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1 Time to Second Birth.

We obtain the following result shown in Figure 1 by running OpenBUGS code. The Open-
BUGS code is attached in Appendix A.

Figure 1: OpenBUGS result for problem 1

(a) The mean of β2 is -171.2 and its 95% credible set is [-217.0, -125.1]. Variable death is
significant since the 95% credible set of β2 does not contain 0.

(b) The mean of β1 is -1.192 and its 95% credible set is [-3.161, 1.006]. Variable mage is not
significant in influencing the response time since the 95% credible set of β1 contains 0.

(c) The predicted time between the births of Helga is 978.6 days.

(d) The 95% credible set for the predicted time between births of Emma is [-34.61, 1659.0].

2 Tasmanian Clouds.

(a) We first study the ANOVA analysis with main effects only. Without the interaction
term, we can analyze the significance of the variables ’seeded’ and ’season’, though the
results may not be reliable due to interaction between the two factors. The 95% credible
set for the difference in rainfall between being unseeded and seeded is [−0.32, 0.04] with
a mean −0.14. This is borderline, but since the credible set includes 0, we reject the
hypothesis that seeding the clouds increases rainfall. Just for clarification, here we are
subtracting seeded from unseeded (unseeded - seeded), so an increase in rainfall due to
being seeded corresponds to a negative difference. The results are shown in Figure 2.

We conclude: (1) From Spring to Winter (1, 4), we see a significant decrease in the
amount of rainfall in the target areas. The 95% credible set is [0.26, 0.75] and does
not contain 0. (2) From Summer to Winter (2, 4), we see a significant decrease in the
amount of rainfall in the target areas. The 95% credible set is [0.26, 0.79] and does not
contain 0. (3) From Fall to Winter (3, 4), we see a significant decrease in the amount
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Figure 2: OpenBUGS result for 2(a)

of rainfall in the target areas. The 95% credible set is [0.10, 0.63] and does not contain
0. So we accept the hypothesis that the seasons affect the difference in rainfall between
the target areas and the control areas, in the three ways listed above.

(b) Similarly, we study the ANOVA analysis with main effects and two interactions. Un-
like the previous study, here we are looking at just the coefficient, not a difference of
coefficients. The first number in each pair refers to ’seeded’ and the second number
to ’season’. We can see that we should not reject the null hypothesis, because al-
pha.beta[1,3] and alpha.beta[2,3] do not overlap. The credible sets are alpha.beta[1, 3] :
[0.00047, 0.33], alpha.beta[2, 3] : [−0.33,−0.00047], and we see that the two credible sets
do not overlap. Furthermore, both of these coefficients reflect the difference in rain-
fall during the Autumn. This means that seeding clouds in the Autumn produces
significantly higher rainfall than not seeding clouds in the Autumn. The results are
shown in Figure 3.

3 Miller Lumber Company Customer Survey.

(a) We propose a Poisson model with hunits, aveinc, aveage, distcomp, and diststore
as covariates and customers as response. The OpenBUGS code is shown in Appendix
C. Result for the coefficients of the proposed Poisson model is shown in Figure 4.

(b) We use Laud-Ibrahim critierion to decide on the best two covariates. We obtain the
following results shown in Figure 5. As we prefer one model that with lower Laud-
Ibrahim value compared with that with higher Laud-Ibrahim value, we prefer the model
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Figure 3: OpenBUGS result for 2(b)
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Figure 4: OpenBUGS result for coefficients of Poisson model

10, which means that we consider covariates distcomp and diststore as the best two
covariates.

