
Brani Vidakovic / Greg Schreiter Exercises 4.8 ISyE 6420

Problems

1. Counts of Alpha Particles. Rutherford and Geiger provided counts of α-particles in
their experiment. The counts, given in the table below, can be well modeled by Poisson
distribution.

X 0 1 2 3 4 5 6 7 8 9 10 11 ≥ 12
Frequency 57 203 383 525 532 408 273 139 45 27 10 4 2

(a) Find sample size n and sample mean X̄. In calculations for X̄ take ≥ 12 as 12 .

(b) Elicit a gamma prior for λ with rate parameter β = 10 and shape parameter α
selected in such a way that the prior mean is 7 .

(c) Find the Bayes estimator of λ using the prior from (b). Is the problem conjugate?
Use the fact that

∑n
i=1Xi ∼ P oi(nλ).

(d) Write a WinBUGS script that simulates the Bayes estimator for λ and compare its
output with the analytic solution from (c).

2. Mosaic Virus. A single leaf is taken from each of 8 different tobacco plants. Each leaf
is then divided in half, and given one of two preparations of mosaic virus. Researchers
wanted to examine if there is a difference in the mean number of lesions from the two
preparations. Here is the raw data:

Plant Prep 1 Prep 2
1 38 29
2 40 35
3 26 31
4 33 31
5 21 14
6 27 37
7 41 22
8 36 25

Assume the normal distribution for the difference between the populations/samples.
Using WinBUGS/OpenBUGS find

(a) the 95% credible set for µ1 − µ2, and

(b) posterior probability of hypothesis H1 : µ1 − µ2 ≥ 0.

Use noninformative priors.

Hint. Since this is a paired two sample problem, a single model should be placed on
the difference.

3. FIGO. Despite the excellent prognosis of FIGO 1 stage I, type I endometrial cancers,
a substantial number of patients experience recurrence and die from this disease.

1Federation Internationale de Gynecologie et d’Obstetrique
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Zeimet et al (2013) conducted a retrospective multicenter cohort study to determine
expression of L1CAM by immunohistochemistry in 1021 endometrial cancer specimens
with the goal to predict clinical outcome.

Of 1021 included cancers, 17.7% were rated L1CAM-positive. Of these L1CAM-positive
cancers, 51.4% recurred during follow-up compared with 2.9% L1CAM-negative can-
cers. Patients bearing L1CAM-positive cancers had poorer disease-free and overall
survival.

It is stated that L1CAM has been the best-ever published prognostic factor in FIGO
stage I, type I endometrial cancers and shows clear superiority over the standardly
used multifactor risk score. L1CAM expression in type I cancers indicates the need for
adjuvant treatment. This adhesion molecule might serve as a treatment target for the
fully humanized anti-L1CAM antibody currently under development for clinical use.

FIGO I/I Endometrial Cancer
Recurred Did Not Recur Total

L1CAM Positive
L1CAM Negative
Total 1021

(a) Using information supplied fill in the table (round the entries to the closest integer).

(b) The estimators of the population Sensitivity and Specificity are simple relative
frequencies (ratios): True Positives (TP)/Recurred and True Negatives (TN)/Not Re-
curred. Consider now a Bayesian version of this problem. Using WinBUGS model TP
and TN as Binomials, place the priors on population Sensitivity (p1) and Specificity
(p2) and find their Bayesian estimators.

Explore the estimators for your favorite choice of priors on p1 and p2 : Jeffreys’, uniform
(0, 1), flat on logit, etc.

Zeimet, A. G., Reimer, D., Huszar, M., Winterhoff, B., Puistola, U., Azim, S. A.,
Muller-Holzner, E., BenArie, A., van Kempen, L. C., Petru, E., Jahn, S., Geels, Y. P.,
Massuger, L. F., Amant, F., Polterauer, S., Lappi-Blanco, E., Bulten, J., Meuter, A.,
Tanouye, S., Oppelt, P., Stroh-Weigert, M., Reinthaller, A., Mariani, A., Hackl, W.,
Netzer, M., Schirmer, U., Vergote, I., Altevogt, P., Marth, C., and Fogel, M. (2013).
L1CAM in Early-Stage Type I Endometrial Cancer: Results of a Large Multicenter
Evaluation. J. Natl. Cancer Inst., 7, 105(15), 1142− 1150. Epub 2013 Jun 18.

