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A Review of GLMs

Assume that n (k+1)-tuples (yi, xi1, xi2, . . . , xik), i = 1, . . . , n, are observed. The values
yi are responses and components of (xi1, xi2, . . . , xik) are predictors or covariates. Let X∗ =
(xij)n×k be a matrix of predictors.

Standard theory of linear regression proposes the linear model

y = Xβ + ǫ, (1)

where y = (y1, . . . , yn)
′ is the response vector, X = [1 X∗] is a n × p design matrix, (1 is a

column vector of 1’s), and ǫ is a n × 1 vector od errors consisting of n iid normal N(0, σ2)
random variables. Here p = k + 1. The variance σ2 is common for all yi’s and independent
of predictors. The β is a p× 1 vector of parameters in the linear relationship,

IEyi = xiβ = β0 + β1xi1 + . . . βkxik, i = 1, . . . , n

The term generalized linear model (GLM) refers to a large class of models, introduced
by Nelder and Wedderburn (1972) and popularized by McCullagh and Nelder (1982, second
edition 1989).

(a) (b)

Figure 1: (a) John Nelder (1924–2010); (b) Robert Wedderburn (1947–1975)

In the canonical GLM model, the response variable yi is assumed to follow an exponential
family distribution with mean µi, which is assumed to be functionally dependent of x′

iβ. This
function can be nonlinear, but the distribution of yi depends on covariates only via their
linear combination, ηi = x′

iβ, called a linear predictor. As in the linear regression, the epithet
linear connotate linearity in parameters, not in the explanatory variables (predictors). Thus,
the linear combination β0 + β1 x1 + β2 x2 + β3 log(x1 + x2) + β4 x1 · x2, is a perfect linear
predictor.

Question: What is generalized in model (1) by a GLM?
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(1) Although yi’s remain independent, their (common) distribution is generalized. In-
stead of being the normal, the distribution of yi is selected from the exponential family
of distributions. This family is quite broad and versatile and includes normal, binomial,
Poisson, negative binomial, gamma, inverse normal, etc, as special cases.

(2) In the linear model (1) the mean of yi, µi = IE yi was equal to x′
iβ. The mean µi in

GLM depends on the predictor ηi = x′
iβ,

g(µi) = ηi (= x′
iβ). (2)

The function g is called the link function. For the model (1), the link is the identity function.
(3) The variance of yi is not constant, but may depend on the mean µi.
(4) Much more (but beyond the scope of our course).
Some models and inference for categorical data are well unified in a large class of models

which are GLM in nature.
For example in contingency tables, the cell counts Nij have multinomial distribution

Mn(n, pij). The hypothesis of interest in contingency tables is testing H0 : pij = αiβj for
some unknown αi and βj such that

∑

i αi =
∑

j βj = 1.
Since the expected cell count, IENij is npij, and under H0, nαiβj , by taking the logarithm

of both sides, we obtain,

log IENij = log n+ logαi + log βj

= const + ai + bj ,

for some parameters ai and bj . Thus, the test of goodness of fit for this model linear in
parameters a and b, is equivalent to the test of the original independence hypothesis H0

from the contingency tables.
Before discussing more details of GLM we overview the Exponential Family of distribu-

tions.

Exponential Family of Distributions

Observations yi follow the distribution form the exponential family if their density can be
written as

f(y|θ, φ) = exp

{

yθ − b(θ)

φ
+ c(y, φ)

}

, (3)

for some given functions b and c. Parameter θ is called canonical parameter, and φ dispersion
parameter.

