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1 Getting started

1.1 Getting the software

BUGS 0.6 may be obtained from World Wide Web page http://www.mrc-bsu.cam.ac.uk/bugs,
or by anonymous ftp from ftp.mrc-bsu.cam.ac.uk in directory pub/methodology/bugs: login as
anonymous and give your full e-mail address as the password. The message and README files will
tell you how to obtain the program, examples and documentation.

1.2 The script file for ‘bugs’ (Sparc)

#!/bin/sh

# runs BUGS interactively

#

case $# in
0) bugs06.sparc 32 bugs;;
*) echo ’bugs6’ ;;

esac

rm bugs.buf

“32” refers to the number of bins in the metropolis algorithm (Section 2.2).
“bugs” refers to the header for filenames.

An appropriate path name should be added before “bugs06.sparc”.

1.3 The script file for ‘backbugs’ (Sparc)

#!/bin/sh
# runs BUGS taking commands from command file
#
case $# in

0) echo ’usage backbugs command_file’

exit 1 ;;

1) bugs06.sparc 32 bugs $1;;

*) echo ’usage backbugs command_file’ ;;
esac
rm bugs.buf

An appropriate path name should be added before “bugs06.sparc”.



So to submit a series of commands from a file job.cmd, use the command backbugs job.cmd.

2 New Facilities in 0.6

2.1 Checkpoint command

A command now exists to save people wasting a whole run if a crash occurs. If you type, say,
checkpoint (1000), then after every 1000 iterations BUGS will

e write to file bugs.res the current parameter values

e if anything is being monitored, write the simulated values sequentially to bugs.sif (an ‘ind’
file) and bugs.sof (an ‘out’ file). This format is readable by CODA.

Note that bugs.res can be used as an initial value file for restarting a run.

2.2 Metropolis sampling

A general Metropolis-within-Gibbs routine can now be used for non-log-concave sampling. This
routine uses a simple histogram- based proposal distribution (Ritter and Tanner, 1992), and there-
fore any parameter that requires Metropolis sampling must have bounded range, which is best set
up using the I( , ) construct on the prior distribution, although this is not necessary if a uniform
or beta prior distribution are assumed. This is best adapted to as narrow a range as possible to
bound the posterior distribution. The default number of bins in the histogram is 32, but this can
be changed within the BUGS script (see Section 1.2).

If a bounded range is not given, an error message will say that BUGS is Unable to choose update
method for node.

Improved Metropolis routines are being written for future versions, and will be available in BUGS
for Windows.

2.3 Minor changes

1. Non-integer 7 and n can be used in binomial sampling.

2. Nodes are updated in the reverse order to their specification.

3 Corrected bugs from Version 0.5
1. The adaptive rejection sampling routine has been changed in the hope of avoiding the crashes
that have occurred. However, this may have made it slower.
2. Compilation has been speeded up.
3. The stats command no longer overwrites the contents of bugs1.out.

4. The I(,) construct works for all univariate distributions (previously it was ignored when
using, for example, the logistic)



5. The sd function has been fixed.

6. Some of the more annoying error messages have been fixed: for example a missing data or
initial value file no longer leads to a memory fault crash.

4 Known restrictions still existing in Version 0.6

1. It is still not possible to place any structure on a covariance matrix given an inverse Wishart
distribution. For bivariate normal distributions, such as an intercept and slope of a growth
curve model, we recommend modelling as two univariate normals with, say, intercept being
a covariate of slope.

2. The COSMOS example does not fully work.

5 Examples

5.1 Dugongs with Metropolis

This problem is described in Spiegelhalter et al. (1996b)[page 4], and comprises a non-linear and
non-conjugate model:

Y; ~ Normal(u;, 7), i=1,..,27
i = a—pyk a,B>150<y< 1.

