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Consult the class slides, hints, and cited literature for the solution of exercise problems.

1. Dukes’ C Colorectal Cancer and Diet Treatment. Colorectal cancer is a common
cause of death. In the advanced stage of disease, when the disease is first diagnosed in
many patients, surgery is the only treatment. Cytotoxic drugs, when given as an adjunct to
surgery, do not prevent relapse and do not increase the survival in patients with advanced
disease.

Interest has been shown, at least by patients, in a nutritional approach to treatment,
where diet plays a critical role in the disease management program.

In a controlled clinical trial, McIllmurray and Turkie (1987) evaluated the diet treatment
in patients with Dukes’ C colorectal cancer, because the residual tumour mass is small after
operation, the relapse rate is high, and no other effective treatment is available. The diet
treatment consisted of linolenic acid, an oil extract of the seed from the evening primrose
plant Onagraceae Oenothera biennis and vitamin E.

The data for the treatment and control patients are given below:

Treatment Survival time (months)
Linoleic acid 1+, 5+, 6, 6, 9+, 10, 10, 10+, 12, 12, 12, 12, 12+, 13+, 15+,
(n1 = 25) 16+, 20+, 24, 24+, 27+, 32, 34+, 36+, 36+, 44+
Control 3+, 6, 6, 6, 6, 8, 8, 12, 12, 12+, 15+, 16+, 18+, 18+, 20, 22+,
(n2 = 24) 24, 28+, 28+, 28+, 30, 30+, 33+, 42

Fit the data with Weibull distribution, taking the treatment/control (1/0) as a covariate.
Place noninformative priors on all parameters. Consult the file Leukemia.odc from the
repository. Is the linoleic acid treatment beneficial? Comment.

2. Censored Rayleigh.

The lifetime (in hours) of a certain sensor has Rayleigh distribution, with survival function

S(t) = exp
{
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, λ > 0.

Twelve sensors are placed under test for 100 hours, and the following failure times are
recorded 23, 40, 41, 67, 69, 72, 84, 84, 88, 100+, 100+. Here + denotes a censored time.

(a) If failure times t1, . . . , tr are observed, and t+r+1, . . . , t
+
n
are censored, find the Bayes

estimator of λ . Use noninformative gamma prior on λ.



(b) Evaluate S(t) for t = 60 and find 95% Credible Set.
(c) The MLE for λ is
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Evaluate the MLE for the given data and comment on closeness to the Bayes estimator in
(a).

Hint: Rayleigh distribution is not implemented as default in WinBUGS/OpenBUGS and
has to be dealt using zero-tricks. Additional complication is censoring. Here is an example
how to do censoring on distributions defined by zero-trick. In the set of variables y1, . . . , y9
from normal distribution with mean µ and variance 1, the last three values are censored at
t = 8.

The standard representation with censoring

model {

for (i in 1:6) {y[i] ~ dnorm(mu, 1)} # uncensored data

for (i in 7:9) {y[i] ~ dnorm(mu, 1)I(8,)} # censored data

mu ~ dunif(0, 100)

}

Data:

list(y = c(6,6,6,7,7,7,NA,NA,NA))

node mean sd MC error 2.5% median 97.5% start sample

mu 7.193 0.3478 0.003604 6.515 7.19 7.875 1001 10000

is equivalent to

model {

for (i in 1:6) {y[i] ~ dnorm(mu, 1)}

for (i in 1:3) {

zeros[i] <- 0

zeros[i] ~ dpois(p[i])

p[i] <- -log(phi(mu-8))

#each censored observation provides term P(Y-mu>8-mu) to

#the likelihood of mu, which is equal to 1-phi(8-mu)=phi(mu-8),

# for phi being the cdf of standard normal

}

mu ~ dunif(0, 100)

}

Data:
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list(y = c(6,6,6,7,7,7,NA,NA,NA))

node mean sd MC error 2.5% median 97.5% start sample

mu 7.192 0.348 0.003687 6.519 7.185 7.882 1001 10000

3. Stagnant Water with MAR Data.

Carlin et al (1992)1 analyse data on stagnation of water by piecing together linear para-
metric forms.