Example. Normal N(µ, σ2) distribution belongs to the exponential family, with θ = µ,
φ = σ2, b(θ) = θ2/2 and c(y, φ) = −1/2 [y2/φ+ log(2πφ)], since

1√
2πσ

exp

{

−(y − µ)2

2σ2

}

= exp

{

yµ− µ2/2

σ2
− 1

2

[

y2/σ2 + log(2πσ2)
]

}

.
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Links

In the GLM the predictors for yi are summarized as linear predictor ηi = x′
iβ. The link

function is a monotone differentiable function g such that ηi = g(µi), where µi = EYi.
We note that in the normal case µ = η and the link is identity, g(µ) = µ.
For example, in analyzing counting data (e.g., contingency tables) Poisson model for ys

is standardly assumed exponential family model. As µ > 0, the identity link is inappropriate
since η could be negative. However, if µ = eη is assumed, the mean is always positive, and
η = log(µ) is an appropriate link.

A link is called natural if it is connecting θ (canonical parameter) and µ. In the Poisson
case,

f(y|λ) = λx

x!
e−λ = exp {y log λ− λ+ log y!} ,

µ = λ and θ = log µ. Thus, the log is the natural link for Poisson distribution.
The pmf for binomial distribution

f(y|π) =
(

n

y

)

πy(1− π)n−y,

can be represented as

f(y|π) = exp

{

y log
π

1− π
+ n log(1− π) + log(

(

n

y

)

)

}

.

From this, the natural link is η = log π
1−π

, called logit link.
With the binomial distribution, several more links are commonly used. For example, the

probit link is η = Φ−1(π) where Φ is a normal cdf, and the complementary log-log link is
η = log{− log(1− π)}.

For the three popular links in binomial model, the probability parameter π is expressed
as π = eη/(1 + eη), π = Φ(η), and π = 1− exp{−eη}, respectively.

Distribution θ(µ) b(θ) φ
Normal N(µ, σ2) µ θ2/2 σ2

Bernoulli Bin(1, π) log(π/(1− π)) log(1 + exp(θ)) 1
Poisson Poi(λ) log λ exp(θ) 1
Gamma Γ(µ, ν) −1/µ − log(−θ) 1/ν

Inv. normal IN(µ, σ2) 1/µ2 −
√
−2θ σ2

Mean and Variance in Exponential Family

Let the f(y|θ) be a member of exponential family with natural parameter θ. Assume that
θ is univariate. Then the log likelihood ℓ(θ) =

∑n
i=1 log f(yi|θ) =

∑n
i=1 ℓi(θ), where ℓi =
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log f(yi|θ). The MLE for θ is solution of the equation

∂ℓ

∂θ
= 0.

Property (i): IE(∂ℓi
∂θ
) = 0.

The following sequence proves property (i).

∫

IR

f(yi|θ)dyi = 1

∫

IR

∂f(yi|θ)
∂θ

dyi = 0

∫

IR

1

f(yi, θ)

∂f(yi|θ)
∂θ

f(yi|θ)dyi = 0

Since ∂ℓi
∂θ

= ∂ log f(yi|θ)
∂θ

= 1
f(yi,θ)

∂f(yi|θ)
∂θ

,

∫

IR

∂ℓi
∂θ

f(yi|θ)dyi = IE

(

∂ℓi
∂θ

)

= 0

Property (ii): IE(∂
2ℓi
∂θ2

) + Var (∂ℓi
∂θ
) = 0.

0 =
∂IE

(

∂ℓi
∂θ

)

∂θ

=
∂

∂θ

[
∫

IR

∂ℓi
∂θ

f(yi|θ)dyi
]

=

∫

IR

∂2ℓi
∂θ2

f(yi|θ)dyi +
∫

IR

∂ℓi
∂θ

∂f(yi|θ)
∂θ

dyi.

