1 Time to Second Birth.

We obtain the following result shown in Figure [1](#page-0-0) by running OpenBUGS code. The Open-BUGS code is attached in Appendix [A.](#page-5-0)

Figure 1: OpenBUGS result for problem 1

- (a) The mean of β_2 is -171.2 and its 95% credible set is [-217.0, -125.1]. Variable death is significant since the 95% credible set of β_2 does not contain 0.
- (b) The mean of β_1 is -1.192 and its 95% credible set is [-3.161, 1.006]. Variable mage is not significant in influencing the response time since the 95% credible set of β_1 contains 0.
- (c) The predicted time between the births of Helga is 978.6 days.
- (d) The 95% credible set for the predicted time between births of Emma is $[-34.61, 1659.0]$.

2 Tasmanian Clouds.

(a) We first study the ANOVA analysis with main effects only. Without the interaction term, we can analyze the significance of the variables 'seeded' and 'season', though the results may not be reliable due to interaction between the two factors. The 95% credible set for the difference in rainfall between being unseeded and seeded is [−0.32, 0.04] with a mean −0.14. This is borderline, but since the credible set includes 0, we reject the hypothesis that seeding the clouds increases rainfall. Just for clarification, here we are subtracting seeded from unseeded (unseeded - seeded), so an increase in rainfall due to being seeded corresponds to a negative difference. The results are shown in Figure [2.](#page-1-0)

We conclude: (1) From Spring to Winter $(1, 4)$, we see a significant decrease in the amount of rainfall in the target areas. The 95% credible set is [0.26, 0.75] and does not contain 0. (2) From Summer to Winter (2, 4), we see a significant decrease in the amount of rainfall in the target areas. The 95% credible set is [0.26, 0.79] and does not contain 0. (3) From Fall to Winter $(3, 4)$, we see a significant decrease in the amount

Solution	Final							December 15, 2019	
Nanode statistics								\Box	
alpha[1] alpha[2] beta[1] beta[2] beta[3] beta[4] ca[1,2]	mean 0.06868 -0.06868 0.1579 0.1776 0.0128 -0.3483 0.1374	sd 0.04678 0.04678 0.07651 0.08406 0.034 0.07995 0.09356	MC error val2.5pc 1.408E-4 -0.02326 1.408E-4 1.625E-4 3.933E-4 $3.817E-4$ -0.153 $3.512E-4 - 0.5054$ 2.816E-4 -0.04653	-0.1606 0.008656 0.01295	median 0.0686 -0.0686 0.1579 0.1771 0.01292 -0.3481 0.1372	val97.5pc start 0.1606 0.02328 0.3088 0.3447 0.1776 -0.1913 0.3212	1001 1001 1001 1001 1001 1001 1001	Ā sample 100000 100000 100000 100000 100000 100000 100000	
cb[1,2] cb[1,3] cb[1,4] cb[2,3] cb[2,4] cb[3,4]	-0.01971 0.1451 0.5062 0.1648 0.5259 0.3611	0.1306 0.1304 0.1254 0.1396 0.1346 0.1346	4.526E-4 -0.2766 4.377E-4 -0.1106 3.992E-4 0.2613 6.787E-4 -0.1076 6.352E-4 6.171E-4	0.2624 0.096	-0.01936 0.1445 0.5062 0.1641 0.525 0.3613	0.2375 0.4028 0.7529 0.4404 0.7916 0.6259	1001 1001 1001 1001 1001 1001	100000 100000 100000 100000 100000 100000 ▼	

Figure 2: OpenBUGS result for 2(a)

of rainfall in the target areas. The 95% credible set is [0.10, 0.63] and does not contain 0. So we accept the hypothesis that the seasons affect the difference in rainfall between the target areas and the control areas, in the three ways listed above.