4. Histocompatibility. A patient who is waiting for an organ transplant needs a his-
tocompatible donor who matches the patient’s human leukocyte antigen (HLA) type.
For a given patient, the number of matching donors per 1000 National Blood Bank
records is modeled as Poisson with unknown rate λ. If a randomly selected group of
1000 records showed exactly one match, estimate λ in Bayesian fashion.

For λ assume
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(a) gamma Ga(2, 1) prior;

(b) flat prior λ = 1, for λ > 0;

(c) invariance prior π(λ) = 1
λ
, for λ > 0;

(d) Jeffreys prior π(λ) = 1√
λ
, for λ > 0.

Note that the priors in (b-d) are not proper densities (the integrals are not finite),
however, the resulting posteriors are proper.

5. Neurons Fire in Potter’s Lab. Data set consisting of 989 firing times in a cell
culture of neurons, recorded time instances when a neuron sent a signal to another
linked neuron (a spike). The cells from the cortex of an embryonic rat brain were
cultured for 18 days on multielectrode arrays. The measurements were taken while the
culture was stimulated at a rate of 1 Hz. From this data set the counts of firings in
consecutive time intervals of length 20 milliseconds was derived:

20 19 26 20 24 21 24 29 21 17
23 21 19 23 17 30 20 20 18 16
14 17 15 25 21 16 14 18 22 25
17 25 24 18 13 12 19 17 19 19
19 23 17 17 21 15 19 15 23 22

It is believed that the counts are distributed as Poisson with unknown parameter λ.
An expert believes that the number of counts in the interval of 20 milliseconds should
be about 15.

(a) What is the likelihood function for these 50 observations?

(b) Using the information the expert provided elicit an appropriate Gamma prior. Is
such a prior unique?

(c) For the prior suggested in (b) find Bayes’ estimator of λ. How does this estimator
compare to the MLE?

6. Elicit Inverse Gamma Prior. Specify the inverse gamma prior

π(θ) =
βα exp{−θ/β}

Γ(α)θα+1
, θ ≥ 0;α, β > 0

if Eθ = 2 and Var(θ) = 12, are elicited from the experts.

7. Derive Jeffreys’ Priors for Poisson λ, Bernoulli p, and Geometric p. Recall
that Jeffreys’ prior for parameter θ in the likelihood f(x | θ) is defined as

π(θ) ∝ | det(I(θ))|1/2

where, for univariate parameters,
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I(θ) = E
[
d log f(x | θ)

dθ

]2

= −E
[
d2 log f(x | θ)

dθ2

]
and expectation is taken wrt random variable X ∼ f(x | θ).
(a) Show that Jeffreys’ prior for Poisson distribution f(x | λ) = λx

x!
e−λ, λ ≥ 0, is π(λ) =√

1/λ.

(b) Show that Jeffreys’ prior for Bernoulli distribution f(x | p) = px(1− p)1−x, 0 ≤ p ≤
1, is π(p) ∝ 1√

p(1−p)
, which is beta Be(1/2, 1/2) distribution (or Arcsin distribution).

(c) Show that Jeffreys’ prior for Geometric distribution f(x | p) = (1 − p)x−1p, x =
1, 2, . . . ; 0 ≤ p ≤ 1, is π(p) ∝ 1

p
√

1−p

8. Two Scenarios for the Probability of Success. An experiment may lead to success
with probability p, which is to be estimated. Two series of experiments were conducted:

(i) In the first scenario the experiment is repeated independently 10 times and the
number of successes realized was 1;

(ii) In the second scenario the experiment was repeated until the success, and number
of repetition was 10 .

(a) The two likelihoods are Binomial and Geometric, and the moment matching esti-
mate for probability of succes in both cases is p̂ = 0.1, however the classical inference
for the two cases is different (CI, testing, etc.) Is there any difference in Bayesian
inferences? Why yes or no.

(b) For any of the two scenarios find Bayes estimator of p if the prior is π(p) = 1
p
√

1−p .

