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1. Nematodes. Some varieties of nematodes (roundworms that live in the soil and are frequently so small
they are invisible to the naked eye) feed on the roots of lawn grasses and crops such as strawberries and
tomatoes. This pest, which is particularly troublesome in warm climates, can be treated by the application
of nematocides. However, because of size of the worms, it is very difficult to measure the effectiveness of
these pesticides directly. To compare three brands of nematocides (A, B, and C), the yields of equal-size
plots of one variety of tomatoes were collected. The data (yields in pounds per plot) are shown in the table.

Nematocide A 25.8 19.8 28.6 29.4 22.3 33.8 33.8 27.8 29.6
Nematocide B 16.5 23.5 13.5 34.6 16.9 18.8 26.1 18.4 17.2 11.6 20.2
Nematocide C 24.0 29.1 16.0 24.8 27.0 10.9 11.8 23.2 17.7 23.9 24.6 24.0 27.2 23.7

Assume the general one way ANOVA model,

yij = µi + εij ,

wherei = 1, . . . , k, andk = 3 (3 treatments). Within each treatment,j = 1, . . . , ni, (n1 = 9, n2 = 11, and
n3 = 14). Total sample size isn = n1 + n2 + n3 = 34.

Complete this ANOVA model as follows. All (hyper)parameters with index 0 are specified numbers.
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Assumea0 = 1, c0 = 1, d0 = 1, f0 = 1, g0 = 0.1, ψ0 = 10, andζ0 = 0.1. Denote byθ the vector of all
parameters in the model,
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full conditionals are:
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i + ni(ȳi − µi)2

2

)
, i = 1, . . . , k

[
σ2|θ\{σ2}, y] ∼ Gamma

(
f0 + ka0

2
,
g0 + a0

∑k
i=1 σ−2

i

2

)
.

Program this example inMATLAB or R and run the MCMC with suggested starting values. After dis-
carding 1000 runs as burn-in, simulate 5000 runs and plot histograms of all parameters (for which the full
conditionals are given). Give the posterior sample means and variances for all the parameters.
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2. Rainfall Data in Marquitia. The data in the table below consists of daily maximums of rainfall
data measured at the airport Marquietia, near Caracas, Venezuela in the period 1951-1999. Assume that
your data consists of years 1951-1998 and that the rainfall in 1999 is going to be predicted. The value of
maximum rainfall in 1999 is not a typo.1

Year 1951 52 53 54 55 56 57 58 59 1960 61 62
DayMax 154 49.6 46.7 58.3 70.5 90 70.1 105.7 37.4 40.8 34.7 58.9

Year 1963 64 65 66 67 68 69 1970 71 72 73 74
DayMax 72.2 30 71.6 100 33.7 49.9 56.1 142.3 28.6 54.8 74.1 60

Year 1975 76 77 78 79 1980 81 82 83 84 85 86
DayMax 50.9 38.6 53.4 132.5 50.7 40.8 84.3 38.8 27.4 67 118.7 23.2

Year 1987 88 89 1990 91 92 93 94 95 96 97 98 1999

DayMax 55 67.9 87.3 89 98.7 47.1 71.6 83.6 44.3 41.2 35.9 44.3410.4

Assume the Gumbel distribution for the maximum rainfall,
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The parameterθ = (µ, σ) is given independent componentwise priors. Assume that the prior onµ is
N (0, 102) and onσ lognormalLN (0, 102) (See handout 0).

(a) Express the posteriorπ(µ, σ|y1, . . . , yn) up to a normalizing constant.
(b) Develop Metropolis-Hastings algorithm that samples posterior values ofθ = (µ, σ) in a form of

Markov chain. Experiment to properly tune the algorithm.
(c) Use the output to estimate the probabilityP (y∗ ≥ 410|y) wherey∗ is a new observation. This can

be done in several ways. Of course, condition on datay from 1951 till 1998.

For an extensive Bayesian treatment, see
• Coles S., Pericchi L. R., Sisson S. (2003). A fully probabilistic approach to extreme rainfall modeling.

Journal of Hydrology, 273, 35–50.
• Coles S., Pericchi L. R. (2003). Anticipating catastrophes through extreme value modelling.Appl.

Statist., 52, 405–416.
• Data sets (annual maximum daily rainfall and daily rainfall levels recorded at Maiquetia) can be found

athttp://www.blackwellpublishing.com/rss/Readmefiles/Coles.htm .

1On 15 and 16 December, 1999, exceptional rainfall struck the northern coast of Venezuela. This strip of land between the
El Avila mountain range and the sea has been considerably urbanized in the past thirty years, in particular on the alluvial cones
produced by the torrents that rush down the slopes of the mountains. The equivalent of a year’s average rainfall for the region - 900
mm - fell in two days on ground that was already saturated by the heavy rains of the preceding months. The torrents, more or less
perpendicular to the coastline, swelled and washed away everything in their path, then dumped tons of sediment, blocks of stone,
and vegetation debris from the slopes on the urbanisations located downstream. The damage was great both on the human level
(some 10,000 deaths) and as regards property and economic impact.
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Figure 1: Marquietia Rainfall Data: Yearly maximum of daily rainfall.

3. A Baby Bayes NonParametric via BUGS.The underground train at Hartsfield-Jackson airport is arriv-
ing at the starting station [baggage claim] every four minutes. The number of peopleY entering the train is
random variable with Poisson distribution,

[Y |λ] ∼ Poi(λ).

The prior onλ is any discrete distribution supported on integers [1, 17],

[λ|P ] ∼ Discr ( (1, 2, . . . , 17), P = (p1, p2, . . . , p17)) ,

where
∑

i pi = 1. The hyperprior on probabilitiesP for is Dirichlet,

[P ] ∼ Dir(α1, α2, . . . , α17).

This is a baby Bayesian nonparametric problem. We are interested in posterior inference onλ.
Check for ODC file [model, data and inits folded] titledmidt3.odc here where the exam is.
Import the simulations toMATLAB or R and plot histograms of posterior distributions forλ, p2, p7, p9, p10, p13,

andp17. Provide all posterior statistics. You may consult Handout 14.

#model
model
{
for (i in 1:N)

{
y[i] ˜ dpois(lambda)

}
lambda ˜ dcat(P[])
P[1:bins] ˜ ddirch(hyper[])

}
#data
list(
bins=17,
hyper=c(1,1,1,2,2,3,3,4,4,5,6,5,4,3,2,1,1),

y=c(9,7,7,8,8,11,8,7,5,7,13,5,7,14,4,6,18,9,8,10), N=20
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)

#inits
list(
lambda=12,
P=c(0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0)
)
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