Using ∂ℓi
∂θ

= ∂ log f(yi|θ)
∂θ

= 1
f(yi|θ)

∂f(yi|θ)
∂θ

again, that is, ∂f(yi|θ)
∂θ

= ∂ℓi
∂θ

× f(yi|θ),
∫

IR

∂2ℓi
∂θ2

f(yi|θ)dyi +
∫

IR

∂ℓi
∂θ

∂ℓi
∂θ

f(yi|θ)dyi

= IE(
∂2ℓi
∂θ2

) + IE

(

∂ℓi
∂θ

)2

= 0.
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For the exponential family of distributions,

ℓi = ℓ(yi, θ, φ) =
yiθ − b(θ)

φ
+ c(yi, φ). (4)

and ∂ℓ
∂θ

= y−b′(θ)
φ

and ∂2ℓ
∂θ2

= − b′′(θ)
φ

. By properties (i) and (ii),

IEy = b′(θ) and Var y = b′′(θ)φ.
The function b′′(θ) is called variance function and denoted by V (µ) (since θ depends on

µ).
When data yi form the exponential family are given in a grouped form (from which an

average is considered as the group response), then the distribution for yi takes the form

f(yi|θi, φ, ωi) = exp

{

yiθi − b(θi)

φ
ωi + c(yi, φ, ωi)

}

, (5)

Weights ωi are equal to 1 if individual responses are considered, ωi = ni if response yi is an
average of ni responses, and ωi = 1/ni if the sum of ni individual responses is considered.

The variance of yi then takes the form

V ar yi =
b′′(θi)φ

ωi

=
φV (µi)

ωi

.

The unit deviance is defined as

di(yi, µi) = 2

∫ yi

µi

yi − u

V (u)
du,

and the total deviance, a measure of the distance between y and µ, is defined as

D(y, µ) =

n
∑

i=1

wid(yi, µi),

where the summation is over the data and wi are the prior weights. The quantity D(y, µ)/φ
is called the scaled deviance. For the normal distribution, the deviance is equivalent to the
residual sum-of-squares,

∑n
i=1(yi − µi)

2.

Algorithm for Fitting the GLM

The algorithms for fitting generalized linear models are robust and well established (see
Nelder and Wedderburn (1972) and McCullagh and Nelder (1994)). The maximum likelihood
estimates of β can be obtained using iterative weighted least-squares, IWLS.

(i) Given vector µ̂(k), initial value of the linear predictor η̂(k) is formed using the link

function, and components of adjusted dependent variate (working response), z
(k)
i , can be

formed as

z
(k)
i = η̂

(k)
i +

(

yi − µ̂
(k)
i

)

(

dη

dµ

)(k)

i

,
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where the derivative is evaluated at the the available kth value.
(ii) The quadratic (working) weights, W

(k)
i , are defined so that

1

W
(k)
i

=

(

dη

dµ

)2

i

V
(k)
i .

where V is the variance function evaluated at the initial values.
(iii) The working response z(k) is then regressed onto the covariates xi, with weights W

(k)
i

to produce new parameter estimates, β̂(k+1). This vector is then used to form new estimates
η(k+1) = X ′β̂(k+1) and µ̂(k+1) = g−1(η̂(k+1)), and iterations are repeated until changes are
sufficiently small. Starting values are obtained directly from the data, using µ̂(0) = y, with
occasional refinements in some cases (for example, to avoid evaluating log 0 when fitting a
log-linear model with zero counts).

By default, the scale parameter is estimated by the mean deviance, 1
n

∑n

i=1D(y, µ), in
the case of the normal, gamma and inverse Gaussian distributions. The default value of
the scale parameter for binomial and Poisson distributions is one. In the case of over- or
under-dispersion, it can be estimated by the mean deviance.

Deviance Analysis in GLM

In GLM modeling goodness of fit of a proposed model can be assessed in several ways.
The customary measure is deviance statistics. For a data set with n observations, assume
the dispersion φ is known and equal to 1, and consider the two extreme models, the single
parameter model stating IEyi = µ̂ and the n parameter saturatedmodel setting IEyi = µ̂i = yi.
Most likely, the interesting model is between the two extremes. Suppose M is the interesting
model with 1 < p < n parameters.