9. Jeffreys’ Prior for Normal Precision.

The Jeffreys’ prior on normal scale σ is π(σ) = 1
σ
. Consider the precision parameter

τ = 1
σ2 . Using the invariance property show that Jeffreys’ prior for τ is π(τ) = 1

τ
.

10. Derive Jeffreys’ Prior for Maxwell’s θ.

(a) Show that Jeffreys’ prior for Maxwell’s rate parameter θ is proportional to 1
θ
.

Maxwell density is given by

f(x | θ) =

√
2

π
θ3/2x2 exp

{
−1

2
θx2

}
, x ≥ 0, θ > 0

(b) Show that the flat prior on log θ is equivalent to 1
θ

prior on θ.

11. ”Quasi” Jeffreys’ Priors. Jeffreys himself often recommended priors different from
Jeffreys’ priors. For example, for Poisson rate λ he recommended π(λ) ∝ 1/λ instead
of π(λ) ∝

√
1/λ.
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For (µ, σ2) Jeffreys recommended π (µ, σ2) ∝ 1 × 1/σ2. This prior is obtained as the
product of separate one-dimensional Jeffreys’ priors for µ and σ2. Show that simulta-
neous Jeffreys’ prior for two dimensional parameter (µ, σ2) is π (µ, σ2) ∝ 1× 1/σ3.

12. Haldane Prior for Binomial p. Haldane (1931)2 suggested fully noninformative
prior for binomial p as π(p) ∝ 1

p(1−p) [ beta Be(0, 0) distribution ]

(a) Show that Haldane prior is equivalent to a flat prior on logit(p).

(b) Suppose X ∼ Bin(n, p) is observed. What is the posterior? What is the Bayes
estimator of p.

(c) What is the predictive distribution for single future Bernoulli Y ? What is the
prediction for Y ?

13. Eliciting a Normal Prior. We are eliciting a normal prior N (µ, σ2) from an expert
who can specify percentiles. If 20th and 70th percentiles are specified as 2.7 and 4.8,
respectively, how µ and σ should be elicited?

14. Jigsaw. An experiment with a sample of 18 nursery-school children involved the
elapsed time required to put together a small jigsaw puzzle. The times were:

3.1 3.2 3.4 3.6 3.7 4.2 4.3 4.5 4.7
5.2 5.6 6.0 6.1 6.6 7.3 8.2 10.8 13.6

Assume that data are coming from normal N (µ, σ2) with σ2 = 8. For parameter µ set
a normal prior with mean 5 and variance 6 .

(a) Find Bayes estimator and 95% credible set for population mean µ.

(b) Find posterior probability of hypothesis H0 : µ ≤ 5.

(c) What is your prediction for a single future observation?

15. Jeremy and Poisson. Jeremy believes that normal model on his IQ test scores is not
appropriate. After all, the scores are reported as integers. So he proposes a Poisson
model; the scores to be modeled as Poisson:

y ∼ POi(θ)

An expert versed in GT student’s intellectual abilities is asked to elicit a prior on θ.
The expert elicits a gamma prior

θ ∼ Ga(30, 0.25)

Jeremy gets the test and scores y = 98.

2Haldane, J. B. S. (1931). A note on inverse probability. Proceedings of the Cambridge Philosophical
Society, 28, 55 – 61.
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(a) What is the Bayes estimator of θ? Find this estimator exactly.

(b) Using WinBUGS/OpenBUGS confirm that simulations agree with the theoretical
result in (a).

16. NPEB for p in Geometric Distribution. A geometric random variable X counts
number of failures before the first success, when probability of a success is p (and a
failure 1− p). The PDF of X is

P (X = x) = (1− p)x × p, x = 0, 1, 2, . . . ; 0 ≤ p ≤ 1

We simulated a sample of size 2400 from geometric distribution with probability of
success 0.32. The following (summarized) sample was obtained:

x Freq
0 758
1 527
2 379
3 229
4 162
5 121
6 79
7 56
8 30
9 20
10 15
11 6
12 6
13 4
14 1
15 0
16 0
17 4
18 1
19 1
20 1

21+ 0
Total 2400

(a) Develop Nonparametric Empirical Bayes Estimator if the prior on p is g(p), 0 ≤
p ≤ 1.

