on some form of corrective, compensatory or retaliatory action.  Some ques-
tions are debated prominently in the media when questions of causation,
criminal guilt, and so forth seem likely to catch the attention of the public.
While the concept of a cause has proved very difficult to analyse and define
precisely to the satisfaction of the philosophical community, people at large,
(certainly in 'Western' societies), seems to suffer no inhibitions on that ac-
count and simply take causation as a primitive, self-evident matter 1.   Bayes'
analysis, however, is not directly concerned with causation, but with the
more general case of events E1 and E2 which may be correlated in the sense
that event E1 may be generally held to cause event E2, but a causal connec-
tion is by no means necessary.  In this chapter, however, we are concerned
with the common, if loose, view of causation which requires the causative
event E1 always to precede the caused event E2.   

There can be, however, serious difficulties in computing the probabil-
ity of cause.  Frequently, an honest and competent analysis will be stalled by
the possible existence of causes, or agents, of which we may be completely
ignorant.  Such difficulties, will be obvious to any doctor or engineer who
has grappled with the diagnosis of intermittent faults in a complex process;
but the difficulties may be not so obvious to others.  It is also saddening to
see, in many cases which are raised for popular debate, the tendency for
people to assign, implicitly and unconsciously, zero dogmatic prior prob-
abilities to possibilities of which they may be totally unaware.   In other
cases, an 'expert' witness may assert the probability of an hypothesis con-
cerning an empirical fact to be zero - 'impossible' - and give the impression
that this is assertion is based on scientific knowledge, when it is, in truth, an

                                                
1 See e.g. the article on Causation in the Cambridge Dictionary of Philosophy.
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assertion of a dogmatic prior based on the prejudice of an academic or pro-
fessional clique.   It was precisely under the duress of such dogmatic priors
that Galileo was kept under house arrest for the last two years of his life 1;
and that Semmelweis 2 was put in a strait jacket and locked in a dark room,
where he died.  In too many cases, 'It is the theory which decides what we
can observe ' 3 .

Statistical frequency is often, however, a subject of great popular
interest and debate, especially when related to the incidence of misfortunes
which are given a high profile in the media.  This readily leads us to wonder
whether the probability governing a given event in one population is proba-
bly the same as the probability governing a similar event in a different
population, or whether it is more probable that the governing probabilities in
the two populations4 are different.  However, a difficulty with a question of
this kind is that the probabilities governing the two sets may be only mi-
nutely different.  In such cases, it may be extremely difficult to detect the
difference, and, even if detected, a small difference may be of little signifi-
cance.  Hence, our real concern is to know the probability that the probabili-
ties governing the events in the sets differ by at least a given amount.

To this end, we define:-
m1 the number of events in a sample from the first population.
m2 the number of events in a sample from the second population.
n1 the size of the sample from the first population.
n2 the size of the sample from the second population.
D the matrix of observational data, [m1, m2; n1,n2]
PR1(e) the probability which determines the rate of occurrence of the

event e in the first population.
PR2(e) the probability which determines the rate in the second popu-

lation.
To answer the above question by Bayes' reasoning, we first compute

the raw measured rates in the populations, i.e.  m1/n1 and m2/n2.  

                                                
1 See Galileo  in the Cambridge Dictionary of Philosophy p 291
2 Semmelweis had found that puerperal fever - lethal for newly-delivered mothers and their
babies - could be prevented by requiring obstetricians and midwives to wash their hands in
a chlorinated solution before touching their patients.  See Broad, W. (1985)
3 Einstein, in a letter to Heisenberg, cited by Broad, W. (1985) p138
4 Such populations are generally arbitrary sets but that is usually, in such cases, valid and
reasonable.
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Figure 14.1

Then, taking the lower of these, we add an allowance d in order to form a
dividing line between the two measured rates1 at a point a =  m1/n1 + d.
Hence, the probability, on the stated assumptions, that the lower rate is less
than a is given by:-

PH {0 < Pm1<  a | m1, n1, k,IZ }

       =   

 ⌡⌠
0

 a

 xm1 (1 - x)(n1 - m1)  dx 

  ⌡⌠
0 

 1

xm1 (1 - x)(n1 - m1)  dx 
(14-1a)

and the corresponding probability that the higher rate is greater than a is
given by the converse formula, whence  the joint probability, on the given
assumptions, that PR1(e) is in the interval 0→  a and that PR2(e) is in the
interval a→1 is given by the product:-

                                                
1 We assume that the lower rate is found in the (m1,n1) sample.
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PH { (0 < Pm1<  a)∧ (a < Pm2< 1) D,k,IZ }  

=   PH {0 < Pm1< a m1, n1, k,IZ } . . . . . . .

    x   PH {a < Pm2< 1 m2, n2, k,IZ } (14-2)

An example in which this formula is used, is shown in Figure 14.1, above
with details in Table 13a below:-

Size of first set              n1 = 10
Number of events in first set  m1 = 3
Size of second set             n1 = 100
Number of events in second set m1 = 70

d = .3
Probability in first sector = .97072
Probability in second sector = .97922
Probability that separation > 0.3 = .95055

Table 14a

However, having deduced the formula (14-2), we can only imagine
with  trepidation, what Boole, Keynes or Fisher might have said to such an
assertion, bearing in mind, for example, the fierce condemnation which, for
example, Keynes heaped upon Pearson1.  Yet the truth seems to be that such
condemnations stem from the seriously false belief that the assertion of a
probability is in some way absolute, and from a corresponding failure to
observe and understand the relative nature of the assertion.  Even so, al-
though Keynes' assertion that such results invest any conclusion with 'far too
high a degree of probability', is technically fallacious2, he is probably better
understood in terms of the superficial strength of such results being, argua-
bly, much greater than is warranted by the evidence.  It is, however, ex-
tremely difficult to see how one could ever prove or justify in depth Keynes'
aspersion, for that would require a new definition of probability, the general
acceptance of that definition, and an algorithm appropriate to the situation,
such that a value significantly lower than that given above, should be ob-
tained.

                                                
1 Keynes (1921) p382.  Strictly speaking, we are quoting Keynes slightly out of context.
Even stronger views are however expressed by Keynes on p388 of that same volume.
2 See Ch 7 above.
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Also, there is an opposing view, for if one examines the results shown
in Figure 14.1, the computed probability of separation in the example shown,
i.e. 0.95, may seem, from an intuitive point of view, to be rather low.  It is
therefore interesting, and indeed it is important, in such cases, to consider
the sensitivity of the results to fluctuations in the data.  Thus, for example,
Table 13b shows a marked sensitivity to any increase in the number of
events in the first set above the level of 3 assumed above, but a remarkable
insensitivity to any decrease in that number.

Size of first set Number of events Probability of separation >
0.3 from second set

10 0 0.98
10 1 0.97
10 2 0.97
10 3 0.95
10 4 0.47

Table 14b

If however the size of the sample can be increased from 10 to, say, 20, then
the results are distinctly clarified, as shown in Table 13c:-

Size of first set Number of events Probability of separation >
0.3 from second set

20 0 0.999
20 2 0.997
20 4 0.996
20 6 0.976
20 7 0.841
20 8 0.475

Table 14c

In practical situations, therefore, one should proceed with great caution in
such matters and be particularly careful about drawing conclusions about
causation, or its absence, from the presence or absence of statistical correla-
tions.  For, as is well known, one can often observe statistical correlations
between factors where there is no possibility of a causal link.  It is however
less widely recognised that an absence of any observable correlation does not
imply the absence of causal links - this being a matter in which the distinc-
tion between the individual and the population can be crucially important.
For example, a food or activity which produces beneficial effects in a small
number of people but produces adverse effects in a roughly equal number,
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may appear, statistically, to have 'no effect'.  None, that is, on the statistics
while on certain individuals the effects may be dramatic.

Turning now to the more general matter of diagnosing causes, an
example which shows some of the difficulties, is provided by a flash of light
in the night sky.  We then look at some possible causes, e.g. lightning, gun-
fire, an electric train, and so on.  We let E0 denote the observed event, in-
cluding all its observable parameters, and we let Ea , .... En denote the
possible causative events1 of which we are aware.  E  denotes lightning. The
corresponding hypotheses concerning the occurrence of causative events are
denoted Ha ... H , ....  Hn.  Applying Bayes' theorem to the situation we have,
purely formally as the probability that lightning was the source of  the flash:-

PH (H   E0 , k )   =     
PR(E   k)  

 PR(E0  k) 
  x   PR ( E0  E  , k )    (14-3)

However, if we are pursuing the probability of lightning as a statistical
frequency over all flashes seen in the sky, the probability can only be calcu-
lated if we make all sorts of arbitrary assumptions about the parameters of
space, time, optical spectra and other characteristics of the flashes which
constitute the population.  Further, we must assume either that that we know
all possible causes and can assign to them appropriate frequencies, or we
must assign frequencies to the known causes and an arbitrary frequency to
the totality of all unknown causes. It is all unsavoury.  Further, because such
causative events are not, in general, mutually exclusive, we ought, strictly
speaking, to consider the possibility that lightning may not occur alone, but
may also occur in conjunction with other causes of the observed flash; for
example, an electric train may have crossed the points at precisely the same
instant as a flash of lightning.  This is tricky ground indeed.

