
5.4 EXERCISES

BMED6420
Brani Vidakovic; Fall 2018
Consult the class slides, hints, and cited literature for the solution of exercise problems.

1. Laplace’s Method for Binomial-Beta. Approximate the posterior by a normal
model using Laplece’s method. The likelihood is binomial X|p ∼ Bin(n, p) with and the
prior is p ∼ Be(α, β) with parameters:

(a) α = β = 1 (flat prior)
(b) α = β = 1/2 (Jeffreys’ prior)
(c) α = β = 2.
How well the Laplace’s method approximates 95% CS for p? Compare exact equi-tailed

CS’s with the approximations. Use n = 20 and X = 8.

2. Coin and Probability of Heads. A coin is flipped unknown number of times, say n,
and X heads are observed. Suppose we are interested in probability of heads p and assume
model

P (X = k|n, p) ∼ Bin(n, p).

The model is completed with priors on n and p. We assume that n is Poisson with mean λ
and p is beta Be(α, β). The priors on n and p are independent.

Assume X = 6 is observed. Sample form the posterior using
(a) Metropolis algorithm
(b) Gibbs sampler
Assume that α = β = 20 and λ = 18.

3. Amanita muscaria. With its bright red, sometimes dinner-plate-sized caps, the fly
agaric (Amanita muscaria) is one of the most striking of all mushrooms (Fig. 1a). The white
warts that adorn the cap, the white gills, a well-developed ring, and the distinctive volva
of concentric rings distinguish the fly agaric from all other red mushrooms. The spores of
the mushroom print white, are elliptical, and have a larger axis in the range of 7 to 13 µm
(Fig. 1b).

Measurements of the diameter X of spores for n = 51 mushrooms are given in the
following table:



Figure 1: Amanita muscaria and its spores. (a) Fly agaric or Amanita muscaria. (b) Spores
of Amanita muscaria.
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Assume that the measurements are normally distributed with mean µ and variance σ2,
but both parameters are unknown and of interest.

Suppose that the prior on µ is normal N (12, 22) and the prior on τ = 1/σ2 is gamma
Ga(2, 4).

(a) Develop Gibbs sampling algorithm and find Bayes estimators of µ and τ.
(b) If an inverse gamma IGa(4, 2) is placed on σ2, would the solution be different?

Develop a Gibbs sampling for this case keeping the prior on µ as in (a).
(c) Develop a Metropolis algorithm for the priors as in (a). Choice of proposal distribu-

tions is up to you.

4. Jeremy via Metropolis. The Jeremy example was solved exactly (as a conjugate
problem) and by using WinBUGS. Recall that Jeremy’s IQ test score X was modeled as
normal N (θ, 80), while the location parameter θ had prior N (110, 120). We could think of θ
as Jeremy’s intrinsic IQ level. On his IQ test Jeremy scored X = 98.

Develop Metropolis MCMC scheme for sampling from the posterior.
(i) Sample the proposal θp from Cauchy distribution centered at the current state of the

chain θ.

thetaprop = theta + 10*tan(pi*rand(1,1)-pi/2);

Since the proposal distribution depends on (θp−θ)2 it does not factor into the acceptance
ratio ρ.

Your target is the product of likelihood and prior and does not need to be normalized to
be a distribution. Start with θ = 100 and burn in 500 simulations. Save 50,000 simulations
(not including the burn in).
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(a) Estimate posterior mean, posterior standard deviation, fine the median and 95%
equaly-tailed credible set.

(b) Plot the normalized histogram and superimpose the theoretical posterior density.

5. Jeremy via Gibbs Sampling.
Translate the following WinBUGS code into custom made Gibbs Sampling program in

MATLAB.

model{

x ~ dnorm(mu, tau)

pprec <- 1/120

mu ~ dnorm(110, pprec)

tau ~ dgamma(0.01, 1)

sig2 <- 1/tau

}

DATA

list( x = 98 )

INITS

list(mu=100, tau=0.01)

Find full conditionals for µ and τ .
Compare Bayes summaries (posterior mean, median, 2.5 and 97.5 percentiles, histograms)

between WinBUGS and Gibbs outputs.

Gibbs with Metropolis Step. When in Gibbs sampling scheme, one or more full
conditionals are not tractable, their function can be replaced by a so-called Metropolis step.
An example with Metropolis step is given below.

Georgia Deaths from Kidney Cancer 1985-1989 by Counties. Data set contains
death counts from Kidney Cancer for 159 Georgia counties as well as the county population
size. The data are from years 1985-1989.

It is of interest to estimate the death rate (per 100,000) for each county, as well as the
all-Georgia death rate.