(b) Compute the empirical Bayes estimator developed in (a) on the simulated sample
for different values of x.
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17. Lifetimes and Predictive Distribution. Suppose that T1, . . . , Tn are exponential
Exp(θ) lifetimes, where θ is the rate parameter. Let the prior on θ be exponential
Exp(τ), where τ is rate parameter, as well.

Denote with T total observed lifetime
∑n

i=1 Ti. Then, T is gamma Ga(n, θ) distributed.
Show:

(a) Marginal (prior predictive) for T is mT (t) = nτtn−1

(τ+t)n+1 , t > 0.

(b) Posterior for θ given T = t is gamma Ga(n+ 1, τ + t).

π(θ | y) =
θn(τ + t)n+1

Γ(n+ 1)
exp{−(τ + t)θ}

(c) Posterior predictive distribution for a new T ∗, given T = t is

f (t∗ | t) =

∫ ∞
0

θ exp {−θt∗} π(θ | t)dθ =
(n+ 1)(τ + t)n+1

(τ + t+ t∗)n+2

(d) Expected value (wrt posterior predictive distribution) of T ∗ (that is, prediction for
a new T ∗) is

E (T ∗ | T = t) =
τ + t

n

18. Normal Likelihood with Improper Priors. LetX1, . . . , Xn be iid normalsN (θ, σ2),
where

(a) θ is the parameter of interest, and σ2 is known. Assume flat prior on θ,

π(θ) = 1, −∞ < θ <∞.

Show that the posterior is

[θ | X1, . . . , Xn] ∼ N
(
X̄,

σ2

n

)
where X̄ is the mean of the observations.

(b) σ2 is the parameter of interest, and θ is known. Let the prior on σ2 be

π
(
σ2
)

=
1

σ2
, σ2 > 0.

Show that the posterior is inverse gamma,
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[
σ2 | X1, . . . , Xn

]
= IG

(
n

2
,

∑n
i=1 (Xi − θ)2

2

)

where IG(a, b) stands for distribution with a density f(y) = ba

Γ(a)ya+1 e
−b/y, a, b > 0, y ≥

0.

Solutions and Hints

1. Counts of Alpha Particles.

(a) α = 70

Sum of frequencies is n =
∑12

i=0 fi = 2608 and Y =
∑12

i=0 Xifi = 10094, which gives

MLE for λ, λ̂MLE = 10094/2608 = 3.8704.

Y ∼ Pois(nλ). λ ∼ Gamma(α, β)

Likelihood × Prior ∝ (nλ)y

y!
e−nλ × λα−1e−βλ

Posterior ∝ λy+α−1e−(n+β)λ, which is Gamma (y + α, n+ β).

Bayes rule λ̂b = y+α
n+β

= 10094+70
2608+10

= 3.8824.

BUGS code:

model{

nlambda <- n*lambda

sumx ~ dpois(nlambda);

lambda ~ dgamma(alpha, beta)

}

#data

list(n=2608, sumx= 10094, alpha=70, beta=10)

list(lambda=1)

results

mean sd MC_error val2.5pc median val97.5pc start sample

lambda 3.882 0.03849 3.716E-5 3.807 3.882 3.958 1001 1100000

Associated code file available in AlphaParticles.odc.

2. Mosaic Virus. Solution:

OpenBUGS code:
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model {

for (i in 1:n) {

x[i] ~ dnorm(mu, prec)

}

mu ~ dnorm(0, 0.0001)

prec ~ dgamma(0.001, 0.001)

s2 <- 1/prec

pH1 <- step(mu - 0) #P(mu > 0)

}

DATA

list(n=8, x = c(9, 5, -5, 2, 7, -10, 19, 11))

INIT

list(mu = 0, prec = 1)

Credible Interval for µ is [−2.889, 12.38].

