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Quiz 4

Choose one problem

1. Assume X|θ is exponential E(1/θ) with density f(x|θ) = 1
θ e−x/θ, x ≥ 0. Let F be the cdf corresponding

to f. Assume a prior on θ, π(θ).
Let mπ(x) =

∫
Θ

f(x|θ)π(θ)dθ be the marginal and Mπ(x) =
∫ x

0
mπ(t)dt be its cumulative distribution

function. (a) Show that θ = f(x|θ)
1−F (x|θ).

(b) Show that Bayes estimator with respect π is θ̂ = mπ(x)
1−Mπ(x).

[Hint. You will need to use a version of Fubini’s theorem (Tonelli theorem) and change order of integration.
Tonelli theorem allows for change when integrands are nonnegative.]

(c) Suppose you observe Xi|θi ∼ E(1/θi), i = 1, . . . , n + 1. Explain how would you estimate θn+1 in the
empirical Bayes fashion, using result (b).

2. Assume [X|θ] ∼ N (θ, 1) and [θ|µ, τ2] ∼ N (µ, τ2).
(a) Find the marginal for X.
(b) What are the moment matching estimators of µ and τ2, if the sample Xi ∼ N (θi, 1), i = 1, . . . , n, is

available.
[Hint. Find the moments of the marginal and be careful, the estimator of the variance need to be

non-negative.]
(c) Propose an empirical Bayes estimator of θ based on the considerations in (b).
(d) What modifications in (b) are needed if you use MLE II estimator of µ and τ2.
[Sol. moment matching. Marginal is N (µ, 1 + τ2). µ̂ = X̄ and estimator of 1 + τ2 is s2. So τ̂2 =

max{0, s2 − 1}. For MLE τ̂2 = max{0, n−1
n s2 − 1}.

3. If the data Xi ∼ f(xi|θ) can not be reduced by a sufficient statistics, then so called pseudo-Bayes approach
is possible. Let T be an estimator of θ for which distribution g(t|θ) is known. Instead of finding Bayes rule

δπ(x1, . . . , xn) =

∫
Θ

θ
∏n

i=1 f(xi|θ)π(θ)dθ∫
Θ

∏n
i=1 f(xi|θ)π(θ)dθ

one finds pseudo-Bayes rule

δ∗π(t) =

∫
Θ

tg(t|θ)π(θ)dθ∫
Θ

g(t|θ)π(θ)dθ
.

Suppose that you have model

Xi ∼ N (θ, 1),
θ ∼ N (µ, τ2).

For n large, the distribution of the sample median m = Med(X1, X2, . . . , Xn), is approximately N (θ, π
2n ).

Write down pseudo-Bayes estimator of θ using the median estimator of θ and its normal approximation.

4. Another way to justify Stein shrinkage estimator. Mimic the exercise 2. Suppose that you have model

X ∼MVN p(θ, I),
θ ∼MVN (0, τ2I).
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(i) Find marginal distribution.
(ii) Show, in (i) the MLE of τ2 is

τ̂2 =

{ ∑
x2

i

p ,
∑

x2
i > p

0, else

(iii) Replacing the MLE in the Bayes estimator

δπ(x) =
τ2x

1 + τ2

the truncated James-Stein estimator is obtained,

δEB(x) =
(

1− p∑
x2

i

)

+

x,

where (x)+ = max{x, 0} is the positive part of x.
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