If however we are concerned with the degree of rational belief about
the cause of a particular flash, then, as a first step, we take the term
PR(E  k) which denotes the probability that we should observe lightning,
given the information which is implicit in the symbol k.   This information
comprises data which are separate from and independent of the event E  in
which we observe the flash and its associated parameters, but is relevant to
the probability of cause.  Such separate data could include, for instance, the
weather conditions, a crackle on a radio set at the time of the flash, or a
crash of thunderous noise just after the flash.  The denominator in (14-3) is,
therefore, as in (3-51d), given by the summation of the numerators in (14-3)
taken over all possible causes, or, at least, over all the causes which are
assumed to be possible:-

                                                
1 We are here making an implicit distinction between 'causes' and 'causative events'.
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PR (E0| k ) =   Σι PR (E0|Ei ,k ).PR (Ei| k) (14-4)

There are, however, some situations in which we can avoid the diffi-
culties indicated above, by confining the problem to pairs of well-defined,
mutually exclusive and exhaustive hypotheses, such that the probability of
one hypothesis is the compliment of the probability of the other.  If neces-
sary, this situation can be created by imposing a dogmatic prior to this effect.
In a radar situation, for example, we may define a classification such that
every 'blip' is deemed to be produced either by an aircraft, in conjunction
with noise1, which is always present, or by noise with no aircraft.  Assuming
that we have no independent information relating to the blip, we define the
symbols:-

E0 a blip has been observed with parameters {x0}
h1 there is an aircraft where the blip appeared
h2 there is no aircraft where the blip appeared
k independent data, assumptions etc.

whence, taking a simple and direct approach we would evaluate and com-
pare:-

PH ( h1 | k, E0 )  =    PR(h1 | k)  

 PR(E0 | k) 
  x   PR (E0 | k,h1 ) (14-5a)

PH ( h2 | k, E0 )  =    PR(h2 | k)  

 PR(E0 | k) 
  x   PR (E0 | k,h2 ) (14-5b)

There are however, in this simple and direct approach, some substan-
tial difficulties; for, having no independent information about the blip, k tells
us nothing about E0 , nor about h1 , nor about h2 .  To avoid these difficulties,
we therefore invoke the fact that k is of zero information value, as defined in
Ch.11, whence:-

I(h1,h2k)  =  ln 
PR(h1 | k)  

 PR(h2 | k) 
   =  0 (14-6)

Thus, taking the ratio of (14-5a) and (14-5b):-

PH ( h1 | k, E0  ) 
 PH ( h2 | k, E0 ) 

   =   exp{I(h1,h2k)} . 
 PR (E0 | k,h1 ) 
  PR (E0 | k,h2 ) 

 (14-7)

                                                
1 'noise' is the name given to the unwanted 'rubbish' signals which are always present in a
radar receiver.  The noise arises from many different sources.
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whence, because the hypotheses h1 and h2 are exclusive and exhaustive, it
follows that the unit interval is shared by their probabilities in the same
proportion as PR (E0 | k,h1 ) and  PR (E0 | k,h2 ) which gives us:-

PH ( h1  | k,E0   )  =   
 PR (E0 | k,h1 ) 

 PR (E0 | k,h1 ) + PR (E0 | k,h2 ) 
 (14-8a)

and
PH ( h2 | k,E0   )  =   1 -  PH ( h1  | k,E0   ) (14-8b)

Returning to the question of radar blip classification, these results tell
us that the probability that there was an aircraft at the blip, given k and E0, is
equal to the probability that an aircraft, together with noise, would produce that blip,
divided by the sum of that same probability and the probability that noise alone would
produce that blip.  This feels like firmer ground, but we are by no means out of
difficulty, for we still have to consider exactly what we mean by the itali-
cised phrases and to avoid the ever-present pitfall of thinking in terms of
frequencies and populations.  On this basis, we have to interpret the phrase
the probability that an aircraft, together with noise, would produce that blip in terms of
the probability that any aircraft would produce such a blip: in principle, that
is, an aircraft of a type known to us, or even of a type which is not known to
us.  This is slippery ground indeed, for, if we include 'stealth' aircraft which
are designed to produce no identifiable reflection of the radar signal1, there
may be no detectable difference between a blip which happens to coincide
with such an aircraft and a blip which is produced entirely by noise.

In such cases, our only escape is to narrow the class of aircraft to those
types which are visible to radar and to correspondingly widen the comple-
mentary field to include aircraft which are not visible.  Even so, many diffi-
culties remain.  For example, the phenomenon of 'scintillation' can cause any
aircraft to be transiently invisible to a radar, forcing us to grasp yet another
escape ladder, this time by substituting for the aircraft an idealised reflecting
object of a known 'size'.  On this basis, the first task becomes that of as-
sessing the probability that an idealised reflecting object of the given size would produce
such a blip, which is, in principle, easily computed.  Conversely, the probability
that noise alone would produce that blip is also easily computed, whence we can
compute, subject to all the assumptions stated, the probability that the blip
was produced by an idealised reflecting object of the given size.  As we saw
in Chapter 10, this information may, in fact, be useful but the essential point,

                                                
1 We are deliberately avoiding many technical issues here which are not germane to the
discussion.
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however, remains that the algebra is almost trivially simple compared with
the enormous difficulties of relating the algebra to the real world.

This leads to the further and important point that we should be wary of
allowing such difficulties to drive us too quickly into the use of statistical
expectations.  The danger can be illustrated by the anecdote, dating from the
closing days of the 'Cold War', of the Qantas airliner which, flying from
Australia to Singapore, had been told there were no other aircraft on that
route, yet found itself flying in the condensing vapour trail of another air-
craft.  Slowly catching up on the other aircraft, various characteristics pro-
gressively became clear until it was eventually identified as a Soviet long-
range reconnaissance aircraft.  On a conventional statistical basis, there
would have been no expectation of finding a Soviet aircraft in that place,
while, on the other hand, had the Qantas aircrew, prior to visual identifica-
tion, picked up a strong radio transmission in a language which was recog-
nisably Russian, a prior probability, directly relevant to the specific
situation, would have been created.  When we need to beware of rare but
dangerous events, statistics and expectations based on past experience, can
be totally misleading.  Pearl Harbour showed this, and it might be wise for
us to consider, in that light, for example, the desirability of radar surveil-
lance against meteors and similar objects which might hit and seriously
damage our planet Earth.

Of interest also in relation to probability of causation, is the technique
known as a 'Bayesian Network' which has been developed in the area of
artificial intelligence.  This technique allows us to depict graphically the
application of Bayes' theorem to problems of probable causation and to
summarise and present, with remarkable directness, brevity and clarity, quite
large sets of relationships which, presented in any other way, could be ex-
tremely difficult to grasp1.

In such a network, the basic units are groups of three 'events', between
which there are probabilistically causal, or similar relationships, the direc-
tion of causality being indicated by directional lines, which are also known
as 'arcs' or 'edges'.   This gives  a 'directed graph' which, to be 'Bayesian',
also has to be acyclic, in that it must not contain any recursive paths forming
an un-broken sequence of arcs, a,b,c ...... n  such that the n'th arc is also a
previous member of the sequence.  Hence a Bayesian network is a 'directed
acyclic graph2'. When these conditions are fulfilled, a rich field of visualisa-
tion is opened for exploration.

As an example, Figure 14.6 shows a network of relationships between
factors and events in the field of radar-assisted air traffic control, where,

                                                
1 Ripley (1981); Heckerman (1995); Buntine (1996)
2 Often abbreviated to 'DAG'
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initially a provisional flight plan is required.  Prior to its being 'filed', such a
flight plan can be envisaged as a probablistic function of circumstantial
facts, such as the identity of the airport at which the flight is to originate, the
destination airport, the type of aircraft, the advertised departure time and the
weather forecast.

Within the network, the standard forms of Bayes' rule are used and
allow us, in principle, to infer the probability of hypotheses concerning
ancestral events when it is given that various descendant events have oc-
curred.  For example, in Figure 14.6, the detection of a track by a surveil-
lance radar and the association of that track with an active flight plan can tell
us something, in probability, about the weather forecast at the time the flight
was planned.  Conceptually, therefore, the output of a Bayesian network is a
distribution of probabilities over a set of hypotheses.   However, all the
provisos concerning the use of prior probabilities apply as fully in the case
of Bayesian networks as in any other case and it is just as important, here as
elsewhere, to note the distinctions between populations and individuals.
Often, however, in demanding real-life situations, there is tremendous pres-
sure and a great temptation, to use population statistics as a stop-gap when
we do not really understand or do not have enough detail to analyse an
individual case.  Nevertheless, we must express reservations about the as-
sertion by Jensen1 that, in the absence of specifically relevant prior informa-
tion, a Bayesian network should be initialised by population probabilities
when, in our view, it would be sounder, for the reasons given earlier, to use
'Information-zero' distributions.