(c) By fixing hunits=720, aveinc=70000, aveage=6, distcomp=4, and diststore=8,
we obtain the results shown in Figure We found that the mean response is 8.958 and its
95% credible set is [7.719,10.34]. The predictive response is 8.957 and its 95% credible
set is [4.0, 15.0].
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Figure 5: OpenBUGS result for model comparison 5
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Figure 6: OpenBUGS result for mean and predictive response

A OpenBUGS Code for Problem 1

model{
for (i in 1:N){
time[i] ~ dnorm(mu[i], tau)
mu[i] <- b0 + b1* mage[i] + b2*death[i]

}
b0 ~ dnorm(0, 0.001)
b1 ~ dnorm(0, 0.001)
b2 ~ dnorm(0, 0.001)
tau ~ dgamma(0.001, 0.001)

# prediction for Helga
mage.helga <- 24
death.helga <- 0
mu.helga <- b0 + b1*mage.helga + b2*death.helga
time.helga ~ dnorm(mu.helga, tau)

# prediction for Emma
mage.emma <- 28
death.emma <- 1
mu.emma <- b0 + b1*mage.emma + b2*death.emma
time.emma ~ dnorm(mu.emma, tau)
}

DATA
list(N=16341)
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DATA(mage, death, and time)

INITS
list(b0=1, b1=0, b2=0, tau=1)

B OpenBUGS Code for Problem 2

model{
for(i in 1:n){
DIFF[i] ~ dnorm( mu[i], tau )
mu[i] <- mu0 + alpha[Seeded[i]] + beta[Season[i]] + alpha.beta[ Seeded[i], Season[i] ]
}

#CR (corner) constraints
# alpha[1] <- 0;
# beta[1]<- 0;
# alpha.beta[1,1]<- 0;
# for( a in 2:leva) {alpha.beta[a,1]<- 0}
# for(b in 2:levb) {alpha.beta[1,b]<- 0}

##STZ (sum-to-zero) constraints
alpha[1] <- - sum(alpha[2:leva])
beta[1] <- - sum(beta[2:levb])

for(a in 1:leva) {alpha.beta[a,1] <- - sum(alpha.beta[a, 2:levb])}
for(b in 2:levb) {alpha.beta[1,b] <- - sum(alpha.beta[2:leva, b])}

#PRIORS
mu0 ~ dnorm(0, 0.0001)
for(a in 2:leva) {alpha[a] ~ dnorm(0, 0.0001)}
for(b in 2:levb) {beta[b] ~ dnorm(0, 0.0001)}
for(a in 2:leva) {for(b in 2:levb){

alpha.beta[a,b] ~ dnorm(0, 0.0001) }}
tau ~ dgamma(0.001, 0.001)
s <- 1/sqrt(tau)

#PAIRWISE COMPARISONS

for(i in 1:1) {for(j in i+1:2) {ca[i,j] <- alpha[i]-alpha[j]}}
for(i in 1:3) {for(j in i+1:4) {cb[i,j] <- beta[i]-beta[j]}}

}
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DATA 1
list(n =108, leva= 2, levb= 4, Seeded=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2),Season=c(3,3,3,3,3,3,3,3,3,3,3,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,3,3,3,3,3,3,3,3,3,3,3,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4),
DIFF = c(0.45,0.182,0.66,0.053,-0.058,0.233,-0.008,-0.227,0.053,2.187,0.058,-0.523,0.83,-0.145,0.205,-0.693,-0.102,0.272,-0.253,0.032,0.772,0.575,0.083,0.55,0.747,0.048,-0.283,-0.003,0.092,0.11,-0.07,0.427,0.207,0.048,0.028,-0.74,0.633,0.39,0.187,-0.048,-0.768,-0.562,0.062,0.282,-0.707,-0.532,-0.158,0.855,-0.773,-0.195,-0.018,-0.477,-0.137,0.178,-0.397,-0.517,0.335,0.07,-0.313,-0.822,-1.058,-0.38,-0.03,0.25,-0.035,0.318,-0.6,0.865,0.23,-0.282,-0.328,-0.463,0.233,0.18,0.323,0.6,0.085,0.998,0.172,0.345,-0.285,0.562,0.013,0.263,0.572,0.595,0.35,0.27,0.36,-0.167,0.588,-0.033,0.262,0.088,-1.035,-0.985,-0.923,-0.428,-0.548,-0.788,-0.325,-0.787,0.708,-0.607,-0.212,0.745,-0.547,-0.878)
)