This gives a non-log-concave distribution for . The problem was previously handled by discretizing
v, and specifying equal prior probabilities for each discrete value. The BUGS 0.6 code is shown below.

model dugongs;
const
N = 27; # number of observations
var
x[N],Y[N] ,mu[N] ,alpha,beta,gamma,tau,sigma,U1,U2,03;
data x, Y in "dugongs.dat";
inits in "dugongs.in";
{
for (i in 1:N) {
mu[i] <- alpha - beta*pow(gamma,x[i]);
Y[i] ~ dnorm(mulil,tau)
}
alpha ~ dnorm(0.0,1.0E-4);
beta ~ dnorm(0.0,1.0E-4);
tau ~ dgamma(1l.0E-3,1.0E-3); sigma <- 1.0/sqrt(tau);
gamma ~ dunif(0.5,1.0);

# Transform alpha, beta and gamma to scale used by Carlin and Gelfand
Ul <- log(alpha);
U2 <- log(beta);



U3 <- logit(gamma) ;

}

We note that v has been given a bounded domain by using a uniform prior distribution. BUGS
0.6 detects that the Metropolis sampler is required and reports during compilation: Metropolis
method choosen for node gamma.

Analysis

After a 500 iteration burn-in, 1000 iterations took 31 seconds using the default 32 bins for the

Metropolis sampler.

U1l (log «) U2 (log ) U3 (logit ) o
C & G posterior 0.975 —0.014 1.902 -
mode
Ratkowsky least 0.981 —0.028 1.932 -
squares estimate
BUGS posterior mode
(95% interval)
Discretisation 0.979 —0.029 1.896 0.098
(0.933, 1.032) | (—0.180, 0.117) | (1.366, 2.364) | (0.074, 0.129)
Metropolis 0.978 —0.031 1.893 0.099
(0.931, 1.032) | (—0.185, 0.114) | (1.319, 2.398) | (0.075, 0.132)

(The C & G posterior refers to that in Carlin and Gelfand (1991)).

We note that the Metropolis sampler is considerably faster than using discretisation, and the results
are virtually indistinguishable.

5.2 Epilepsy with hierarchical centering

This example is described in Spiegelhalter et al. (1996¢)[page 30], in which convergence problems are
noted. Gelfand et al. (1995) and Gelfand et al. (1996) discuss the method of hierarchical centering
for such models, in which each stochastic variable is, as far as possible, considered as arising from
a stochastic mean. In effect, covariates are entered as ‘high’ in the model as possible. They argue
this procedure should often improve convergence, and further evidence is provided by Roberts and
Sahu (1997).

For Model I1I in the epilepsy example, rather than having both random effects entering into a single
regression for the Poisson mean, we may separate out the random effects to create an additional
level on the model. The model is thus given by:

yjx ~ Poisson(m)
log mjr = bj
bj ~ Normal(ujk,n,)
logpjx = o+ aBase log(Base;/4) + arpTrt;

aprTrt;log(Base;/4) + asgeAge; + ayaVay + bl

bl; ~ Normal(0,7p)



Coefficients and precisions are given independent “noninformative” priors. The appropriate graph
is shown in Figure 1.
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Figure 1: Graphical model for epil example, using a hierarchically centered parameterisation

Model specification for epil example with hierarchical centering. The part indicated
+++++ is identical to that given in Spiegelhalter et al. (1996¢)[page 30].

for(j in 1:N) {
for(k in 1:T) {

mu[j,k] <- a0 + alpha.Base * (log.Base4[j]-log.Base4.bar)

+ alpha.Trt * (Trt[j]-Trt.bar)
+ alpha.BT =* (BT[j] - BT.bar)

+ alpha.Age * (log.Agel[jl-log.Age.bar)
+ alpha.V4 * (V4[k] - V4.bar)
+ b1[jl;

y[j,k] ~ dpois(m[j,k]);
log(m[j,k]) <- b[j,k];

blj,k] ~ dnorm(mulj,k],tau.b); # subject*visit random effects

}

b1[5]

~ dnorm(0.0,tau.bl);
FH+++

# subject random effects

Analysis

A burn-in of 3000 iterations was followed by a further 7000 iterations. This took approximately 30
minutes.



