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1. Introduction 

 

Time series data that involve sequential ordering and correlation occur everywhere 

around us. Analyzing time series is the problem of discovering the pattern in the 

sequential data that develop in a logical way as the series continue. In the past few 

decades, research has been conducted on Bayesian method application in time series 

analysis field. In general, Bayesian inference has a distinct advantage over classical 

statistics in non-standard problems where concepts such as sufficiency or completeness 

do not apply. Autoregressive-moving average (ARMA) time series models are quite non-

standard, even if the usual assumption of normality is retained. For example, classical 

analysis of ARMA models must rely on asymptotic behavior such as consistency, 

asymptotic normality, and efficiency. But in many cases, as few as 50 observations are 

quite common that is not a big enough size for classical data analysis. However, Bayesian 

statistics are little affected by sample size. Therefore, through my project, I want to 

explore how Bayesian methods perform in the case of time series data and how their 

performance is compared to classical time series analysis. 

I use Apple Inc.’s quarterly revenue data from 2002 to 2012 which count to 50 data 

points. Then I will identify the most suitable parameter p and q for ARMA model by 

fitting ARMA models with different parameters and examining the accuracy. To test the 

accuracy, I take out 10% as the test data that is about 5 quarterly numbers. I will predict 

these 10% data with the models I train under Bayesian ARMA model and classical 

ARMA model and compare the forecasted values to the real values that I leave out. Here 

Mean Squared Error (MSE), defined as  will serve as the 

measurement of prediction accuracy.  

 

 



2. Data Investigation 

As we know, autoregressive moving average models provide a parsimonious 

description of a weakly stationary stochastic process in terms of two polynomials, one 

for the auto regression part and the second for the moving average part. So before I apply 

ARMA models to the data, I need to examine the data to make sure the data are stationary 

so that ARMA models are suitable in such case. The weak stationarity is defined as: 1) 

the mean is constant 2) the covariance only depends on the distance. If we take a look at 

the time series plot of the data (figure 1), we can see there is clearly a trend going up 

over time, which violates the constant mean rule. The typical technique to deal with non-

stationary data is to take differencing (study the difference between two consecutive data 

points instead of studying themselves). Looking at the time series plot of new data, we 

can see now the data are bouncing around zero and thus the mean is about zero. While 

the variance is getting greater over time, the ACF and PACF graphs show the data can 

still be considered stationary. In addition, taking second differencing does not help too 

much. So I will proceed using data with first differencing. 
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Figure 1 



 

Figure 2 

 

3. Model Identification & Results 

ARMA models are presented in the form of: 

1 1 1 1... ...t t p t p t t q t qX X X a a a                 

where 1,...,t t pX X  stand for p autoregression terms and 1,...,t t qa a  stand 

for q moving average terms. If we go back to the time series plot (Figure 2), we can detect 

a strong seasonality – the data go up and down every four periods. Therefore we also need 

to take into account the seasonality in our ARMA models. 

1 1 1... ...t t k p t nk t t q t qX X X a a a              
 

  where k is the interval of seasonality. In our case, k is 4. 

  After we determine the seasonality, we start to identify p and q in the models. By 

rule of thumb, the sum of p and q is usually no greater than 3 especially in not complex 

case. Thus there are three ARMA models that I want to test:  

(1) ARMA(1,1):  1 4 1 1t t t tX X a a      
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(2) ARMA (2,1)  
1 4 2 8 1 1t t t t tX X X a a         

 

(3) ARMA (1,2)  
1 4 1 1 2 2t t t t tX X a a a         

 

Identifying three possible ARMA models, I implement them in WinBUGS and 

generate three different groups of forecasting. I use common priors such normal and 

gamma conjugates and beta prior for parameter p and q. Roughly comparing the results 

to real data, I conclude ARMA (2,1) and ARMA (1,2) are slightly better. So I run the 

same model in Minitab where classical data analysis is performed. The final results are 

summarized in Table 1 as follows: 

 

  

ARMA(1,1) 

WinBUGS 

ARMA(2,1) 

WinBUGS 

ARMA(2,1) 

Minitab 

ARMA(1,2) 

WinBUGS 

ARMA(1,2) 

Minitab 

Real Data 

46 16.39 16.43 17.67074 18.36 22.09094 20.12 

47 -10.5 -17.06 -13.4881 -11.26 -11.7631 -11.94 

48 -6.431 -9.433 -12.699 -7.614 -9.45646 -8.22 

49 1.668 2.424 3.350647 2.193 3.586423 4.69 

50 16.79 31.32 11.30552 16.81 21.73788 32.48 

MSE: 54.899 9.5565 95.7219 51.14224 57.3922 ---- 

 

It’s not hard to see ARMA (2,1) generated very good forecasting that has MSE only 

at 9.5565, significantly smaller than that of forecasting from others models. Five data 

points forecasted under this model are fairly closed to the real data. Two ARMA models 

trained under classical data analysis in Minitab perform far worse. 

Therefore, we conclude the best ARMA model for our case study is ARMA (2,1) 



Bayesian model, presented as below: 

4 8 10.1358 0.7792 0.03092 0.1845t t t t tX X X a a      
 

We can see Xt is heavily dependent on the its previous term, a seasonality of 4 

periods before, and slightly dependent on the next previous term, two seasonalities of 8 

periods before.   

 

4. Conclusion 

In my project, I have shown Bayesian ARMA model performs better and forecasts 

more accurate than classical ARMA model under the dataset of Apple Inc.’s quarterly 

sales. While recognizing the advantages of Bayesian ARMA models, my conclusion 

does have a few major limitations. 

First of all, the data size is small for classical ARMA model and this may negatively 

affect its performance. Second, my conclusion can only be interpreted in this sample of 

data. It may not be true if same analysis is conducted under other datasets, such as IBM 

sales or Microsoft. Apple Inc.’s sales data are relatively stable and predictable than other 

kinds of data.  

In the future study, I want to explore how different choices of prior distribution 

affects the performance of Bayesian models. I especially want to experiment with 

informative prior distribution with a larger dataset so that a more reliable conclusion 

could be reached. On the other hand, it is always interesting to include other time series 

factors in the time series regression. In the example of Apple Inc.’s revenue, I would like 

to try other important indicators such as inventory data and demand data.  

 

  

   