INITS
list(mu0=0, alpha=c(NA,0), beta=c(NA,0,0,0), alpha.beta = structure(.Data=c(NA, NA, NA, NA, NA, 0, 0, 0),
.Dim=c(2,4)), tau = 1)

C OpenBUGS Code for Problem 3

OpenBUGS code for Poisson model.

model{

for (i in 1:N) {
hunits0[i] <- hunits[i]/1000
aveinc0[i] <- aveinc[i]/10000

customers[i] ~ dpois(lambda[i])
lambda[i] <- exp(beta[1]+beta[2]*hunits0[i]+beta[3]*aveinc0[i]+beta[4]*aveage[i]
+beta[5]*distcomp[i]+beta[6]*diststore[i])
}

for (j in 1:6) {
beta[j] ~ dnorm(0, 0.0001)
}

hunits.star <- 720/1000
aveinc.star <- 70000/10000
aveage.star <- 6
distcomp.star <- 4.1
diststore.star <- 8

# mean response
lambdastar <- exp(beta[1]+beta[2]*hunits.star+beta[3]*aveinc.star+beta[4]*aveage.star
+beta[5]*distcomp.star+beta[6]*diststore.star)

# predictive response
ystar ~ dpois(lambdastar)
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}

OpenBUGS code for finding the best two covariates.

model{

for (i in 1:N) {
hunits0[i] <- hunits[i]/1000
aveinc0[i] <- aveinc[i]/10000

# ten competing models
lambda[1, i] <- exp(a[1]+a[2]*hunits0[i]+a[3]*aveinc0[i])
lambda[2, i] <- exp(b[1]+b[2]*hunits0[i]+b[3]*aveage[i])
lambda[3, i] <- exp(c[1]+c[2]*hunits0[i]+c[3]*distcomp[i])
lambda[4, i] <- exp(d[1]+d[2]*hunits0[i]+d[3]*diststore[i])
lambda[5, i] <- exp(e[1]+e[2]*aveinc0[i]+e[3]*aveage[i])
lambda[6, i] <- exp(f[1]+f[2]*aveinc0[i]+f[3]*distcomp[i])
lambda[7, i] <- exp(g[1]+g[2]*aveinc0[i]+g[3]*diststore[i])
lambda[8, i] <- exp(h[1]+h[2]*aveage[i]+h[3]*distcomp[i])
lambda[9, i] <- exp(k[1]+k[2]*aveage[i]+k[3]*diststore[i])
lambda[10, i] <- exp(m[1]+m[2]*distcomp[i]+m[3]*diststore[i])
}

# compare models
for (j in 1:10) {
L[j] <- sqrt(sum(D2[j, ])+pow(sd(Customer.new[j, ]), 2))

# datasets for different models
for (i in 1:N) {
Customer[j, i] <- customers[i]
Customer[j, i] ~ dpois(lambda[j, i])
D2[j, i] <- pow(customers[i]-Customer.new[j, i], 2)
Customer.new[j, i] ~ dpois(lambda[j, i])
}
}

for (i in 1:9) {
for (j in i+1:10) {
Comp[i, j] <- step(L[j]-L[i])
}
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}

for (j in 1:3) {
a[j] ~ dnorm(0, 0.01)
b[j] ~ dnorm(0, 0.01)
c[j] ~ dnorm(0, 0.01)
d[j] ~ dnorm(0, 0.01)
e[j] ~ dnorm(0, 0.01)
f[j] ~ dnorm(0, 0.01)
g[j] ~ dnorm(0, 0.01)
h[j] ~ dnorm(0, 0.01)
k[j] ~ dnorm(0, 0.01)
m[j] ~ dnorm(0, 0.01)
}

}

10


	Time to Second Birth.
	Tasmanian Clouds.
	Miller Lumber Company Customer Survey.
	OpenBUGS Code for Problem 1
	OpenBUGS Code for Problem 2
	OpenBUGS Code for Problem 3