PQL BUGS
variable coeff £ SE  coeff + SE
Fized effects
constant -1.27 £ 1.2 -1.43 £1.25
Base .86 £ .13 87 £ .14
Trt -93 + .40 -1.02 £+ .42
Base x Trt | .34 + .21 38 £+ .21
Age A7 £+ .35 .50 £+ .36
V4 -.10 + .09 -11 + .09
Subject level random effects
Op1 48 + .06 .50 + .07
Unit level random effects
ob | .36 &+ .04 .36 + .04

We have generally found that hierarchical centering leads to both quicker sampling and earlier
convergence.

5.3 Orange trees - non-linear hierarchical models
This example is analysed in Lindstrom and Bates (1990) as an example of a mixed non-linear

growth curve model. The data describe the growth of each of five orange trees, with measurements
at seven common times:

Tree Y1 Y2 Y3 Y4 Y5 Y6 Y7

1 30 58 87 115 120 142 145
2 33 69 111 156 172 203 203
3 30 51 75 108 115 139 140
4 32 62 112 167 179 209 214
5 30 49 81 125 142 174 177
Time (z) 18 484 664 1004 1231 1372 1582

A logistic growth curve model, with an unknown maximum, is assumed. We first standardise the
covariate z; to z; = (z; —¥)/sd(z) in order to improve convergence and stability of estimates, and
to make the random effects assumptions more reasonable.

yij ~ Norm(my;,7.)
ebil

Mij = Tl

0~ Norm(pg, )

Lindstrom and Bates (1990) only take ¢;; = e’ as a random effect with a Gaussian population
distribution. We shall allow all three growth parameters to vary between trees; means and precisions
are given independent “noninformative” priors.
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Figure 2: Graph of the orange tree example.

As mentioned in Section 2.2, we need to specify a range for each of the 6 parameters to be sampled
using the Metropolis algorithm. It is convenient to first run a fixed-effect model in which five
independent growth curves are fitted to the data, specifying only that the 6’s are all between -20
and +20. This gives rise to estimates for 6 that suggest generous lower and upper bounds of (4,6)
for 0;17s, (-2,0) for 0;2’s and (-3,0) for 6;3’s. These are then placed in the data file as the lower and
upper vectors.

Model specification for orange example

model otree;
const
n==717,
K = 5;
var
tauC,mu[3],taul[3], Y[K,n],m[K,n],philK,3],thetalk,3],
lower[3] ,upper[3],sigmaC,sigma[3],x[n],x.bar,x.sd;
data in "otree.dat";
inits in "otree.in";
{
x.bar <- mean(x[]);
x.sd <- sd(x[1);
for (i in 1:K) {

for (j in 1:n) {

Y[i, jl ~ dnorm(m[i, j], tauC)



m[i, j] <- exp(thetali,1]) /
(1 + exp(thetali,2] + thetali, 3] * (x[j]l-x.bar)/x.sd));
}
for (k in 1:3) {
thetali, k] ~ dnorm(mulk], taulk])I(lower[k], upper[k])
}
}
tauC ~ dgamma(1.0E-3, 1.0E-3)
sigmaC <- 1 / sqrt(tauC)
for (k in 1:3) {
mu[k] ~ dnorm(0, 1.0E-4)
taulk] ~ dgamma(1.0E-3, 1.0E-3)
sigma[k] <- 1 / sqrt(taulk])
}

Analysis

A burn-in of 500 iterations followed by a further 1000 iterations took approximately 2.25 minutes.

variable (f;) | mean (uy) = SE  sd (o4) + SE

0 5.23 +.11 24 £ .12
0, -64 + .15 14 + .12
03 -1.44 + 13 12 + .11

From the size and standard deviations of the random effects ¢’s, the assumption of Lindstrom and
Bates (1990) that a random effect is only required for #; appears reasonable.