3. FIGO.

total = 1021;

totalpositive = 181; %rounded 0.177 * 1021 = 180.7170

totalnegative = 840; % as 1021 - 181

tp = 93; % true positive as rounded 181 * 0.514 = 93.0340

fp = 88; % false positives, as 181-93

fn = 24; % false negatives as rounded 840 * 0.029=24.3600

tn = 816; %true negatives, as 840-24

%

% (a) The table is

% Rec Not Rec Total

% ------------------------------------------

% + 93 88 181

% - 24 816 840

% ------------------------------------------

% Tot 117 904 1021

4. Histocompatibility. Hint : In all cases (a-d), the posterior is gamma. Write the
product λ1

1!
exp{−λ} × π(λ) and match gamma parameters. The first part of the

product is the likelihood when exactly one matching donor was observed.

Solution: Gamma Ga(r, µ) distribution for λ has a density
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π(λ) =
µrλr−1 exp{−µλ}

Γ(r)
, λ > 0

Here r = 2 and µ = 1, so π(λ) = λe−λ, since Γ(2) = 1 The likelihood is Poisson,
f(x | λ) = λx

x!
exp{−λ}, and since X = 1 is observed, the likelihood is λe−λ.

The posterior is proportional to the product of the likelihood and prior,

λe−λ × λe−λ = λ2e−2λ

From this expression we conclude that the posterior is Gamma Ga(3, 2). For any Y ∼
Ga(r, µ), the mean EY is r/µ. Thus, the posterior mean is 3/2 = 1.5, and this is a
Bayes estimator of λ. The posterior variance is 3/22 and posterior standard deviation
is
√

3/2 = 0.8660.

The supplied WinBUGS program gives the following MCMC approximation to the
solution:

mean sd MC_error val2.5pc median val97.5pc start sample

lambda 1.495 0.863 0.002706 0.3107 1.332 3.609 10001 100000

The median is 1.332 and the 95 % credible set for λ is [−0.3107, 3.609].

5. Neurons Fire in Potter’s Lab.

(a) The likelihood is proportional to λ
∑50

i=1Xi exp{−50λ}, where
∑
Xi = 989 is the

sum of all counts (total number of firings). The
∑

iXi is sufficient statistics here and
has Poisson Poi (nλ) distribution.

(b) A gamma prior with mean 15 is not unique, for any x,Ga(15x, x) is such a prior.
However, the variances depend on x, For example for priors Ga(150, 10),Ga(15, 1),Ga(1.5, 0.1),
Ga(0.15, 0.01), etc. have variances 1.5, 15, 150, 1500, etc. The variances indicate the de-
gree of certainty of expert that the prior mean is 15 . Large variances correspond to
non-informative choices.

Since the sample variance of 50 observations is about 15 , it is reasonable to take prior
with larger variance, say Ga(3, 0.2).

(c) Show that λ |
∑

iXi is gamma Ga (
∑

iXi + 3, n+ 0.2). Bayes estimator for λ can
be represented as w× X̄ + (1−w)× 15 = where w = n/(n+ 0.2), emphasizing the fact
that posterior mean is a compromise between MLE, X̄, and prior mean, 15.

6. Elicit Inverse Gamma Prior. Show that the mean µ and variance σ2 of an inverse
gamma prior IG(α, β) are connected with α and β as
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α =
µ2

σ2
+ 2, β = µ

(
µ2

σ2
+ 1

)
[Result. α = 7/3, β = 8/3. ]

7. Derive Jeffreys’ Priors for Poisson λ, Bernoulli p, and Geometric p.

(a)

I(λ) = E
[
d

dλ
log

(
λx

x!
e−λ
)]2

= E
[
d

dλ
( const + x log λ− λ)

]2

= E(x/λ− 1)2 = Ex2/λ2 − 2Ex/λ+ 1

Since Ex2 = Varx+ (Ex)2 = λ+ λ2, I(λ) = 1/λ+ 1− 2 + 1 = 1/λ. Thus, π(λ) ∝
√

1
λ
.

(b)
f(x | p) = px(1− p)1−x, x = 1, 2, . . .