(b) Similarly, we study the ANOVA analysis with main effects and two interactions. Unlike the previous study, here we are looking at just the coefficient, not a difference of coefficients. The first number in each pair refers to 'seeded' and the second number to 'season'. We can see that we should not reject the null hypothesis, because alpha.beta[1,3] and alpha.beta[2,3] do not overlap. The credible sets are alpha.beta[1,3] : [0.00047, 0.33], alpha.beta[2, 3] : [−0.33, −0.00047], and we see that the two credible sets do not overlap. Furthermore, both of these coefficients reflect the difference in rainfall during the Autumn. This means that seeding clouds in the Autumn produces significantly higher rainfall than not seeding clouds in the Autumn. The results are shown in Figure [3.](#page-2-0)

3 Miller Lumber Company Customer Survey.

- (a) We propose a Poisson model with hunits, aveinc, aveage, distcomp, and diststore as covariates and customers as response. The OpenBUGS code is shown in Appendix [C.](#page-7-0) Result for the coefficients of the proposed Poisson model is shown in Figure [4.](#page-3-0)
- (b) We use Laud-Ibrahim critierion to decide on the best two covariates. We obtain the following results shown in Figure [5.](#page-4-0) As we prefer one model that with lower Laud-Ibrahim value compared with that with higher Laud-Ibrahim value, we prefer the model

ISyE 6420

Figure 3: OpenBUGS result for 2(b)

Solution				Final			ISyE 6420 December 15, 2019			
	Node statistics								▣ ▭	-23
		mean	sd	MC error val2.5pc		median	val97.5pc start		sample	۸
	beta[1]	2.966	0.21	0.01118	2.566	2.964	3.384	1001	100000	
	beta[2]	0.6138	0.1487	0.005835 0.332		0.6108	0.9077	1001	100000	
	beta[3]	-0.1185	0.02161	$9.409E - 4 - 0.1613$		-0.1183	-0.07688	1001	100000	
	beta[4]	-0.0038	0.001788		4.881E-5 -0.007362 -0.003802 -2.82E-4			1001	100000	
	beta[5]	0.1659	0.02653	0.001171 0.1152		0.1659	0.219	1001	100000	
	beta[6]	-0.1307	0.01647	$8.026E - 4 - 0.163$		-0.1302	-0.09982	1001	100000	v

Figure 4: OpenBUGS result for coefficients of Poisson model

10, which means that we consider covariates distcomp and diststore as the best two covariates.

(c) By fixing hunits=720, aveinc=70000, aveage=6, distcomp=4, and diststore=8, we obtain the results shown in Figure We found that the mean response is 8.958 and its 95% credible set is [7.719,10.34]. The predictive response is 8.957 and its 95% credible set is [4.0, 15.0].

$Final$

Figure 6: OpenBUGS result for mean and predictive response

A OpenBUGS Code for Problem 1

```
model{
for (i in 1:N){
 time[i] ~ dnorm(mu[i], tau)
 mu[i] <- b0 + b1* mage[i] + b2*death[i]
}
b0 ~ dnorm(0, 0.001)
b1 ~ dnorm(0, 0.001)
b2 \text{ 'dnorm(0, 0.001)}tau ~ dgamma(0.001, 0.001)
# prediction for Helga
mage.helga <- 24
death.helga <- 0
mu.helga <- b0 + b1*mage.helga + b2*death.helga
time.helga ~ dnorm(mu.helga, tau)
# prediction for Emma
mage.emma <- 28
death.emma <- 1
mu.emma <- b0 + b1*mage.emma + b2*death.emma
time.emma ~ dnorm(mu.emma, tau)
}
DATA
list(N=16341)
```
ISyE 6420

```
DATA(mage, death, and time)
INITS
list(b0=1, b1=0, b2=0, tau=1)
```
B OpenBUGS Code for Problem 2

```
model{
   for(i \text{ in } 1:n){
   DIFF[i] ~ dnorm( mu[i], tau )
    mu[i] <- mu0 + alpha[Seeded[i]] + beta[Season[i]] + alpha.beta[ Seeded[i], Season[i] ]
    }
#CR (corner) constraints
  # alpha[1] <- 0;
  # beta[1]<- 0;
  # alpha.beta[1,1]<- 0;
  # for( a in 2:leva) {alpha.beta[a,1]<- 0}
  # for(b in 2:levb) {alpha.beta[1,b]<- 0}
##STZ (sum-to-zero) constraints
   alpha[1] <- - sum(alpha[2:leva])
   beta[1] < - \text{sum}(\beta_{\text{total}}[2:\text{level}])for(a in 1:leva) {alpha.beta[a,1] \leftarrow - sum(alpha.beta[a, 2:levb])}for(b in 2:levb) {alpha,beta[1,b] < - \text{sum(alpha,beta[2:leva, b]}) }#PRIORS
mu0 ~ dnorm(0, 0.0001)
for(a in 2:1eva) \{\text{alpha}[a] \sim \text{donrm}(0, 0.0001)\}for(b in 2:levb) \{beta[b] \tilde{ } dnorm(0, 0.0001)\}for(a in 2:leva) {for(b in 2:levb){
       alpha.beta[a,b] \sim dnorm(0, 0.0001)}}
tau ~ dgamma(0.001, 0.001)
s < -1/sqrt(tau)#PAIRWISE COMPARISONS
for(i in 1:1) {for(j \text{ in } i+1:2) \{ca[i,j] \leq alpha[i].alpha[j] \}}for(i in 1:3) \{for(j \text{ in } i+1:4) \{cb[i,j] \leq beta[i] - beta[j]\}\}}
```

```
DATA 1
list(n =108, leva= 2, levb= 4, Seeded=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2),Season=c(3,3,3,3,3,3,3,3,3,3,3,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,3,3,3,3,3,3,3,3,3,3,3,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4),
DIFF = c(0.45, 0.182, 0.66, 0.053, -0.058, 0.233, -0.008, -0.227, 0.053, 2.187, 0.058, -0.523, 0.83,)
```

```
INITS
list(mu0=0, alpha=c(NA,0), beta=c(NA,0,0,0), alpha,beta = structure(.Data=c(NA, NA, NA,Dimec(2,4), tau = 1)
```
C OpenBUGS Code for Problem 3