The model is Poisson Poi(λini), i = 1, . . . , k where ni is the population size divided by
100,000 for county i; here k = 169. Also, n = n1 + . . .+ nk is population of Georgia in units
of 100,000.

The model is as follows:

yi ∼ Poi(λini), i = 1, . . . , k
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λi ∼ Ga(α, β), i = 1, . . . , k

α ∼ U(0, A)

β ∼ U(0, B)

for specified constants A and B.
The joint distribution is:

f(y,λ, α, β) =
k
∏

i=1

[

λyi
i

yi!
e−λini ×

βαλi
α−1

Γ(α)
e−βλi

]

×
1

A
1(0 ≤ α ≤ A)×

1

B
1(0 ≤ α ≤ B).

π(λi|y,λ 6=i, α, β) ∝ f(y,λ, α, β)

∝ λyi
i e

−λiniλα−1

i e−βλi , i = 1, . . . , k.

Therefore,

[λi|y,λ 6=i, α, β] ∼ Ga(yi + α, ni + β), i = 1, . . . , k.

π(α|y,λ, β) ∝ f(y,λ, α, β)

∝
βkα

(Γ(α))k

(

k
∏

i=1

λi

)α−1

1

A
1(0 ≤ α ≤ A)

∝

(

βk∏k
i=1 λi

)α

(Γ(α))k
1(0 ≤ α ≤ A).

π(β|y,λ, α) ∝ f(y,λ, α, β)

∝ βkαe−β
∑

k

i=1
yi ×

1

B
1(0 ≤ β ≤ B).

Therefore,

[β|y,λ, α] ∼ Ga

(

kα + 1,
k
∑

i=1

yi

)

1(0 ≤ β ≤ B).

The Metropolis Step for generating α:
Proposal α′ ∼ N (α, σ2). The Metropolis ratio depends on target only,

r =

(

Γ(α)

Γ(α′)

)k

× Cα′−α × 1(0 ≤ α′ ≤ A),

for C = βk∏k
i=1 λi.
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From gibbsmetstep.m:

Exponential Survival Times. Survival times of n post-surgery patients assigned to a
treatment group are given as T1, . . . , Tn. In a control group of m post-surgery patients the
survival times are C1, . . . , Cm.

The proposed model is

Ti ∼ E(λθ), i = 1, . . . , n

Ci ∼ E(λ), i = 1, . . . , m

λ > 0, θ > 0.

where Ti’s and Ci’s are assumed independent.
To complete the model assume the following priors on λ and θ,

π(λ) =
1

λ
, [Jeffreys’ choice]

θ ∼ Ga(1/2, 1/2),

where gamma is parameterized via the rate parameter.
(a) Show that the likelihood and posterior depend on T =

∑n
i=1 Ti and C =

∑m
i=1Ci.

(b) Identify full conditionals for [λ|θ, T, C] and [θ|λ, T, C].
(c) For n = 10, m = 12, T = 18.26, and C = 26.78 set Gibbs’ sampling scheme.
(d) From a Gibbs sample of size 10000 estimate θ and find 95% equitailed credible set.

Is the credible set containing 1? Discuss.
(e) How would you deal with the analysis if some times are censored? Repeat the analysis

if T10 = 2.12, C11 = 1.54 and C12 = 1.98 are in fact censored times.

Testing the Effectiveness of a Seasonal Flu Shot. Assume 30 individuals are given a
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flu shot at the start of winter. At the end of winter, follow up to see whether they contracted
flu. Let

xi =

{

1, no flu (shot effective)
0, flu (shot not effective)

Suppose the 30th individual was unavailable for followup. Define y =
∑

29

i=1 xi. If p is the
probability the shot is effective, then

f(y|p) =

(

29

y

)

py(1− p)29−y, y = 0, 1, . . . , 29.

With the complete data ( y plus x30),

f(y, x30|p) =

(

30

y + x30

)

py+x30(1− p)30−y−x30 , y + x30 = 0, 1, . . . , 30.

With uniform prior on p and [x30|p] ∼ Ber(p) the joint distribution of [p, x30|y] is proportional
to f(y, x30|p). Thus, the full conditionals are

[p|x30, y] ∼ Be(y + x30 + 1, 30− y − x30 + 1),

and [x30|y, p] ∼ Ber(p).
If y = 21, estimate p using Gibbs sampler that uses these two full conditionals.
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Hints/Results/Solutions to Some of the Exercises

1. Laplace’s Method for Binomial-Beta.

2. Coin and Probability of Heads.
Hint for (a). Show first that [X|p] ∼ Poi(λp). To do this you will need to integrate n

from the X ∼ Bin(n, p).