If θ̂Mi = θ̂Mi (µ̂i) are predictions of the model M and θ̂Si = θ̂Si (yi) = yi are the predictions
of saturated model, then the deviance of the model M is

DM = 2

n
∑

i=1

[

(yiθ̂
S
i (yi)− b(θ̂Si ))− (yiθ̂

M
i − b(θ̂Mi ))

]

When the dispersion φ is estimated and different than 1, the scaled deviance of the model
M is defined as D∗

M = DM/φ.

Example. For yi ∈ {0, 1} and Binomial family,

D = 2

n
∑

1=1

{

yi log

(

yi
ŷi

)

+ (ni − yi) log

(

ni − yi
ni − ŷi

)}

• Deviance is minimized at saturated model S. Equivalently, the log-likelihood ℓS =
ℓ(y|y) is the maximal log-likelihood with the data y.
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• The scaled deviance D∗
M is asymptotically distributed as χ2

n−p degrees of freedom.
Significant deviance represents the deviation from good model fit.

• If a model N with q parameters, is a subset of model M with p parameters (q < p),
then

D∗
N −D∗

M

φ
∼ χ2

p−q.

Residuals of the model are critical for assessing the model. Residuals in the standard
normal regression models are simply yi − µ̂i, but in the context of GLM’s, both predicted
values and residuals are more ambiguous. Fore example, for predictions is important to
distinguish the scale: (i) predictions on scale of η = x′

iβ and on scale of observed responses
yi for which IEyi = g−1(ηi).

As regards residuals, there are several approaches. Response residuals are defined as
ri = yi − g−1(ηi) = yi − θi. Also, the deviance residuals are defined as

rDi = sign(yi − µi)
√

di,

where di are observation specific contributions to the deviance D.
Deviance residuals are ANOVA-like decompositions,

∑

i

(rDi )
2 = D,

thus assessing the contribution of each observation to the model deviance. In addition,
the deviance residuals increase with yi − µ̂i and are distributed approximately as standard
normals, irrespectively of the type of GLM.

Example. For yi ∈ {0, 1} and Binomial family,

rDi = sign(yi − ŷi)

√

2

{

yi log

(

yi
ŷi

)

+ (ni − yi) log

(

ni − yi
ni − ŷi

)}

Second popular measure of goodness of fit of GLM is Pearson statistic

χ2 =

n
∑

i=1

(yi − µ̂i)
2

V (µ̂i)
.

This statistics also has n− p degrees of freedom.

Cellular Differentiation Data

In a biomedical study of the immuno-activating ability of two agents, TNF (tumor necrosis
factor) and IFN (interferon), to induce cell differentiation, the number of cells that exhibited
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Table 1: Cellular differentiation data.
Number of cells Dose of Dose of
differentiating TNF (U/ml) IFN (U/ml)

11 0 0
18 0 4
20 0 20
39 0 100
22 1 0
38 1 4
52 1 20
69 1 100
31 10 0
68 10 4
69 10 20
128 10 100
102 100 0
171 100 4
180 100 20
193 100 100

markers of differentiation after exposure to TNF and/or IFN was recorded. At each of
the 16 dose combinations of TNF/IFN, 200 cells were examined. The number y of cells
differentiating corresponding to TNF/IFN combination are given in the Table 1.

The model suggested here is Poisson, of the form

µ = E(y|TNF, IFN) = exp {β0 + β1 TNF + β2 IFN + β3 TNF ∗ IFN} .

model

{

for (i in 1:n)

{

numbercells[i] ~ dpois(lambda[i])

lambda[i] <- exp(b0 + b1 *tnf[i] + b2 *ifn[i])

}

b0 ~ dnorm(0, 0.00001)

b1 ~ dnorm(0, 0.00001)

b2 ~ dnorm(0, 0.00001)