The situation in which a precise diagnosis of a single cause is possible
is a very special case.  In the general case, there are many possible, inde-
pendent factors and, in real life, there may be many interactive factors, with
which a Bayesian network may be totally unable to cope.  However, it is not
clear that any kind of formal analysis is capable of unravelling situations in
which factors inter-act.  In practice, therefore, the problem is, often, not to
identify 'the cause', nor even any distribution of probabilities over the possi-
ble causes, but to decide rationally, upon a course of action.   This is a
hugely important matter, but totally beyond the scope of this present work.

                                                
1 Jensen (1995) p26 'If nothing is known of the phenogroups of the parents, they are given
a prior probability equal to the frequencies of the various phenogroups'
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Figure 14.6
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A combination of population-oriented procedures with procedures
which are oriented towards the individual, can however be of great practical
importance in the design of cost-efficient diagnostic procedures, where the
interpretation of evidence ought always to be directed at the individual case,
but the order in which costly tests are performed, may be determined by
considerations which will minimise the expected costs of such procedures
when taken over a population.

In criminal investigations, for example, it may be statistically and
economically sensible, taken over the populations of all crimes and all
criminals, to take account of previous criminal records in deciding the order
and allocation of resources to alternative lines of enquiry.  This does not
apply, however, in considering the probability of guilt in any specific case
any more than it is rational to bias our weighing of a particular potato to-
wards the statistical norm, or, as noted above to fly an aeroplane, not ac-
cording to the readings of the instruments on this flight, but according to
what they showed at a similar point on previous flights.  It is however dis-
turbing that the judicial process, at least in the English-speaking world,
seems too often to be directed, not at the degree to which evidence objec-
tively indicates the probable truth of an hypothesis concerning the guilt of an
accused person, but at whether a jury can be persuaded, often by appealing
to dogmatic and population priors, to return a 'guilty' verdict.

In this process, prosecutors can cite as evidence of motive, character-
istics which may indeed be true of many people, but, it seems, without
being required to show any evidence that an accused person was so-
motivated in the commission of an alleged crime.  Nor is it unknown for a
prosecutor to appeal to the lack of any other known explanation as 'evi-
dence' that the accused person actually did commit the crime.  This is very
disturbing to anyone who is concerned about the objective assessment of
probability and its relationship to the administration of justice.  It may lead
us indeed to suggest that if engineers and doctors were to adopt the stan-
dards of reasoning on probability which are apparently acceptable in legal
argument, the lawyers would rightly judge the engineers and doctors to be
guilty of serious incompetence if not indeed gross negligence.

The problem presented, however, by the possibility of unknown causes
is so fundamental that some people may feel that it invalidates the whole
process of inferring the probability of causation.  Yet, from the viewpoint of
practical reason, it is vitally important for the making of rational decisions in
uncertain situations, for example in the diagnosis of severe illness, or in
emergency engineering situations, where there is no possibility of acquiring
further evidence, that we are able to balance the probabilities, and, in effect,
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use a form of 'identification', as we discussed in Chapter 10.  Moreover,
provided we make clear the assumptions we are making, the consequent
assertions are, as a matter of pure logic, valid.  The doubt concerns the
veracity with which they reflect reality.  But such doubts assail almost every
rational deed we do.  Rarely, if ever, can we be certain beyond any possibil-
ity of being wrong, that our knowledge or perceptions of the world around us
are, in any sense, faultless.  Nor indeed that they are of an accuracy sufficient
to support beyond doubt our decisions.  Yet, probability, as expounded by
Thomas Bayes is remarkable for the extent to which it allows us to use
mathematical reason in the resolution of practical issues, where we have to
balance moral or ethical values against uncertainties.   In such situations it is
not that we should apologise for the difficulties or lack of perfection in
matching the rules to the realities, but rather that we should be thankful that
Bayes left us an instrument of such flexibility, simplicity, power and breadth.
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Chapter  15

In Conclusion

We have now reached a point where we must pause our exploration
and offer our journal to others.  We do not, in this conclusion, review all the
ground we have covered, but rather we concentrate on a few salient aspects.
The issue of notation is clearly not fundamental from a philosophical point
of view, but is simply basic to clear thinking and self discipline.  Laziness in
such matters is a midwife to disaster.   The calibrated ruler may, again, be
not fundamental but it is crucial in releasing us from the stranglehold of
arbitrary and contentious priors when we are in a measuring situation.  On
the basis of a calibrated measurement, we can make a plain statement of
probability about, for example, the true length of a pencil without the inhibi-
tions concerning priors which have for so long precluded such statements.
This probability can be multiplied by a monetary value in order to achieve
the magnitudes of a probable cost - often essential for the making of rational
decisions in uncertain situations.

In the remainder of this chapter, we look first at the issue of prior
probability in the individual case, where we feel that Bayes, and many after
him, went astray and thus inadvertently lent support to numerous fallacies
which seem to permeate both legal and political thinking.  After that we
consider, briefly, the relative nature of probabilities and the fundamental
place in natural science which is occupied by Bayes' experiment and, further,
the general matter of estimation under the conditions of observational un-
certainty which permeate all science.  Finally, we look again at Bayes' defi-
nition of probability and its profound implications for the integration of
values over many, many aspects of human life.

Looking back at Bayes' treatment of prior probability, it is remarkable
that, despite the introduction of a prior process in the Experiment, nowhere
does Bayes explicitly equate knowledge of a prior probability with knowl-
edge of the process by which the value of the probability in question is pre-
determined.  Obviously, his mind had, at some point, moved in that direc-
tion, but nowhere does he assert, as Fisher indeed did assert, that:- Such a



Chapter 15 In Conclusion

Version zh25a.doc at 18:36  on 13 July, 2001
All rights reserved.

218

problem is indeterminate without knowing the statistical mechanism under
which different values ... come into existence1.  Bayes is, in fact, thoroughly
circumspect, for, having described the experiment, he merely suggests:-
therefore I shall take for granted that the rule given concerning the event M
in Prop.9 is also the rule to be used in relation to any event concerning the
probability of which nothing at all is known antecedently2.  Sadly, however,
by connecting  'the rule to be used' in general with the process governing the
position of the first ball in the experiment, Bayes unwittingly committed, if
not himself, then many generations of later analysts to a concept of prior
probability which engendered confusion and confrontation.  Our solution to
the problem of The Ruler, in Chapter 9, may therefore cause some unease to
those who are deeply accustomed to thinking of prior probabilities in terms
of populations, or other forms of a priori expectation concerning the object
which is to be measured.  To some, our use of the calibration may seem like
an illusionist's  trick to avoid a much deeper problem.  Yet, this is no mere
trick, for the approach based on calibration simply, but powerfully, switches
our view from a mesmerised focus on illusory populations of objects to be
measured - such as the population of sticks to be found on the beach, or
those brought home by the dog - to the process of measurement itself3.

Some very serious issues, stem however, from the widespread and
primitive attitude to prior probability, which can, all too easily, be inferred
from the Scholium.  These issues seem to arise to a particularly acute degree
in criminal proceedings, where, it seems, alleged motives, (for the existence
of which there may be no direct evidence in an individual case), are often
taken to imply an a priori probability of guilt  where there may be, in fact,
no direct evidence to link an accused person with a crime4.  While it seems
to us intuitively probable that, in allegations of motive and thence guilt,
lawyers and most other people, were unconsciously using populations priors
centuries before Bayes5, it was only with Bayes' essay that the scientific

                                                
1 Fisher (1921) p24
2 See Chapter 5 above.
3 Interestingly, the definition of the experimental set-up in Bayes' experiment automatically
defines the calibration.  Bayes' table is also, like the median, remarkably robust in this
respect.
4 The use of such reasoning to persuade juries to convict an accused person has led, in
recent years, to at least two very seriously wrongful convictions in the English courts,
which have been later overturned on appeal.  See e.g. The Times, Friday 26 April 1996,
p.1, '... a victory for love and truth'.
5 This seems a useful topic for further research.
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community became actively, if unwittingly, involved with the issue.  Thus, it
is unfortunate that, the concept of prior probability which Bayes introduced
in the Scholium, seems to have been accepted without question by a large
majority of the scientific and philosophical communities for some 250 years,
and it is perhaps neither surprising nor reprehensible that lawyers, unchal-
lenged by those communities, should have persisted with the primitive view.
Thus, lawyers can reason that a tendency which is arguably present in people
at large can be assumed to have been present and effective in the case of any
person who is suspected of committing a crime.