L = log(f(x | p)) = x log(p) + (x− 1) log(1− p)
∂L

∂p
=
x

p
− 1− x

1− p
∂2L

∂p2
= − x

p2
− 1− x

(1− p)2

Since Ex = p, the Fisher Information is

I(p) =
1

p
+

1− p
(1− p)2

=
1

p(1− p)

Thus, Jeffreys’ prior is

π(p) =
√
|I(p)| = 1√

p(1− p)

(c)
f(x | p) = (1− p)x−1p, x = 0, 1

L = log(f(x | p)) = (x− 1) log(1− p) + log(p)

∂L

∂p
=

1

p
− x− 1

1− p
∂2L

∂p2
= − 1

p2
− x− 1

(1− p)2

11
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Since Ex = 1/p, the Fisher Information is

I(p) =
1

p2
+
p−1 − 1

(1− p)2
=

1

p2
+

1

p(1− p)
=

1

p2(1− p)

Thus, Jeffreys’ prior is

π(p) =
√
|I(p)| = 1

p
√

1− p

8. Two Scenarios for the Probability of Success.

(a) For Binomial, EX = np = 10p, and X = 1, leading to p̂ = 0.1. For Geometric,
EN = 1/p and N = 10, leading again to p̂ = 0.1. However, see Example 9.16 (page
413) in the Engineering Biostatistics textbook, so called Savage Disparity.

Since in both cases the likelihood is proportional to p(1−p)9, Bayesian inference coincide
and for a Bayesian the scenario is irrelevant, all that matters is one success and 10 trials.

(b) The posterior is proportional to (1−p)17/2, which is beta Be(1, 21/2). Thus, Bayes’
estimator is p̂B = 2/21.

9. Jeffreys’ Prior for Normal Precision. We know that Jeffreys priot for σ is π(σ) = 1
σ
.

The invariance property states that if τ = τ(σ), then

I1/2(τ) = I1/2(σ)×
∣∣∣∣dσdτ

∣∣∣∣
Here σ = 1√

τ
and dσ

dτ
= −1

2
τ−3/2. Thus π(τ) = π(σ)×

∣∣dσ
dτ

∣∣ = 1√
1/τ
× 1

2
τ−3/2 = 1

2τ
. Since

the derived prior is improper, we can drop constant 2 in the denominator and take

π(τ) =
1

τ

as Jeffreys’ prior for precision parameter τ .

10. Derive Jeffreys’ Prior for Maxwell’s θ.

(a) Find the second derivative of the log likelihood. It is free of x, so the expectation
is trivial. π(θ) = 1

θ
.

(b) Let φ = log θ have flat prior. Then

π(θ) = π(φ)

∣∣∣∣dφdθ
∣∣∣∣ = 1× 1

θ

12
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11. ”Quasi” Jeffreys’ Priors. Denote φ = σ2. Then the normal likelihood is

L(µ, φ) =
1√
2πφ

exp

{
−(x− µ)2

2φ

}
and the log likelihood is

`(µ, φ) = const− 1

2
log φ− (x− µ)2

2φ

Then,

∂`

∂µ
= −2

x− µ
2φ

· (−1) =
x− µ
φ

∂`

∂φ
= − 1

2φ
+

(x− µ)2

2φ2

and

∂2`

∂µ2
= −1

φ

∂2`

∂µ∂φ
= −x− µ

φ2

∂2`

∂φ∂µ
=

∂2`

∂µ∂φ
, and

∂2`

∂φ2
=

1

2φ2
− (x− µ)2

φ3

The Fisher Information matrix is

I = −E

[
− 1
φ

−x−µ
φ2

−x−µ
φ2

1
2φ2
− (x−µ)2

φ3

]
=

[ 1
φ

0

0 1
2φ2

]
and

det(I) =
1

2φ3

Jeffreys’ prior is proportional to | det(I)|1/2

π(µ, φ) ∝ 1

φ3/2
∝ 1× 1

σ3

13
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12. Haldane Prior for Binomial p.

(a) Let ψ be the logit of p, i.e.,

ψ = log
p

1− p
,

and assume that ψ is given a flat prior, ψ ∼ 1. Then the prior on p is

π(p) = π(ψ)×
∣∣∣∣dψ(p)

dp

∣∣∣∣ = 1×
∣∣∣∣ 1

p/(1− p)
· p(−1)− 1 · (1− p)

(1− p)2

∣∣∣∣ =
1

p(1− p)
.

(b) The posterior is beta Be(x, n−x) and the Bayes estimator of p is x
n
, which coincides

with frequentist’s p̂.