}

#data

list(n=16, numbercells = c(11,18,20,39,22,38,52,69,31,68,69,128,102,171,180,193),

tnf = c(0,0,0,0, 1,1,1,1, 10,10,10,10, 100,100,100,100),

ifn = c(0,4,20,100, 0,2, 20, 100, 0,4,20, 100, 0,4,20,100 ) )
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#inits

list(b0=0, b1=0, b2=0)

mean sd MC_error val2.5pc median val97.5pc start sample

b0 3.573 0.05139 0.001267 3.473 3.574 3.672 1001 10000

b1 0.01313 5.921E-4 1.18E-5 0.01197 0.01314 0.01431 1001 10000

b2 0.00585 6.399E-4 1.142E-5 0.004585 0.005855 0.007086 1001 10000

model

{

for (i in 1:n)

{

numbercells[i] ~ dpois(lambda[i])

lambda[i] <- exp(b0 + b1 *tnf[i] + b2 *ifn[i] + eps[i])

eps[i] ~ dnorm(0,tau)

}

b0 ~ dnorm(0, 0.00001)

b1 ~ dnorm(0, 0.00001)

b2 ~ dnorm(0, 0.00001)

tau ~ dgamma(0.1, 0.1)

}

mean sd MC_error val2.5pc median val97.5pc start sample

b0 3.354 0.19 0.01375 2.979 3.35 3.738 1001 10000

b1 0.01501 0.002855 2.086E-4 0.009344 0.01496 0.02059 1001 10000

b2 0.00804 0.003409 2.615E-4 0.001794 0.007871 0.01531 1001 10000

Exercises

1. Gamma Distribution. Consider Gamma(α, α/µ) distribution. This parametrization
was selected so that Ey = µ.

Identify θ amd φ as functions of α and µ. Identify functions a, b and c.

Hint: The density can be represented as exp
{

−α log µ− αy

µ
+ α log(α) + (α− 1) log y − log(Γ(α))

}

2. Truncated Poisson. The zero-truncated Poisson Distribution is given by

f(y|λ) = λj

j!(eλ − 1)
, j = 1, 2, . . .

Show that f is a member of exponential family with canonical parameter log λ.

3. Leukemia Example.
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Feigl and Zelen (1965) published data concerning 33 patients suffering from leukemia.
The white blood cell count (in thousands) and AG-factor (positive or negative) for each
patient was recorded at the time of diagnosis, together with the time in weeks until the
death from initial diagnosis. Feigl and Zelen considered the time to death (the response
variable) as coming from an exponential distribution, using the logarithm of the white blood
cell counts and the AG test results as covariates.

Hint: Noting that the exponential distribution is the gamma distribution with the scale
parameter set to one, the model is easily fitted using glmlab. The data file comes with glmlab
as leuk.mat and so can be loaded directly from the file, creating the variables Time, Ag and
Wbc in the workspace. The error distribution can be set to gamma, the scale parameter to
Fixed Value: 1, and the link function to the logarithm, log (the default link function for the
gamma distribution is the reciprocal link). The variables are entered into the initial window
as shown in Figure 3. Note the use of fac to indicate that Ag is a qualitative variable.

5. Shocks! An experiment was conducted to assess the effect of small electrical currents on
farm animals, with the eventual goal of understanding the effects of high-voltage powerlines
on livestock. The experiment was carried out with seven cows, and six shock intensities, 0,
1, 2, 3, 4, and 5 milliamps (shocks on the order of 15 milliamps are painful for many humans;
see C. F. Dalziel, J.B. Lagen and J. L. Thurston, Electric shocks, Trans IEEE 60 (1941),
1073-1079). Each cow was given 30 shocks, five at each intensity, in random order. The
entire experiment was then repeated, so each cow received a total of 60 shocks. For each
shock the response, mouth movement, was either present or absent. The data as quoted give
the total number of responses, out of 70 trials, at each shock level. We ignore cow differences
and differences between blocks (experiments).

Current Number of Number of Proportion of
(milliamps) x Responses y Trials n Responses p

0 0 70 0.000
1 9 70 0.129
2 21 70 0.300
3 47 70 0.671
4 60 70 0.857
5 63 70 0.900
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