Fortunately, it cannot be said that practitioners in the application of
science, such as doctors and engineers, generally follow such reasoning in
their work.  On the contrary, as we have seen earlier, for them to allow a
priori expectations to influence a process of measurement would be judged
by lawyers to be incompetent and fraudulent.  Unfortunately, very few prac-
tising doctors and engineers have time to reflect upon the epistemological
foundations of the measurements they make when they are trying to cure a
sick person or repair a collapsed bridge.  In consequence, there has been
little, if any challenge to the primitive fallacy that a distribution of probabil-
ity within a population can be applied to an individual taken from that
population.

Even more troubling is that, in everyday life if not in courts of law, the
alleged existence of a motive can be taken to constitute evidence as to the
commission of a crime, again, for which there may be no substantive evi-
dence.  School life abounds with petty instances of this kind, in which chil-
dren are constantly at risk of false accusation.  A $10 dollar bill disappears
from a school desk and it is immediately assumed that 'someone has taken it'
when, in fact, what really happened was 'someone' actually opened a win-
dow, the wind blew into the room and the note flew into hiding under the
desk.  Yet because it is assumed that children are susceptible to temptation
and that a $10 bill constitutes a big temptation to some abstract child, there-
fore, it is reasoned, the note has been stolen.  Had the note been a useless
piece of scrap paper, there would be no presumption whatsoever of any
wrongdoing.   By similar perverted reasoning, it can also be argued, and
indeed is argued, that if Jack is known to have bullied little Jimmy and, at a
later date, 'someone' does something beastly to Jack, then Jack's bullying of
Jimmy constitutes a motive, and therefore a prior probability of Jimmy's
guilt.  Hence, by extension of this corrosive reasoning, the more monstrous
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Jack's bullying of Jimmy, the more it can be held to raise the probability of
Jimmy's guilt.  To the scientific or philosophical mind, such arguments are
indeed monstrous, yet the grim truth is that, in its logical structure, Bayes'
concept of the prior probability over the experiment on the flat table, em-
bodies precisely this same perversion, albeit it would be considered better
manners in scientific circles to call it merely a fallacy.

Yet, in the context of a criminal trial, under the concepts of justice
which rule in western society, the true implications of the conventional,
primitive view of prior probability point unwaveringly at the relevance of
factors such as the genetic make up and the social background of an accused
person in the determination of the probability of guilt.  And, while such
reasoning may be nowadays politically unacceptable in many countries, that
does not show it to be fallacious and its practitioners are beating a long and
hard-fought retreat.   The fallacy is visible, as we noted earlier, in the fact
that, logically, such reasoning would cause us to bias our weighing of a
particular potato towards the statistical norm, or bias a pilot's flying of an
aeroplane according to the readings of instruments on other flights.  The
fallacy is to assume that a probability distribution over a  population is
applicable to an individual selected from that population.  Individuals and
populations are distinct objects and, as we showed in Chapter 10, it is only
in the very special case of a 'classification' dependent upon a fully deter-
mined attribute, that precise knowledge can be transferred syllogistically
from a population to a member of that population.  Always assuming, that
is, a zero probability of mistakes in the physical process of selecting the
population. Equally serious as the use of population statistics as a priori
probabilities in criminal proceedings, is the practice, mentioned above,
whereby certain British 'health authorities' set up dogmatic priors which
arbitrarily exclude pre-defined groups of people from certain kinds of medi-
cal treatment, without any reference to specific evidence concerning the
individual patient or doctor.

We also have to face the common illusion which believes that adding
witnesses adds to the probability of obtaining the truth.  A naked person
'streaks' across the Melbourne cricket ground in the course of a test match, is
seen by 50,000 spectators, and then disappears into the crowd.  Later, a
person is arrested and all 50,000 spectators are asked whether they can
identify the arrested person as the same who streaked across the pitch.  All
agree that this is the person: but does this really constitute massive evidence
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of guilt ?  In simplistic terms, that might seem to be the case, but, if we
consider people as 'classifying filters' it is arguable that we have here 50,000
very similar filters to which we apply an identical signal and get 50,000 very
similar outputs.  Hence, if the truth is merely that the arrested person 'looks
like' the person who streaked across the cricket pitch, then the opinions of
all 50,000 spectators actually tells us little more than the opinion of any
single one: the testimonies are merely, in fact, highly correlated.   Sadly,
however, it would appear that reasoning accepted in some courts does not
encompass even the most elementary insight into the concept of correlation
and blindly accepts that the probabilities of joint events are given by their
naïve product.  The resulting, utterly unjustifiable, numbers can then be put
to juries as evidence1.

Rather similar considerations can also be applied to the findings of
juries and cast grave doubt indeed upon the logical basis of majority ver-
dicts.  It may also be instructive to consider why we find it acceptable to
pick twelve citizens at random and require them to weigh matters of great
technical complexity in order to determine the 'guilt' or otherwise of an
accused.  Why then, one may ask, do we not pick 12 passengers at random
when our aeroplane is ready to take off, and ask them to decide the point at
which to ease the plane off the ground and into the air2 ?   At an even deeper
level of disquiet, we have the grim fact that a prosecution may be brought
against a person, not because the substantive evidence actually indicates to a
very high degree of probability,  the guilt of that individual, but because the
evidence indicates a high degree of probability that a jury - for whom the
dogmatic prior prejudice may be easily computed - will, by a majority, vote
that person guilty.

This ghastly error, of assuming that a characteristic which is statisti-
cally typical of a population, constitutes evidence or likelihood concerning a

                                                
1 The BBC news at 6pm on Friday 26 November 1999 quoted a case in which odds of 73
million to one were stated in a murder trial as the probability against cot death striking two
children in one family.  This evidence was apparently submitted by an expert medical
witness and has since been challenged - see Wansell, (2000).
See also http://news.bbc.co.uk/hi/english/health/newsid_249000/249946.stm  "BBC News |
Health | Abuse blamed for some cot deaths"
2 The English Court of Appeal is reported as having ruled that a juror who has relevant
expert knowledge may not make that knowledge known to other jurors.  ('The Times' Law
supplement, 19 October 1999 p 11, 'When the juror is an expert').  It is therefore intriguing
to consider just what is the epistemological basis - beyond total ignorance - upon which an
English jury may lawfully base its deliberations.
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specific individual is the root of much evil, of many mistakes in our society,
and of little, if any good.   If each person is treated truly as an individual,
then, in the aggregate, we shall, to a very high degree of probability, 'get it
right', for it is thus that we minimise the probability of a statistical catastro-
phe.  While Bayes' mistake in identifying, not a previous, or independent
observation, as the valid prior over the position of the first ball in his ex-
periment, but rather the distribution within the population from which that
position was drawn, may have had little practical impact on the findings of
scientists, engineers and doctors, who have simply ignored it as a philo-
sophical aberration, the impact of that same mistake, whether consciously
derived from Bayes or elsewhere, on the practice of law, of politics, of
education and of commerce may have been, and may still be, widespread and
grim.

A different fallacy, but one which all too often occurs, is the assertion
of probability as an absolute value, rather than as a value relative to and
dependent upon the supporting evidence and assumptions. Assertions of
probability are empirical statements and are fundamentally a matter of
physics.  Even in matters of quantum events,  the probability that a given
event will occur in a defined situation may have an absolute value, but our
knowledge of that value will inevitably be to some degree uncertain, and the
probability that it lies in a given range will depend, in the last resort, upon
experimental information.  Bayes deals with probability not just as a con-
cept, but also as an object on which we can experiment, and thence estimate
numerical values.

 Deeper still, the issues raised by Bayes' essay are fundamental for
quantitative science.  Bayes' experiment requires no rulers, no scales, no
clocks, indeed no dimensional metrics of any kind.  But every empirical
process involves uncertainty - a problem to which we respond by invoking
the concept of probability.  To handle uncertainty and probability when
measuring dimensional parameters, we have to, first, calibrate the rulers,
clocks, and other meters by means of a Bayes trial, and, second, use Bayes'
theorem in order to combine the calibrations and measurements.   Hence, the
fact that the measurement of probability, in a Bayes trial, requires only the
counting of binary events, suggests that probability, though a late arrival on
the scene of scientific consciousness, is a concept rather more primitive than
dimensional concepts such as length, time and mass. Hence, we might rea-
sonably expect the principles employed in the estimation of parametric
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values, especially the values of natural constants, to be regarded as a fairly
important branch of natural science.   Yet, Bayes has been largely ignored by
the natural science community and has been both abused and mis-
represented by others for nearly 250 years, while yet other scientists regard
the issues raised by Bayes' essay as rather trivial matters of technology to be
left in the hands of statisticians.