• yi is log flow rate down the channel.
• xi is log height of stagnant surface levels for different surfactants i.
Proposed model is

yi ∼ N (µi, σ
2)

µi = α + β1 · xi + β2 · (xi − θ)+

Here a+ is a if a ≥ 0 and 0 if a < 0.
According to this model, regression slope is β1 for x < θ and β1 + β2 for x ≥ θ.

The original exercise is modified to have two y’s and two x’s missing at random.

model {

for (i in 1:N) {

y[i] ~ dnorm(mu[i], tau)

mu[i] <- alpha + beta[1]*x[i] + beta[2]*(x[i] - theta)

* step(x[i] - theta)

}

for( i in 1:N) {

x[i] ~ dunif(-5,5)}

tau ~ dgamma(0.001, 0.001)

alpha ~ dnorm(0.0, 1.0E-6)

for (j in 1:2) {

beta[j] ~ dnorm(0.0, 1.0E-6)

}

sigma <- 1/sqrt(tau)

theta ~ dunif(-1.3, 1.1)

}

Data

list(y = c(1.12, 1.12, 0.99, 1.03, 0.92, NA, 0.81, 0.83, 0.65, 0.67, 0.60,

0.59, 0.51, 0.44, 0.43, 0.43, 0.33, 0.30, 0.25, NA, 0.13, -0.01, -0.13,

1Hierarchical Bayesian Analysis of Changepoint Problems Bradley P. Carlin, Alan E. Gelfand and Adrian
F. M. Smith Journal of the Royal Statistical Society. Series C (Applied Statistics) Vol. 41, No. 2 (1992),
pp. 389-405.

3



-0.14, -0.30, -0.33, -0.46, -0.43, -0.65),

x = c(-1.39, -1.39, -1.08, -1.08, -0.94, -0.80, -0.63, -0.63, -0.25, -0.25,

-0.12, NA, 0.01, 0.11, 0.11, 0.11, 0.25, 0.25, 0.34, 0.34, 0.44, 0.59,

0.70, 0.70, 0.85, NA, 0.99, 0.99, 1.19),

N = 29)

Inits

list(alpha = 0.2, beta = c(-0.45, 0), tau = 5, theta = 0)

+ Gen Inits

Complete data results:

node mean sd MC error 2.5% median 97.5% start sample

alpha 0.5482 0.01337 4.934E-4 0.5228 0.5475 0.5756 501 10000

beta[1] -0.4187 0.01555 5.097E-4 -0.4485 -0.4193 -0.3869 501 10000

beta[2] -0.5944 0.0212 2.248E-4 -0.6362 -0.5942 -0.5528 501 10000

sigma 0.02218 0.003352 5.138E-5 0.01673 0.02178 0.02995 501 10000

theta 0.02563 0.03378 0.001399 -0.04016 0.02783 0.08707 501 10000

Omitted from the original data y_6=0.90, y_20 = 0.24, x_12=-0.12, x_26=0.85

mean sd MC_error val2.5pc median val97.5pc start sample

alpha 0.5498 0.01519 2.87E-4 0.5204 0.5496 0.5794 1001 100000

beta[1] -0.4153 0.01676 3.064E-4 -0.4485 -0.4153 -0.3826 1001 100000

beta[2] -0.5892 0.02205 2.957E-4 -0.6323 -0.5895 -0.5453 1001 100000

sigma 0.02197 0.00356 2.742E-5 0.01632 0.02151 0.03022 1001 100000

theta 0.01631 0.03713 7.755E-4 -0.05168 0.01715 0.08537 1001 100000

x[12] -0.1016 0.05593 5.299E-4 -0.2168 -0.09895 -0.002997 1001 100000

x[26] 0.8855 0.0236 1.313E-4 0.839 0.8854 0.9327 1001 100000

y[6] 0.8821 0.02345 1.156E-4 0.8356 0.8821 0.9281 1001 100000

y[20] 0.2179 0.02347 1.358E-4 0.1715 0.2179 0.2644 1001 100000
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