5.4 ddIddC: a longitudinal Laird-Ware mixed model

Consider the Gaussian linear mixed model (Laird and Ware, 1982),

Y, = Xia+WBi+¢ (1)
Bi ~ Ng(0,V71)

where the Y; are vectors of length n; containing the observations on the 5" unit, and the ¢; are error
vectors of the same length independently distributed as N, (0,0 2I,,), i = 1,...,k: note that all
our Normal parameterisations are in terms of precisions. In this mixed model, X; is an n; X p
design matrix of covariates and « is a corresponding p x 1 vector of fixed effects. In contrast, W; is
a n; X q design matrix (g typically less than p), and §; is a ¢ X 1 vector of subject-specific random
effects. The ; model the subject-specific means, as well as enabling the model to capture marginal
dependence among the observations on the i unit. The hierarchical specification of this model is
completed by adding the prior distributions Q = V! ~ Wishart(R, p), 7 = 0~2 ~ Gamma(a, b),
and a ~ Ny(c, D).

We apply this model to continuous longitudinal data from a clinical trial originally described by
Abrams et al. (1994), which compared the effectiveness of two antiretroviral drugs (didanosine, ddI,
and zalcitabine, ddC) in 467 persons with advanced HIV infection. The response variable Y;; for



patient ¢ at time j is the square root of the patient’s CD4 count, a seriological measure of immune
system health and prognostic factor for AIDS-related illness and mortality. The dataset records
patient CD4 counts at study entry and again at 2, 6, 12, and 18 months after entry, though a great
many of these observations are missing for many patients (the sample sizes at the five time points
for the two drug groups are (230, 182, 153, 102, 22) and (236, 186, 157, 123, 14), respectively).

Following a Bayesian reanalysis of these data (Carlin, 1996; Carlin and Louis, 1996), we seek to fit
model (1) where the j** row of the patient i’s design matrix W; takes the form

wi; = (1, tiy, (i —2)1),

where t;; € {0,2,6,12,18} and 2" = max(z,0). Thus the three columns of W; correspond to
individual-level intercept, slope, and possible change in slope after the two month visit (by which
time the drugs are expected to produce a detectable benefit). We further account for the effect
of two covariates by including them in the fixed effect design matrix X;. These covariates are d;,
a binary variable indicating whether patient i received ddI (d; = 1) or ddC (d; = 0), and a;, a
binary variable telling whether the patient was diagnosed as having AIDS at baseline (a; = 1) or
not (a; = 0). Each of these covariates is allowed to influence the intercept, slope and change, and
hence
X; = (Wi | diW; | a;W5),

so that p =3¢ =9.

We complete our model specification with minimally informative priors, taking care to ensure
that they do not lead to improper posterior distributions for the variance components o2 and D.
Following previous work, we set p = 24 and R = 24 x Diag(22,(.25)?, (.25)?), which should preserve
identifiability while still allowing the random effects a reasonable amount of freedom. For the prior
on 72 we take a = 1,b = 100 (a prior with both mean and standard deviation equal to (1/10)2),
while for a we set

¢ = (10,0,0,0,0,0,—3,0,0), and
D = Diag(2?,1%,12,(.1)%,12,1%,12,1%,1?) ,
a prior biased strongly away from 0 only for the baseline intercept, «;, and the intercept adjustment

for a positive AIDS diagnosis, a7. This prior also forces the drug group intercept (i.e., the effect
at baseline) a4 to be very small, since patients were assigned to drug group at random.

Here is the BUGS code to fit this model, where ind indexes the individual in the study, and i and
j index the rows and columns of the design matrices, respectively. By placing NA’s in the data file,
the W matrix is common to all individuals, but the X matrix is still individual-specific.

model ddIddC;

const
N = 467, # number of patients
s =5, # number of time points
q=3, # number of random effects
Pp=29; # number of fixed effects
var

X[N,s,pl,W[s,ql,Y[N,s],alphal[p],beta[N,ql,d[N],a[N],Omegalq,ql,V[q,ql,
Sigma2[q,ql,sigma,tau,R[q,q],rho,c[p],Omega.alphalp,p],
mu[N,s],mu.betalq];
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Figure 3: Graph of the ddIddc example.