This is a sad state of affairs, for, in the course of the twentieth century,
many statisticians have moved from a rather harmless ad hoc pragmatism in
their approach to estimation, to beliefs in 'optimality' and other dogmatic
virtues. As a result, estimation has become a mechanical  process in which
data are fed into pre-defined computational engines, which can be shown, by
analysis, to possess dogmatically correct properties1.  Hence, it is not per-
haps surprising that natural scientists should have turned their backs on the
theory of estimation.  Yet there is no law, neither of man nor of nature,
which requires us to confine the design of estimators to those for which
dogmatically correct properties can be analytically proven - usually in rela-
tion to yet further dogmatic assumptions.  Such estimators are an infinitesi-
mally small proportion of those which are conceivable and there is here, a
tract of unexplored territory, in which, using the power of modern computing
techniques, new approaches to estimation can be evaluated by the kinds of
empirical criteria - including trials in the style of Bayes' experiment - which
are the true norm in natural science.  Only those who have hung their hats
inexorably on the dogmatic pegs of 'correct thinking' need fear the result.

We turn, finally, to the wider implications of Bayes' definition of
probability.  Mathematics, money, love and morality are rare bedfellows,
yet, if we follow to its logical conclusion the philosophy of probability
expounded in Bayes' essay, we find that, despite the gap which, in our cul-
ture, divides morality and affective values from mathematics, the chasm can
perhaps be bridged.   Yet, although such a bridge could bring relief and
rationality where today we experience only pain and confusion when we
confront situations which combine both deep feelings and great uncertainty,
there is, sadly, a real danger that intellectual vandals will be the first across
the bridge in the pursuit of destructive agenda.  At a time when values of
scholarship, compassion, and the pursuit of excellence are globally under

                                                
1 Always provided that the data also correspond to the dogmatic models: the difficulty of
proving which, was admirably demonstrated by Jeffreys in his 1934 paper to the Royal
Society.
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attack, we can scarcely contemplate with equanimity the prospect of placing
in the hands of vandals a conceptual instrument which might further their
destructive intent.   So why should we proceed with this exploration if we
believe that it may yield an instrument of evil ?   The answer is, simply, that
our own values, our dogmatic faith that truth and goodness are ultimately
one, requires us to do so.

For, there are grounds to believe that issues of value, even of affective
value, may be more prevalent in matters of scientific explanation than is
commonly perceived.  There is, for example, the issue of 'simplicity', where,
following Occam, and before him Empedocles1, explanations which are
simple and economic in the assumptions they invoke, are much preferred.
Yet the evaluation of simplicity may be a highly subjective matter. Although
one can conceive of a machine which might automatically yield a measure of
simplicity, it is arguable that the measure must itself always be relative to
some standard which has been arbitrarily decreed.

Finally, there are, in human life, all too many agonisingly serious
problems where it is our moral or professional duty to balance probabilities
and costs which are not obviously commensurable.  Yet the fact that we
often are able to make decisions in appallingly difficult cases may be taken
to imply that, from a mathematical or logical point of view, we have found it
within ourselves to assign the necessary costs and make the corresponding
decisions.  Yet such is the gap that separates the cultural fields of mathe-
matics and natural science, not to mention accountancy, from the fields of
morality and emotive values, that few will not experience qualms, possibly
revulsion, at the implications of ordering and valuation that are implicit in
Bayes' philosophy.  For, there can be no doubt that the Bayes' essay contains
the seeds of a vibrantly fertile philosophy which, in principle and in practice,
offers us conceptual instruments by which we can, if we so desire, rationally
resolve some of the most difficult problems in life.   But, for this possibility
to be realised, we have first to build, in our culture and in our hearts, a
bridge across this great divide.  We have to deal with the taboo which makes
us feel sick at the thought of relationships between morality, aesthetics and
mathematics on anything deeper than trivial utilitarian issues.  Of putting a
dollar sign beside a human life.  Where we are directly and personally in-
volved, this may be totally, and perhaps rightly, impossible; yet there are
many people in positions of authority and responsibility from whom, every

                                                
1 Cited by Aristotle, 'Physics' section 188a, lines 17-18. 
βελτιον τε ελαττω και πεπερασµενα λαβειν, οπερ ποιει Εµπεδοκλης .    
 See Ross (1936)  p 487
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day, such judgements are demanded.  However it may be hidden from con-
scious thought, it is hard to believe that the 'value expected' is other than the
criterion which they must, implicitly, employ.

 Yet, despite the fact that probability is a dangerous solvent, too easily
abused into producing clear solutions from turbid thinking, it is fortunate
that probability belongs to all: we are free to discuss it, and carry out our
own experiments, at the races, on a poker machine in a neighbourhood club,
or in the hallowed precincts of an ancient university.  In a world of science
that is not entirely free from class distinctions, cliques, snobbery and hypoc-
risy, the widespread human feel for probability is an amazingly common and
unifying factor. It is one of the great blessings of Thomas Bayes' essay that
he defines probability in terms which are fully within the experience and
grasp of most people.

It is however surprising perhaps, that such a perspective springs from
the approach to probability adopted by an eighteenth century Nonconformist
cleric and mathematician, who posed a problem in 'The Doctrine of
Chances' which stems from a simple counting of events in repeated trials.
But there are other probabilities, which apply not to repeatable cases, but to
unique and un-repeatable events, where we cannot measure by counting
instances.  Bayes faced this problem very squarely with his definition, not of
'probability in itself', but of a rule by which we can measure a probability by
means of a ratio of values, and which can be applied quite generally to the
truth of hypotheses, to unique events, and to repeatable events.  Whether
Bayes conceived this measure for himself, or borrowed it from another,
perhaps Huygens, we do not know; but we do know, to a fair degree of
certainty, that it was Bayes who showed, by applying this measure to the
fundamental problem of quantitative inference, that a rational solution could
be found.

Implicit in that solution is a rule for the making of decisions in ques-
tions which involve the balancing of values and probabilities.  Thus, having
shown how we can make a perfectly rational connection between money as a
measure of value and quantitative science, Bayes had implicitly provided a
means for bridging the gap that has long separated the measures of mathe-
matics and natural science from the measures of human values. Therefore,
because Bayes' approach to probability has suffered much censure and mis-
representation, it is a matter of quite wide importance to have expounded his
argument as clearly as we are able and to have decided for ourselves, not
perhaps whether Bayes was simply right or wrong, but rather the extent to
which we can accept his argument as valid, useful, enlightening.
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On a wider view, the language of human discourse concerning matters
of probability is rich.  It is, or it ought to be, salutary for the analyst to con-
sider that the wealth of concepts betokened by the language, is generally
much greater than any monograph can encompass.  The language of ordinary
folk, moreover, continues to evolve, and to show probability in ever new
aspects.  We have touched upon just a few of those aspects, but there are
many other aspects which we have not even mentioned.  We have looked
into certain situations in which we can test the chances that an hypothesis
concerning the cause of certain events is true, but there are many other
situations where we may form hypotheses concerning causation, and at
which we have cast scarcely a glance.  There are, for instance, whole areas of
the law where questions concerning the probability of guilt and responsibil-
ity arise, areas which were of great concern to philosophers of earlier times,
such as Leibniz, but of which one hears little today.   Arguably, however,
Bayes gave us, a wonderful new instrument by showing us the way towards
maximising the expected utility of decisions across an enormous range of
political, technical and commercial activities.  The penalty is that, when
those in authority fail to understand the distinction between the population
and its members, their decisions, in terms of individual human lives, are
often disastrous, providing endless motivation for the media to undermine
authority of any form, fanning the flames of irrational blame and Luddite
retribution.

This book is simply, therefore, the report of our expedition along the
paths we chose to take.  Others would no doubt have taken different paths.
As in many human activities, we had to balance prospects and penalties
against the probabilities, as they appeared to us at the time.  In exploring
these paths, stretching nearly 250 years from Bayes' essay to the present day,
we have inevitably had to move with haste in many places where there was
much over which we could well have lingered and pondered in depth.  Of
the wide field over which probability ranges, we have addressed just a small
portion: great areas still present wonderful, and vitally important opportuni-
ties for exploration.  The fields of discourse and enquiry which are perme-
ated by the concept of probability are wide: too wide, fortunately, to be
captured by the sort of linguistic piracy which removes words from everyday
use and constrains them to meanings which can sometimes be almost dia-
metrically opposed to their meanings in ordinary life. We use these meta-
phors deliberately: for despite occasional efforts by some, to confine
probability to a narrow and rather sterile axiomatic strip, probability remains
defiantly at large, a wonderful creature of the human imagination, yet pos-
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sessed of properties which seem amazingly founded in external realities over
which our imagination has no control1.

In choosing his definition of probability, Thomas Bayes tied his treat-
ment of probability to the human experience of life and made monetary
value fundamental.  While such an equation might seem remarkably foreign
to the world of science, there can be little doubt that it is abundantly mean-
ingful to people at large.  And if probability is indeed as fundamental in our
natural philosophy as time, length, mass - perhaps even more fundamental -
and if ratios of values - indeed, monetary values - are fundamental to the
measurement of probability, then perhaps we have here a point of view
which can, in time, integrate our sense of economic, scientific, aesthetic and
ethical values in a world where uncertainty, probability and a compensating
creativity are openly accepted as fundamental elements.