(c) The predictive distribution for single future Bernoulli y is

f(y | x) =
B(x+ y, n+ 1− x− y)

B(x, n− x)
.

Here, using B(a, b) = Γ(a)Γ(b)
Γ(0,b))

and Γ(a+ 1) = aΓ(a), we can show

f(0 | x) + f(1 | x) =

Γ(x)Γ(n+1−x)
Γ(n+1)

+ Γ(x+1)Γ(n−x)
Γ(n+1)

Γ(x)Γ(n−x)
Γ(n)

=

Γ(x)(n−x)Γ(n−x)
nΓ(n)

+ xΓ(x)Γ(n−x)
nΓ(n)

Γ(x)Γ(n−x)
Γ(n)

=
n− x
n

+
x

n
= 1

Thus, the distribution of future observation y given x success in n trials is

y | x 0 1
prob n−x

n
x
n

Note that prediction for future y is the mean of the posterior predictive distribution
which is x

n
. The same result is obtained when Ey = p is integrated wrt posterior

Be(x, n− x). Check this!

13. Eliciting a Normal Prior. If xp is p th quantile (100%p th percentile ) then
xp = µ + zpσ. A system of two equations with two unknowns is formed with zp ’s
in MATLAB/Octave as norminv (0.20) = −0.8416 and norminv (0.70) = 0.5244, or in
R as

> qnorm (0.20)

14
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[1] −0.8416212

> qnorm (0.70)

[1] 0.5244005

The solution is µ = 3.99382 ≈ 4, σ = 1.53734.

14. Jigsaw. (a-b) Consult the Jeremy example. Note that the likelihood in normal with
variance σ2/n, since we have n observations.

(c) posterior mean.

15. Jeremy and Poisson. Problem is conjugate and the posterior is gamma Ga(128, 5/4).
The posterior mean is 128 ·4/5 = 102.4 and variance 128 ·16/25 = 81.92. The posterior
standard deviation is 9.0510.

The simple WinBUGS code is

model{

X ~ dpois(lambda)

lambda ~ dgamma(30, 0.25)

}

#DATA

list(X=98)

#results

mean sd MC_error val2.5pc median val97.5pc start sample

lambda 102.4 9.085 0.02726 85.42 102.1 121.0 1001 100000

16. NPEB for p in Geometric Distribution. Solution for (a):

The likelihood and prior are

f(x | p) = (1− p)xp, x = 0, 1, 2, . . . ; p ∼ g(p), 0 ≤ p ≤ 1

leading to the marginal for X

m(x) =

∫ 1

0

f(x | p)dG(p) =

∫ 1

0

(1− p)xpg(p)dp

The posterior mean is

15
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E(p | x) =
1

m(x)

∫ 1

0

p(1− p)xpg(p)dp

=
1

m(x)

∫ 1

0

[1− (1− p)](1− p)xpg(p)dp

=
1

m(x)

(
m(x)−

∫ 1

0

(1− p)x+1pg(p)dp

)
= 1− m(x+ 1)

m(x)

An automatic estimator for m(x) is

m̂(x) =
# of observations = x

Total # of observations
.

This leads to

p∗ = 1− # of observations = x+ 1

# of observations = x

p̂ = min {1,max {0, p∗}}

In this case p̂ is free of prior distribution g (although the marginal depends on g ).

Solution for (b): For the simulated data the estimators (at particular values of x ) are
given in the following table:

16
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x Freq p̂
0 758 0.3047
1 527 0.2808
2 379 0.3958
3 229 0.2926
4 162 0.2531
5 121 0.3471
6 79 0.2911
7 56 0.4643
8 30 0.3333
9 20 0.2500
10 15 0.6000
11 6 0.0000
12 6 0.3333
13 4 0.7500
14 1 1.0000
15 0 NaN
16 0 0
17 4 0.7500
18 1 0
19 1 0
20 1 1

21+ 0 NaN
Total 2400

Note that for x ≥ 10 the NPEB estimators become unreliable due to low frequency
counts.

17. Lifetimes and Predictive Distribution. Solution TBD.

18. Normal Likelihood with Improper Priors. Solution TBD.
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