data d,a in "drugaids.dat", Y in "Y.dat",
W in "W.dat", c in "priormean.dat", Omega.alpha in "priorprec.dat";
inits in "ddIddC.in";
{
for (ind in 1:N) {
for (i in 1:s) {

for (j in 1:q) {
X[ind,i,j] <- W[i,jl;
X[ind,i,j+3] <- d[ind]*W[i,j];
X[ind,i,j+6] <- alindl*W[i,j]l;

Y[ind,i] ~ dnorm(mulind,i],tau);
mul[ind,i] <- inprod(X[ind,i,],alphal[]l) + inprod(W[i,],betalind,]);

beta[ind,] ~ dmnorm(mu.betal],Omegal,]); # trivariate Normal

tau ~ dgamma(l, 100); sigma <- 1.0/sqrt(tau);

Omegal,] ~ dwish(R[,],24); # Wishart prior on precision matrix
R[1,1] <- 96.0; R[1,2] <- 0.0; R[1,3] <- 0.0;

R[2,1] <- 0.0; R[2,2] <- 1.5; R[2,3] <- 0.0;

R[3,1] <- 0.0; R[3,2] <- 0.0; RI[3,3] <- 1.5;

V[,] <- inverse(Omegal,])

mu.beta[l] <- 0.0; mu.beta[2] <- 0.0; mu.betal[3] <- 0.0;
# for (j in 1:p){alphaljl] ~ dnorm(c[j],Omega.alphalj,jl1);} # univ normals
alpha[] ~ dmnorm(c[],Omega.alphal,]); # mv normal -- better convergence!

Running this BUGS code for 5000 iterations produces the summaries in Table 1. The results are
quite comparable to those given by Carlin and Louis (1996)[pp.280-281]. Interestingly, this original
work took several hundred lines of code in Fortran 77, augmented with IMSL subroutine calls for
matrix manipulation and random variate generation — a stark contrast with the fewer than 40 lines
of BUGS code above.

The single line that is commented out in the above BUGS code can be used to specify the (in-
dependence) prior for a componentwise using dnorm, instead of all at once using dmnorm. While
mathematically equivalent, Table 2 shows that the univariate specification to be inferior in terms of
convergence speed, since BUGS then updates the o; one at a time, instead of as a vector. Laboring
against the cross-correlations within this vector, overall performance deteriorates.

We remark that the hierarchically centered version of this model recommended for this dataset by
Gelfand et al. (1995), namely

ni = o9 4+ diaD + ;0@ + 6;
where a(® = (a1, a9, 03), ol¥ = (a4, a5, a6), and a(® = (a7, ag,ag), is not possible within the

current version of BUGS. This is because BUGS cannot calculate the proper multivariate normal mean
and precision matrix when the “data” (in the centered version, the 7;) are not univariate, unless



95% interval
parameter mean lower upper
al 9.938E+0 | 9.338E+0 1.053E+1
a -3.817E-2 | -2.532E-1  1.782E-1
as -1.437E-1 | -3.890E-1  1.025E-1
o 9.326E-3 | -1.767E-1  1.971E-1
as 3.280E-1 | 9.792E-2  5.530E-1
o -3.596E-1 | -6.270E-1  -9.829E-2
oy -4.279E40 | -4.996E+0 -3.506E40
ag -3.297E-1 | -5.607E-1  -9.252E-2
g 3.835E-1 | 1.139E-1  6.474E-1
Ps,1 -7.618E+0 | -9.738E+0 -5.611E+0
Bs,2 -3.349E-1 | -8.263E-1  1.270E-1
Ps,3 3.071E-1 | -2.040E-1  8.550E-1
o 1.681E+0 | 1.587E4+0 1.774E+0
Q11 1.048E-1 | 6.838E-2  1.711E-1
Q12 -1.591E-1 | -6.515E-1  2.222E-1

Table 1: Posterior summaries, ddI/ddC data model

the data mean is identical to the multivariate normal prior. BUGS can however accommodate some
simpler, univariate centering forms, as in the revised epil example.