                                                
1 Paraphrasing slightly: Science is a magnificent adventure of the human spirit.  The aim
.... is not to achieve certainty but to invent better and better theories ......  more and more
powerful searchlights. (Popper (1973) p.361).
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Appendix A

Fisher's Mice

In Chapter 2 of 'Statistical Methods and Scientific Inference1', Fisher
develops a criticism of Bayes, based on an imaginary experiment in which
mice, of different genetic types, mate and produce offspring. Unfortunately,
Fisher's specification of the experiment is not clear, and we found it neces-
sary to expand it at some length. Fisher is also, (like Bayes before him),
unhelpful in his choice of colours, for he specifies the mice as being black or
brown, leading to the confusing abbreviations BB and Bb.  We therefore
postulate an equivalent experiment with imaginary red (R) and grey (g)
mice. The experiment is assumed to be governed by the rules of Mendelian
genetics2 in which each mouse carries a pair of genes which together deter-
mine the colour of its fur.  The red gene is dominant and is denoted by the
upper-case 'R' ;  the grey gene is recessive, and is denoted by the lower-case
'g'.   Hence we have the rules given in Appendix B which determine, ac-
cording to the genes of the parents, the probable, or expected, frequencies
governing the distribution of colour and genes in their offspring.  It is how-
ever extremely important to phrase this relationship correctly, for, while the
genes of the parents determine the probability distribution over their off-
spring, considered as a population, the joint genetic constitution of the par-
ents does not, in general, constitute evidence as to the actual genetic
constitution of any specific offspring3 and, given the possibilities of muta-
tion and genetic modification etc., this is more than a philosophic nicety. In
a normal case, however, the genes of a descendant do provide evidence
concerning the genes of its ancestors.

The experiment takes the form of a test mating between a red female
and a grey male. The outcome is a litter of seven red mice4, and Fisher's aim

                                                
1 Fisher (1956) pp 18 et seq.
2 The rules are given in Appendix B, below
3 Special cases occur, e.g. where both parents are RR or gg, but even here it is debatable
whether the genes of the parents actually constitute evidence about the genes of the off-
spring.
4 Additional conditions, necessary for the validity of the following argument, are (i) that
each offspring shall be the product of independent fertilisation of a separate ovum, (ii) that
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is to compare the probabilities of two competing hypotheses concerning the
genetic constitution of the red female viz:-

hRR    is     the hypothesis that the red female is of genetic type RR.
hRg    is     the hypothesis that the red female is of genetic type Rg.

Fisher also asks that we consider, in addition, two possibilities concerning
the parents of the red female viz:-

 - in the first case, it is known that the red female is herself the offspring
of a mating between two Rg mice, thus giving computable prior probabili-
ties1 for the genetic types of red females from such parents; i.e. they can be
RR or Rg. The expected frequencies are given below.

- in the second case, the parentage of the red female is unknown and the
expected frequencies of the various genetic types in their red female off-
spring are therefore also unknown.

In the first case, Fisher's argument is that we can evaluate the com-
peting hypotheses by Bayes' theorem, (3-51b), viz:-

PH ( hRR | 7R7)     =     
PR ( RR | Rg ∧ Rg ) x PR ( 7R7 | RR ∧ gg )

 PR ( 7R7 | Rg ∧ Rg ) 

 (A-8)

PH ( hRg | 7R7)     =      
PR ( Rg | Rg ∧ Rg) x PR ( 7R7 | Rg ∧ gg )

 PR ( 7R7 | Rg ∧ Rg) 

 (A-9)

where the bold type Rg ∧ Rg indicates the genes of the maternal grandpar-
ents and the further symbols signify:-

7R7 the event that a litter of seven red mice  (and no grey mice) are born
from the mating.

PR   ( RR | Rg ∧ Rg)
The probability that an offspring selected at random from a mating of
two Rg parents will be of type RR.
By Rule 7a,      PR ( RR | Rg ∧ Rg)  = 0.25.

                                                                                                                           
the probability of successful fertilisation and survival to birth is independent of the genetic
type in question. There may well be numerous further conditions of this kind, which could
be identified by experts in this field. None, however, are mentioned by Fisher.
1 These 'probabilities' are, of course, the expected frequencies in the population of descen-
dants and do not apply to any specific individual.
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 PR  ( Rg | Rg ∧ Rg)
The probability that an offspring selected at random from a mating of
two Rg parents will be of type Rg.
By Rule 7b,      PR ( Rg | Rg ∧ Rg)  =  0.5

 PR  ( 7R7 | RR ∧ gg)
the probability that, in a litter of seven offspring, produced by the
mating of an RR parent, with a grey mouse, all will be red. In this
case, by Rule 6a above,     PR ( 7R7 | RR ∧ gg)  =  1.0

 PR  ( 7R7 | Rg ∧ gg )
the probability that, in a litter of seven offspring, produced by the
mating of an Rg parent, with a grey mouse, all will be red. As the
probability of any such single offspring, selected at random, being
red is, by Rule 8a above, 0.5, the probability that all seven will be red
is given by Bayes' Proposition 6  as     PR ( 7R7 | Rg ∧ gg)  =   (0.5)7

 PR ( 7R7 | Rg ∧ Rg)
the probability that, following a mating of a red female which is
known only to be the offspring of two Rg grandparents,  (indicated by
bold type), with a grey mouse, every offspring in a resultant litter of
seven, will be red.

PH ( hRR | 7R7)
the probability that the red female was of type RR in a trial in which,
in a litter of seven offspring, all were red.

PH ( hRg | 
7R7)

the probability that the red female was of type Rg in a trial in which,
in a litter of seven offspring, all were red

Thus, as the other values are as given above, we require only the further
value of  PR ( 7R7 | Rg ∧ Rg) in order to evaluate the required expressions.
In cases of this type, however, the hypotheses hRR and hRg are mutually
exclusive and exhaustive alternatives,  (i.e. a red mouse must be either RR
or Rg):-

PH ( hRR | 7R7 ) + P ( hRg | 
7R7 )     =     1  (A-10)

thus
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 PR ( RR | Rg ∧ Rg ) x  PR ( 7R7 | RR ∧ gg )

  PR ( 7R7 | Rg ∧ Rg ) 

+
 PR ( Rg | Rg ∧ Rg ) x  PR ( 7R7 | Rg ∧ gg )

  PR ( 7R7 | Rg ∧ Rg ) 
      =     1  (A-11)

and thus

 PR ( 7R7 | Rg ∧ Rg )     =
 PR ( RR | Rg ∧ Rg ) x   PR ( 7R7 | RR ∧ gg )

+  PR ( Rg | Rg ∧ Rg ) x   PR ( 7R7 | Rg ∧ gg )  (A-12)

Substituting then the numerical values for  PR ( RR | Rg ∧ Rg ) etc. as given
above, we have:-

 PR ( 7R7 | Rg ∧ Rg )     =      (0.25)* (1.0) +  (0.5)* (0.5)7

                                    =     0.254  (A-12a)

Hence, by Fisher's argument

PH ( hRR |  7R7 )           =     
 PR ( RR | Rg ∧ Rg ) x  PR ( 7R7 | RR ∧ gg )

  PR ( 7R7 | Rg ∧ Rg ) 

=      
 (0.25). (1.0)

  (0.254)       =     0.9846 (A-13)

Also

PH ( hRg | 7R7 )     =      
 PR ( Rg | Rg ∧ Rg ) x   PR ( 7R7 | Rg ∧ gg )

  PR ( 7R7 | Rg ∧ Rg ) 

 

=      
 (0.5) x  (0.5)7

  (0.254)      =     0.0154  (A-14)

apparently showing the much greater probability that a red female in such a
situation was of type RR.

In our view, however, the above results are fallacious, for, while they
purport to show the probabilities of hypotheses, they are in fact expectations
taken over populations and should be correctly expressed as:-

PR ( RR |  7R7, Rg ∧ Rg  )     =     0.9846
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 and

PR ( Rg |  7R7, Rg ∧ Rg )     =      0.0154

which is to say that, if a large number of red females, all of whom are the
offspring of Rg ∧ Rg parents, produce litters of seven red mice, and have no
other offspring, then we would expect 98.46 % of those females to be RR
and 1.54% to be Rg.   That is, where a population prior is invoked, as by
Fisher, the resultant value, in relation to an hypothesis, is more akin to a
likelihood than to a probability, i.e. it is a very general assertion of a prob-
ability relating to the class of all red females in a defined situation.  The
invoked knowledge of the grandparents provides no evidence whatsoever as
to the genetic make-up of any specific descendant, albeit a descendant does
provide evidence as to the genetic make-up of its ancestors.