OpenBUGS code for Poisson model.

```
model{
for (i in 1:N) {
hunits0[i] <- hunits[i]/1000
aveinc0[i] < -aveinc[i]/10000customers[i] ~ dpois(lambda[i])
lambda[i] <- exp(beta[1]+beta[2]*hunits0[i]+beta[3]*aveinc0[i]+beta[4]*aveage[i]
+beta[5]*distcomp[i]+beta[6]*diststore[i])
}
for (j in 1:6) {
beta[j] \sim dnorm(0, 0.0001)}
hunits.star <- 720/1000
aveinc.star <- 70000/10000
aveage.star <- 6
distcomp.star <- 4.1
diststore.star <- 8
# mean response
lambdastar <- exp(beta[1]+beta[2]*hunits.star+beta[3]*aveinc.star+beta[4]*aveage.star
+beta[5]*distcomp.star+beta[6]*diststore.star)
# predictive response
```

```
ystar ~ dpois(lambdastar)
```
}

OpenBUGS code for finding the best two covariates.

```
model{
for (i in 1:N) {
hunits0[i] <- hunits[i]/1000aveinc0[i] < -aveinc[i]/10000# ten competing models
lambda[1, i] < -exp(a[1]+a[2]*hunits0[i]+a[3]*aveinc0[i])lambda[2, i] < -exp(b[1]+b[2]*hunits0[i]+b[3]*aveage[i])lambda[3, i] < -exp(c[1]+c[2]*hunits0[i]+c[3]*distcomp[i])lambda[4, i] < -exp(d[1] + d[2]*hunits0[i] + d[3]*diststore[i])lambda[5, i] <- exp(e[1]+e[2]*aveinc0[i]+e[3]*aveage[i])
lambda[6, i] < -exp(f[1]+f[2]*aveinc0[i]+f[3]*distcomp[i])lambda[7, i] < -exp(g[1]+g[2]*aveinc0[i]+g[3]*distance[i])lambda[8, i] < -exp(h[1]+h[2]*aveage[i]+h[3]*distcomp[i])lambda[9, i] < -exp(k[1]+k[2]*aveage[i]+k[3]*distance[i])lambda[10, i] <- exp(m[1]+m[2]*distcomp[i]+m[3]*diststore[i])
}
# compare models
for (j in 1:10) {
L[j] <- sqrt(sum(D2[j, ])+pow(sd(Customer.new[j, ]), 2))
# datasets for different models
for (i in 1:N) {
Customer[j, i] <- customers[i]
Customer[i, i] \sim dpois(lambda[j, i])
D2[j, i] <- pow(customers[i]-Customer.new[j, i], 2)
Customer.new[j, i] \tilde{ } dpois(lambda[j, i])
}
}
for (i in 1:9) {
for (j in i+1:10) {
Comp[i, j] < -step(L[j]-L[i])}
```
}

}