5.5 PK: a nonlinear population pharmacokinetic model

Wakefield et al. (1994) consider the data in Table 3, which record the plasma concentration Y;; of
the drug Cadralazine at various time lags z;; following the administration of a single dose of 30 mg
in 10 cardiac failure patients. Here, 7 = 1,...,10 indexes the patient, while j = 1,...,n; indexes the
observations, 5 < n; < 8. These authors suggest a “one-compartment” nonlinear pharmacokinetic
model wherein the mean plasma concentration 7;;(x;;) is given by

nij (zij) = 300 exp(—LBizij/y) -

Subsequent unpublished work by these same authors suggests this model is best fit on the log scale.
That is, we suppose

Zij = logY;j = log mij(wij) + €ij
where €;; nd (0,7;). The mean structure for the Z;;’s thus emerges as

log [30(1[1 exp(—ﬁixij/ai)]
= log 30 — log Qy — ﬁi-fij/ai

log 73 (xi5)

log 30 — a; — exp(b; — ai)ij ,

where a; = log o; and b; = log g;.

Following the analysis by Wakefield et al. (1994), we assume the subject-specific random effects
0; = (a;,b;) are i.i.d. from a No(u, ) distribution, where g = (ug,up)- These authors also



«a updating method
parameter | componentwise vector
aj 0.979 0.798
a9 0.995 0.194
Qa3 0.994 0.207
Qg 0.686 0.204
as 0.993 0.436
(o7 0.993 0.408
ay 0.972 0.811
ag 0.991 0.134
Qg 0.988 0.154
o 0.529 0.530
Dy 0.385 0.388
Doy 0.942 0.942
Doo 0.891 0.891
D3 0.934 0.934
D3y 0.967 0.967
D33 0.917 0.918

Table 2: Lag 1 sample autocorrelations, algorithms for ddI/ddC data model

recommend the usual conjugate prior specification, namely p ~ No(X,C), 7; “a (vo/2, vo10/2),
and Q ~ Wishart(R, p). Since the full conditional distributions of the random effects 8; are neither
simple conjugate forms nor guaranteed to be log-concave, the new Metropolis capability of BUGS
0.6 is required. This Metropolis routine requires bounds to be placed on variables using the I(,)
construction, so unfortunately, the model for 8; cannot be specifed bivariately as above, since BUGS
currently cannot handle multivariate range restrictions. However, the model may still be specified
in BUGS using the product formulation of the bivariate normal, namely

a; ~ N(,UfaaTa)I(Laa Ua)
bila; ~ N (ko + ki(a; —c), 1) I(Lp,Up) ,

where (Lq,U,) and (Ly,Us,) are broad truncation regions to enable the grid-based Metropolis al-
gorithm, and c is a constant used to roughly center the a;’s (hence reduce correlation between the
intercept ko and slope k1). Under this formulation, we replace the normal prior for g and the
Wishart prior for 2 with gamma priors for 7, and 7, and normal priors for u,, ko and k.

The BUGS code to fit this model follows. As can be seen, we adopt the tuning constants ¢ = 3,
L, = Ly = -5, and U, = Uy, = 10. The latter values comfortably contain all the posterior mass for
the a; and b;; significantly more widely dispersed values (say, L, = Ly = —50 and U, = U, = 100)
do in fact lead to sharp drops in the Metropolis acceptance rate, hence reductions in efficiency.

model PK;
const
N = 10, # number of patients

T
var

8; # number of time points
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Figure 4: Graph of the PK example.
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no. of hours following drug administration
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0.33
0.23
0.28
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0.23
0.83
0.52
0.46
0.18
0.17
0.27
0.41
0.21
0.14

0.02
0.28
0.06
0.08
0.02
0.03
0.01

0.02

0.06 0.02

Table 3: Cadralazine concentration data

X[T],Z[N,T],thetal[N,2],a[N],b[N],1nu[N,T],taulN],sigma[N],Y[N,T],
mu.a,tau.a,mub[N],tau.b,int.b,slope.b,mu.b;
data Z in "PKZ.dat", X in "PKX.dat";
inits in "PK.in";
{
for (i in 1:N) {
for (j in 1:T) {
Z[i,j] = dnorm(lnuli,jl,taulil);
Y[i,j] <- exp(Z[i,jl1);
1nuli,j] <- 1og(30) - ali] - exp(bl[il-alil)*X[j];
} # end of j loop

al[i]l] ~ dnorm(mu.a,tau.a) I(-5, 10);

b[i] ~ dnorm(mub[i],tau.b) I(-5, 10);

mub[i] <- int.b + slope.b * (a[i] - 3.0); # center the a_i’s
taul[i] ~ dgamma(.0001, .0001);