Fisher then turns his attention to the case when we do not know the
genes of the maternal grandparents. He argues:-  If, therefore, the experi-
menter knows that the animal under test is the offspring of two heterozy-
gotes1, ................. cogent knowledge 'a priori' would have been available,
and the method of Bayes could properly be applied. But if  (that) knowledge
were lacking, no experimenter would feel he had a warrant for arguing as if
he knew that of which in fact he was ignorant, and for lack of adequate data
Bayes' method of reasoning would be inapplicable to his problem2.

Superficially, these assertions are plausible and seductive, yet, when
we look at them in detail, and compare them with what Bayes actually
wrote, we find them misleading and aspersive. First we have the implication
that the method of Bayes is only applicable when prior knowledge is avail-
able: yet anyone who has read Bayes' essay,  (and Fisher clearly had read the
essay, for he quotes it verbatim), must know that Bayes' objective is firmly
defined as being to address the case in which a priori knowledge is not
available. Fisher then concludes his remark with an intensified assertion,
not merely against 'Bayes' method' but against Bayes' 'method of reasoning',
which, we are told, is inapplicable to this problem. In fact, however, we can
determine, exactly as above, the so-called 'probabilities' for each possible
gene-set in the parents of the red female.

The analysis is tedious3.  The first step is to construct a table to show
the expected frequency, according to each possible combination of gene-
sets in the parents of the red female, with which a red descendant of her
mating with a grey male will be RR or Rg.  Five combinations are possible,
as shown in Table A1, where the top line shows the genes of the female's

                                                
1In our example, mice of type Rg are heterozygotes.
2Fisher (1956)  pp 19-20.
3 Details of the calculations are given in Appendices B and C below.
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parents, the left hand column designates the genes of the offspring and the
cells show the expected frequencies:-

Table A1

We then use again  (A-8) and (A-9) in order to compute, for each
possible parentage of the red female, the expected frequency with which,
following a mating with a grey male, in a litter of seven, all will be red.   To
this end, we substitute the values from Table A1, together with the values of
PR ( 7R7 | RR ∧ gg ) = 1.0  and PR ( 7R7 | Rg ∧ gg ) =  (0.5)7 as derived previ-
ously,  to give Table A2:-

If we now use Fisher's reasoning to compute values of the competing hy-
potheses, hRR and hRg, in each of the above cases, we get the results shown
in Table A3.  This is achieved by substituting the above values of
PR ( 7R7 | ... ) in expressions corresponding to  (A-8) and  (A-9) above, i.e.

RR ∧∧∧∧ RR RR ∧∧∧∧ Rg RR ∧∧∧∧ gg Rg ∧∧∧∧ Rg Rg ∧∧∧∧ gg

 PR ( RR | ... ) 1.0 0.5 0.0 0.25 0.0

 PR ( Rg | ... ) 0.0 0.5 1.0 0.5 0.5

Parents of red female

⇓
 PR ( RR | ... )  PR ( Rg | ... )  PR ( 7R7 | ... )

RR ∧ RR 1.0 0.0 1.000

RR ∧ Rg 0.5 0.5 0.5039

RR ∧ gg 0.0 1.0 0.0078

Rg ∧ Rg 0.25 0.5  0.2539

Rg ∧ gg 0.0 0.5 0.0039

Expected Frequency of 7R7 Litter
According to Parentage of Red Female

Table A2
(Details of the calculations are given in Appendix C )
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PH* ( hRR | 7R7 )

=      
 PR ( RR | ... ) x  PR ( 7R7 | RR ∧ gg )

  PR ( 7R7 | ... ) 

 (A-15)

PH* ( hRg | 7R7 )

=      
 PR ( Rg | ... )  x   PR ( 7R7 | Rg ∧ gg )

  PR ( 7R7 | ... ) 

(A-16)

      Mother's parents

  ⇓⇓⇓⇓                          ⇒⇒⇒⇒ RR Rg gg

 RR    PH* ( hRR | 7R7 )

     PH* ( hRg | 7R7 )

1.0

0.0

0.9921

0.0078

0.0

1.0

 Rg     PH* ( hRR | 7R7 )

     PH* ( hRg | 7R7 )

0.9921

0.0078

0.9844

0.0155

0.0

1.0

 gg     PH*( hRR | 7R7 )

     PH* ( hRg | 7R7 )

0.0

1.0

0.0

1.0

Pseudo-Probabilities PH* ( . )  of  hypotheses hRR and hRg

according to genetic types of mother's parents
Details of calculations are shown in Appendix D.

Table A3
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In Table A3, the upper line in each cell shows the pseudo PH*( hRR | 7R7) for
the case where the genes of the maternal grandparents are as shown at the
heads of the corresponding rows and columns. The lower line in each cell
shows the pseudo PH*( hRg | 7R7 ) in each corresponding case.

Table A3 however shows just how seriously misleading it can be to
allow a prior process to influence our assessment of the probability in an
individual case.  For, if no independent evidence is available, the values of
1.0,  0.9921,  and  0.9844 are so close that, quite apart from our fundamental
objections, the evidence of this test could provide no grounds for deciding
between the competing hypotheses.  Furthermore, and contrary to popular
myth1, there is here no attenuation of the importance of the prior with in-
creasing size of the litter, so long as all the offspring are red.

A single grey offspring in the litter is, however, sufficient to eliminate
the hypothesis hRR ; for a red parent whose genes are RR, cannot produce a
grey offspring.  Thus, under the Mendelian rules, a grey offspring in the
litter would also eliminate the possibility that the genes of the maternal
grandparents could be RR ∧ RR. These are, in our view, highly significant
results.  We conclude, therefore, that Fisher is simply wrong in his claim
that this example demonstrates fatal weakness in Bayes' conclusion and
method of reasoning. Quite to the contrary, the example leaves Bayes un-
scathed.

                                                
1 cf the remarks of Laplace et al quoted in Molina (1931).
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Appendix B

Mendelian  Rules

The experiment is assumed to be governed by the rules of Mendelian genet-
ics in which each mouse carries a pair of genes which determine the colour
of its fur.  The red gene is dominant and is denoted by the upper-case 'R' ;
the grey factor is recessive, and is denoted by the lower-case 'g'.   Hence we
have the following rules:-

 (1) If a given mouse is red
And its parentage is unknown
Then its genes can be RR or Rg

 (2) If a given mouse is grey
Then its genes are gg.

 (3) If RR mates with RR,
Then a. All offspring are red

b. All carry RR genes

 (4) If RR mates with Rg
Then a. All offspring are red
b.  There is a probability of 0.5 that
an offspring selected at random will have
RR genes.
c  There is a probability of 0.5 that
an offspring selected at random will have
Rg genes

 (5) If RR mates with gg
Then a. All offspring are red

b. All carry Rg genes

 (6) By  (3), (4), (5)
If RR mates with RR or Rg or gg
Then

a. All offspring are red.
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(7) If Rg mates with Rg
Then
a. There is a probability of 0.25
that an offspring selected at random will
be red and will have RR genes.
b. There is a probability of 0.5 that
an offspring selected at random will be
red and will have Rg genes
c. There is a probability of 0.25
that an offspring selected at random will
be grey and will therefore have gg genes.

 (8) If Rg mates with gg
Then
a. There is a probability of 0.5 that
an offspring selected at random will be
red and will have Rg genes.
b. There is a probability of 0.5 that
an offspring selected at random will be
grey and will have gg genes.

 (9) If gg mates with gg
Then
a. There is a probability of 1.0 that
an offspring selected at random will be
grey and will have gg genes.



Appendix C Calculations of  Table A2

Version zh25a.doc at 18:36  on 13 July, 2001
All rights reserved.

238

Appendix C

Expressions and Calculations Used

to Produce the Results Shown in Table A2

The probability - i.e. in the sense of 'expected frequency' - that, in litters of
seven mice resulting from matings between Red females and grey males, all
will be Red, is computed according to the genes of the maternal grandpar-
ents. The genes of the grandparents assumed in each case are shown in bold
type.