P (X = k|p) =
∞
∑

n=k

P (X = k|n, p)
λn

n!
e−λ.

Since P (X = k|n, p) =
(

n
k

)

pk(1−p)n−k after change of variables u = n−k and rearrangement

of the sum you will arrive to Poisson Poi(pλ) distribution. Here k is constant, and you will
need to use

∑∞
u=0[(1− p)λ]u/u! = exp{(1− p)λ}.

Now, the posterior is proportional to the product of beta prior and marginal likelihood
for [X|p] which is the Metropolis target function.

Take as proposal beta Be(X + α, β) distribution. Note that this is an independence
proposal which conveniently simplifies acceptance probability in Metropolis algorithm.

Pick any p between 0 and 1 and start the simulation.

Hint for (b). For Gibbs, you will need full conditionals. Argue that:

[n|X, p] ∼ X + Poi((1 − p)λ).

and

[p|n,X ] ∼ Be(α +X, β + n−X).

The first one is simply number of heads (observed) plus number of tails (unobserved) and
by argument similar to one in (a) distributed as Poi((1 − p)λ). The second follows from a
conjugate Binomial-Beta setup.

3. Amanita muscaria.
Hint: Bayes’ inference depends on the sufficient statistics X ∼ N (µ, σ

2

n
).

4. Jeremy via Metropolis.

5. Jeremy via Gibbs Sampling.

6. Gibbs with Metropolis Step.
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%

% Kidney Cancer in Georgia 1985-1989 by county

%

close all

clear all

%rand(’seed’,2);

%randn(’seed’,2);

filename = ’C:\Brani\Courses\isyestatg\ISyE6420Spring2018\HWs\georgiakcd.xlsx’;

data = xlsread(filename, ’B:D’);

y = data(:,2);

ni = data(:,3)/100000;

[n ~]=size(data);

A=10;

B=10;

%

lambda = ones(n,1); % initial values

alpha = 1;

beta=1;

sigma=0.1;

%

lambdas =[lambda]; %save all lambdas

alphas =[alpha];

betas= [beta];

%

%

tic

for i = 1:20000 %beware slow...

prodlambdas = prod(lambda);

sumlambdas = sum(lambda);

% lambda_k ~ Gamma(y_k + alpha, ni_k + beta), k=1,...,n

lambda=zeros(n,1);

for k = 1:n

lambda(k) = gamrnd(y(k)+alpha, 1/(ni(k)+beta));

end

lambdas=[lambdas lambda];

% METROPOLIS STEP for alpha

alpha_prop = alpha + sigma*randn;
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c= prodlambdas * beta^n;

if (alpha_prop < A) .* (alpha_prop > 0)

r = (gamma(alpha).^n * c^alpha_prop)/(gamma(alpha_prop).^n * c^alpha) ;

else

r = 0;

end

if rand < r

alpha = alpha_prop;

end

alphas=[alphas alpha];

% RESTRICTED GAMMA for beta

beta_new = B+1;

while beta_new > B

beta_new = gamrnd(n*alpha + 1, 1/sumlambdas);

end

beta = beta_new;

betas = [betas beta];

end

toc

%Burn in 500

burn=500;

lambdas = lambdas(:, burn+1:end);

alphas = alphas(burn+1: end);

betas = betas(burn+1: end);

figure(1)

nbins=30;

subplot(3,1,1)

histogram(lambdas(33,:),nbins,’Normalization’,’Probability’)

subplot(3,1,2)

histogram(alphas,nbins,’Normalization’,’Probability’)

subplot(3,1,3)

histogram(betas,nbins,’Normalization’,’Probability’)

print -depsc ’gacancer1.eps’)

figure(2)

subplot(3,1,1)

plot(lambdas(33,2000:2200),’-’)

axis tight

subplot(3,1,2)

plot(alphas(2000:2200),’-’)

axis tight
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subplot(3,1,3)

plot(betas(2000:2200),’-’)

axis tight

print -depsc ’gacancer2.eps’)

ma=mean(alphas)

mb=mean(betas)

mla = mean(lambdas’)

ma/mb

sum(y)/sum(ni)

Exponential Survival Times.
Hint: The posterior is proportional to

n
∏

i=1

(λθ exp{−λθTi})×
m
∏

i=1

(λ exp{−λCi})×
1

λ
× θ1/2−1 exp{−θ/2}

The above product is proportional to

λm+n−1 exp{−λ(θT + C)},

when θ is constant, and to

θn−1/2 exp{−(λT + 1/2)θ)},

when λ is constant. Thus, [λ|θ, T, C] ∼ Ga(m+n, θT +C) and [θ|λ, T, C] ∼ Ga(n+1/2, λT+
1/2).
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