} # end of i loop

sigma[i]l <- 1.0/sqrt(taulil);

mu.a ~ dnorm(0.0, 0.0001);

int.b ~ dnorm(0.0, 0.0001); slope.b ~ dnorm(0.0, 0.0001);

mu.b <- int.b + slope.b * (mu.a - 3.0);

tau.a ~ dgamma(l, 0.04); tau.b ~ dgamma(l, 0.04); # vague Wakefield prior

} # end of PK.bug program

Using a sequence of univariate Metropolis (Gaussian proposals) and Gibbs steps, Sargent et al.
(1997) fit the original Wishart formulation of this model using the priors recommended by Wakefield
et al. (1994), namely vy = 0, A = 0, C~! = Diag(0.01,0.01), p = 2, and R = p * Diag(0.04,0.04).
We attempt a comparable prior in our formulation by taking G(0.0001,0.0001) priors for the 7;,
N(0,0.0001) priors for g, ko and k1, and G(1,0.04) priors for 7, and 7.

Running this BUGS code for 5000 iterations (following a 250 iteration burn-in period) produces



BUGS V0.6 Sargent et al. (1997)
parameter | mean sd lag 1 acf | mean sd lag 1 acf

ay 2.956  0.0479 0.969 2.969  0.0460 0.947
as 2,692  0.0772 0.769 2.708  0.0910 0.808
ar 2970  0.1106 0.925 2.985  0.1360 0.938
ag 2.828  0.1417 0.828 2.838  0.1863 0.934
by 1.259  0.0335 0.972 1.268  0.0322 0.951
by 0.234  0.0648 0.661 0.239  0.0798 0.832
by 1.157  0.0879 0.899 1.163  0.1055 0.925
bg 0.936  0.1458 0.759 0.941 0.1838 0.932
T 362.4 260.4 0.313 380.8 268.8 0.220
To 84.04 57.60 0.225 81.40 58.41 0.255
T7 18.87 12.07 0.260 15.82 11.12 0.237
T8 2.119 1.139 0.085 1.499 0.931 0.143
ha 2.838  0.0715 0.421 2.829  0.0740 0.870
b 1.051 0.1472  0.0457 1.049  0.1371 0.350
ko 1.324  0.2087 0.769 - - -
ky 1.773 1.154 0.826 - - -
Ta 44.58 23.24 0.350 46.25 23.57 0.400
Th 14.75 12.72 0.673 - - -
Yo s 0.1338  0.0339 0.288 0.1347  0.0264 -
Y78 0.00891 0.00443  0.178 | 0.00884 0.00255 -

Table 4: Posterior summaries and lag 1 sample autocorrelations, PK data model

the posterior summaries and lag 1 sample autocorrelations given in Table 4. Also shown are the
results produced by Sargent et al. (1997), to which the BUGS results are quite comparable, given
the slight differences in model and prior formulation. (Results for €21 ; in the Wishart model are
given in the 7, row of the table; however, results for {255 are not shown in the 7, row since 7
is a conditional precision, given the a;.) The relatively large posterior means for 77 and 7g (and
correspondingly large posterior variances for a7, as, by, and bg) at first seem counter-intuitive, since
these two patients had the most data available for study. However, their final 2 to 3 observations
fit the overall model poorly (with those for patient 8 not even being monotone), explaining this
oddity. Finally (and relatedly), note the predicted values of the final observations for patients
2 (whose clearance rate is the slowest) and 7 (whose rate is amongst the fastest). The former
has mean somewhat larger than that suggested by the posterior predictive distribution under the
“power model” fit on the original (unlogged) scale by Wakefield et al. (1994).
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