  PR ( 7R7 | RR ∧∧∧∧ RR )
=     PR ( RR | RR ∧ RR ) x   PR ( 7R7 | RR ∧ gg )
+     PR ( Rg | RR ∧ RR ) x   PR ( 7R7 | Rg ∧ gg )

          =   1.0 x 1.0  +  0.0 x   (0.5)7                       =   1.0

  PR ( 7R7 | RR ∧∧∧∧ Rg )
          =     PR ( RR | RR ∧ Rg ) x   PR ( 7R7 | RR ∧ gg )

+     PR ( Rg | RR ∧ Rg ) x   PR ( 7R7 | Rg ∧ gg )
=   0.5 x 1.0  + 0.5 x  (0.5)7                      =    0.5039

  PR ( 7R7 | RR ∧∧∧∧ gg )
          =     PR ( RR | RR ∧ gg ) x   PR ( 7R7 | RR ∧ gg )

+     PR ( Rg | RR ∧ gg ) x   PR ( 7R7 | Rg ∧ gg )
=    0.0 x 1.0  +  1.0 x  (0.5)7                      =    (0.5)7

  PR ( 7R7 | Rg ∧∧∧∧ Rg )
=       PR ( RR | Rg ∧ Rg ) x   PR ( 7R7 | RR ∧ gg )
+       PR ( Rg | Rg ∧ Rg ) x   PR ( 7R7 | Rg ∧ gg )
=     0.25 x 1.0   +  0.5 x  (0.5)7                 =   0.2539

  PR ( 7R7 | Rg ∧∧∧∧ gg )
=       PR ( RR | Rg ∧ gg ) x   PR ( 7R7 | RR ∧ gg )
+      PR ( Rg | Rg ∧ gg ) x   PR ( 7R7 | Rg ∧ gg )
=    0.0 x 1.0  +  0.5 x  (0.5)7                         =     (0.5)8
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Appendix D

Calculations of  pseudo-probabilities P H* ( hRR | 7R7 ) and P H* ( hRg | 7R7 )

according to genetic make up of maternal grandparents

If maternal grandparents are RR ∧ RR

  PR ( RR | RR ∧ RR )   =  1.0

  PR ( 7R7 | RR ∧ RR )  =  1.0

  P H* ( hRR | 7R7 )     =      
  PR ( RR | RR ∧ RR ) x PR ( 7R7 | RR ∧ gg )

   PR ( 7R7 | RR ∧ RR ) 

                      =     1.0 x 1.0 / 1.0                           =    1.0  

If maternal grandparents are RR ∧ Rg

  PR ( RR | RR ∧ Rg )   =  0.5

  PR ( 7R7 | RR ∧ Rg )  =  0.504

 P H* ( hRR | 7R7 )     =      
  PR ( RR | RR ∧ Rg ) x PR ( 7R7 | RR ∧ gg )

   PR ( 7R7 | RR ∧ Rg ) 

                          =      0.5 x 1.0 / 0.504                           =     0.9921

If maternal grandparents are RR ∧ gg

  PR ( RR | RR ∧ gg )   =  0.0

  PR ( 7R7 | RR ∧ gg )  =  0.0078

  PH* ( hRR | 7R7 )     =      
  PR ( RR | RR ∧ gg ) x PR ( 7R7 | RR ∧ gg )

   PR ( 7R7 | RR ∧ gg ) 

                          =     0.0 x  1.0 /   (0.5)7                           =     0.0
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If maternal grandparents are Rg ∧ Rg

  PR ( RR | Rg ∧ Rg )   =  0.25

  PR ( 7R7 | Rg ∧ Rg )  =  0.254

 P H* ( hRR | 7R7 )     =      
  PR ( RR | Rg ∧ Rg ) x PR ( 7R7 | RR ∧ gg )

   PR ( 7R7 | Rg ∧ Rg ) 

                          =     0.25 x 1.0  /  0.254                       =    0.9843

If maternal grandparents are Rg ∧ gg

  PR ( RR | Rg ∧ gg )   =  0.000

  PR ( 7R7 | Rg ∧ gg )  =  0.004

  P H* ( hRR | 7R7 )     =      
  PR ( RR | Rg ∧ gg )   PR ( 7R7 | RR ∧ gg )

   PR ( 7R7 | Rg ∧ gg ) 

                          =     0.0 x 1.0  /  0.004                         =    0.0

We next evaluate the probability of the hypothesis that the red mother is of
type Rg under each possible assumption concerning the genes of her par-
ents:-

If maternal grandparents are RR ∧ RR

  PR ( Rg | RR ∧ RR )   =  0.0

  PR ( 7R7 | RR ∧ RR )  =  1.0

  P H* ( hRg | 7R7 )     =      
  PR ( Rg | RR ∧ RR ) x   PR ( 7R7 | Rg ∧ gg )

   PR ( 7R7 | RR ∧ RR ) 

                     =     0.0 x  (0.5)7 / 1.0                              =    0.0

If maternal grandparents are RR ∧ Rg

  PR ( Rg | RR ∧ Rg )   =  0.5

  PR ( 7R7 | RR ∧ Rg )  =  0.504
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  P H* ( hRg | 7R7 )     =      
  PR ( Rg | RR ∧ Rg ) x   PR ( 7R7 | Rg ∧ gg )

   PR ( 7R7 | RR ∧ Rg ) 

                         =   0.5 x  (0.5)7  /  0.5039                        =  0.0078

If maternal grandparents are RR ∧ gg

  PR ( Rg | RR ∧ gg )   =  1.0

  PR ( 7R7 | RR ∧ gg )  =  0.008

  P H* ( hRg | 7R7 )     =      
  PR ( Rg | RR ∧ gg ) x   PR ( 7R7 | Rg ∧ gg )

   PR ( 7R7 | RR ∧ gg ) 

                         =      1.0 x  (0.5)7 /  (0.5)7                         =   1.0

If maternal grandparents are Rg ∧ Rg

  PR ( Rg | Rg ∧ Rg )   =  0.5

  PR ( 7R7 | Rg ∧ Rg )  =  0.254

  P H* ( hRg | 7R7 )     =      
  PR ( Rg | Rg ∧ Rg ) x   PR ( 7R7 | Rg ∧ gg )

   PR ( 7R7 | Rg ∧ Rg ) 

                          =     0.5 x  (0.5)7 /  0.254                       =    0.0154

If maternal grandparents are Rg ∧ gg

  PR ( Rg | Rg ∧ gg )   =  0.5

  PR ( 7R7 | Rg ∧ gg )  =  (0.5)8

  P H* ( hRg | 7R7 )     =      
  PR ( Rg | Rg ∧ gg ) x   PR ( 7R7 | Rg ∧ gg )

   PR ( 7R7 | Rg ∧ gg ) 

                         =      0.5 x  (0.5)7 / (0.5)8                       =    1.0
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Appendix  E

The Gaussian Ratio

Given an expression of the form:-

Y  =   
G( a , σa , x ) .G( b ,σb , x ) 

 ⌡⌠
-∞ 

 ∞
 G( a , σa , x ) .G( b ,σb , x )  dx

 (E-1)

we can define a variable y such that:-

y  =   G( a , σa , x ) .G( b ,σb , x )

and therefore

Y  =   
y  

 ⌡⌠
-∞ 

 ∞ 
y  dx

 (E-2)

Expanding y gives:-

y  =   
1

2π[σaσb ]2 exp -12  { 
(a - x)2

σa
2   + 

(b - x)2

σb
2  }

=     
1

2π[σaσb ]2   exp -12  {  
σb

2(a - x)2 +  σa
2(b - x)2 

σa
2 σb

2    } (E-3)

and separating the terms in x gives:-

y  =     
1

2π[σaσb ]2  exp -12  { a2

σa
2  +  b2

σb
2 }

      x   exp -12  { x
2(σa

2+ σb
2)

σa
2σb

2    -  
2x(aσb

2+ bσa
2) 

σa
2σb

2   } (E-4)

If we now define σc such that:-

σc
2 =  σa

2σb
2/(σa

2 + σb
2) (E-5)

and  c  such that:-

  c =  (aσb
2 +  bσa

2) / (σa
2+ σb

2) (E-6)

we can take the final terms of (E-4) and express them as:-



Appendix E The Gaussian Ratio

243

 x
2(σa

2+ σb
2)

σa
2σb

2        =     
x2

σc
2 (E-7a)

and
2x(aσb

2+ bσa
2) 

σa
2σb

2   =      
2xc
σc

2  (E-7b)

whence

 x
2(σa

2+ σb
2)

σa
2σb

2    -  
2x(aσb

2+ bσa
2) 

σa
2σb

2       

=     
(x - c)2

σc
2   -   

c 2

σc
2 (E-8)

and therefore

exp -12  { x
2(σa

2+ σb
2)

σa
2σb

2    -  
2x(aσb

2+ bσa
2) 

σa
2σb

2   }

=  exp 12 { c 2

σc
2 }  exp  -12  { (x - c)2

σc
2  }  (E-9)

Hence, substituting in (E-4):-

y  =     
1

2π[σaσb ]2  exp -12  { a2

σa
2 + b2

σb
2 - c 2

σc
2 } exp -12  { (x - c)2

σc
2  }

       (E-10)
which is equivalent to:-

y  =    
√(2πσc

2
 )

2π[σaσb ]2  exp -12  { a2

σa
2 + b2

σb
2 - c 2

σc
2 }

       x    1
√(2πσc

2
 )

 exp { (x - c)2

σc
2  } (E-11)

Thus, putting

kc  =  
√(2πσc

2
 )

2π[σaσb ]2  exp -12  { a2

σa
2 + b2

σb
2 - c 2

σc
2 } (E-12)

gives
y  =   kcG( c, σ c , x ) (E-13)

But,

⌡⌠-∞
 

 ∞
   kc .G( c, σ c , x )   dx   =   kc (E-14)
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therefore by substitution in (E-2)

Y  =  
kcG( c, σ c , x )

k c  (E-15a)

    =   G( c, σ c , x ) (E - 1 6 )
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